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ABSTRACT
In this paper, we present GazeTrak, the first acoustic-based
eye tracking system on glasses. Our system only needs one
speaker and four microphones attached to each side of the
glasses. These acoustic sensors capture the formations of
the eyeballs and the surrounding areas by emitting encoded
inaudible sound towards eyeballs and receiving the reflected
signals. These reflected signals are further processed to cal-
culate the echo profiles, which are fed to a customized deep
learning pipeline to continuously infer the gaze position.
In a user study with 20 participants, GazeTrak achieves an
accuracy of 3.6° within the same remounting session and 4.9°
across different sessions with a refreshing rate of 83.3 Hz and
a power signature of 287.9 mW. Furthermore, we report the
performance of our gaze tracking system fully implemented
on an MCU with a low-power CNN accelerator (MAX78002).
In this configuration, the system runs at up to 83.3 Hz and
has a total power signature of 95.4 mW with a 30 Hz FPS.
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1 INTRODUCTION
Currently, state-of-the-art eye tracking technologies utilize
cameras to capture gaze points. However, cameras-based eye
tracking solutions are known to have a relatively high power
signature, which may not work well for smart glasses with a
relatively small battery capacity. For instance, Tobii Pro Glass
3 [2], which is considered as one of the best eye tracking
glasses, can only last for 1.75 hours with an extended battery
capacity of 3400 mAh. When using the battery of a Google
Glass (570 mAh), this eye tracking system can only last 18
minutes. The limited tracking time has hindered its ability to
collect gaze point data in everyday life, which can be highly
informative for many applications, such as, monitoring users’
mental or physical health conditions [49, 59], gaze-based
input, and attention and interest analysis [15].
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Figure 1: Echo Profiles of Different Microphones when Moving Gaze to Different Regions of The Screen.

To overcome this challenge, we introduce GazeTrak, which
explores utilizing acoustic sensing (known for relatively low
power, lightweight, and affordable) to continuously track
gaze points on a glass frame. Its sensing principle is based
on the fact that eyeballs are not perfectly spherical and ro-
tating them would expose different shapes and stretch the
skin around them with unique formations. This can provide
highly valuable information for inferring gaze points. Gaze-
Trak uses one speaker and four microphones on each side
of the glass frame. The speaker emits frequency-modulated
continuous-wave (FMCW) acoustic signals with the frequency
above 18 kHz towards the eyeballs. The microphones capture
the signals reflected by the eyeballs and their surrounding ar-
eas, which are used to process and calculate the echo profiles.
These echo profiles are fed to a customized deep learning
algorithm based on ResNet-18 to predict the gaze point.

We conducted two rounds of user studies to evaluate the
performance of GazeTrak. During the studies, each partici-
pant was asked to look at and follow the instruction points on
the screen. In the first round of the study, 12 participants eval-
uated our first hardware prototype, where the microphones
and speakers were glued on a glass frame. The average cross-
session tracking accuracy was 4.9°. It confirmed the optimal
settings of the sensing system, which helped us design the
final prototype. The final prototype (as shown in Fig. 1) fea-
tures a more compact form factor, significantly lowers signal
strength, and improves environmental sustainability as it
can be attached to different glasses. To ensure consistent
performance between the two prototypes, we conducted a
second round of study with 10 participants, including some
new participants, evaluating the final prototype. The final

prototype achieved an average tracking accuracy of 4.9° for
cross-session scenarios and 3.6° for in-session scenarios with
a refreshing rate of 83.3 Hz. We made a demo video1 to
demonstrate the tracking performance and real-world appli-
cations of our system.
Although the current accuracy of our system was worse

than commercial eye trackers such as Tobii Pro Glasses 3 [2]
and Pupil Labs Glasses [28], it is still comparable to some
webcam-based eye-tracking systems [21, 54]. Furthermore,
due to the low-power feature of acoustic sensors, GazeTrak,
including the data collection system, has a relatively low
power signature of 287.9 mW. Compared to camera-based
wearable eye tracking systems, our proposed system reduces
the power consumption by over 95%. If using a battery with
the capacity similar to Tobii Pro Glasses 3, our system can ex-
tend the usage time from 1.75 hours to 38.5 hours. It can even
last 6.4 hours on the battery of normal smart glasses, such as
Google Glass. The power signature of our system can be fur-
ther improved using a recently introduced micro-controller
with a low-power CNN accelerator (MAX78002). Hence, we
implemented our gaze tracking pipeline fully on MAX78002.
With the refresh rate set as 30 Hz, the power consumption
of the whole system including the data preprocessing and
model inference is measured as 95.4 mW.

In summary, the contributions of our paper are as follows:
• We designed and implemented the first acoustic-based
continuous eye tracking system on glasses.

• A user study with 20 participants showed an average
cross-session accuracy of 4.9° with a refreshing rate
up to 83.3 Hz and a power signature of 287.9 mW.

1https://youtu.be/XvNLNkfQY7Q
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• The performance of the system remained robust under
different noisy environments and with different styles
of glass frames.

• A real-time pipeline was implemented on MAX78002
to make inferences on the board with a power con-
sumption of 95.4 mW at 30 Hz.

2 RELATED WORK
In this section, we introduce the prior webcam-based, non-
wearable, and wearable eye tracking systems.

2.1 Webcam-based Eye Tracking Systems
Webcams have been widely used to implement eye tracking
technologies because of its ubiquity on computers and its
advantage of low-cost. Researchers have done many work to
explore the potential of webcams for eye tracking [47, 48, 53,
63]. Currently, there are plenty of webcam-based eye track-
ing platforms that are available online, such as RealEye.io
[54], GazeRecorder [19], and WebGazer.js [21].
These webcam-based eye tracking platforms provide af-

fordable solutions for eye tracking with acceptable tracking
performance for everyday users. However, the position of
webcams are usually fixed and they have a relatively low
resolution. Therefore, their performance can be more eas-
ily impacted by factors like lighting conditions, occlusions,
camera orientations, etc.

2.2 Other Non-wearable Eye Tracking
Technologies

In order to provide more accurate and reliable solutions to
eye tracking and make them more applicable to assorted sce-
narios, researchers have put lots of efforts in implementing
other non-wearable eye tracking technologies other than
webcam-based systems, most of which are based on cam-
eras with a higher resolution than webcams. Frontal camera-
based eye tracking technologies based on computer vision
techniques can take full advantage of the whole facial in-
formation of the user for eye tracking, which usually leads
to high tracking accuracy. Different kinds of cameras have
been used in tracking eye movements, such as RGB cameras
[3], infrared (IR) cameras [45], and thermal cameras [60].
Beyond using just one camera, many technologies adopted
multiple cameras in their eye tracking systems in order to
improve the performance in different perspectives including
providing larger tracking coverage [4], allowing for user mo-
tion [22] and tracking eye movements of multiple users [37].
Because of the reliable tracking performance and reasonable
calibration time needed, frontal camera-based eye tracking
technologies have been well commercialized, among which
Tobii Pro Fusion [1] is one of the best desktop eye trackers
because it only requires seconds of calibration process for

new users and can provide a tracking accuracy as low as 0.3°
in optimal conditions. As a result, this product has been used
as reference in many research projects.
The aforementioned frontal camera-based technologies

are mostly located at fixed positions and do not work well
while users move to another position or are walking around.
In order to allow some mobility for users while they are
using the eye tracking technologies, many researchers in-
vestigated utilizing the cameras on mobile devices to track
eye movements, such as mobile phones [25, 31, 68] or tablets
[7, 25]. However, these eye tracking technologies based on
mobile devices still require users to hold themobile devices in
front of their face all the time and cannot provide completely
hands-free and motion-free experiences for users.

2.3 Wearable Eye Tracking Technologies
To overcome the challenges that non-wearable eye tracking
technologies face as described in the last two subsections,
many wearable eye tracking technologies based on cameras
[12, 24, 29, 40, 41, 43, 52, 67], optical sensors [8, 35, 36, 57, 58],
acoustic sensors [20], magnetic sensors [62], Electrooculog-
raphy (EOG) sensors [9, 10], or inertial measurement units
(IMU) [29] have been deployed on different kinds of wear-
ables including glasses [8, 12, 20, 36, 40, 41, 52, 57, 58, 67],
goggles [9, 10], hat [29], and head-mounted devices [24, 35,
43, 62]. Among all these wearable eye tracking technologies,
camera-based ones usually outperform others in terms of
tracking performance and do not require lots of calibration
data from new users. Many wearable eye trackers using cam-
eras, especially on glasses, have become commercial and can
be used as a reliable way to track eye movements continu-
ously, such as Tobii Pro Glasses 3 [2], Pupil Labs (Invisible,
Core, VR/AR add-ons) [28], Dikablis Glasses 3 [16], and SMI
Eye Tracking Glasses [23]. With these technologies, various
novel gaze-based applications have been enabled, includ-
ing detection of eye contacts [64], interaction with devices
[26, 39, 46], and monitoring mental health [32, 59].
Despite of the promising tracking performance, current

solutions to wearable eye tracking systems still have some
limitations. First of all, many eye tracking systems above
can only recognize discrete gestures [9, 10, 57, 58, 67], limit-
ing their performance in applications that need continuous
tracking of the eyes. Camera-based wearable eye trackers
can provide high accuracy in continuous eye tracking, but
cameras are usually power-hungry, which makes them rel-
atively impractical while deployed in wearables that need
to be worn in everyday settings. To address this issue, May-
berry et al. [40, 41] proposed low-power solutions to tracking
gaze positions with cameras on glasses while maintaining
promising accuracies. Despite of the impressive performance,
changing lighting conditions can still be a problem for these
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Table 1: GazeTrak and Other Continuous Eye Tracking Techniques. The power of GazeTrak (Teensy 4.1) does not
include data preprocessing and deep learning inference. The reported accuracy is tested within the same session
without users remounting the device. Both weight and cost include the recording unit. NS = Not Specified.

Reference Form Factor Sensors Power Accuracy Refresh Rate Weight Cost
Cho et al. [12] Glasses Cameras >7W 0.79° NS NS NS
Ryan et al. [52] Glasses Cameras >1.6W 2° NS NS ~$700
iShadow [40] Glasses Cameras 0.07W 3° 30 Hz NS NS
CIDER [41] Glasses Cameras 0.032W 0.6° 250 Hz NS NS

Pupil Labs Glasses [28] Glasses Cameras 8.6W 0.6° 30/60/120 Hz 202.75g $2,849
Tobii Pro Glasses 3 [2] Glasses Cameras 10.7W 0.6° 50/100 Hz 388.5g $16,055

SMI Glasses [23] Glasses Cameras NS 0.5° 60/120 Hz NS $41,000
Li et al. [36] Glasses NIR LED & Photodiodes 395µW <2° 120 Hz <25g NS
Li et al. [35] Head-mounted Photodiodes 791µW 6.3° 10 Hz NS NS

GazeRecorder [19] Webcam Camera / 1.05° 30 Hz / $500/month
WebGazer.js [21] Webcam Camera / 4.17° NS / Free
RealEye.io [54] Webcam Camera / ~5° 60 Hz / $600/month

GazeTrak (Teensy 4.1) Glasses Acoustic Sensors 0.288W 3.6° 83.3 Hz 44.2g ~$75
GazeTrak (MAX78002) Glasses Acoustic Sensors 0.095W 4.2° 30 Hz / /

camera-based systems, as the performance became worse in
an outdoor setting [41]. Besides, commercial eye trackers are
usually expensive and do not provide open-source software
for users, preventing them from being easily accessed and
adapted by general users.
Recently, Li et al. [36] proposed a low-cost and battery-

free solution to continuous eye tracking using near infrared
emitters and receivers on glasses. It achieves competitive
performance but they stated in the paper that this system
can be impacted by direct sunlight and glasses movement, i.e.
the remounting of the glasses. Besides, this work tracks the
position and size of the pupil so we cannot directly compare
it to our system. After conversion, its tracking accuracy of
gaze positions is smaller than 2° in angular error. Another
system using similar technology from the same group [35]
tracks gaze positions with an accuracy of 6.3°, worse than
the tracking accuracy of our system at 4.9°. Golard et al. [20]
conducted a modeling and empirical study to prove that ul-
trasound can provide a low-power, fast and light-insensitive
alternative for camera-based eye tracking technologies. How-
ever, it was evaluated on a physical 3D model of a human
eye and used time-of-flight estimated from acoustic signals
and not clear how it can apply on a real user.
To the best of our knowledge, GazeTrak is the first wear-

able sensing technology based on active acoustic sensing
that can track gaze points continuously. We summarized and
compared GazeTrak with some aforementioned wearable
and webcam-based eye tracking techniques that can contin-
uously track gaze positions in Tab. 1. These techniques are
those that are most related to our system. Please note that
commercial eye tracking wearables [2, 23, 28] usually have
camera(s) recording the video of the environment as well so

we can only roughly compare them to our device in terms
of power and weight.

3 PRINCIPLE AND ALGORITHMS
Active acoustic sensing is based on affordable sensors (speak-
ers and microphones), the sizes of which are relatively small.
Previous research work has proved that it is able to provide
enough information to track subtle skin deformations such
as facial expressions [18, 34]. In this section, we discuss how
this approach can be adapted to eye tracking.

3.1 FMCW-based Active Acoustic Sensing
In order to capture the formation around eyeballs, we use
FMCW-based acoustic sensing, which has beenwidely proven
effective to estimate distance and movements from complex
environments [42, 61].

3.1.1 Encoded FMCWSignals. While customizing the FMCW
signals for our system, three main features are taken into ac-
count: 1)Operating frequency range: The device is expected to
be worn by users for a long period of time in their everyday
lives. As a result, the FMCW signals need to be transmitted in
the inaudible frequency range. Besides, to ensure the encoded
signals are minimally impacted by the noise in the environ-
ment, the operating frequency range we pick should also be
uncommon in daily settings; 2) Sampling rate: To achieve a
reasonable spatial and temporal resolution of tracking eye
movements, the sampling rate of FMCW signals must be
high enough; 3) Gain: As power signature increases with the
signal gain, the signal gain should be properly determined
to balance signal strength and power consumption.
Considering all the factors above, we set the operating

frequency range of the FMCW signals that we emit in the
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Figure 2: Overview of the GazeTrak System: Use the Speaker on the Right Side (18-21 kHz) for Illustration.

GazeTrak system above 18 kHz, because this range is near-
inaudible and uncommon in the sounds generated by normal
human activities. Because both eyes contain information
while moving, we placed one speaker on each side of the
glass frame. We set the speaker on the right side to operate at
18-21 kHz while the one on the left side operates at 21.5-24.5
kHz to make sure they do not interfere with each other. To
guarantee that the system works reliably in these frequency
ranges, we set the ADC sampling rate as 50 kHz with the
frame length of FMCW signals as 600 samples. This gives
the system a refresh rate of eye tracking at 83.3 Hz (50000
samples/s ÷ 600 samples). We believe a refresh rate of 83.3
Hz is sufficient to provide continuous gaze tracking since
the frame rate of most videos are 30 Hz or 60 Hz. Lastly,
the gain was experimentally adjusted to make sure that the
signal does not saturate the microphones while the power
consumption is relatively low.

3.1.2 Acoustic Patterns for Continuous Eye Tracking. After
receiving the reflected FMCW signals, we first apply a But-
terworth band-pass filter with a cut-off frequency range of
18-21 kHz or 21.5-24.5 kHz on the signal to remove the sig-
nals in the frequency range that we are not interested in. It
also helps protect the privacy of users because we remove
the audible range of the signals. Then we further process
the filtered signal to obtain unique acoustic patterns. Ac-
cording to prior research work [30, 33, 34, 38, 55, 61, 65, 66],
Echo Profile provides an accurate depiction of the status and
movements of the reflecting objects in the environment. As a
result, in this paper, we also use echo profiles as the acoustic
patterns that our system monitors. As shown in Fig. 2 (a)-
(c), echo profile is obtained by continuously calculating the
cross-correlation between the received signals and transmit-
ted signals. Fig. 1 demonstrates that different eye fixations
and movements are correlated with different patterns in echo
profiles. Based on these observations above, we believe that
our GazeTrak system utilizing FMCW-based active acoustic

sensing is able to track eye movements continuously with
high accuracy.

3.2 Machine Learning Algorithms
3.2.1 Ground Truth Acquisition without using Eye Trackers.
A professional eye-tracker (e.g., Tobii Pro Fusion) can pro-
vide highly accurate ground truth, but it is expensive. If our
system needs a professional eye-tracker to train the system,
it will make our eye-tracking system less accessible.
Therefore, we developed a new ground truth acquisition

and calibration system that only needs a program running
on a laptop. The program generates instruction points on
the screen as the ground truth. During data collection, the
users only need to look at and follow the movements of the
instruction points. These ground truth data along with the
echo profiles are fed into the machine learning model for
training. This method is generally applicable on any device
with a screen. For details about how the instruction points
are generated, please refer to Sec. 5. To better compare our
system with commercial eye trackers, we also use a Tobii
Pro Fusion (120 Hz) [1] to record the eye movements to
demonstrate the effectiveness of our training methods.

3.2.2 Deep Learning Model. We developed a customized
deep-learning pipeline to learn the echo profiles calculated
on the received signals. Because in the echo profiles (See
Fig. 1), the temporal information has been converted to the
spatial information on an image, we decided to use ResNet-
18 as the encoder of our deep learning model because CNN
networks are known to be good at extracting features from
images. Then a fully-connected network is used as a decoder
to predict gaze positions based on the features extracted from
the images.

Because of the limited distance between the sensors on the
glasses and the eyes, we are only interested in a certain range
of the echo profiles (Fig. 2 (c)). As a result, we crop the echo
profiles of each channel to get the center 70 pixels (23.8 cm)
vertically. Then we randomly select 60 consecutive pixels
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Figure 3: Hardware and Form Factor for GazeTrak: (a) Speaker board; (b) Microphone board (front view); (c)
Microphone board (back view); (d) Customized PCB board for the audio chip NXP SGTL5000; (e) Teensy 4.1; (f)
Glasses form factor with speakers and microphones attached (M1-8: microphones, S1-2: speakers); (g) Attachable
and more compact prototype; (h) MAX78002 Evaluation Kit.

(20.4 cm) out of these 70 pixels for data augmentation purpose
to make sure the system will not be severely impacted by
the vertical shifting caused by remounting the device. To
continuously track the gaze positions, we apply a sliding
window of 0.3 seconds on the echo profiles. As a result, the
dimension of the echo profile that we input into the deep
learning model for one channel is 26 (0.3 s × 50000 Hz ÷ 600
samples + 1) × 60 (pixels). Because we use 2 speakers and
8 microphones in our system, which will be illustrated in
Subsec. 4.2, we crop out the same dimension of echo profiles
for all 2 × 8 = 16 channels, making the dimension of the
input vector to the deep learning model as 26 × 60 × 16.

We use the instruction points as the labels (see Subsubsec.
3.2.1) and the mean squared error (MSE) as the loss function.
We chose Adam optimizer and set the learning rate as 0.01.
The model is trained for 30 epochs to get the estimation of
the two gaze coordinates (x, y).

3.2.3 Evaluation Metrics. The prediction of our system is
the coordinate (x, y) of our estimated gaze position on the
screen in pixels. To evaluate the accuracy of GazeTrak, we
adopted the accuracy defined in COGAIN eye tracker accu-
racy terms and definitions [11]. The evaluation metric we
use in our system is the mean gaze angular error (MGAE)
between the coordinate of our prediction (x, y) and that of
the ground truth (x’, y’). To calculate MGAE in degrees from
the coordinates, we first need to get the angular error 𝜃 be-
tween the prediction and the ground truth of each data point.
𝜃 can be calculated using the law of cosines in a triangle as
follows:

𝜃 = arccos (
𝑑2𝑒𝑔 + 𝑑2𝑒𝑝 − 𝑑2𝑔𝑝

2 × 𝑑𝑒𝑔 × 𝑑𝑒𝑝
) × 180 ÷ 𝜋 (1)

where 𝑑𝑒𝑔, 𝑑𝑒𝑝 and 𝑑𝑔𝑝 are the distance between user’s eyes
and ground truth, the distance between user’s eyes and pre-
diction, and the distance between ground truth and predic-
tion respectively. MGAE is obtained by averaging 𝜃 over all
the data points in the testing dataset.

4 DESIGN AND IMPLEMENTATION
4.1 Hardware Design
In order to implement the FMCW-based active acoustic sens-
ing technique mentioned in the section above, we chose
Teensy 4.1 [51] as the micro-controller to provide reliable
FMCW signal generation and receiving in multiple channels.
We designed a PCB board to support two SGTL5000 chips
which are the same as the one on the Teensy audio shield
[50]. With this customized PCB board plugged onto Teensy,
it can support as many as 8 microphones and 2 speakers.
We chose the speaker called OWR-05049T-38D [14] and the
MEMS microphone called ICS-43434 [56] to support signal
transmission and reception. We also built customized PCB
boards for the speaker and the microphone to make them
as small as possible. We used the Inter-IC Sound (I2S) buses
on the Teensy 4.1 to transmit data between the Teensy 4.1
and the SGTL5000 chips, speakers and microphones. The
collected data is stored in the SD card on Teensy 4.1. Fig. 3
(a)-(e) show these components.

4.2 Form Factor Design
We designed the first form factor using a commodity glass
frame. We glued 1 speaker and 4 microphones to each inner
side of a pair of light-weight glasses. The speakers and mi-
crophones are symmetrically placed on the glasses, as shown
in Fig. 3 (f).
Based on the experience we learned during the iteration

process, there are three key factors we took into consider-
ation while designing the final form factor of GazeTrak: 1)
Type of glass frame: We started designing the form factor
with a large glass frame because we believe it has more room
for us to place sensors. However, the larger the glass frame is,
the easier it will be for the frame to touch the skin, blocking
the signal transmission and reception. As a result, we finally
picked a relatively small glass frame with a nose pad that
can support the glass frame to a higher position. Besides,
the light-weight glasses minimize the pressure attached on
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the user’s nose, making it more comfortable to wear; 2) Sen-
sor position: The speakers and microphones on two sides
are symmetric because we believe the movements of two
eyes are usually synchronized. On each side, we place the
speaker on the frame of the glasses next to the outer canthi
because it is easier for the speakers to touch the skin if they
are placed above the cheekbones or next to the eyebrows,
considering their height. The microphones are scattered on
the frame as far away from each other as possible to capture
more information by receiving signals travelling in different
paths. The sensors are attached as far away from the center
of the lenses as possible in order to avoid blocking the view
of the user; 3) Stability: We found that the stability of the
device severely impacts the performance of our system es-
pecially when users need to remount the device frequently.
The anti-slippery nose pad prevents the glasses from sliding
down the user’s nose. Furthermore, we added two ear loops
at the end of the legs of the glass frame. They greatly helps
fix the glasses position from behind ears and improves the
performance of the system. Finally, we made the form factor
as shown in Fig. 3 (f).

4.3 Final Hardware Prototype
The prototype above is suitable for initial testing and compar-
ison of different configurations. However, once the design of
the prototype is finalized, we aim to create a more compact
and less obtrusive form factor that is suitable for everyday
use by users. To achieve this, we have designed two PCB
boards, each containing one speaker and four microphones
onboard, which can be attached to one side of the glasses.
We have also deployed the Teensy 4.1 and the PCB board
with SGTL5000 chips directly onto one leg of the glasses.
To connect the micro-controller and the customized PCB
boards, we have used flexible printed circuit (FPC) cables.
The system has an interface that allows it to be powered by
a Li-Po battery. The compact prototype is shown in Fig. 3 (g),
and Fig. 1 shows a user wearing the prototype. We believe
that this prototype can be easily adapted and attached to
different types of glasses.
We have measured the weight of the prototype, and it

carries a total weight of 44.2 grams, including the glasses,
Teensy 4.1, PCB boards, and the Li-Po battery. Compared to
camera-based eye tracking glasses, our GazeTrak device is
much lighter. For example, Tobii Pro Glasses 3 [2] weigh 76.5
grams for the glasses and 312 grams for the recording unit.
Our device has a significant advantage over camera-based
eye tracking glasses in terms of weight.

5 USER STUDY PROCEDURE
The objective of our user study is to validate the performance
of GazeTrak on continuously tracking gaze points. In order

to reach this goal, we carefully designed the instruction video
for participants’ gaze to follow. Basically, on the white screen,
there would be one red dot moving around and we asked par-
ticipants to stare at the point and follow it with their eyes.We
divided the screen into 100 regions. For each data point, the
instruction point appeared at a random position within one
random region. The instruction point would move quickly
to that random position and stay static at that position for a
certain period of time because we mainly would like to test
how GazeTrak performs to track the fixation of participants.

We recruited 20 participants (10 females and 10 males, 22
years old on average). Note that some participants partici-
pated in the study for multiple times to test different settings.
The study was conducted in an experiment room on a univer-
sity campus. During the study, the participants sit on a chair
and put on the glasses form factor with our GazeTrak system.
For each participant, we produced 12 sessions of instruction
points. During the interval between sessions, participants
were instructed to remove the device, place it on the table,
and then put it back on. This step was taken to demonstrate
that our system continued to function correctly even after
the device was remounted. In each session, the instruction
point moved to all the 100 pre-defined regions in a random
order. The duration for which the instruction point remained
at each position varied from 0.5 to 3.5 seconds, with an av-
erage of 2 seconds. As a result, the average length of each
instruction session was 200 seconds. Before each session,
there was a 15-second calibration process with the instruc-
tion point moving to the four corners of the screen and the
center of the screen.

The full study took no more than 1.5 hours for each partic-
ipant, during which we collected approximately 40 minutes
of data (200 seconds × 12 sessions). Upon completing the
study tasks, the participant was asked to complete a ques-
tionnaire to collect their demographic information and their
feedback using this system.

6 EVALUATION RESULTS
In this section, we first evaluated the performance of Gaze-
Trak with the initial prototype, comparing different ground
truth acquisitionmethods, sensor configurations and amounts
of training data. Then we tested our system under noisy envi-
ronments and on glasses of various frame styles. Finally, we
optimized the system on the final prototype and evaluated it
with another study, with power consumption measured.

6.1 User-dependent Model
Wefirst tested our system using the first prototype in Fig. 3 (f)
with 12 participants. A user-dependent model was applied
to train a separate model for each participant. Among 12
sessions we collected for each participant, we conducted
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Table 2: Study Results for Different Mic Configurations.

Mic Configuration M1+M5 M2+M6 M3+M7 M4+M8 Best 4 Mics (M2,4,6,8) Best 6 Mics (M1,2,4,5,6,8) All 8 Mics

MGAE 7.7° 7.2° 8.5° 6.9° 5.9° 5.5° 4.9°

a 6-fold cross validation to test the tracking performance
of our system by using 10 sessions (33.3 minutes) of data
for training and 2 sessions (6.7 minutes) of data for testing.
Using the evaluation metrics defined in Subsubsec. 3.2.3, we
calculated the mean gaze angular error (MGAE) in degree
for all participants, and the result we obtained was 5.9°. To
further improve the performance, we adopted the 15-second
calibration data before each session to fine-tune the model,
which resulted in an improved performance of 4.9°. It is
worth mentioning that a similar calibration process is also
required for commodity eye trackers (e.g., Tobii Pro). The
distance between the participants’ eyes and the screen center
is measured to be around 60 cm so we have a field of view
of 60° (the largest possible angular error) in this study. We
made a demo video showing how our prediction looks like
visually with this level of accuracy.

Figure 4: MGAE Distribution across Participants.

Next, we aimed to compare the impact on gaze track-
ing performance of using different ground truth acquisition
methods: a commodity eye tracker (Tobii Pro Fusion) versus
our method (using instruction points on the screen). We used
the eye tracking data recorded by Tobii Pro Fusion as the
ground truth to train the model, and the MGAE after fine-
tuning was 4.9°. We conducted a repeated measures t-test
between the results using Tobii data as the ground truth and
those using instruction points as the ground truth for all 12
participants, and did not find a statistically significant differ-
ence (𝑝 = 0.92 > 0.05). This suggests that using instruction
points on a screen monitor as the ground truth can be as
effective as using Tobii data.
Apart from that, we also recorded the eye tracking accu-

racy of Tobii Pro Fusion itself which was reported after the
calibration process of the Tobii platform. The results showed

that Tobii Pro Fusion can track the gaze points with an av-
erage accuracy of 1.9° during the calibration process for all
participants. We plotted the tracking performance of both
GazeTrak and Tobii for all participants in Fig. 4.

6.2 Impact of Sensor Configurations
In this subsection, we evaluated the impact of the number
and placement of microphones on tracking performance to
determine the optimal sensor position for the best results.
We assessed four different settings: 1) one microphone on
each side (left and right); 2) two microphones on each side;
3) three microphones on each side and 4) all four micro-
phones on each side. In the first setting, we compared the
performance using data from four sets of microphone set-
tings (M1+M5, M2+M6, M3+M7, and M4+M8 in Fig. 3 (f)),
which is presented in Tab. 2. The findings demonstrate that
the M4+M8 pair of microphones provides the best tracking
performance among the four pairs tested. We conducted a
one-way repeated measures ANOVA test on the results of
the four settings and identified a statistically significant dif-
ference (𝐹 (3, 44) = 6.74, 𝑝 = 0.001 < 0.05). These results
indicate that microphone placement can affect gaze tracking
performance, possibly due to differences in signal reflection
before arriving at different microphones.
We further conducted experiments to evaluate perfor-

mance using different combinations of microphones under
settings 2 and 3. The results showed that the best perfor-
mance was 5.9 degrees and 5.5 degrees, respectively. We
also ran a one-way repeated measures ANOVA test among
the results of these four settings using data from 12 partici-
pants. The results showed a statistically significant difference
(𝐹 (3, 44) = 51.61, 𝑝 = 0.00001 < 0.05). These findings sug-
gest that our system requires four microphones on each side
(eight microphones in total) to achieve the best performance.

6.3 Impact of Blinking
Blinking can introduce noise in our highly-sensitive acoustic
sensing system as it can lead to relatively large movements
around the eye. We conducted an evaluation to determine
whether blinking affects the tracking performance of our sys-
tem. For this evaluation, we selected data from three partici-
pants with the best, worst, and average tracking performance
(P1, P2, P10). We removed the data where the participant
blinks (about 10% of total data) based on the ground truth
data obtained from Tobii Eye Tracker. We then used the pro-
cessed data to retrain the user-dependent model for each
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participant. Our results showed that the performance did not
improve after removing the blinking data. One possible rea-
son for this result is that the blinking patterns are consistent
and can be learned by the machine learning model. There-
fore, our findings suggest that blinking does not significantly
impact the performance of our system.

6.4 User-adaptive Model
To reduce the need of providing lots of training data for
a new user, we employed a three-step process to train a
user-adaptive model. Firstly, we trained a large base model
using data from all participants except the one being tested.
Secondly, we fine-tuned the model using the training data
collected from the current participant. Notably, the user only
needs to provide training data once during the initial system
use. Finally, at the beginning of each session, we further fine-
tuned the model using calibration data collected from the
participant before testing or using the system. To determine
the amount of data required to achieve competitive tracking
performance, we reserved two sessions of data for testing and
used varying amounts of training data from the participant
to fine-tune the large model.
The results show that a new user only needs to provide

six sessions of training data (approximately 20 minutes) to
achieve good performance. Collecting more data does not
necessarily result in better performance. Additionally, with
only two or three sessions of data (approximately 6 minutes),
the system can achieve a performance of 6.7° and 6.1°, respec-
tively. If no user data is collected, the performance is 11.3°.
This is likely because different people have unique head, face,
and eye shapes. Therefore, to further reduce the amount of
training data required from each new user, we may need to
collect a significantly larger amount of training data from a
more diverse set of participants.

6.5 Impact of Environment Noise
To ensure that our acoustic sensing system is resistant to
different types of environmental noise, we conducted two
experiments as described in this subsection.

6.5.1 Noise Injection. In the first experiment, we recorded
noises in different environments using the microphones on
our glass frame. We then overlaid the noise onto the data
collected in the user study to simulate different noisy envi-
ronments. We recorded the noise in four different environ-
ments and measured the average noise levels using a sound
level meter app called NIOSH provided by CDC [17]: 1) street
noise (70.8 dB(A)) recorded on the street near a crossroad;
2) music noise (64.5 dB(A)) recorded while playing music
on a computer; 3) cafe noise (54.5 dB(A)) recorded in a cafe;

4) driving noise (65.6 dB(A)) recorded while driving a vehi-
cle. After overlaying each of these four noises, the tracking
performance remained unchanged for every participant.

6.5.2 Real-world Noisy Environments. In the second experi-
ment, we invited eight participants from the previous user
study and recruited two new participants (P13 and P14) to
test our device in different real-world noisy environments.
Since this study required us to move to different environ-
ments, the study design differed slightly from the previous
study described in Sec. 5.

In this study, we used an Apple MacBook Pro with a 13.3-
inch display to play the instruction videos. We used the in-
struction points as the ground truth. The MacBook Pro was
placed on a movable table, and participants were instructed
to sit in front of the table to conduct the study. Additionally,
according to Subsec. 6.4, 6 sessions of training data are suffi-
cient to provide acceptable tracking performance. Therefore,
for each participant, we collected a total of 8 sessions of data
in a quiet experiment room, with 6 sessions for training and
2 sessions for testing. We then collected additional testing
data under two different noisy environments. In the first
environment, participants used our system while we played
random music for 2 sessions. In the second environment, we
collected 2 sessions of testing data at a campus cafe where
staff and people were talking around during business hours.
The noise levels under each environment were measured
using the CDC NIOSH app: 1) quiet room (33.8 dB(A)); 2)
play music (64.0 dB(A)); 3) in the cafe (56.6 dB(A)). This study
design led to a total of 12 sessions of data collection for each
participant, which is the same as the previous study.
We trained a personalized model for each participant us-

ing 6 sessions of data collected in the quiet room. Then,
the 2 testing sessions collected in each scenario were used
to test the performance of our system in different environ-
ments. The average gaze tracking performance of our system
across 10 participants remained satisfactory at 3.8° and 4.8°
under two noisy environments, playing music and in the
cafe, while the performance in the quiet room was 4.6°. Over-
all, the average accuracy of gaze tracking did not change
significantly with the presence of noise in the environment.
We conducted a one-way repeated measures ANOVA test
among the results of these three scenarios for all 10 partic-
ipants and did not find a statistically significant difference
(𝐹 (2, 27) = 2.46, 𝑝 = 0.11 > 0.05). This again validates that
our system is not easily affected by environmental noise.

6.6 Impact of Different Glass Frames
In our user study, we only tested our system on one glass
frame (F1). However, we believe our GazeTrak system can be
easily applied to glasses with different frame styles. In order
to validate this assumption, we deployed our system on two
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(a) Original Glasses (F1) (b) Small Glasses (F2) (c) Large Glasses (F3)

Figure 5: GazeTrak Deployed on Glasses with Various Frame Styles.

other pairs of glasses as shown in Fig. 5. The original glass
frame in Fig. 5 (a) is frameless and relatively lightweight.
In this study, we applied our system on two new glasses
with different styles, size and weight. The first new glass
frame (small glasses, F2) has a smaller size than F1 but a
larger weight due to the frame around the lens (Fig. 5 (b)).
The second new glass frame (large glasses, F3) with a frame
around lens (Fig. 5 (c)) has a much larger size and weight
compared to F1 and F2. To evaluate our system on these new
glass frames, three participants from the original study (P1,
P5 and P7) agreed to participate in this additional study. The
study setups and procedures were exactly the same as the
previous study described in Sec. 5.

We collected 12 sessions of data for each participant testing
each glass frame. Since Subsec. 6.4 indicates that 6 sessions of
training data is sufficient, we discarded the first 4 sessions for
each glass frame and used the last 8 sessions to run a 4-fold
cross validation in order to test the tracking performance of
our system on different glasses. In this case, we can make
sure that participants are familiar with the wearing of all
the glass frames and eliminate the impact of some random
factors. The evaluation result shows that the small glasses
(F2) yielded a similar average performance to the original
glasses (F1) (both at 5.3°), while the large glasses (F3) resulted
in a relatively poorer average performance (at 6.1°), with a
drop in performance of 15%. One possible reason for the per-
formance difference is that the sensors on the larger glasses
were much closer to the skin. Sometimes, the sensors may
directly touch the skin, which could block the transmission
and reception of signals, as we explained in Subsec. 4.2.

6.7 Evaluation on the Final Prototype
In the previous user studies, we evaluated GazeTrak with
various configurations under different scenarios, using the
initial prototype that we had developed. The results of these
studies helped us confirm the prototype settings and develop
an optimized system prototype, which features a more com-
pact form factor as shown in Fig. 3 (g). In this subsection,
our objective was to assess the performance and power con-
sumption of this final prototype.

6.7.1 Gaze Tracking Accuracy. To evaluate the final proto-
type, we recruited 10 participants (four of whom participated
in the previous study). The study design was similar to the
previous study, except that we only used instruction points
as the ground truth acquisition method. Each participant col-
lected eight sessions of data (six sessions for training and two
for testing). We reduced the signal strength from the speaker
to 20% of the original setup, as we found that even with 2% of
the original strength, the performance was similar in the pi-
lot study. Hence, this final prototype has significantly lower
signal strength and improved environmental sustainability.
Additionally, we set the CPU speed of the Teensy 4.1 to 150
MHz in this study (standard speed: 600 MHz) to lower power
consumption. With this setting, the system experienced a
data loss rate of 0.002%, and the performance of our system
was not affected by this loss, as shown in Tab. 3. Apart from
the cross-session performance, we also conducted a test of
the in-session tracking accuracy in which the training data
and testing data were split from the same sessions without
remounting the device to show the optimal performance of
our system.

Table 3: Gaze Tracking Performance in MGAE with the
Final Prototype.

Settings P1 P2 P7 P10 P15 P16 P17 P18 P19 P20 Avg
Cross-session 4.4° 4.9° 5.9° 8.0° 3.6° 3.6° 3.9° 4.8° 4.7° 5.7° 4.9°
In-session 3.9° 3.6° 4.9° 5.3° 1.8° 2.6° 2.6° 3.6° 3.1° 4.9° 3.6°

As shown in Tab. 3, the mean gaze angular error (MGAE)
is 4.9° for the cross-session evaluation, which is similar to
the previous study. When evaluating the performance of
GazeTrak within the same sessions, the accuracy improves
to 3.6°. We did not add ear loops to this prototype because the
legs of the glasses were wider than the ear loops we had. For
most participants, the glasses fit well on their ears, but one
participant (P10) reported that the glasses kept sliding down
during the study, which may have affected their performance.
Based on the questionnaires, no participant reported being
able to hear the signal emitted from our system. We also
measured the signal level from our system using the NIOSH
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app. We placed the phone running the app close enough to
the speakers in our system and the app gave us an average
signal level of 43.1 dB(A). This is below the maximum allow-
able daily noise recommended by CDC, which is 85 dB(A)
over eight hours in the workspace [44].

6.7.2 Power Consumption. We measured the power con-
sumption of our system with a current ranger [27]. The
average current flowing through the system was measured
as 88.3 mA @ 3.26 V, which gives us a power consumption
of 287.9 mW. This value was tested with all 8 microphones
and 2 speakers working, and with the data being written
into the SD card. Our system can last up to 38.5 hours with a
battery of similar capacity to Tobii Pro Glasses 3 (3400 mAh),
while the working time of Tobii Pro Glasses 3 is only 1.75
hours. If applied to non-eye-tracking glasses, like Google
Glass, our system can run for 6.4 hours. It is worth noting
that these estimates do not include the power consumption
of data preprocessing and deep learning inference running
on a local server. We measured the power consumption of
different components in our system (Tab. 4). Teensy 4.1 has
a high base power consumption, while the sensors (speakers
and microphones) consume much less power.

Table 4: Power Consumption of Different Components
on Teensy 4.1. Power of data preprocessing and deep
learning inference is NOT included.

Total Speakers & Mics SD card writing Other operations

287.9 mW 16.4 mW 72.7 mW 198.8 mW

6.7.3 Usability. After the user study, we distributed a ques-
tionnaire to every participant to ask for feedback on our
prototype. First, the participants evaluated the overall com-
fortableness and the weight of the prototype with a rating
from 0 to 5. Across all 10 participants, the average scores they
gave to these two aspects are 4.5 (std=0.7) and 4.2 (std=0.8),
indicating that GazeTrak is overall comfortable to wear and
easy to use. Furthermore, all 10 participants answered "No"
to the question "Can you hear the sound emitted from our
system?", verifying the inaudibility of the acoustic signals
from the GazeTrak system.

7 INFERENCE ON MAX78002
In the previous evaluation, we recorded audio data with
Teensy 4.1 first and run the signal processing and deep learn-
ing pipeline on a local server offline. To enable predictions
of gaze positions in real-time on an MCU, we implemented
the whole pipeline on a micro-controller with an ultra-low-
power CNN accelerator (MAX78002 [13]).

7.1 ML Models
To achieve this goal, the deep learning models were trained
and synthesized in advance, using the ai8x libraries [5]. We
implemented two models with ai8x, which were ResNet-18
(used in the previous study) and MobileNet for comparison.
Due to the hardware limit of MAX78002, we modified the
models to be compatible with the chip. Specifically, for a
Conv2d layer, the kernel size could only be set to 1x1 or 3x3
and the stride is fixed to [1, 1]. In addition, some convolu-
tion layers of ResNet-18 were substituted with depthwise
separable convolution layers to avoid exceeding the limit
of the number of parameters in the model. Furthermore,
we quantized the input and the weights of the models with
ai8x, which converted them all into 8-bit data format to save
memory for storage and increase the speed of inference.

7.2 Data Preprocessing
Before the deep learning model, we also need to apply a
band-pass filter on the received signals and perform cross-
correlation between received signals and transmitted signals
to obtain echo profiles as described in Subsubsec. 3.1.2. In the
implementation on MAX78002, to reduce processing time,
we removed the band-pass filter since all the computations
are done on the MCU and transmitting private data is no
longer a concern.
Then we experimented two different methods to realize

the cross-correlation: (1) brute force to calculate echo profiles
point by point; (2) the dot product function in the CMSIS-DSP
library. Results of standard tests [6] revealed that it took the
system 178.3 ms and 45.4 ms to compute one echo frame and
make one inference with these two methods utilized respec-
tively. Considering that one frame of our audio data comes
every 12 ms in our system (600 samples ÷ 50000 samples/s),
this processing time is too long to keep our system running
in real-time with an FPS of 83.3 Hz. Finally, we explored
method (3) a Conv2d layer (kernel size 1x1) with transmitted
signals as the untrained weights and received signals placed
along the channel axis of the input. This can increase the
speed of echo profile calculation because it uses the CNN
accelerator on MAX78002. We compressed the samples used
for cross-correlation from 600x600 to 34x34 and the pixels
of interest from 60 pixels (20.4 cm) to 30 pixels (10.2 cm) in
this case to further decrease the processing time.

With this Conv2d layer added on top of the deep learning
model, the model directly takes the raw audio data as input in
instances with the size of 64 (34+30 samples) x 26 (frames) x
8 (microphones). This method allows the system to make one
inference within 10.3 ms, which is enough for the real-time
pipeline with a double-buffer method applied (DMA moves
the current frame in one buffer while the CPU processes the
previous frame in another buffer).
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7.3 Accuracy and Refresh Rate
To validate these modifications and compression, we eval-
uated the in-session performance of different models with
different settings using data collected with the final proto-
type in Subsec. 6.7 and showed the results in Tab. 5.

Table 5: Average In-session Performance across 10 Par-
ticipants with Different Models and Settings.

Models ML Libraries Compressed? Quantized? MGAE

ResNet-18

pytorch ✗ ✗ 3.6°
ai8x ✗ ✗ 4.0°
ai8x ✓ ✗ 4.0°
ai8x ✓ ✓ 4.2°

MobileNet ai8x ✓ ✗ 4.2°
ai8x ✓ ✓ 4.3°

As shown in the table, the same model trained with ai8x
is slightly worse than that trained with PyTorch given the
constraints of the convolution layers discussed above. Com-
pressing the size of input data does not affect the accuracy.
While MobileNet yields comparable accuracy to ResNet-18,
both models suffer a slight performance drop after quantiza-
tion since the precision of data is decreased.
Given the limitation of the I2S interfaces on MAX78002,

to test our system in a more realistic condition, we still use
Teensy 4.1 to control the speakers and microphones and
transfer the received audio data to MAX78002 via the serial
port. To accelerate the transmission speed, only the samples
that are used for processing on MAX78002 are transferred.
This generates a steady stream of audio data to MAX78002.
In future, we will explore connecting microphones directly
to MAX78002 using multi-channel audio protocols such
as Time-division Multiplexing (TDM). Evaluation results
showed that for ResNet-18 and MobileNet, MAX78002 spent
124.1 ms and 41.6 ms respectively loading the weights of the
model. This is a one-time effort and can be done before run-
ning the real-time pipeline so it did not impact the refresh
rate. Then it took 12 ms to load one instance and make an
inference based on it in real-time for both ResNet-18 and
MobileNet, giving a refresh rate of 83.3 Hz.

7.4 Power Consumption
Wemeasured the power consumption of the MAX78002 eval-
uation kit while it made inferences. Tab. 6 demonstrates that
MAX78002 consumes 96.9 mW and 86.0 mW respectively
when making inferences with ResNet-18 and MobileNet at
83.3 Hz. The refresh rate can be reduced to 30 Hz to save
power, which is enough for many applications. In this case,
the power becomes 79.0 mW and 75.7 mW respectively.

If we can use MAX78002 to directly control speakers and
microphones in future, we will be able to optimize the power

efficiency and keep the overall power consumption of our
real-time system around 95.4 mW, i.e., 79.0 mW (MAX78002
with ResNet-18 running at 30 HZ) + 16.4 mW (2 speakers
and 8 microphones). One should keep in mind that this is
just an estimate of the power of this real-time system and
the power consumption of MAX78002 might increase if it
does need to control the sensors but we do not expect it to be
very high because the current power of MAX78002 already
includes that of the CPU and the CNN accelerator running
at full speed.

Table 6: Power Consumption of MAX78002 with Dif-
ferent Models Running.

Models ResNet-18 MobileNet

FPS (Hz) 83.3 30 83.3 30
Power (mW) 96.9 79.0 86.0 75.7

8 DISCUSSION
8.1 Evaluating Simpler Regression Models
We adopted two traditional regression models, which are
linear regression (LR) and gradient boosted regression trees
(GBRT), to predict gaze positions using the data collected in
Subsec. 6.7 and the results showed that the average in-session
tracking accuracy for these twomodels across 10 participants
are 11.6° and 6.8° respectively. Compared to the results in
Tab. 3, the traditional regression models output much worse
accuracies than ResNet-18 (3.6°). We conducted an analysis
of the impurity-based feature importance with GBRT, com-
paring the features in different channels of microphones in
Tab. 7. It turns out that the channels receiving signals from
18-21 kHz (S1) are generally more important than channels
receiving signals from 21.5-24.5 kHz (S2). Furthermore, the
microphones that are closer to the inner corners of the eyes
(M1, M4, M5 M8) are more important than those closer to
the tails of the eyes (M2, M3, M6, M7).

Table 7: Feature Importance Analysis for Different Mi-
crophones using GBRT (Scaled to 0-100).

Microphones M1 M2 M3 M4 M5 M6 M7 M8
Importance (S1/S2) 100/27 57/23 33/12 96/29 66/81 42/17 28/15 85/79

8.2 Impact of Real-world Factors
8.2.1 Head Movements. In the user study, we did not use a
chin rest to fix the participants’ head so they could turn their
head freely. However, we believe that how head movements
affect the system performance should be evaluated in more
details in the future.
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8.2.2 Near- and Far-sighted. In the user study, we collected
participants’ degrees of myopia in the questionnaires, which
showed no connection to the gaze tracking performance.

8.2.3 User Speaking. One researcher evaluated our system
when keeping silent and keeping talking to himself. The gaze
tracking performance of the silent sessions and the talking
sessions is the same at 3.9°.

8.3 Potential Applications
The goal of this paper is to demonstrate the feasibility of
our new acoustic-based gaze tracking system on glasses.
While our eye tracking accuracy of 4.9° is comparable to
some webcam-based methods, it is lower than commercial
eye trackers (1.9° in our study). Therefore, our system may
not be immediately applicable to some applications requiring
highly precise eye tracking. However, our system can still be
used in many applications, such as interaction with interface
elements like buttons in AR, that do not require very high
accuracy eye trackers.

Our system can also be potentially used in tracking irreg-
ular eye movements, enabling healthcare applications for
monitoring users’ health conditions in everyday life. This
requires monitoring the gaze movements throughout the day
for analysis in everyday life, instead of just tracking their ac-
curate gaze positions for a few hours in a controlled settings.
The low-power and lightweight features of our GazeTrak
system make it a good candidate solution to enabling a va-
riety of applications that camera-based eye trackers cannot
realize, by continuously understanding user gaze movements
in the wild for extended periods. Furthermore, our system
can alleviate the privacy concern from users as compared to
camera-based methods.

8.4 Limitation and Future Work
8.4.1 Improving the Performance. There is room for further
improvements of the performance of our system. For in-
stance, we can apply calibration process on the output of the
system to further enhance performance. We experimented
with affine transformation and projective transformation
to transform the output but they did not immediately im-
prove the performance. According to the analysis of the error
distribution of the eye tracking results, we believe this is be-
cause the error distribution is not linear in our system so we
need to explore more non-linear transformation methods to
improve the performance.

8.4.2 Calibration Process for Fine-tuning. Our system cur-
rently requires a 15-second calibration process before each
session to fine-tune the model, which may be inconvenient

for users. However, Subsec. 6.1 shows that the tracking accu-
racy without fine-tuning is still acceptable, at 5.9°, compared
to the accuracy achieved with fine-tuning (4.9°).

8.4.3 Reducing Training Effort. Subsec. 6.4 suggests that
GazeTrak achieves satisfactory performance on new users
with approximately 20 minutes of training data using the
user-adaptive model. This training effort can be further re-
duced by constructing a larger and more diverse dataset from
much more participants to train the based model. Moreover,
data augmentation methods, such as including simulation
data to train the model, can be explored as well.

8.4.4 Towards a More Integrated System. In Sec. 7, we still
used Teensy 4.1 to control the speakers and microphones,
and transfer audio data to the MCU MAX78002. In future,
we plan to further customize our own PCBs for MAX78002
to allow it to directly control speakers and microphones. We
believe that the power consumption of our real-time system
can be further reduced in this case because Teensy 4.1 with
a high base power can be removed. Furthermore, we do not
expect that the power consumption of MAX78002 will be
significantly increased since the on-board CPU and CNN ac-
celerator of MAX78002 were already operating at maximum
speed in our current evaluation. With a solid system imple-
mentation, we plan to carry out an extensive evaluation of
this more integrated system in future work to validate our
speculation.

9 CONCLUSION
In this paper, we present the first acoustic-based eye track-
ing glasses capable of continuous gaze tracking. The study
involving 20 participants confirms that our system can ac-
curately track gaze points continuously, achieving an accu-
racy of 3.6° within the same session and 4.9° across different
sessions. When compared to commercial camera-based eye
tracking glasses such as Tobii Pro Glasses 3, our system re-
duces power consumption by 95%. A real-time pipeline is
implemented onMAX78002 to make inferences with a power
signature of 95.4 mW at 30 Hz.
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