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In the past few years, van der Waals (vdW) heterostructures1,2 
comprising a variety of 2D layered materials have emerged as 
potential building blocks for future ultrafast and low-power 

electronic and spintronic devices. Graphene is an ideal spin chan-
nel owing to its spin diffusion length that reaches several microme-
tres at room temperature, gate-tunable carrier concentration and 
extremely high carrier mobility3–5. Semiconducting transition metal 
dichalcogenides (TMDCs)6 such as MX2 (M = W, Mo; X = S, Se, Te)  
and topological insulators (TIs) such as Bi2Te3 possess strong spin–
orbit coupling (SOC), which allows for the electrical generation 
and manipulation of spins. Semiconducting TMDCs further pos-
sess a strong spin–photon coupling that enables optical spin injec-
tion, while 2D magnets7 bring capabilities for spin filtering and 
non-volatile data storage.

Novel functionalities arise due to the atomically thin nature of 
2D materials, which facilitates much stronger electrostatic gating 
effects than with conventional materials to achieve, for instance, 
voltage-controlled magnetism. Furthermore, the integration of 
graphene, TMDCs, TIs and 2D magnets into vdW heterostruc-
tures not only combines the respective material functionalities 
but also imprints properties through proximity interactions across 
interfaces8, enabling the design of artificial structures with unique 
characteristics. Such properties provide opportunities9,10 for mem-
ory applications, spin interconnects, spin-transistors, microwave 
nano-oscillators, low-power reconfigurable logic, and flexible or 
wearable spintronic platforms11,12 (Box 1).

This Review presents the state of the art and future prospects for 
vdW heterostructures in spintronics and opto-spintronics, with a 
special focus on magnetic and spin–orbit proximity effects and the 
emerging phenomena deriving from them. Covering recent experi-
mental and theoretical developments, the Review is divided in four 
main sections. The first section briefly surveys recent progress in spin 
injection and detection, including the integration of opto-electronic 
elements, and then outlines the contemporary understanding of 

spin dynamics in 2D materials. This description is complemented 
by an overview of materials that can be used to enhance the spin 
properties or further create multifunctional 2D spintronic devices 
(Box 1). The second section focuses on proximity-induced SOC, 
which is central in modern spintronics as it can enhance the mag-
netic properties of 2D magnets as well as provide spin filtering, spin 
manipulation and efficient charge-to-spin interconversion (CSI) 
functionalities. The third section addresses magnetic proximity 
effects, which can be harnessed in memory elements, reconfigu-
rable spin-logic circuits and novel spin-valleytronics applications. 
Besides the vast catalogue of material combinations, vdW hetero-
structures establish new concepts based on twist angle and stacking 
control between crystallographic lattices that can strongly dictate 
the nature and strength of proximity phenomena. Finally, the fourth 
section discusses potential applications and future research direc-
tions and perspectives.

Spin dynamics in 2D materials
Recent advances in spin injection and detection. Spin dynamics 
is typically investigated using lateral devices in a non-local electri-
cal configuration3,5 or, alternatively, using spectroscopic methods 
in optically active materials13. Lateral spin devices rely on efficient 
spin injection and detection, with tunnel barriers playing a crucial 
role in alleviating the conductance mismatch problem14, which 
limits the effective spin polarization Ps of the injector and detec-
tor contacts (Fig. 1a). Early studies with graphene as a spin channel 
used MgO, Al2O3, TiO2 and amorphous carbon barriers15–17 but the 
emergence of alternative insulators could improve various aspects 
of device performance. SrO barriers, grown by the evaporation 
of Sr in the presence of molecular oxygen, lead to robust opera-
tion with high bias (~2 V) to achieve large spin accumulation18. 
Barriers composed of 2D materials produce high Ps. Fluorinated 
graphene, obtained by exposure to XeF2 gas, yields Ps > 40% (ref. 19), 
whereas hexagonal boron nitride (hBN), using stacking and transfer  
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methods, efficiently injects spins into graphene20,21 and black phos-
phorus22. With graphene, hBN-based injectors display a differen-
tial spin polarization that varies with applied voltage bias, reaching 
absolute values above 100% and even changing sign21. Beyond pla-
nar contacts, 1D edge contacts have been used for spin injection 
into hBN-encapsulated graphene23.

Optical selection rules together with Faraday and Kerr microsco-
pies, broadly used in semiconducting materials13, are valuable tools to 
investigate spin-valley dynamics and spin coherence in TMDCs24–26.  

Typically, a pump laser illuminates individual crystals with right- 
or left-circularly polarized light at specific wavelengths to target an 
exciton transition, generating spin-polarized electrons and holes in 
the K or K′ valley, respectively (Fig. 1b). The spin polarization can 
then be detected by means of the optical Kerr rotation of a linearly 
polarized laser probe.

When embedded in vdW heterostructures, TMDCs enable a 
new platform for opto-spintronics27 (Box 1). As demonstrated in 
MoS2– and WSe2–graphene heterostructures, the spin-polarized 

Box 1 | Designer vdW heterostructures for (opto)spintronics: material functionalities

Key practical elements in spintronics are the injection, transport 
or communication, manipulation and detection of spin informa-
tion10,13,176,177. Each of these aspects, represented in the figure, can 
benefit from the unique properties of 2D materials. While spin 
communication requires low spin–orbit materials, spin injection, 
detection and manipulation can be achieved by creating multi-
functional vdW heterostructures, which include materials with 
magnetic exchange interaction (MEI) and/or large SOC.

Spin communication over practical distances has already been 
demonstrated in graphene31,178 and black phosphorus22 at room 
temperature, enhanced by vdW encapsulation with hexagonal 
boron nitride (hBN)30. Spin logic and multiplexer devices have 
been proposed, using spin accumulation53, gate dependence of 
spin lifetimes and/or drift currents54,179.

Spin injection and detection use several approaches10,176. They 
involve insulating 2D ferromagnets, metallic 2D ferromagnets in 
combination with insulating tunnel barriers, or topological insulators 
(TIs) and other large-SOC materials through CSI mechanisms, such 
as the spin Hall effects (SHE) and spin galvanic effects (SGE).

Optical spin injection in graphene, using TMDCs27, has also 
been demonstrated28,29. Magnetic tunnel junctions, combining 

2D ferromagnets and insulating hBN barriers, or tunnel filters 
comprising insulating (anti)ferromagnetic materials, could be 
used in ultracompact low-power memory elements10,176.

Spin manipulation and control, as well as spin injection and 
detection, can be engineered via proximity-induced SOC and 
proximity-induced MEI by adjacent (insulating) large-SOC 
materials (for example, TMDCs and TIs) and (anti)ferromagnets, 
respectively. Magnetization switching and precession in memory 
elements could be achieved with spin–orbit torques (SOTs)10 
using CSI in materials with large SOC, either of intrinsic origin or 
acquired by proximity effects. Novel spin-transistor configurations 
and spin polarizers, which take advantage of proximitized 
spin–valley coupling in graphene, have been experimentally 
demonstrated87,89,90. The atomically thin nature of 2D (anti)
ferromagnets further enables the manipulation of their magnetic 
state using electric fields157, whereas twist-angle and stacking 
control between crystallographic lattices add yet other versatile 
knobs to engineer the nature and strength of proximity effects. 
In the figure, VG1–4 denote local gates, ω1 is the frequency of the 
incident light, M the magnetization vector of the ferromagnet and 
T the exerted torques.
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carriers generated in the TMDC transfer into the neighbouring gra-
phene28,29 (Fig. 1c). The resulting antisymmetric Hanle spin preces-
sion curve (Fig. 1d) under the influence of an applied magnetic field 
By provides unambiguous proof of the optical spin injection.

Spin dynamics and relaxation. The spin propagation is character-
ized by the spin relaxation length λs, given by λs =

√

Dsτs  where Ds 
is the spin diffusion constant and τs is the spin lifetime. In the diffu-
sive regime, Ds is obtained from transport measurements, whereas 
various possible SOC mechanisms, either intrinsic or extrinsic, 
introduce sources of spin relaxation and dictate the ultimate val-
ues of τs and λs (ref. 13). At room temperature, graphene displays 
spin-transport figures of merit for spin communication that outper-
form those of all other materials (Box 1). In hBN-protected graphene, 
τs can be larger than 10 ns (with λs ≈ 30 µm)30. Room-temperature 
spin-diffusion lengths reaching 10 µm were further achieved in 
chemical vapour deposition (CVD)-grown graphene on silicon 
oxide (SiO2) substrates31. Black phosphorus also transports spins 
efficiently; when encapsulated with hBN, τs ≈ 0.7 ns and λs ≈ 2.5 µm 
at room temperature22. In TMDCs, spin relaxation has been inves-
tigated using optical orientation and time-resolved Kerr rotation. 
Reported spin-valley lifetimes at low temperature (a few kel-
vin) exceed several nanoseconds in electron-doped CVD-grown 
MoS2 and WS2 monolayers24,32 and are about 80 ns for holes in 
CVD WSe2 monolayers33. Although they are significantly longer 
in exfoliated WSe2 (100 ns for electrons25 and 1 μs for holes25,26) all 
temperature-dependent studies show a fast decrease with tempera-
ture. A strikingly different behaviour has been observed in MoSe2, 

with the longest lifetime of ~100 ns found at room temperature, 
albeit probably corresponding to non-itinerant carriers34. Efficient 
generation of pure and locked spin-valley diffusion current was 
demonstrated in exfoliated WS2–WSe2 heterostructures at 10 K by 
pump–probe spectroscopy35. Excitons are created in WSe2, and the 
subsequent fast transfer of excited electrons to WS2 suppresses the 
exciton-valley depolarization channel. The recombination of elec-
trons in WS2 with holes in WSe2 leaves an excess of holes in one of 
the WSe2 valleys, which are found to live for longer than 20 µs and 
propagate over 20 µm.

The mechanisms leading to spin relaxation in 2D materials are 
very rich and frequently unique to each material. This is illustrated 
by the case of graphene. Theoretical calculations describe a wide 
range of possible SOC sources, through the symmetry, spatial 
range and strength of spin-conserving and non-spin-conserving 
events. Intrinsic and Rashba contributions give rise to a small 
spin-splitting36 of tens of microelectronvolts, as corroborated 
experimentally37. Early theoretical work indicated that τs could be 
in the millisecond range3. However, follow-up studies, introduc-
ing realistic descriptions of impurities (magnetic defects such as 
hydrogen adsorbents serving as spin-flip resonant scatterers38,39) or 
subtle mechanisms such as spin–pseudospin coupling40,41, have pro-
vided alternative explanations for the observed τs in the nanosecond 
and sub-nanosecond range. These studies account for the energy 
dependence of τs, with the most universal feature being a minimum 
near the charge neutrality point. The underlying origin for the spin 
relaxation has been described using the Elliot–Yafet42 or Dyakonov–
Perel43 mechanisms; however, these are only strictly applicable in 
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disordered systems with short mean free paths44. Some progress 
in analysing spin dynamics in the ballistic limit, as well as possible 
fingerprints in spin precession measurements, has been made45. In 
polycrystalline graphene, theoretical analysis has revealed univer-
sal spin diffusion lengths dictated by the absolute strength of the 
substrate-induced Rashba SOC in the Dyakonov–Perel regime44 
(λs = h̄vF/2λR, where ħ is the Planck constant, vF the Fermi veloc-
ity and λR the Rashba SOC strength). Despite important progress, a 
full correspondence between theory and experiment is still missing. 
Indeed, the predominance of Rashba SOC in spin transport should 
manifest in a spin-transport anisotropy44, where the out-of-plane 
spin lifetime τs,⊥ is half the in-plane one τs,∥. An electric field 
modulation of the spin relaxation anisotropy ratio ζ =

τs,⊥
τs,∥

, con-
sistent with the presence of Rashba SOC, was reported in graphene 
encapsulated with hBN46. However, it has been argued47,48 that the 
application of large out-of-plane magnetic fields could affect the 
determination of ζ. Recent experimental studies47–50 have failed to 
establish a significant spin lifetime anisotropy, suggesting that either 
magnetic resonant spin-flip scattering or deformation-induced 
gauge pseudo-magnetic fields randomize the spatial direction of the 
effective SOC field38,39,47,49. Remarkably, as discussed below, a known 
SOC can be made dominant in proximitized graphene and, in con-
trast to graphene, the spin dynamics in some situations has been 
predicted and is well understood51.

Beyond graphene, progress has been modest. Spin relaxation in 
few-layer black phosphorus seems to follow the Elliot–Yafet mecha-
nism, as suggested by the similar temperature dependence of the 
measured τs and the momentum lifetime22. In TMDCs, the long 
spin-valley lifetimes confirm the expectation of spin-valley locking, 
which manifests more strongly in the valence band. The relaxation 
is expected to be mediated by intravalley decoherence mechanisms, 
dominating electron spin lifetime; however, spin-flip processes 
between valleys, requiring simultaneous scattering of both valley 
and spin degrees of freedom, yield slow relaxation rates for holes. 
As temperature increases, the behaviour becomes increasingly com-
plex, as relaxation pathways involving secondary valleys and differ-
ent phonon-mediated intervalley scattering rates may play a role in 
determining the spin lifetimes34.

Current and thermal spin current drift. Large λs may facilitate 
the realization of all-spin reprogrammable operations by control-
ling spin currents in lateral devices3,52 (Box 1). In this regard, an 
XOR (exclusive OR) magnetologic gate has been experimentally 
demonstrated at room temperature by electrical bias tuning of the 
spin injection in graphene53. This demonstration was followed by 
the proposal of a gate-driven demultiplexer using local voltage gates 
to tune the spin currents54. Further experimental progress has been 
achieved in the control of spin currents via carrier and thermal drift 
effects. Lateral drift fields in bilayer graphene (BLG), caused by a 
charge current (Fig. 1a), were shown to modulate the spin signal at 
room temperature55 (Fig. 1e). More recently, the use of thermal gra-
dients to enhance or suppress the spin signal has been proposed and 
demonstrated56 (Fig. 1f). Here, the spin signal modulation is driven 
by thermal drifts (Fig. 1a) in combination with an energy-dependent 
thermoelectric power, which result in a thermoelectric spin voltage. 
The observation of this phenomenon requires sufficiently large lat-
eral thermal gradients, which can be achieved by hot carrier genera-
tion, either by electrical current flow in graphene or through tunnel 
barrier injection56,57.

Spin–orbit proximity effects
Proximity effects represent a versatile approach to material design 
that can reach its full potential with vdW heterostructures, in which 
the hybridization of electronic orbitals of adjacent atomically thin 
layers occurs. Despite the weak nature of vdW interactions, inter-
layer coupling of pure tunnelling character can drastically change the 

energy dispersion and spin texture of the electronic band structure. 
For instance, in BLG such tunnelling turns the linear dispersion of 
low-energy excitation to a parabolic shape, in addition to other band 
modifications. In a trilayer structure, such as that represented in Fig. 
2a, the intercalated material acquires properties from the top and 
bottom layers, bringing unprecedented opportunities for spintron-
ics, particularly for imprinting a SOC or magnetic exchange interac-
tion (MEI). SOC is ubiquitous in spintronics10,13 (Box 1), playing a 
central role in spin relaxation and manipulation, CSI, anisotropic 
magnetoresistance, perpendicular magnetic anisotropy, spin–orbit 
torques (SOTs) and the emergence of topological states. Proximity 
SOC concepts are therefore particularly relevant, as they can poten-
tially help engineer and control many of these phenomena.

Graphene and BLG represent model materials for proximity-effect 
studies. In their isolated states, the SOC strength is only tens of 
microelectronvolts and opens a very small spin–orbit gap, as shown 
by ab initio calculations36,58,59 and recent experiments37,60. The 
Hamiltonian of isolated graphene is H ≈ H0, where H0 characterizes 
Dirac carriers (Box 2). When graphene makes contact with other 
materials—2D semiconductors and 2D insulators that preserve 
the Dirac cones in their bandgaps are of interest—the character of 
H can radically change. Surprisingly generic Hamiltonian models 
H = H0 + Ht,b have been derived that capture first-principles results, 
where Ht,b comprises separate orbital, spin–orbit and exchange 
terms (Box 2) that can be tracked back to the top and/or bottom 2D 
materials (Fig. 2a).

Owing to the short range of the magnetic-exchange and spin–
orbit interactions, proximity effects are largely driven by the layer 
adjacent to the proximitized graphene. Therefore, the thickness of 
the 2D magnet or large-SOC material does not require control. In 
addition, the proximity effect in BLG predominantly develops only 
in the layer in contact with the material.

According to the previous discussion, it is not surprising that 
proximity SOC concepts are best established for graphene. Although 
materials such as hBN do not increase graphene’s SOC beyond tens 
of microelectronvolts61, it has been demonstrated that strong SOC 
materials (such as TMDCs or the Bi2Se3 TI family) significantly 
alter it or reinforce it (panels b and c of the figure in Box 2). The 
graphene Dirac cones are preserved within the bandgaps of many 
TMDCs62, which allows one to exploit the advantages of graphene’s 
high mobility and novel proximity spin interactions63,64. The SOC 
strength can reach millielectronvolts (panel b of the figure in Box 2)  
and be dominated by a valley Zeeman SOC, which is characterized 
by an out-of-plane spin–orbit field that is opposite at K and K′ val-
leys (as in the TMDC). In addition, carriers experience a Rashba 
SOC, with an in-plane spin–orbit field texture perpendicular to the 
momentum. On the orbital level, the breaking of the pseudospin 
symmetry leads to the appearance of an orbital gap, described by a 
staggered potential. The valley Zeeman and Rashba fields are pre-
dicted to change by twisting the graphene relative to the TMDC, 
with the largest SOC strength appearing at 15–20° between the lat-
tice vectors65,66. Band structures at smaller twist angles have been 
theoretically investigated67,68. Graphene can also be proximitized by 
TIs, such as Bi2Se3

69–71. These 3D TIs exhibit protected surface states 
with in-plane spin–orbit fields inducing spin–momentum lock-
ing. Surprisingly, the proximitized SOC is still dominated by the 
out-of-plane valley Zeeman coupling, which is not present in the TI 
(panel c of the figure in Box 2).

Experimental signatures of proximity-induced SOC in gra-
phene–TMDC heterostructures have been found in weak (anti-)
localization measurements72–76. However, the results are controver-
sial in terms of the SOC strength, which ranges from ~1 to 10 meV, 
as well as the nature of the SOC, which was reported to have Rashba 
or valley Zeeman character. Variations on the SOC strength may be 
due in part to variations in the interface properties, twist angle or 
the presence of trapped bubbles—all of which are difficult to control 
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during device fabrication. Nonetheless, the nature of the proximity 
SOC has been established by means of spin relaxation anisotropy 
and CSI experiments, as discussed below.

Graphene proximitized by a TMDC can also exhibit an inverted 
band structure (panel b of the figure in Box 2), suggesting emerging 
topological phenomena62,77,78 distinct from isolated graphene79 and 
driven by the valley Zeeman coupling. Although the band struc-
ture remains topologically trivial, protected pseudo-helical states 
appear at zigzag edges of proximitized nanoribbons. An inverted 
band structure in BLG–WSe2 stacks has been confirmed experi-
mentally80 (Fig. 2b,c). Topological quantum spin Hall phases were 
also predicted in proximitized BLG81, whereas helical edge modes in 
BLG–WSe2 heterostructures were recently reported82.

Proximity SOC is becoming increasingly important in 2D mate-
rials beyond graphene. A SOC enhancement could help stabilize 
the anisotropy or the magnetic order of a 2D magnet. An increase 
in the Curie temperature TC of Fe3GeTe2 (FGT) up to 400 K has 
been observed when grown onto Bi2Te3. The larger TC in thinner 
FGT films on Bi2Te3, when the opposite trend is observed in FGT 
alone, suggests the presence of an interfacial effect83, although it 
is unclear why a substantial TC increase persists in relatively thick 
FGT films (up to tens of nanometres). Similarly, an increase in 
TC was observed84 in the Heisenberg ferromagnet V5Se8 when in  
contact with NbSe2. The enhanced TC was accompanied by a strong 

out-of-plane magnetic anisotropy and was attributed to the Zeeman 
SOC in NbSe2. A large SOC together with broken inversion sym-
metry can also favour the antisymmetric Dzyaloshinskii–Moriya 
exchange interaction (DMI) and lead to topological magnetic 
configurations85 (Fig. 2d). Néel-type skyrmions were observed 
in WTe2–FGT using Lorentz transmission electron microscopy86  
(Fig. 2d); the large interfacial DMI energy of ~1.0 mJ m−2 was attrib-
uted to induced Rashba SOC.

Anisotropic spin relaxation and spin filtering. One of the first 
spin-device realizations combining graphene with a TMDC com-
prised a graphene lateral spin device partially capped with MoS2. 
Using electrostatic gating, the spin current across the graphene 
channel was controlled between on and off states, a phenomenon 
attributed to spin absorption at the MoS2 (ref. 87). It is argued that 
spins could move freely between graphene and MoS2 in the off state 
due to the gate-induced suppression of the Schottky barrier between 
graphene and MoS2, leading to fast spin relaxation87,88.

Further studies89,90 reported anisotropic spin relaxation in gra-
phene–TMDC heterostructures (where TMDC = MoSe2, MoS2 and 
WS2), even in the absence of spin absorption90. By implementing 
out-of-plane spin precession techniques47–49 (Fig. 2e,f), ζ =

τs,⊥
τs,∥

 

was quantified. It was observed that the in-plane spin component is 
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Box 2 | Emergent Hamiltonian in proximitized graphene

The emergent Hamiltonian H describing Dirac electrons in proxim-
itized graphene comprises orbital, spin–orbit and exchange terms:

H = H0 +HΔ +HI +HVZ +HR +HPIA +HEX

where H0 = h̄vF (τkxσx + kyσy) is the low-energy graphene 
Hamiltonian, k the state wave vector and σ the pseudospin Pauli 
matrices. The factor τ is 1 (−1) at K (K′) valleys. HΔ = Δσz describes 
orbital gap opening when the pseudospin symmetry is broken. 
Other terms include the intrinsic SOC, existing already in pristine 
graphene, HI = λIτσzsz, parameterized by λI, with s the spin Pauli 
matrices. The valley Zeeman SOC HVZ = λVZτσ0sz, where strength 
λVZ emerges when graphene is interfaced with TMDCs or TIs, for 
example. The Rashba SOC HR = λR(τσxsy − σysx) is present whenever 
space-inversion symmetry breaks, owing to an electric field or in 
heterostructures. The pseudospin inversion asymmetry (PIA) SOC 
HPIA = α(λPIAσz + ΔPIA)(kxsy − kysx), where a is the graphene lattice  

constant, λPIA = (λPIA,A + λPIA,B)/2 and ΔPIA = (λPIA,A − λPIA,B)/2 with 
λPIA,A(B) denoting the SOC strength in the graphene sublattice A (B).

The terms proportional to λPIA and ΔPIA lead to a renormalization 
of the Fermi velocity and a k linear band splitting, respectively. 
Finally, the proximity exchange coupling HEX = λEXsz + λAFEXσzsz 
is parameterized by λEX (λAFEX) and emerges when graphene 
forms heterostructures with ferromagnets (antiferromagnets). 
Neglecting many-body effects, essentially the same Hamiltonian 
describes the electronic states in (proximitized) TMDCs, but 
instead of sublattice degrees of freedom, σ describe the valence 
and conduction bands139,180. Parts a–f of the figure present 
representative graphene-based heterostructures, their electronic 
band structure at the K (and K′) points and the most relevant 
parameters for each of them by fitting the ab initio results of 
the relaxed structures (see corresponding references for further 
details); E, EF and k denote the energy, the Fermi energy and linear 
momentum, respectively.
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strongly reduced when propagating through the graphene–TMDC 
region, with τs,|| in the range of a few picoseconds (two orders of 
magnitude smaller than in reference graphene devices90). In con-
trast, the out-of-plane spin component propagates much more 
efficiently, with τs,⊥ in the range of tens of picoseconds89,90 and thus 
ζ ≈ 10. These results evidence that graphene–TMDC heterostruc-
tures act as spin filters, whose spin transmission is tailored by the 
spin orientation.

When no spin current is absorbed by the TMDC, the anisotropy 
can be fully attributed to proximity-induced SOC48,90. According 
to theoretical predictions, the spin dynamics is controlled by the 
spin-valley coupling imprinted onto graphene51. The spin relaxation 
is governed by the Dyakonov–Perel mechanism, with τs,⊥ and τs,|| 
largely determined by the momentum (τp) and intervalley (τiv) scat-
tering times, respectively, typically with τp ≪ τiv. Because of the 
relatively long τiv, the in-plane spins precess under a slowly fluctu-
ating effective (perpendicular) magnetic field between K and K′, 
leading to fast spin relaxation. In contrast, because of the short τp, 
out-of-plane spins precess under fast fluctuating Rashba fields, and 
their relaxation is suppressed due to motional narrowing13. Derived 
from the emergent Hamiltonian (Box 2), ζ is51,91,92

ζ =

(

λVZ
ak∆PIA ± λR

)2 τiv
τp

+

1
2 ≈

(

λVZ
λR

)2 τiv
τp

+

1
2 (1)

with the approximation being valid about the Dirac point or for 
small ΔPIA (Box 2). In the absence of valley Zeeman SOC, ζ =

1
2 with 

out-of-plane spins relaxing faster than in-plane spins, as expected 

for a 2D Rashba system44. Using an interband tunnelling descrip-
tion and first-principles calculations, it has been proposed that the 
SOC strength can be tuned with the Fermi energy, resulting in an 
energy-dependent anisotropy65,66.

Anisotropic spin relaxation has also been discussed theoretically 
in graphene–TI70 and graphene–hBN heterostructures61. Moreover, 
ζ ≈ 10 has been measured in hBN–BLG–hBN at temperatures 
around 100 K near the charge neutrality point93,94. The spin relax-
ation becomes isotropic either at large enough carrier densities or 
at high temperatures (ζ ≈ 1 at room temperature). Similar to gra-
phene–TMDC, the large ζ seems to arise from the spin-valley cou-
pling associated to the intrinsic SOC in BLG.

CSI. CSI phenomena driven by SOC are amongst the most rel-
evant effects in modern spintronics95. Their presence can reveal 
subtle spin–orbit interactions and spin dynamics in the investigated 
materials. They are also central for next-generation SOT mag-
netic memories (SOT-MRAM)9,10 as well as for proposals targeting 
energy-efficient spin-logic architectures96 (Box 1). CSI in 2D mate-
rials has been gaining increasing attention following the report of 
SOTs with non-trivial (and potentially useful) symmetries using 
TMDCs97, the achievement of magnetization switching with TIs 
and TMDCs98,99 and the observation of spin Hall effect (SHE) and 
spin galvanic effect (SGE)100–103 (Fig. 3).

A recent surge of experiments on vdW heterostructures has been 
triggered by the use of graphene as a channel to transport a spin cur-
rent from a ferromagnetic contact to the CSI region104,105. The device 
geometry is analogous to that developed for fully metallic systems95, 
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consisting of a graphene Hall cross with a large-SOC 2D material 
along one of the arms and ferromagnetic injector and detector con-
tacts across the other (Fig. 3a). The first experiments using plati-
num (Pt), a well-known material with efficient CSI by the SHE95, 
demonstrated large CSI104,105 and established the use of spin preces-
sion to investigate the nature of the CSI in 2D heterostructures105. 
The analysis and interpretation of the results differ for insulating or 
conducting SOC materials. Whereas in the former case it is possible 
to directly ascribe the CSI to proximity-induced SOC, in the latter 
case the overall signal can aggregate the CSI arising from proximity 
effects and the CSI at the surface and/or bulk of the conducting SOC 
material. The anomalously large CSI in graphene–Pt could be due to 
such aggregation of effects, although this remains to be clarified105.

CSI driven by SOC in a vdW heterostructure was first confirmed 
in multilayer-graphene–MoS2

101 (Fig. 3d). This report was soon fol-
lowed by the simultaneous observations of the spin Hall effect (SHE) 
and spin galvanic effect (SGE) in graphene–WS2

102,103 (Fig. 3e,f).  
The CSI in graphene by proximity SOC106–108 is best established by 
ruling out the spin absorption in the TMDC87,88,102. The CSI can 
be controlled upon electrostatic gating, which tunes the graphene 
carrier density n. A gate-dependent CSI in proximitized graphene 
was observed with WS2 up to 75 K for the inverse SGE103 and up 
to room temperature for the inverse SGE and SHE (and reciprocal 
effects)102. Gate dependence of the inverse SHE and of the SGE was 
later reported in graphene–WSe2, and in graphene–TaS2 and gra-
phene–(Bi,Sb)2Te3, respectively109–111.

The effective conversion efficiencies compare favourably with 
those of metallic systems101,102,110. Furthermore, the experimental 
dependence of the CSI versus n in graphene–WS2

102 agrees with the-
oretical modelling, for both proximity-induced SGE107 and SHE106. 
The SOC strength has been estimated using the Kubo–Bastin for-
mula102,106. By matching model calculations with the experimental 
results, values of λI ≈ 0.2 meV and λVZ ≈ 2.2 meV are obtained102  

(Box 2). Previous reports of SHE in graphene in proximity to WS2 
suggested a much larger SOC (17 meV)112. However, these experi-
ments used the so-called H geometry95, which in graphene devices 
is sensitive to a variety of phenomena that are not necessarily related 
to spin5,113–115.

CSI was also investigated in other conducting 2D materials, fol-
lowing the same approach as used for Pt104,105. Experiments using 
1T′-MoTe2 revealed an unconventional CSI in which a charge cur-
rent arises parallel to the spin orientation116. It is unclear whether the 
CSI originates in the bulk or the surface of the material. The obser-
vation is reminiscent of the appearance of unconventional SOTs 
in low-symmetry WTe2

97,117, suggesting that the crystalline mirror 
symmetry of 1T′-MoTe2 is broken, perhaps by strain introduced 
during device fabrication. Unconventional CSI was also observed 
in WTe2 with an efficiency approaching 10%; control experiments 
indicate that the CSI originates in the bulk of the material118.

Magnetic proximity effects
When non-magnetic 2D materials, such as graphene or TMDCs, 
are in contact with a magnetic material, they can experience a 
proximity-induced MEI. The induced magnetism is characterized 
by a net local spin polarization in equilibrium and an energy split-
ting of the bands, which in graphene is equal at different valleys (in 
the absence of SOC). The proximity MEI is parameterized by the 
exchange coupling strength λEX when the non-magnetic 2D mate-
rial is in contact with a ferromagnet and λAFEX when in contact with 
an antiferromagnet (Box 2). Typically, the goal is to achieve a large 
λEX(λAFEX) while maintaining the (spin) transport capabilities of the 
isolated layer.

Proximity MEI in graphene. Early first-principles calculations pre-
dicted a λEX of tens of millielectronvolts in graphene when proximi-
tized by bulk materials such as EuO119 or the ferrimagnet Y3Fe5O12 
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(YIG)120. Similar λEX were estimated with conventional ferromagnetic 
metals, such as Co or Fe, across a thin hBN insulating barrier8,121,122. 
The control of proximity exchange by electrical polarization has 
been predicted in graphene on multiferroic BiFeO3

123. The first 
experimental results were also reported in graphene proximitized by 
bulk materials, albeit with typical λEX values that were significantly 
smaller than expected. Charge transport experiments in graphene–
YIG showed the presence of an anomalous Hall resistance124, whereas 
Zeeman SHE indicated an exchange field of up to 14 T (1.5 meV) in 
graphene–EuS125. Subsequently, spin transport experiments using 
lateral devices based on graphene126 and BLG127 on YIG provided 
more direct indications of proximity MEI and demonstrated spin 
current modulation (Fig. 4a,b), although λEX was found to be even 
smaller126 (~20 μeV). Proximity MEI was also reported in YIG–gra-
phene–hBN through non-local charge transport measurements128, 
Co–graphene–NiFe junctions129 and gate-dependent spin inversion 
in edge-contacted graphene spin valves23.

The small proximity λEX observed with bulk magnets could be 
ascribed to rough interfaces; thus recent investigations have shifted 
towards proximity MEI by 2D magnets, which promise atomically 
smooth interfaces. Relevant 2D ferromagnets include the Cr2X2Te6 
(X = Si, Ge or Sn) or CrX3 (X = I, Br or Cl) families with predicted 
λEX in the range of several millielectronvolts130 (panel d of the fig-
ure in Box 2). The induced MEI with antiferromagnets (such as 
MnPSe3, a 2D Heisenberg-like antiferromagnet) could lead to 
sub-millielectronvolt staggered exchange coupling in graphene77 
(panel e of the figure in Box 2). A few experiments do indeed 
indicate a substantial proximity MEI131–133. In graphene–CrSBr, 
where CrSBr is an interlayer antiferromagnet, charge and spin 
transport driven by electrical bias and thermal gradients131 indi-
cate λEX ≈ 20 meV, corresponding to an exchange field of ~170 T at 
4.5 K (Fig. 4c). Proximity MEI was also reported in graphene–CrSe 
heterostructures132, where CrSe is a non-collinear antiferromagnet 
with a complex phase diagram. A magnetized interface (Fig. 4d), 
which does not occur in CrSe alone, is observed in graphene–CrSe 
by transport and magneto-optic measurements after magnetic-field 
cooling. The proximity exchange field was quantified using shifts 
in the quantum Hall plateaus and quantum oscillations (Fig. 4e), 
resulting in λEX larger than 130 meV at 2 K.

Proximity MEI beyond graphene. Proximity MEI has also been 
investigated in materials such as TMDCs and TIs. Experiments in 
semiconducting TMDCs typically rely on optical techniques. In 
WSe2–EuS134 and WS2–EuS135 heterostructures, the reflection and 
photoluminescence spectra of circularly polarized photons probe the 
electronic states of the TMDC and quantify the proximity-induced 
exchange splitting. For WSe2, it was estimated that λEX ≈ 2–4 meV, 

corresponding to an exchange field of ~10–20 T. For WS2, the split-
ting was found to be much larger λEX ≈ 19 meV and to have opposite 
sign. According to theoretical modelling135, the magnitude and sign 
of the splitting is determined by the surface termination of EuS and 
the band alignment between TMDCs and EuS.

As with graphene, a growing number of studies are being car-
ried out with 2D magnets136,137. Placing a monolayer TMDC on CrI3 
(Fig. 5a) results in an estimated exchange splitting in the millielec-
tronvolt range138, which should affect the exciton spectra139. Given 
its short-range interaction, the proximity effect allows the magne-
tization of the adjacent 2D-magnet layer to be probed, even in the 
absence of a global magnetic moment. A layer-dependent magnetic 
proximity effect has been observed in monolayer WSe2 on few-layer 
CrI3

137. While magneto-optic measurements demonstrate that 
bilayer CrI3 is a layered antiferromagnet, circularly polarized pho-
toluminescence spectra show that the exchange splitting in WSe2 is 
most sensitive to the interfacial layer. The contribution of the second 
layer to the splitting is of substantially smaller magnitude and has 
an unexpected opposite sign (Fig. 5b,c). The quantitative interpre-
tation of the exciton spectra and dynamics is not straightforward—
the hybridization of the TMDC orbitals with the spin-polarized CrI3 
orbitals is complex. In particular, it is expected that twisting the two 
layers would lead to variations in the proximity MEI, both in mag-
nitude and character138. Furthermore, photoluminescence studies 
in MoSe2–CrBr3 uncovered a charge dependence of the proxim-
ity effects in which the valley polarization of the MoSe2 trion state 
follows the local CrBr3 magnetization, whereas the neutral exciton 
state is insensitive to it140. This is attributed to spin-dependent inter-
layer charge transfer on timescales between the exciton and trion 
radiative lifetimes.

Magnetic proximity effects are also being intensively investigated 
in layered 2D and 3D TIs. In the 3D TIs, such as the Bi2Te3 fam-
ily, broken time-reversal symmetry induces a gap in the Dirac band 
dispersion of the surface states141. Tuning of the Fermi level in the 
gap leads to the emergence of a quantum Hall effect at zero mag-
netic field: the quantum anomalous Hall effect (QAHE), a phenom-
enon that is very promising for quantum metrology. Signatures of 
proximity magnetism in 3D TIs have been reported, for example, 
in [EuS, YIG, Tm3Fe5O12, Cr2Ge2Te6]–TI with the observation of 
an anomalous Hall effect142–144 or by investigating spin-polarized 
neutron reflectivity145. However, the origin of the magnetic signals 
in these types of experiment is usually not fully understood146–148. 
An unambiguous demonstration of proximity MEI was reported 
in (Zn,Cr)Te–(Bi,Sb)2Te3–(Zn,Cr)Te heterostructures with the 
observation of the QAHE149. In 2D TIs, or quantum spin Hall insu-
lators, such as monolayer WTe2, the conduction is dominated by 
helical edge states150,151 with canted spin orientation due to reduced  
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symmetries152–154. When WTe2 is placed in a heterostructure with 
CrI3, magnetic proximity could lead to a change in the edge state 
conductance that is controlled by the magnetization of the interfa-
cial CrI3 layer155. This could ultimately result in the observation of 
the QAHE, depending on other phenomena, such as charge transfer 
at the interface.

Conclusions and future perspectives
Recent progress in the design of complex vdW heterostructures 
brings unprecedented possibilities for developing innovative ultra-
compact spin devices and computing architectures. With respect to 
conventional spintronic applications, it is necessary to identify the 
best combination of 2D materials to demonstrate practical mag-
netic tunnel junctions (either with conducting or insulating 2D 
magnets) or CSI-induced switching of 2D magnets156 (using high 
spin–orbit materials such as WTe2 and Bi2Te3). Voltage control of 
magnetic properties is another promising avenue available with 
2D materials (Box 1). Advances have been made in this regard7,157, 
while electric-field-dependent proximity SOC in 2D magnets will 
certainly bring further opportunities. In addition, the reduced sym-
metries in monolayer TMDCs such as MoTe2 and WTe2 lead to 
persistent spin textures, which result in multicomponent SHE116,118. 
In combination with externally tunable spin–orbit fields, they may 
enable electric control of SOTs158.

Proximity effects can be further exploited for novel spin–
orbit159,160 or magnetic valves161,162 comprising BLG and a large-SOC 
material or a 2D magnet, respectively. The interplay of two factors—
the short range of the proximity effect and the layer polarization in 
BLG—results in layer-polarized electronic bands, and asymmetrical 
conduction and valence bands. Applying a transverse electric field 
can reverse this situation, turning the SOC (or λEX) on or off and 
leading to novel spintronic functionalities13. Another functionality 
is offered by intercalating BLG between 2D magnets, forming a spin 
valve that could resolve parallel and antiparallel magnetizations in 
transport163. Another exciting prospect is engineering both the SOC 
and MEI, and their interplay (panel f of the figure in Box 2), as in 
the so-called ex-so-tic vdW heterostructures164. In graphene, such 
an interplay is predicted to induce the QAHE165, novel topological 
phases77,166, proximity-based SOT130, unique signatures of anisotro-
pic magnetoresistance and even new functionalities based on swap-
ping SOC and exchange, all in a single device164. The experimental 
observation of these phenomena will be key milestones in spintron-
ics and quantum metrology.

The control of interlayer twist between layers can be further 
exploited to tailor the spin interactions (Box 1). For instance, the 
atomic stacking in the moiré pattern in twisted CrBr3 bilayers mod-
ulates the proximity SOC and MEI, as revealed by spin-polarized 
scanning tunnelling microscopy167. This and other emerging phe-
nomena could become mainstream in the forthcoming years for 
2D spintronics, including the control of information transfer via 
magnons in 2D magnets168,169 and topological magnetic structures 
such as skyrmions and Néel spin spirals, which have been already 
observed in FGT and FGT-based heterostructures86,170–172 and pre-
dicted in 2D Janus materials173.

Many of these technological prospects will require overcoming 
important challenges. A particularly critical one is the development 
of large-area stable 2D magnets with magnetic order at room tem-
perature, using scalable stacking and growth processes. Proximity 
SOC has shown potential to increase TC; similarly, an enhance-
ment of TC could also be achieved by coupling a 2D ferromagnet 
to an antiferromagnet, as in Fe3GeTe2–FePS3 heterostructures174. 
Taking advantage of SOTs will demand a full understanding of the 
mechanisms for (vertical) spin transfer across heterostructures and 
ways to take advantage of the SOTs induced by 2D materials with 
reduced symmetries. Applications relying on topological phases, 
such as the QAHE, also require robust magnetic properties to 

both applied currents and high temperatures. With regards to sky-
rmions, many fundamental challenges lie ahead beyond material 
issues, such as the development of writing, processing and read-
ing functionalities using all-electrical schemes. Moreover, increas-
ingly realistic theoretical modelling of proximity effects in complex 
vdW heterostructures (combining different 2D material families) 
is necessary to grasp the subtle spin and exciton dynamics and to 
separate the contributions of the exchange interaction from spin 
and orbital moments. Extracting (minimum) model Hamiltonians 
from ab initio calculations is becoming very challenging owing to 
the intertwined combination of all interactions involved, which 
are necessary for performing spin transport simulations. Precise 
comparisons with experiments are hampered by the difficulty of 
reproducing interfaces and controlling the stacking, especially in 
multilayer heterostructures.

The advances covered in this Review therefore represent 
the starting point for 2D material design for spintronics and 
opto-spintronics. However, the endless possibilities offered by 
proximity effects promise an enduring impact in terms of innova-
tive devices and architectures. Engineering vdW heterostructures 
can reveal novel classes of artificial quantum materials175, offer-
ing opportunities for both scientific discoveries and technological 
breakthroughs. Information and quantum computing paradigms, 
electrically driven light emitters, photodetectors and sensors might 
emerge by harnessing the rich internal degrees of freedom of 2D 
materials (spin, valley, sublattice, excitonic and layer pseudospin) 
and the creation and manipulation of entangled states.
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