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Strange metal behavior of the Hall angle in twisted bilayer graphene
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Twisted bilayer graphene (TBG) with interlayer twist angles near the magic angle ≈1.08° hosts flat bands
and exhibits correlated states including Mott-like insulators, superconductivity, and magnetism. A linear-in-
temperature normal state resistivity in TBG has been attributed to an exotic Planckian dissipation mechanism
but can be equally well explained in terms of conventional electron-phonon scattering. To address this issue, we
perform combined temperature-dependent transport measurements of both the longitudinal and Hall resistivities
in near-magic-angle TBG. While the observed longitudinal resistivity follows linear temperature T dependence
consistent with previous reports, the Hall resistance shows an anomalous T dependence with the cotangent of
the Hall angle cot �H ∝ T 2. Boltzmann theory for quasiparticle transport predicts that both the resistivity and
cot �H should have the same T dependence, contradicting the observed behavior. This failure of quasiparticle-
based theories is reminiscent of other correlated strange metals such as cuprates.
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I. INTRODUCTION

Transport in strongly correlated systems, where electronic
quasiparticle excitations are not well defined, has attracted
attention in diverse areas of physics ranging from quantum
materials [1,2] and cold atoms [3] to string theory [4]. Many
of these investigations have their roots in the first observation
of resistivity scaling linearly with temperature T in the normal
state of high-temperature cuprate superconductors, along with
a host of other anomalies including the T 2 scaling of cotan-
gent of the Hall angle �H [5,6], which remain challenging
open problems to this day.

Magic-angle twisted bilayer graphene (TBG) has emerged
as a system exhibiting a wealth of tunable many-body phases
[7–17]. Moreover, the discovery of superconducting domes in
the vicinity of correlated insulating phases [8,9] shows that
this system shares features with the high Tc cuprate phase
diagram [9]. Nevertheless, there are many differences with
the cuprates: the TBG electronic structure has multiple bands
crossing the Fermi energy, Berry phase effects, and Dirac
dispersion. There are also differences in the phenomenol-
ogy, such as the observation of nearby ferromagnetic phases
[7,12,13]. In view of this, it is important to understand the
normal state transport phenomenology in TBG. Based on the
linear T resistivity, Cao et al. [18] have suggested that magic-
angle TBG exhibits exotic “Planckian dissipation” [19] like
the cuprates. However, as many common metals show linear
T resistivity, authors of other work [20,21] have interpreted
this behavior within a conventional electron-phonon scatter-
ing picture [22]. Therefore, resistivity measurements alone are
unable to determine the mechanism of scattering in TBG close
to the magic angle.

*Corresponding author: Bockrath.31@osu.edu

In this paper, we present weak-field Hall resistivity and
cotangent of the Hall angle measurements that, along with
theoretical arguments, add crucial insights to this story and
enable the two scenarios to be distinguished. Our main goal
here is to address the question: can we understand both the
observed longitudinal and Hall resistivities ρxx and ρxy within
a conventional textbook picture of metallic transport, or do the
experiments imply an exotic transport regime characteristic of
correlated quantum matter?

Here, we study devices based on TBG with interlayer twist
angles near the magic twist angle ≈1.08º. The longitudinal
resistivity shows ρxx ∝ T over a range of temperatures from
10 to 100 K. At higher temperatures, we typically observe
a resistivity maximum at a characteristic temperature Tmax ≈
100–200 K. The Hall resistance ρxy is temperature dependent,
such that cot �H = ρxx/ρxy ∝ T 2 for the range over which the
resistivity is T linear.

While the linear T ρxx behavior can be consistent with
electronic quasiparticle scattering by phonons, we find that
this conventional picture cannot even qualitatively explain the
Hall transport. Quite generally, in Boltzmann theory, ρxx ∝
1/τ , where τ is the transport scattering rate, while cot �H =
(ωcτ )−1, where ωc is the cyclotron frequency. Thus, both
ρxx and cot �H should exhibit identical T dependence, aris-
ing from a common scattering rate (see Appendix G). The
observed cot �H ∝ T 2 behavior in the density and temper-
ature regime, where ρxx ∝ T , is simply inconsistent with any
quasiparticle-based transport theory. We note that this is the
same dichotomy found in the strange metal regime of high Tc
cuprates [5,6].

II. DEVICE FABRICATION

Samples were made using the “tear-and-stack” technique
on a custom-made micropositioning stage like the method
reported in Refs. [9,23,24]. TBG stack, with a small twist
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FIG. 1. Twisted bilayer graphene (TBG) device geometry and
electronic transport measurements. (a) Schematic of layer stack ge-
ometry showing a BN-encapsulated TBG with attached gate and
contact electrodes. (b) Plot of ρxx vs n for a sample D1 with twist
angle ≈1.15° taken at T = 1.5 K. Inset: optical image of D1, scale
bar 4 μm. (c) Color plot of ρxx (n,B) showing Landau fan features
for sample D1. Color scale is nonlinear to enhance contrast. Filling
factors for several minima originating from charge neutrality are
shown above the plot. Black regions at charge neutrality and full
filling occurring at nonzero B result from amplifier saturation.

angle ∼1–2° were produced by tearing a graphene flake and
rotating and stacking the separated pieces on top of each other.
A larger angle than intended was targeted because, typically,
the angle as measured from transport data is smaller due to
interlayer relaxation [9,23,24]. Figure 1(a) shows a schematic
diagram of a layer stack with the hexagonal BN-encapsulated
device along with the oxidized Si wafer, which acts as a gate
electrode to modulate the charge density. The stacks were
then etched into a Hall bar geometry and Cr/Au edge contacts
attached by electron beam lithography. A device optical image
with attached electrodes is shown in the Fig. 1(b) inset.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Completed samples were loaded into a flowing He gas
cryostat, and transport measurements were performed. Figure
1(b) shows the longitudinal resistivity ρxx vs gate voltage
Vg at the base temperature of 1.5 K for a device D1. Large
peaks are observed near charge neutrality as well as near
Vg ≈ ±45 V. This agrees with previous measurements where,
because of the moiré superlattice produced by the interlayer
twist, flat bands develop near charge neutrality, with an energy
gap separating these bands from dispersive bands. When four
electrons per moiré unit cell are added or removed, the
Fermi level reaches the energy gap, producing the observed
resistance peaks.

The evolution of these peaks with magnetic field is shown
in Fig. 1(c), with Landau fan features emanating from charge
neutrality as well as several other zero-field peaks. Based
on an analysis of these data, we find a gate capacitance of
Cg = 1.12 × 10−4 F/m2. This enables us to determine the car-

rier density to fill the flat bands as n0 ≈ ±3.1 × 1012 cm−2

and plot the horizontal axis as the density n. Filling factors
for some of the main ρxx minima near n = 0 are shown
along the top of Fig. 1(c). From the measured n0, we infer an
interlayer twist angle ∼1.15° [8,9]. Low-temperature peaks in
ρxx also occur for normalized values of the density ∼n = n/n0
near − 1

4 , ± 1
2 , and ± 3

4 . These peaks correspond to correlated
insulating states found previously [7–17].

Figure 2(a) shows a color plot of the longitudinal resistivity
ρxx vs n and T, while Fig. 2(b) shows ρxy vs n and T. Resistivity
ρxx vs T traces extracted from Fig. 2(a) at different densities
corresponding to the vertical dashed lines in Fig. 2(a) are
shown by the blue, black, and red triangles in Fig. 2(c). Data
from two other devices D2 and D3, with twist angles ∼1.1
and ∼0.91°, respectively, [similar color plots to Figs. 2(a) and
2(b) are shown in Appendix A] are shown by the circles and
squares taken at several different densities near half-filling.
The black dashed lines show that, above a coherence temper-
ature [18] T ≈ 5–10 K, ρxx increases linearly with temperature
for each device. Figure 2(d) shows ρxy data for D1–3 taken at
the same densities as ρxx for each sample. The sign of ρxy

at half-filling depends on the sign of the effective mass and
hence the twist angle, see Appendix C. For all the samples at
sufficiently high T, |ρxy| shows a decreasing trend with tem-
perature. We note that work on epitaxial graphene observed
significant density shifts at fixed gate voltage > ∼100 K due
to thermally activated charge traps [25], which could also
cause changes in ρxy. However, in Fig. 2(a), the resistivity
peaks occur at fixed Vg > ∼10 K (the n axis is determined
from Vg only by a scale factor), directly confirming that the
temperature does not affect the charge density in this regime.
This is consistent with the much smaller concentration of
charge traps expected in BN-encapsulated devices [26] that
we measure, while additionally Fig. 2 shows T < 100 K data.

After a linear T increase, ρxx reaches a broad maximum
before turning downwards. This behavior is shown in Fig. 3(a)
for sample D2, which shows maxima at a characteristic tem-
perature which decreases as the doping increases toward
n/n0 = 4. We attribute this maximum to activation of carriers
in higher energy bands, in agreement with Ref. [20], along
with a ∼5–10 meV rise in chemical potential. In Fig. 3(b),
we plot the band structure from Ref. [27], which goes beyond
the original continuum model [27–29] and includes structural
relaxation that leads to a significant gap between the flat
and dispersive bands. At the measured twist angle for D2 of
∼1.1°, this shows a narrow band with bandwidth W ≈ 40
meV. The right panel of Fig. 3(b) shows the corresponding
density of states. The Fermi function is plotted for T = 150 K
at a density n = 1.5 × 1012 cm−2 as the blue dashed line in
Fig. 3(b). As the full width at half maximum of the Fermi
function energy derivative ≈3.5kBT , we expect the excited
band to begin being populated when 3.5 kBT ≈ W , yielding
T ≈ 130 K, in good agreement with the observed 150 K
near half filling. The density dependence of the resistivity
maximum can also be understood using this band structure
(see Appendix C).

We now turn to linear T variation of our resistivity in terms
of various models. We know that two-dimensional (2D) resis-
tivity is ∼(h/e2)(kF l )−1, where kF is the Fermi wave vector,
and l is the inferred electronic mean free path. The measured
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FIG. 2. Longitudinal and Hall resistivity of twisted bilayer graphene (TBG) devices. (a) Color plot of resistivity ρxx vs temperature T and
density n taken from sample D1. (b) Color plot of resistivity ρxy vs T and n, taken at a magnetic field B = 0.3 T. Similar color plots to (a) and
(b) are shown in Figs. 5 and 6 for sample D2 and D3, respectively. (c) Line traces of ρxx for three samples. The triangles, squares, and circles
indicate data taken from D1 (twist angle ≈1.15°), D2 (twist angle ≈1.1°), and D3 (twist angle ≈0.91°), respectively, with the line traces for
D1 having the corresponding colors shown in (a). For clarity, D1 data have been offset upwards by 2 k�, while D2 data are shifted upwards
by 1 k�. Filled symbols indicate data taken near half-filling, while open symbols indicate data taken away from half-filling. The dashed lines
show linear fits to the half-filling data, yielding slopes of 79, 18, and 8.8 �/K for D1, D2, and D3, respectively. (d) Transverse resistivity ρxy

for the same three samples with data for D1 taken at B = 0.3 T for D1 and D3, and B = 0.2 T for D2. Data for D1 and D3 were obtained using
a contact symmetrization procedure, while a background was subtracted from D2 to compensate for an apparent mixing of ρxx into ρxy, see
Appendix A. D1 data (triangles) have been shifted upward by 0.2 k� for clarity.

resistivity in our experiment is �(h/e2) = 25.81 k� in the
relevant temperature range. Thus, TBG is not obviously in a
“bad metal” regime where the Mott-Ioffe-Regel (MIR) limit is
violated with kF l ≈ 1 and the quasiparticle picture necessarily
breaks down. It makes sense to ask if we can understand
TBG transport within a conventional Boltzmann formalism of
weakly interacting quasiparticles.

The very narrow bandwidth inferred theoretically and from
our data is consistent with previous reports [7–13,27–29].

This raises the possibility that T variations of the density
of states as determined by the compressibility dn/dμ (where
n is the electron density, and μ is the chemical potential),
negligible in conventional metals, might be important for
transport in magic-angle TBG. This impacts transport in nar-
row bands through the energy derivative of the Fermi function
and through the T dependence of μ, even if the quasiparticle
scattering rate (from impurities) is T independent. Such effects
become significant when kBT is of the order of the bandwidth.

FIG. 3. Temperature dependence of resistivity and theoretical model. (a) ρxx vs T up to higher temperatures for D2, taken at densities
n = 0.96 × 1012, 1.4 × 1012, and 1.64 × 1012 cm−2 (triangles, squares, circles, respectively). The red, black, and blue dashed lines are guides
to the eye connecting data for each density. Each data trace shows a maximum at a temperature Tmax shown by the arrow with the corresponding
color to each guide that decreases with density. (b) Calculated band structure for a twist angle 1.1° following Ref. [27]. The band structure
comes with an estimate of the energy gap between the narrow and higher bands. The peak in resistivity can be understood as the activation of
carriers in higher bands due to thermal broadening of the Fermi function step along with the chemical potential shift. Blue dashed line shows
the Fermi function centered at chemical potential corresponding to density 1.5 × 1012 cm−2, with T = 150 K.
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However, using realistic band structure parameters, we find
that these effects are not relevant for the linear T resistivity
between 10 and 100 K (see Appendix D).

Next, we consider electron-phonon scattering, which ac-
counts for linear T resistivity in many metals over a range of
temperatures Tmin < T < Tmax with Tmax determined by the
MIR criterion and Tmin set by the Debye temperature. This
mechanism is not responsible for the linear T resistivity in
strongly correlated materials dubbed “strange metals” [1,2].
Such materials often violate the MIR criterion with no appar-
ent Tmax for linear resistivity, and Tmin is often too low to be
consistent with phonons. We emphasize that TBG is different
on both counts. First, the MIR criterion is never violated in
TBG because of its multiband nature, as discussed above. Sec-
ond, as emphasized in Ref. [22], a very low kBTmin ≈ h̄ω(Q)
can arise in low-density materials (with small kF), where ω(Q)
is the phonon frequency at momentum transfer Q = 2kF .

We can fit ρxx data treating electron-phonon scattering [22]
within a Boltzmann approach. The scattering rate 1/τ ac-
quires a linear T dependence from the phonon occupation
for kBT > h̄ω(2kF ), and thus, ρxx ≈ 1/τ ≈ T . A quantita-
tive fit to the slope can be obtained using the result ρxx =
πFD2kBT/ge2h̄ρmv2

Fv2
a +ρ0, where D is the deformation

potential, vF and va are the Fermi and acoustic phonon ve-
locities, ρm is the sheet mass density of graphene, g= 4 is the
band degeneracy, ρ0 is a constant representing the residual
resistance from impurity scattering, and F is a dimensionless
factor that depends on the twist angle [22]. These fits are
shown in Fig. 2(c) as the dashed lines, and the parameter
values are consistent with previous reports [20,22] and with
that expected for vF from the band structure of Fig. 3(b) for
all three samples (vF = 3.6 × 104, 7 × 104, 1 × 105 m/s for
D1, D2, and D3, respectively). Momentum dependence of the
matrix elements and occupancy factors are only important
in temperatures <TBG and lead to a smooth crossover to a
∼T 4 regime. The phonon model does exceptionally well in
capturing the said crossover (see Appendix E).

We now turn to the predictions of the electron-phonon
model for the Hall response. Figure 2(d) shows the measured
ρxy(T ), which is certainly not the T-independent response one
expects in a simple metal. It is instructive to analyze our
transport data in terms of the Hall angle cot �H = ρxx/ρxy,
which within Boltzmann theory has the simple expression
cot �H = (ωcτ )−1 (see Appendix F). Recalling Matthiessen’s
rule that the total scattering rate is the impurity scattering
rate (which determines the T = 0 intercept) plus the inelastic
T-dependent scattering rate, we subtract out the T = 0 value of
the cotangent of the Hall angle and plot �cot �H (T ) in Fig. 4.

The inset of Fig. 4 shows the measured �cot �H (T ) vs T,
which has a quadratic temperature dependence (dashed line),
while the electron-phonon theory leads to a linear T depen-
dence (blue line). The quadratic variation of �cot �H (T ) in
all our devices is further emphasized in Fig. 4, where we plot
our data from all three samples vs T 2. Additional data are
shown in Appendix A. The data follow a linear trend in the
plot over the temperature range in which T linear ρxx behavior
is observed.

We find that, while electron-phonon scattering can indeed
account for the linear T longitudinal resistivity, it fails to
explain the observed quadratic behavior of cot �H . We em-
phasize that this problem is not limited to electron-phonon

FIG. 4. Temperature dependence of the cotangent of the Hall
angle. Main panel: Change in the cotangent of the Hall angle from
its low-temperature value vs T 2. Triangles represent data from D1,
squares from D2, and circles from D3. Colors for D1 correspond
to those in Fig. 2. Data for D2 and D3 are taken at similar band
filling factors. Filled symbols indicate data taken near half-filling,
while open symbols indicate data taken away from half-filling. The
dashed lines show linear fits to the half-filling data. Inset: measured
change in cot �H vs T near half-filling for D2 on a linear scale. Blue
line shows the trend expected from a theory calculation using phonon
scattering.

scattering per se but points to a deeper failure of Boltzmann
theory of quasiparticle transport. Within this theory, if the
same scattering mechanism influences both longitudinal and
Hall conductivities, even with arbitrary momentum and band-
dependent scattering rates (see Appendix G), ρxx and cot �H

will have the same T dependence. One might consider thermal
activation of carriers in higher energy bands for a plausible
explanation. However, as seen in resistivity measurements,
these effects set in ∼150 K. Moreover, they do not lead to the
T 2 dependence observed in our devices. In sum, Boltzmann
theory is clearly at odds with our measurements. Finally, we
note that we expect conventional quasiparticle transport found
in monolayer graphene up to room temperature [30] to be re-
covered for sufficiently large twist angles, due to the expected
[28] and observed [31] decoupling of the layers in the large
angle regime. Future work will be necessary to determine how
conventional quasiparticle behavior emerges as the twist angle
is increased. Nevertheless, our devices clearly demonstrate
nonconventional behavior of cot �H vs T for angles near the
magic angle.

IV. CONCLUSION

We are forced to conclude that the totality of transport data
in our devices cannot be understood in terms of conventional
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quasiparticle transport theory and appears to be very similar
to the still unsolved problem of normal state transport in
high Tc cuprate superconductors and other strongly correlated
systems. This provides further support for the notion that
correlations remain important in the normal metal phase above
Tc and may provide some insight into the mechanism of the
formation of the correlated phases.

Our results raise the question of why quasiparticle trans-
port theory breaks down in TBG near the magic angle.
Vicinity to a quantum critical point (QCP) can account for
the absence of a scale—other than the temperature kBT—in
the scattering rate h̄/τ since all other energy scales collapse
to zero. QCPs are a common feature of many of the corre-
lated materials where similar transport anomalies have been
seen. They are well established in heavy fermion materials
[32] and Fe-based superconductors [33]. There is mounting
evidence in cuprates as well [34,35]; however, its nature is
less understood. Thus, an important open question is whether
there is an underlying QCP in magic-angle TBG that controls
the anomalous power laws seen in our transport data.
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APPENDIX A: ADDITIONAL DATA AND
ANALYSIS OF ρxy DATA

Additional transport data are shown in Figs. 5 and 6, re-
spectively. Figure 6(c) shows the change in cot �H vs T for
device D1 for hole doping at several densities near half-filling.
These data also follow a T 2 dependence. For sample D2, an
apparent offset in ρxy was corrected for each gate voltage
sweep by averaging the data over a range of charge densities n
near charge neutrality and subtracting this constant from each
sweep. The resulting data follow the expected ρxy = B/ne

FIG. 5. (a) Color plot of resistivity ρxx vs temperature T and gate
voltage Vg taken from sample D2. (b) Color plot of resistivity ρxy vs
T and Vg taken at a magnetic field B = 0.2 T from sample D2.

behavior close to charge neutrality. For samples D1 and D3,
ρxy was obtained using Onsager symmetrization (switching
the current and voltage probes to isolate the measured ρxy

component that is odd in B) as in, for example, Ref. [13].

APPENDIX B: CONDUCTIVITIES FROM LINEARIZED
BOLTZMANN EQUATION

Boltzmann transport theory of quasiparticle transport is
valid in the regime kF l � 1, where kF is the Fermi momen-
tum and l the mean-free path. Strange metals often—but not
always—violate the MIR limit kF l ≈ 1. If that were the case,
one cannot justify using Boltzmann theory to understand the
data.

A natural question to ask is if this is the case with TBG. To
answer that, recall that, in 2D, kF l can be estimated directly
from observed resistivity as ρxx ≈ h/e2 (kF l ), where h/e2 =
25.81 k� is the von Klitzing constant. We find that, even at the
highest temperatures (100 K), up to which linear resistivity is
observed in our TBG samples, the estimates of kF l range from
5 to 15.

It is thus a priori reasonable to use Boltzmann theory and
ask if it can explain the data. We note, however, that at the
end of our analysis, we will conclude that a Boltzmann theory
based on quasiparticle transport is not able to account for the
observed temperature dependence of both ρxx(T ) and ρxy(T ),
at least using any known quasiparticle scattering mechanisms.

FIG. 6. (a) Color plot of resistivity ρxx vs temperature T and gate voltage Vg taken from sample D3. (b) Color plot of resistivity ρxy vs T
and Vg taken at a magnetic field B = 0.3 T from sample D3. (c) Change in the cotangent of the Hall angle from its low-temperature value vs
T 2 for hole doping near half-filling for device D1. Densities are −1.7 × 10−12, −1.66 × 10−12, and −1.6 × 10−12 cm−2 for blue, black, and
red triangles, respectively. Solid triangles correspond to half-filling.
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Next, we review the standard derivations for the longitu-
dinal and Hall conductivities using the linearized Boltzmann
equation within the relaxation time approximation. The
distribution function fmk for electrons in band m with crystal
momentum k is obtained by solving the Boltzmann equation

e

h̄
(E + vmk × B) · ∇k fmk = −

(
fmk − f 0

mk

)
τmk

. (B1)

Here, E = E x̂ and B = B(−ẑ) are the external fields, vmk =
h̄−1∇kεmk is the band velocity, f 0

mk = f 0(εmk) is the Fermi
function, and τmk is a phenomenological scattering time. Writ-
ing fmk = f 0

mk + gmk and keeping terms to linear order in E,
we find[

1 + e

h̄
τmk(vmk × B).∇k

]
gmk = e τmk (E.vmk )

(
−∂ f 0

mk

∂εmk

)
.

(B2)

We solve for gmk by inverting the operator on the left-hand
side above and keeping terms up to first order in B (weak-field
limit). We thus find

gmk =
(

1 − e

h̄
τmk(vmk × B).∇k + . . .

)

×
(
e τmk (E.vmk )

(
−∂ f 0

mk

∂εmk

))
(B3)

from which we obtain the current

J = e
∑
mk

vmkgmk. (B4)

We then calculate the conductivity(
Jx
Jy

)
=

(
σxx σxy

−σxy σyy

)(
E
0

)
, (B5)

to find

σxx = e2

h

∑
mk

(
−∂ f 0

mk

∂εmk

)(
vx
mk

)2
τmk, (B6)

and

σxy = e2
(eB
h̄

) ∑
mk

(
−∂ f 0

mk

∂εmk

)(
v
y
mkτmk

)

×
(

v
y
mk

∂

∂kx
− vx

mk
∂

∂ky

)(
vx
mkτmk

)
. (B7)

Since experiments measure resistivities, we invert the con-
ductivity matrix to find

ρxx(B = 0) = 1

σxx
, ρxy = − σxy

σ 2
xx + σ 2

xy

≈ −σxy

σ 2
xx

. (B8)

TBG has four bands (2 spin × 2 valley) crossing the
chemical potential at any given filling of the narrow bands.
We simply consider this using a degeneracy factor of four in
the equations above.

APPENDIX C: BAND STRUCTURE

We need a model band structure to calculate the resistivi-
ties, and there are many available in the literature [27,28,36–
38]. The continuum model of Bistritzer and McDonald cor-
rectly predicted the nearly flat bands at the magic angle
but ignores lattice relaxation effects that lead to a large gap
between the flat bands and higher bands. We use the band
structure of Carr et al. [27], which includes the effects of
lattice relaxation and uses maximally localized Wannier func-
tions that respect the symmetries of TBG and the fragile
topology of its electronic structure. Additionally, this model
can be used for arbitrary twist angles, even away the magic
angle.

We show how the band structure of TBG permits us to
understand two distinct qualitative aspects of the transport
data: (i) nonmonotonic T dependence of ρxx and (ii) variation
of the low-temperature ρxy with density.

(i) Nonmonotonicity of ρxx(T ): As already noted above,
a realistic energy gap between the narrow bands and higher
bands is built into the band structure of Carr et al. [27]; see
Fig. 7(a). The Fermi occupancy factor in Eq. (B6) broadens
with increasing temperature, and eventually, carriers in the
higher band begin to contribute to transport, as shown in
Fig. 3(b) of the main text. This leads to an eventual decrease
in the resistivity at high T, with a peak near 150 K (for
the parameters shown). This corresponds to half-filling on
the electron-doped side of charge neutrality, using the bare
band structure of Carr et al. [27] for the angle 1.12◦ relevant
to our device D1. In this simple picture, the temperature at
which the resistivity peak occurs should increase upon doping
away from half-filling toward charge neutrality. This is indeed
observed in the data shown in Fig. 3(a) of the main text.

(ii) Doping dependence of low-temperature ρxy: We will
see below that the Boltzmann approach cannot account for
the T dependence of ρxy; however, it can say something use-
ful about the doping dependence when the temperature T �
bandwidth. In this limit, the k sums in Eqs. (B6) and (B7)
are dominated by states near the Fermi surface (FS). Next, we
convert the sum over k to an integral over energy together with
a density of states N (ε). If we further assume τmk = τ (εmk ),
we get the standard results [39]

σxx = 2 e2 N (0) v2
F τ and σxy = (ωcτ ) σxx, (C1)

where N (0) is the density of states at the Fermi level, vF is the
velocity averaged over the FS, given by v2

F = 〈v2
k〉k∈FS , and τ

is the relaxation time at the Fermi energy. The spin and valley
degeneracy of four times 1

2 (in 2D) accounts for the numerical
prefactor in ρxx. In the Hall conductivity, we use the cyclotron
frequency ωc = eB/m∗, with the effective mass m∗ given by
the “average curvature” of the FS

1

m∗ =
〈 ∑

i j vi
k

{
Tr[M−1(k)]δi j − M−1

i j (k)
}
v
j
k

〉
k∈FS〈∑

i j vi
k(δi j )v

j
k

〉
k∈FS

, (C2)

where M−1
i j (k) = h̄−2∂i∂ jε(k). For ε ∼ |k|n in 2D, we can

derive the relation m∗vF = h̄kF , which is particularly useful
for Dirac (n = 1) and parabolic (n = 2) dispersions.

It is clear from these results that the sign of Hall resistivity
in Eq. (B8) is determined by that of m∗, which changes sign at
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FIG. 7. (a) Trend of Fermi velocity squared vs chemical potential. In the range 4–10 meV, vF increases with μ. μ(T ) itself increases
with temperature. This results in a bigger Fermi velocity which increases conductivity and decreases resistivity. The phenomenon is more
pronounced for smaller bandwidths. (b) Numerically calculated resistivity vs temperature. Model calculations (blue) show nonmonotonicity
which is not observed in the data (black). A renormalization factor can change the minima but cannot get rid of nonmonotonicity. Strength of
scattering rate is 20 and 0.45 meV for r = 1.0 and 0.4, respectively. (c) Temperature dependence for Hall resistivity, which mainly comes from
the derivative of the Fermi function. However, the dependence is wrong. (d) Density dependence of Hall resistivity for D2 at low temperatures.
Inset: Density dependence for all filling fractions of the narrow bands.

a Lifshitz transition where the system goes from a particlelike
to a holelike FS. The zero crossing of ρxy can thus reveal im-
portant details about the band structure. We show in Fig. 7(d)
that our choice of band structure captures this feature of the
data.

APPENDIX D: IMPURITY SCATTERING
IN NARROW BANDS

Elastic scattering from impurity scattering is usually in-
voked to account for the temperature-independent resistivity
at low T. However, one might ask if impurity scattering in
a very narrow band system can by itself lead to nontrivial T
dependence in transport. While we will see that this is true in
principle, it cannot explain any of the observed anomalies.

The elastic scattering rate of impurities is given by the
Fermi golden rule expression


mk = h̄

τmk
= 2π

∑
m′k′

|Mmk,m′k′ |2δ(εmk − εm′k′ ), (D1)

where Mmk,m′k′ is the impurity matrix element for scattering
from the electron state (m, k) to (m′, k′). For a structureless

matrix element, this simplifies to

1

τmk
= 2π

h̄
nimpU

2N (εmk ), (D2)

where nimp is the density of impurities, U is the strength of
impurity potential, and N (εmk ) is the density of states (DOS).
The scattering rate is thus T independent but depends on the
DOS, which is determined by the band structure. Using this
result in Eq. (B6), we see that there are two factors that
contribute to temperature dependence: (i) the T dependence
of chemical potential μ(T) for a given density [see Fig. 7(a)]
and (ii) the derivative of the Fermi function which has a height
∼1/T and width ∼T .

At high temperatures compared with μ and the bandwidth,
the sum in Eq. (B6) extends to all states in the band, and

the 1/T prefactor from (− ∂ f 0
mk

∂εmk
) dominates the conductivity.

This leads to a linear in T resistivity. However, this linear
T resistivity does not persist down to low temperatures. At
low temperatures compared with μ and the bandwidth, we

can approximate (− ∂ f 0
mk

∂εmk
) ≈ δ(εmk − μ) in Eq. (B6), and then

μ(T) controls the T dependence of the resistivity. As μ in-
creases with T, so does the Fermi velocity, and this leads to a
decrease in resistivity with increasing T, as shown in Fig. 7(b).
However, we note that the variation of the Fermi velocity with
chemical potential depends on the details of the band structure
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FIG. 8. (a) Schematic phonon dispersion showing the difference between Debye temperature and Bloch-Gruneisen temperature for a
system with small density. Band structure factor F (θ ) and Bloch-Gruneisen integral I (z) in Eq. (E2). I (z) is linear for z � 1, and the linearity
sets in at z ≈ 0.25. This gives Tmin = TBG/4. F (θ ) is a number bounded between 0.5 and 1. (b) Phonon model fit (blue) to data (black) for
device D2. The model captures both slope and early onset of linearity with v∗

F/vF = 0.057.

and is hence a nonuniversal feature. (In conventional metals,
where bandwidth W ≈ 104 K, the effects we are discussing
are utterly negligible.)

The upshot of this analysis is that these two effects together
can lead to a nontrivial T dependence in a very narrow band
even from a T-independent impurity scattering rate but not one
that can explain the observed data in TBG. In Fig. 7(b), we
show an (unsuccessful) attempt to describe the linear T data
over some range of temperatures using such an approach. The
strength of scattering is fixed by matching the T= 0 resistivity.
We see that, renormalizing the Carr et al. [27] band dispersion
εmk → rεmk by a factor of r = 0.4, we can “fit” the slope
of the linear T regime between 40 and 100 K, but then we
also get a low-T upturn <40 K from the μ(T) effect described
above. Band renormalization can be used to tune the tem-
perature of this crossover, but the overall nonmonotonicity is
robust.

The temperature dependence of ρxy(T ) further supports
this conclusion argument. Narrow band effects, arising from
the derivative of the Fermi function, lead to |ρxy| ≈ T , as
shown in Fig. 7(c). The experimental data clearly have a
different temperature dependence.

Therefore, despite the subtleties of very narrow band sys-
tems, impurities alone fail to explain the observed data in
TBG. In fact, the observed monotonic behavior of ρxx(T )
implies that the T dependence arising from Fermi factors is
not relevant for TBG, and one must look at the T dependence
of the scattering rates in Eqs. (B6) and (B7) to understand the
data.

APPENDIX E: ELECTRON-PHONON SCATTERING:
LONGITUDINAL RESISTIVITY

Next, we turn to acoustic phonon scattering, which ac-
counts for linear T resistivity in metals over a range of
temperatures Tmin < T < Tmax. Here, Tmin is usually a frac-
tion of the Debye temperature �D but can be much smaller
in low-density systems (see below), while Tmax is essentially
determined by the MIR criterion kF l (Tmax) ≈ 1.

We emphasize that electron-phonon scattering is clearly
not responsible for the linear T resistivity in strongly cor-
related materials that are dubbed strange metals. In these
systems, the MIR criterion is violated, with no observed Tmax,
and at the same time, Tmin is too low to be explained using
phonons. TBG is different on both counts. First, as discussed
in Sec. I, the MIR criterion is never violated in TBG, so there
is no problem with Tmax. In fact, at high T, other bands come
into play, as discussed in Sec. III. Further, as emphasized by
Wu et al. [22], Tmin is not an issue for ρxx in TBG either; see
below. We agree with these authors that one can understand
ρxx(T) in terms of electron-phonon scattering; however, we
will show that this mechanism cannot explain the observed
Hall response.

The onset Tmin of the linear T scattering rate is controlled
by the Bloch-Grüneisen temperature kBTBG = h̄vph|�k|max =
h̄vph2kF , where 2kF is the maximum momentum transfer
across the FS; see Fig. 8(a). In conventional metals (with
kF ≈ π/a) TBG is a fraction of the Debye temperature �D .
However, in a low-density system, we see that TBG can be
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parametrically smaller than �D. For T � TBG, the phonon
occupation n(ω) ≈ T/TBG, and this in turn leads to an
electron-phonon scattering rate 
 ≈ T .

This phenomenon has been studied in detail in Dirac
materials like graphene [40], where for small densities and
T � TBG,

ρxx = π

e2h̄ v2
F

[
1

ρm

(
D

vph

)2

kBT

]
. (E1)

Here, D is the deformation potential (electron-phonon cou-
pling), ρm the mass density, and vF the Dirac velocity. (Here,
the scattering rate is the quantity in square brackets.) The
model has been extended to TBG by including the renormal-
ization of the Dirac velocity and changes in electron-phonon
matrix elements. As shown in eq. (2) of Wu et al. [22], the
resistivity is then given by

ρxx = 4

e2 (v∗
F )2

[
F (θ )

1

ρm

(
D

vph

)2

(vphkF ) I
( T

TBG

)]
. (E2)

Here, the dimensionless functions F (θ ), coming from the ma-
trix element of electron-phonon Hamiltonian, and I (z) given
in terms of a definite integral, are the same as those defined
in Ref. [22]; their numerical values are plotted in Fig. 8(a).
We followed the procedure outlined in their appendix A to
calculate F (θ ) for θ = 1.12◦. All other factors were taken to
be the same as that of monolayer graphene, keeping v∗

F as
the only fit parameter. The best fit to our experimental data
was obtained with v∗

F/vF ≈ 0.057, where vF = 106 m/s is the
Dirac velocity of monolayer graphene. This is very close to
the prediction of the continuum model (v∗

F/vF ≈ 0.05).
As emphasized by Wu et al. [22], electron-phonon scatter-

ing is the simplest mechanism that explains both resistivity
slope (∼100 �/K) and the early onset of linear T resistiv-
ity (∼ 5 K) within a conventional Boltzmann formalism. We
show next that the same model fails to provide even a qualita-
tive explanation of the T dependence of the Hall response.

APPENDIX F: HALL RESPONSE FROM
ELECTRON-PHONON SCATTERING

We next show that phonons, and indeed Boltzmann trans-
port, simply fail to explain the temperature dependence of
cot �H . We see from Eq. (C1) that

cot �H = (ωcτ )−1, (F1)

is a general consequence of Boltzmann transport since the
same scattering mechanism impacts both σxx and σxy. Thus,
ρxx and cot �H share the same 1/τ dependence and, hence,
the same temperature dependence.

We note that, in this paper, we plot

� cot �H = cot �H (T ) − cot �H (0), (F2)

motivated by Matthiessen’s rule: 1/τ is the sum of the im-
purity scattering rate 1/τ (T = 0) plus the inelastic scattering
rate. Thus, � cot �H allows us to focus on the latter and
ignore the T = 0 impurity contribution.

APPENDIX G: MULTIBAND MOMENTUM
DEPENDENT SCATTERING

Any inelastic scattering mechanism (including electron-
phonon scattering) that explains linear T resistivity within a
quasiparticle picture has a rate that can be written as


m,k = h̄

τm,k
= kBT �m,k, (G1)

where �mk depends on the band structure and scattering ma-
trix elements but not on T. When the k sums in the Boltzmann
results are dominated by FS contributions, only the value
of �mk evaluated at the FS affects the prefactors, but the
temperature dependence of cot �H is simply linear in T. This
is clearly in qualitative disagreement with the experimentally
observed cot �H ≈ T 2.

We emphasize that observed behavior cannot be attributed
to multiband effects in the Boltzmann theory of Hall re-
sponse (see, e.g., sec. 12.2 of Ref. [41]). The resistivity clearly
requires that the different bands have the same linear T depen-
dence in the scattering rates, even if the numerical coefficients
were to be band dependent [see Eq. (G1)]. Then even though
the final multiband result for the Hall resistivity is compli-
cated, the T dependence simply cancels out.

In conclusion, while acoustic phonon scattering can ac-
count for the strange linear T resistivity, it fails to explain
the quadratic behavior of cot �H . The failure is not limited
to phonons but is equally problematical for any scattering
mechanism within Boltzmann theory. Therefore, we argue
that TBG is indeed a strange metal, whose strangeness is
perhaps not directly visible in the longitudinal resistivity but
is emphasized by considering the cotangent of Hall angle
together with ρxx.
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