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ABSTRACT: Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer
sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of
organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error
approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational
chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward
(specific energy), risk (solubility), and cost (synthesizability). We demonstrate that SPARKLE significantly outperforms alternative
black-box machine learning algorithms on interpolation and extrapolation tasks. By deploying SPARKLE over a design space of more
than 670,000 organic compounds, we identified ≈5000 novel OEM candidates. Twenty-seven of them were synthesized and
fabricated into coin-cell batteries for experimental testing. Among SPARKLE-discovered OEMs, 62.9% exceeded benchmark
performance metrics, representing a 3-fold improvement over OEMs selected by human intuition alone (20.8% based on six years of
prior lab experience). The top-performing OEMs among the 27 candidates exhibit specific energy and cycling stability that surpass
the state-of-the-art while being synthesizable at a fraction of the cost.

■ INTRODUCTION
Organic electrode materials (OEMs) are promising compo-
nents for energy storage in rechargeable batteries due to their
high structural diversity and synthetic tunability.1−10 Replacing
expensive, unsustainably sourced redox-active metals with
abundant carbon-based OEMs could substantially lower energy
storage costs, as they can potentially be derived from biological
and petroleum sources. However, the virtually unlimited
design space of OEMs presents a significant challenge in
identifying candidates with optimal stability, solubility, and
redox potentials. Modifying functional groups, both in identity
and position, can substantially alter several critical and
interrelated factors, including intermolecular interactions,
electronic structures, and solid-state packing. These changes
can profoundly influence the performance metrics of OEMs in
highly nonintuitive ways. Consequently, existing discovery
processes for new OEMs still largely depend on Edisonian
trial-and-error synthesis and electrochemical testing, which are

inherently costly and time-intensive.11 To overcome this
challenge, one can rely on molecular “proxy property” values
that strongly correlate to device-scale performance. Redox
potential,12−15 solubility,12,15−18 and structural stability19−22

are examples of OEM proxy properties that have been
previously studied in the context of battery applications.
To date, accurately predicting these and related proxy OEM

properties remains a challenging task. This has motivated the
use of computational methods, like density functional theory
(DFT), to increase the rate at which OEM property data can
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be collected.12,13,15−19 However, the computational cost of
these DFT calculations is very high, making it difficult or
impossible to scale to large design spaces with many millions of
OEM candidates. As such, many ML methods have been
investigated to construct cheap-to-evaluate surrogate models to
replace the expensive DFT calculations,11,20,23−29 including
neural networks (NN),30,31 random forests (RF),32,33 Gaussian
processes,34 and support vector machines.35 However, these
traditional ML methods are susceptible to overfitting in the
low data limit, such that they can require vast training data sets
to ensure reliable prediction accuracy. Furthermore, due to
their black-box nature, these models also commonly suffer
from poor extrapolation performance, transferability, and
human interpretability, which significantly limits their ability
to facilitate novel scientific insights and discovery.
The main goal of this work is to introduce a multiobjective

framework for the systematic design of high-performance, low-
cost OEMs in battery applications that only rely on small
amounts of proxy property data. The proposed framework,
referred to as SPARKLE (symbolic predictive algorithm for
recognizing key molecular elements) has three major
components (Figure 1).
First, we used a state-of-the-art molecular generation

method to construct a new library of over half of a million
OEMs, many of which have not previously been synthesized in
the lab. Second, we created a symmetry-aware synthetic
accessibility score that provides an easy-to-calculate evaluation
of the synthetic cost. Third, we developed a machine learning
algorithm for molecular property prediction, such as solvation
energy (risk) and specific energy (reward), that combines
molecular descriptors with a symbolic regression approach to

learn meaningful mathematical expressions from limited OEM-
property data sets.36,37

The ML models identified by the proposed method
significantly outperform popular black-box ML methods,
including RF, NN, and sparse linear regression. SPARKLE
fuses the predictions of solvation energy (risk), specific energy
(reward), and cost (synthesizability) to identify trade-offs
between these different objectives, making it, to our knowl-
edge, the first fully multiobjective design approach for OEMs.
Utilizing SPARKLE on the library of generated OEMs, we

identified ≈5000 promising novel candidates with an excellent
balance between risk, reward, and cost. Twenty-seven of these
OEMs were synthesized and experimentally tested in AZIBs.
The combination of a low-cost OEM cathode with a zinc
anode offers a safe, affordable, and environmentally friendly
solution for renewable energy storage. Our initial search for
OEMs focused on aqueous battery applications, since aqueous
solvation energies are relatively easy to compute with DFT and
have been widely used as a proxy for predicting aqueous
solubility, making these systems more accessible for modeling.
We found that 17 of the 27 resulted in a galvanostatic

charge−discharge profile that exceeds established benchmark
conditions. This OEM selection success rate of 62.9% is more
than three times higher than the collective success rate of
20.8% achieved by expert human selection in our laboratory
over the past six years. The top-performing OEM candidate
found by SPARKLE has specific energy and cycling stability
that surpass the state-of-the-art in the literature while being
synthesizable at a significantly lower cost. We highlight that
these results were obtained in the absence of any experimental
training data, which represents a fully “zero-shot discovery”

Figure 1. Proposed machine-learning-based workflow for discovery of high-performance OEMs. (left to right) (1) We start with an initial set of
OEM candidates that are fed to the proposed SPARKLE (symbolic predictive algorithm for recognizing key molecular elements) method consisting
of three parts, (2) a generative AI that expands the initial molecules to a much larger set of candidates, (3) an easy-to-calculate synthetic cost
measure, and (4) a machine learning algorithm that uses small amounts of DFT data to learn simple symbolic models for specific energy (e) and
solubility (ΔGsol). (5) Multiobjective optimization is used to discover OEM candidates’ trade-off between specific energy, solubility, and cost. (6)
The top-performing OEM candidates are synthesized, (7) fabricated into aqueous zinc-ion batteries (AZIBs), and (8) tested under over 500
charge−discharge cycles to measure realistic device-level performance metrics as a final screening step.
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process that is empowered by the extrapolation capabilities of
the machine learning models.38−41

■ RESULTS AND DISCUSSION
Generating a Large Library of Novel Organic

Electrode Materials. As highlighted in Figure 1, our
approach uses an initial set of OEMs to generate a sufficiently
large design space for exploration. A library of ≈140,000
quinone-derived molecules was generated in a previous study
from a combination of programmatic substitution on various
aromatic backbones and intuition-driven suggestions from
chemists.42 Although many candidates with low redox
potentials were identified, molecules with high redox potential,
critical for cathode materials of interest in this work, were
much rarer. Therefore, this library, which is one of the largest
existing collections of possible OEMs, is not suitable for our
current work. The first key step of our proposed method is to
enlarge this initial library using molecular generation methods.
To ensure the generated molecules are more likely to be

synthesizable, we first perform a filtering step that retains only
the fully oxidized para- and meta-quinones, resulting in a seed
library of ≈103,000 molecules that serves as the seeding data
for the generator.
Many generative artificial intelligence methods have been

explored for molecular generation; here, we focus on the
recently proposed fast assembly of SMILES Fragments
(FASMIFRA) method due to its robustness and efficiency.43

Applying FASMIFRA to the filtered library of ≈103,000
molecules, we generated a new, larger library of ≈670,000
molecules, increasing the design space size by more than a
factor of 6. Figure S1 shows the generated library has a broader
range of properties, such as molecular weight, resulting from
the creation of molecules outside of the training set. As we
show later, this feature is useful for designing previously unseen
OEMs.

Developing a ML Model Using Compressed Sensing.
Given the large design space, we need to execute the modeling
and inference process outlined in Figure 1 by selecting the
proxy molecular property values of interest. In accordance with
prior studies, we focus on specific energy and solvation energy
that, respectively, influence the energy density and viability of a
battery made with an OEM cathode. Specific energy acts as our
reward metric since larger values are likely to improve battery
performance, while solvation energy acts as our risk metric
since larger values are expected to lose electroactive material
due to its dissolution. Specific energy e (units of W h kg−1) can
be directly computed from redox potential Eo (units of V) and
molecular weight Mw (units of g) as follows

=
× ×

×
e

n F E E
M

( )
3600

o
anode

w (1)

where n is the number of electrons (equal to 2 assuming a two-
electron reduction process), F is the Faraday constant (units of
C mol−1), and Eanode is the redox potential of the zinc anode
(units of V). The Eo value can be estimated using DFT for
quinones following the procedure introduced by Pineda Flores
et al.12 We use a similar DFT procedure for calculating the
solvation-free energy ΔGsolv. Further details on these
calculations are provided in the Supporting Information.
Computing e and ΔGsolv for all ≈670,000 molecules in our

newly generated library would be too computationally
expensive. Therefore, we explore an alternative data-driven
modeling approach that, unlike many popular black-box
modeling methods, can perform well in the low data regime
(Figure S2).
Our model starts by representing molecules as a collection of

molecular descriptors (i.e., outcomes of a well-defined
mathematical procedure that transforms a symbolic represen-
tation of a molecule into a numerical quantity; Figure S2A).
We focus on D ∼ 1800 descriptors computable by the open-
source Mordred package,44 including a broad mix of theoretical

Figure 2. Training and testing performance of SPARKLE versus-discovered and conventional machine learning models for specific energy
prediction. The training performance (top) and testing performance (bottom) achieved by (A) SPARKLE, (B) NN, (C) RF, and (D) LASSO
linear regression models for specific energy. The training set consists of only 100 paraquinones while the testing set consists of over 103,000
quinones. We see that most models achieve a good training coefficient for determination (R2) and root mean squared error; however, SPARKLE is
the only one that achieves good prediction performance on the test set. Since the test set is more than 1000 times the size of the training set and
includes many non-paraquinones, this demonstrates the strong generalization properties afforded by SPARKLE (much more robust to overfitting
than conventional black-box machine learning methods).
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descriptors derived from count, fragment, fingerprint, and
graph invariant operations. We then perform a filtering and
expansion step over the descriptor vector x D to create a
very high-dimensional feature space consisting only of simple
mathematical expressions (Figure S2B).
Next, we use a sure independence screening method to

reduce the large D-dimensional space to the top 100
descriptors and apply three levels of recursion to generate a
final feature space with more than 109 possible expres-
sions.45,46 Lastly, we apply a compressed sensing method,
SISSO,36,47 to identify the optimal expression given the
existing training data (Figure S2C−E). A complete mathe-
matical description of our proposed ML method is provided in
the Supporting Information (Supporting Information Section
3). The corresponding code used to generate all results in this
paper can be found on GitHub at this link: https://github.
com/PaulsonLab/SPARKLE.
Predicting Specific Energy and Solvation Energy

Using ML. Next, we deployed the proposed ML method to
learn interpretable models for specific energy and solvation
energy. Since our goal is to learn from as little data as possible,
we start with DFT calculations for a small subset (≈100) of the
design space.
Our ML procedure found the following simple model for

their specific energy

= ×
× +

+
i
k
jjjjj

y
{
zzzzze

x
x x x

1717.16
( )

0.027413BE

BP MB1 MB2 (2)

where e ̂ is the predicted specific energy and xBE, xBP, xMB1, and
xMB2 are easy-to-calculate Mordred descriptors (see Supporting
Information Section 4 for more information). In essence, the
xBE and xBP terms provide measures of electronegativity and
polarizability, respectively, while xMB1 and xMB2 are related to
molecular weight.
Our model shows a major advantage over alternative black-

box machine learning methods [NN,30,31 RF,32,33 and linear
regression with L1 regularization (LASSO)48,49] in terms of
generalization performance (Figure 2). Considering the DFT
predictions of specific energy on the ≈103,000 quinones as the
test set,42 our ML model achieves a test R2 value of 0.733 while
the NN, RF, and LASSO models all end up with negative R2

values (implying heavily biased models, Figure 2 bottom).
It is worth noting that this level of prediction performance

was obtained using only ≈100 data points (less than 0.1% of
the test data set), suggesting the discovered model (eq 2) is
robust to the overfitting of the training data. The reduced level
of overfitting is well beyond what is achievable with traditional
black-box machine learning, which is a consequence of the
sparsity enforced by SPARKLE. We perform further analysis of
the robustness and reproducibility of the SPARKLE algorithm
to different random splits of the training data in Supporting
Information Section 4 and Figures S4 and S5. We find that,
given ≈100 randomly selected training points, SPARKLE
identifies a structurally unique model that has very low
prediction error, indicating that the results shown in Figure 2
are insensitive to the specific train/test split.
We believe sparsity is a key factor that allows SPARKLE to

outperform other methods. More complex models often have
many degrees of freedom, leading to high variance. Addition-
ally, SPARKLE’s ability to engineer new features enables it to
learn complex models with relatively few trainable parameters,
a major reason for its better performance than LASSO.

Although LASSO also induces sparsity, it strictly enforces
linear relationships with respect to the base features, limiting
its ability to capture nonlinear interactions.
We repeated a similar procedure for solvation energy;

however, we found the initial set of ≈100 molecules was
insufficient for learning an accurate model. Instead, we opted
for a training set of solvation energies of 3000 randomly
selected molecules. The model discovered by our method
using this training set can be expressed as follows

= × ×
× +

×

i
k
jjjjj

y
{
zzzzzG

x x x
x

8.2725 10
( )

9.31160 10

solv
4 MB1 MIDN GC3P

GC2SE

2 (3)

where Gsolv (units of kcal mol−1) is the predicted solvation
energy and xMB1, xMIDN, xGC3P, and xGC2SE are the relevant
Mordred descriptors that are, respectively, related to molecular
weight, number of nitrogen atoms, sigma electrons, and
polarizability. The R2 values obtained on the training and test
sets are 0.832 and 0.827, respectively, again showing strong
generalization performance on the held-out ≈100,000
quinones. More information on the Mordred descriptors and
the training and testing performance can be found in the
Supporting Information (Supporting Information Section 5
and Figures S6−S8).

Constructing an Effective Synthesizability Metric.
Since the generated library of OEMs was made through
random fragmentation and recombination of seed molecules, it
is possible that many of them cannot be readily synthesized in
the lab. This limits us from assessing their performance in the
desired end-use application of solid-state batteries. To facilitate
systematic search over the large-scale OEM library, we need to
develop a synthesizability metric to serve as a proxy for the
“cost” of device-level fabrication of a given molecule.
Although there has been significant recent work on the

development of synthetic accessibility scores, such as SYBA,50

SCScore,51 and SAScore,52 we found that these models have a
tendency to recommend asymmetric molecules that require
relatively complicated multistep synthesis procedures from
costly reagents. This result is not particularly surprising given
these scores were developed for pharmaceutical drug discovery
applications, which places less emphasis on the cost of starting
materials.
A key component of our work, however, is the discovery of

affordable OEMs that can be readily produced from low-cost
feedstock chemicals. Therefore, we propose a simple
modification (or fine-tuning) of the existing SCScore that
boosts the score for symmetric molecules. Not only is
symmetry expected to reduce cost, as they typically require
fewer, simpler synthetic steps, but it also is expected to
improve the solid-state ordering of the molecules when they
crystallize. This improved ordering increases the lattice energy
and thus is anticipated to decrease the solubility of OEMs
when exposed to an electrolyte.16

The proposed symmetry-adapted synthetic accessibility
(SASA) score is expressed by the following mathematical
relationship

=
+

SASA
TA

SCScore UA (4)

where TA refers to the total number of non-hydrogen atoms in
an organic structure, SCScore refers to the metric introduced
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in Coley et al.,51 and UA refers to the number of chemically
unique non-hydrogen atoms in an organic structure. Larger
values of SASA are predicted to be easier to synthesize
molecules.
To determine the effectiveness of SASA compared to

SCScore, we selected a random pool of ≈400 molecules and
ranked them from easiest to hardest to synthesize according to
each of these scores. Four chemists then selected the top ≈30
easiest-to-synthesize molecules from this pool. The resulting
synthesizable molecules pool had a 61.8% agreement with the
ones selected by SASA score, which is much higher than state-
of-the-art (21.8%). Further information on this validation
process as well as how to efficiently compute the proposed
SASA metric using the Python package RDKit is provided in
Supporting Information (Supporting Information Section 6
and Figures S9−S12).
Discovery of New High-Performance, Low-Cost

Electrode Materials. Given validated predictive models for
the specific energy (reward), solvation energy (risk), and
synthesizability (cost) of a molecule, along with the large,
diverse design space consisting of over 670,000 compounds,
we can now search for novel OEMs for various end-use
applications (Figure S13). We focus on discovering OEMs
suitable for AZIBs, where the combination of a low-cost OEM
cathode with a zinc anode could serve as a safe, affordable, and
environmentally friendly approach for renewable energy
storage.
We take a multiobjective optimization approach to identify

an optimal balance between the three key properties of interest
(reward, risk, and cost). Since the generated library is much
too large to sort through manually, we first implement a series
of constraints to prioritize molecules that are more likely to
exhibit high performance in each dimension. Specifically, we
require SASA to be greater than 2.5, the specific energy to be
greater than 175 W h kg−1, and the solvation energy to be less
than −20 kcal mol−1. The SASA threshold γ was selected by
showing random molecules from the filtered library with SASA
≥ γ to chemists; the smallest value of γ that resulted in most of
the random molecules to be easy-to-synthesize was found to be

2.5. The specific energy and solvation energy thresholds were
selected to be in line with the current state-of-the-art values
reported in the literature.53−57

Figure 3A shows the two-dimensional distribution of
predicted specific energy and solvation energy values for the
large OEM library for compounds likely to be easy (blue) and
hard (gray) to synthesize. Around 5000 of them exceed all
three thresholds; a complete list of their SMILES string
representations and their predicted property values are
included in Supporting Information (Supporting Document
S2). We manually explored this set of ≈5000 molecules to
identify 27 promising OEMs deemed worthy of experimental
device-level testing (Figure 3B). A manual selection of OEM
candidates was performed, considering the viability of the
synthesis, including (1) number of synthetic step, (2) relative
ease of synthesis, (3) commercial availability, (4) cost of
starting materials, and (5) expected yield. The detailed
chemical structures of these candidates are provided in Figure
S14 (labeled as numbers 1−27). We prioritized searching for
candidates near the predicted Pareto frontier between specific
energy and solvation energy, wherein one cannot improve one
property without hurting the other. One can effectively think
of these as “optimal” molecules that achieve the best balance
between risk and reward. In addition, we highlight that these
27 molecules have never been previously reported in the
literature and were found completely in the absence of any
electrochemical cycling data. It should be noted that the
selected candidates may not fall within the optimal redox
windows in aqueous environment to avoid side reactions such
as oxygen/hydrogen evolution reactions; however, the
generated OEMs were seeded from quinone-based molecules
and thus have a similar structure with learning scope (see
Supporting Information Section 2), giving us a confidence that
OEM candidates would have similar redox window with
seeding quinone molecules. A final key observation is that,
SPARKLE can predict molecules outside of the training set
and recommend promising nonquinone OEMs. For example,
26 and 27 are benzidines, commonly used in dyes, a class of
compounds not yet considered OEMs.

Figure 3. Deployment of SPARKLE to predict specific energy (reward), solvation energy (risk), and SASA (cost) of OEMs. (A) The plot shows
initial 60,000 candidates from the 600 k design space. Two histograms indicate the distribution of the number of OEM candidates for hard-to-
synthesize molecules with SASA < 2.5 (gray) and easy-to-synthesize molecules with SASA ≥ 2.5 (blue). The histogram for SASA ≥ 2.5 was
magnified by ten times for visibility. (B) A plot of twenty-seven final OEM candidates selected for experimental testing. The rectangles indicate
quinone-based OEMs while diamonds show nonquinone OEMs recommended by SPARKLE prediction.
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Next, the 27 discovered molecules were experimentally
synthesized and evaluated as the cathode in an AZIB
constructed using two-electrode coin cells with a standard
aqueous zinc-based electrolyte. The first galvanostatic charge−
discharge (GCD) profile at a constant current density of 0.5 C
along with their chemical structure are summarized in Figure

4; results for the other five successful and five unsuccessful
OEMs are reported in Supporting Information (Figures S15
and S16). The OEMs predicted by SPARKLE show excellent
cycling performance. For example, compound 12 demon-
strated a high operating voltage of 1.15 V, an extraordinary
energy density of 220 W h kg−1, and high Coulombic and

Figure 4. Selected OEMs identified by SPARKLE and corresponding galvanostatic charge−discharge (GCD) profiles at 0.5 C charge−discharge
rate. (A) GCD profiles of eight representative n-type OEMs (2−5, 10, 11, 12, and 15). (B) GCD profiles of four representative p-type OEMs (19,
20, 23, and 26). GCD for other successful OEMs, including 1, 7, 8, 14, and 27, and other unsuccessful candidates were plotted in Figures S13 and
S14.
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round-trip efficiencies of 99.5% and 82%, respectively. It is also
interesting to note that our approach found new p-type organic
moieties (19, 20, 26, and 27), providing further evidence of
the ability of SPARKLE to generalize beyond the quinone-only
(n-type) training set.
SPARKLE was able to find multiple OEMs that match or

improve upon state-of-the-art OEMs in at least one objective.
Figure 5 provides an overview of key performance metrics for a
subset of the 17 successful OEM candidates identified by
SPARKLE. We see in Figure 5A that, for example, molecule 2
has a higher specific energy than five published state-of-the-art
OEMs (see Table S1 for their chemical details).53−57 Note that
we omitted OEMs that show good capacity but require a
special membrane to prevent material dissolution to ensure a
fair comparison.58 More importantly, some of the high
performing OEMs identified by SPARKLE are significantly
less costly than the state-of-the-art (Figure 5B). Specifically,
candidates 3 and 12 achieve the lowest cost per energy stored,
which was estimated from the starting materials and solvents
needed to synthesize the compound. We note that not all of
the OEMs discovered by SPARKLE are highly cost-efficient.
This outcome is not unexpected since the SASA score does not
consider the commercial availability of the reagents (see
Supporting Information Section 7 and Tables S2 and S3 for a
detailed breakdown of the cost estimates). Nonetheless,
SPARKLE demonstrates a significantly higher success rate
compared to other heuristic selection methods. This further
underscores its capability to effectively screen for new OEMs
that are both high-performing and synthetically viable.
Figure 5C shows the results of long-term stability tests.

Compounds 3−5, 10, 12, and 15 show suitable cycling
stability for realistic AZIB devices. Moreover, compound 5, the
most stable OEM that we found, could operate over 1500

cycles with a final capacity retention of 70.4% (see Figure S17).
It is interesting to note that although our model cannot directly
predict device stability since the decomposition pathways vary
significantly as a function of molecular structure (Figure S18),
its ability to eliminate bad candidates is very helpful in practice.
By significantly reducing the feasible design space, one can
focus experimental effort on candidates more likely to succeed,
which is critical due to the large time and cost investment
needed for long-term cycling studies.
To quantify the practical impacts of SPARKLE, we

compared its performance to that achieved by traditional
human intuition-based OEM selection in our laboratory over
the past six years. Prior to this work, we had tested 72
molecules as OEM cathodes in AZIB under the same
conditions. Human intuition-based selection achieved a low
success rate of 20.8% (15 out of 72; Figures S19 and S20 and
Table S4) where “success” is defined as achieving a GCD cycle
that satisfies standard performance benchmarks, including a
Coulombic efficiency greater than 95%, specific capacity
greater than 150 mA h g−1 for n-types and 100 mA h g−1 for
p-types, and a voltage hysteresis less than 0.5 V. Although we
cannot eliminate the involvement of human intuition in
SPARKLE, the ML-assisted discovery process was able to
increase the success percentage by more than a factor of 3
(62.9% corresponding to 17 out of 27; Figure S21). This
substantially improved probability of success was achieved
despite searching over a much larger design space than was
previously impossible by humans alone. While there is some
discrepancy between prediction and measurements in specific
energy (Figure S22), the consideration of enlarged design
spaces is important, as it enabled us to discover a new,
promising class of OEMs, e.g., benzidines, in an entirely zero-
shot fashion.

Figure 5. Comparison of OEMs identified by SPARKLE and common reported OEMs. (A) Comparison of the specific energy of OEMs identified
by SPARKLE compared to existing OEMs reported in literature. (B) Comparison of the estimated cost per specific energy of selected OEMs. The
cost estimation is based on the price of synthesis reagents, solvents, and reaction yields. Details can be found in Tables S3 and S4. (C). Long-term
cycling stability of new OEMs identified by SPARKLE at 2 C.
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■ CONCLUSIONS
In this work, we developed an efficient multiobjective
discovery approach, SPARKLE, which integrates advances in
computational chemistry, molecular generation, and explain-
able machine learning to address the time and cost bottlenecks
inherent in traditional Edisonian trial-and-error search
methods. At its core, we note that SPARKLE is a machine-
learning model, and the insights it provides may not be as
granular as those obtained through traditional trial-and-error
methods. However, the primary aim of our manuscript is to
showcase an accelerated discovery process. We created a
publicly available web interface that allows users to enter a
molecule and compute predictions of their viability as
electrode materials in aqueous batteries: https://oem-
webapp.streamlit.app/.
The application of SPARKLE toward the discovery of OEMs

holds significant potential for developing sustainable, safe, and
low-cost battery technology. Using small amounts of property
data calculated by DFT, SPARKLE learns accurate and
interpretable models for specific energy and solvation energy,
key properties that impact battery performance. By combining
these models with a novel synthesizability metric, SPARKLE
identified over 5000 unique OEM candidates suitable for
aqueous zinc-ion battery applications. Analyzing the Pareto
frontier for these performance metrics, we discovered 27
candidates predicted to optimally balance reward (specific
energy), risk (solvation energy), and cost (synthesizability).
Experimental synthesis and testing of these 27 candidates in
coin-cell batteries revealed a 62.9% success rate in exceeding
benchmark performance metrics, a more than 3-fold increase
compared to the 20.8% success rate from human intuition-
guided OEM selection alone. In addition to increased
efficiency, SPARKLE identified OEMs that improve upon the
existing state-of-the-art for each property, including an OEM
with a specific energy greater than 250 W h kg−1. Two
candidates achieved the lowest estimated synthetic cost per
specific energy to date.
Another key observation is the ability of SPARKLE-

discovered models to generalize beyond the training set,
which is not possible with existing black-box machine-learning
methods. SPARKLE discovered several nonquinones, including
four new p-type OEMs. Two of these p-type OEMs are
benzidines, representing a previously unreported OEM moiety
that warrants further study. Thus, this work not only provides
specific recommendations for promising OEMs but also
demonstrates the immense potential for extrapolation. Finally,
we note that the algorithms developed in SPARKLE are
broadly applicable, and we expect the framework to be useful
in many end-use applications beyond OEMs.
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