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ABSTRACT 
In this paper, we introduce EyeEcho, a minimally-obtrusive acoustic 
sensing system designed to enable glasses to continuously monitor 
facial expressions. It utilizes two pairs of speakers and microphones 
mounted on glasses, to emit encoded inaudible acoustic signals 
directed towards the face, capturing subtle skin deformations asso-
ciated with facial expressions. The refected signals are processed 
through a customized machine-learning pipeline to estimate full 
facial movements. EyeEcho samples at 83.3 Hz with a relatively low 
power consumption of 167�� . Our user study involving 12 partic-
ipants demonstrates that, with just four minutes of training data, 
EyeEcho achieves highly accurate tracking performance across dif-
ferent real-world scenarios, including sitting, walking, and after 
remounting the devices. Additionally, a semi-in-the-wild study in-
volving 10 participants further validates EyeEcho’s performance in 
naturalistic scenarios while participants engage in various daily ac-
tivities. Finally, we showcase EyeEcho’s potential to be deployed on 
a commercial-of-the-shelf (COTS) smartphone, ofering real-time 
facial expression tracking. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile de-
vices; • Hardware → Power and energy. 

KEYWORDS 
Eye-mounted Wearable, Facial Expression Tracking, Acoustic Sens-
ing, Low-power 
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1 INTRODUCTION 
Facial expressions play an important role in various interaction 
applications including video calls, facial gesture input [30, 43, 51], 
non-verbal communications (e.g. sign language [64]) and are indis-
pensable in virtual environments. Continuous and accurate facial 
expression tracking is critical for an immersive and convenient 
interaction experience for users. Deploying such technologies on 
eyewears such as smart glasses (Lenovo ThinkReality A3 [32] and 
Bose Frames Tempo [7]) and augmented reality (AR) glasses (Google 
Glass [69] and Xreal Air 2 Ultra [76]) is especially promising and 
important as these devices are widely available and serve as direct 
media in these interaction applications. 

However, developing continuous facial expression tracking tech-
nologies on glasses presents unique challenges due to the con-
straints of the sensor size and battery capacity. First, capturing both 
upper and lower facial movements is crucial, but glasses primar-
ily cover the upper face, making lower face tracking challenging. 
Maintaining high temporal and spatial resolutions of continuous 
facial expression tracking is also difcult. Existing glasses-based 
methods can only recognize discrete facial gestures. For instance, 
recent work on glasses using the acoustic-based method can only 
recognize 6 discrete upper facial expressions [74]. Second, smart 
glasses often come with limited battery capacity due to the weight 
restriction. Power-hungry sensors like RGB cameras drain batteries 
on smart glasses quickly, e.g., in less than one hour [50]. Third, the 
need for reliable performance after glasses are remounted (taken of 
and taken back on) poses challenges, especially for on-skin sensors 
(e.g. EMG sensors). As a result, continuous facial expression track-
ing on glasses has not been explored extensively. Other wearables 
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Figure 1: Designed Facial Expressions and Corresponding Diferential Echo Profles. 

like necklaces [5] and earpieces [6, 34, 72] have been used, but 
they come with their own limitations. Earphones, for instance, face 
issues with sensor placement and when tracking subtle upper-face 
movements. Despite many people wearing glasses regularly, there 
is no existing technology on glasses that can continuously track both 
upper and lower facial expressions. 

The research question of this paper is: Can we develop a sens-
ing system on glasses to track facial expressions continuously that 
are light-weight, low-power, and can work well in real-world set-
tings? To answer this research question, we present EyeEcho, an 
intelligent acoustic sensing solution that can continuously track 
high-resolution facial expressions on glasses by analyzing the skin 
deformations around the cheeks captured using only two pairs of 
on-device speaker and microphone with inaudible acoustic signals 
(Frequency Modulated Continuous Wave, FMCW). A customized 
convolutional neural network is developed to estimate facial expres-
sions represented by 52 blend-shape parameters calculated using 
Apple’s ARKit API [20] from the processed acoustic signals (echo 
profles). A user study with 12 participants showed that EyeEcho 
can accurately estimate facial expressions continuously on glasses 
using only four minutes of training data from each participant. Be-
sides, it is able to detect eye blinks with an F1 score of 82%, which 
has not been shown in any of the prior work [5, 6, 34, 72]. 

In order to gain a deeper understanding of the EyeEcho’s perfor-
mance in real-world scenarios, we conducted a semi-in-the-wild 
study involving 10 participants to evaluate the performance of the 
facial expression tracking system on glasses in a naturalistic set-
ting. This study took place in three distinct rooms of an apartment: 
the living room, bedroom, and kitchen. The study aimed to assess 
the system’s ability to track facial expressions continuously while 
participants engaged in various common daily activities. Impor-
tantly, the study encompassed real-world ambient noises, such as 
the sound of videos, noise from the microwave oven, and the hum 
of the refrigerator among others. In total, around 700 minutes of 

data were collected in this study. The results demonstrate that our 
system still showed reliable performance in tracking facial expres-
sions throughout the participants’ engagement in diverse activities 
across diferent rooms and days. 

In addition to the promising tracking performance, EyeEcho is 
also relatively low-power and light-weight compared to camera-
based facial expression tracking technologies on wearables. The 
full sensing system including sensors, Bluetooth module and mi-
croprocessors can operate at a sample rate of 83.3�� with a power 
signature of 167�� . Theoretically, it can last for around 14 hours 
using the battery of Google Glass (570��ℎ) [69], if EyeEcho is 
used alone. With the usage of more power-efcient speakers, the 
power consumption of our system can be optimized to as low as 
71�� . The ML algorithm is optimized to be lightweight based on 
the ResNet-18 architecture, so that it can be deployed on a com-
modity smartphone for real-time processing. EyeEcho is able to 
track users’ facial expressions continuously at 29�� in real-time 
on a commodity Android phone, which was not shown in any of 
the similar sensing systems [5, 6, 34, 72]. We believe EyeEcho has 
signifcantly advanced the feld of tracking facial expressions on 
glasses by ofering a low-power and minimally-obtrusive sensing 
solution that can be deployed on commodity smartphones for real-
time tracking. The key contributions of this paper are summarized 
below: 

• Enabled continuous facial expression tracking on glasses 
using low-power acoustic sensing; 

• Conducted studies, including a semi-in-the-wild study, to 
evaluate EyeEcho in estimating facial expressions including 
eye blinks in both lab and real-world settings; 

• Developed a real-time processing system on an Android 
phone and demonstrated promising performance. 
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Table 1: EyeEcho and Other Continuous Facial Expression Tracking Wearables. Power consumption only includes the data 
collection and transmission (if any) unit. NS = Not Specifed. 

Project Form Factor Sensors Power 
Training 
Data 

Needed 

Evaluated 
across 

Sessions? 

Evaluated 
while 

Walking? 

Evaluated 
Semi-in-
the-Wild? 

Blinking 
Detection 
Included? 

Deployed on 
Phone in 
Real-time? 

EyeEcho Glasses Acoustics 167mW 4 mins ✓ ✓ ✓ ✓ ✓ 
EarIO [34] Earphones Acoustics 154mW 32 mins ✓ ✓ ✗ ✗ ✗ 

EARFace [82] Earphones Acoustics 245mW 2 mins ✓ ✓ ✗ ✓ ✓ 
NeckFace [5] Neck-lace/-band Cameras 4W 7 mins ✓ ✓ ✗ ✗ ✗ 
C-Face [6] Ear-/Head-phone Cameras >4W 6 mins ✓ ✗ ✗ ✗ ✗ 

BioFace-3D [72] Single Earpiece Biosensors 138mW 20 mins ✗ ✗ ✗ ✗ ✗ 
Wei et al. [68] VR Headset Cameras NS NS ✓ ✗ ✗ ✓ ✗ 
Pantœnna [25] VR Headset Antenna ~1W ~16 mins ✓ ✗ ✗ ✗ ✗ 

2 RELATED WORK 
2.1 Non-wearable Facial Expression Tracking 
The most commonly used non-wearable technologies to track fa-
cial expressions are based on cameras placed in front of the user 
to capture the face. Researchers rely on the images captured by 
RGB cameras [16, 62], thermal infrared cameras [14], and/or depth 
cameras [16, 19, 62], or images from existing datasets [24, 38, 39, 
54, 57, 71] to develop algorithms to track subjects’ facial expres-
sions. Recently, learning-based algorithms show impressive per-
formance on tracking facial expressions with the support of fast-
developing deep learning models, such as Convolutional Neural 
Network (CNN) [19, 24, 54, 71], Generative Adversarial Network 
(GAN) [29], Deep Belief Network (DBN) [14, 24, 39, 52], etc. Due to 
their impressive performance of tracking facial expressions and min-
imum requirement of the amount of training data needed, frontal-
camera-based algorithms have been used as the ground truth acqui-
sition methods in many wearable facial expression tracking systems, 
with the help of several public libraries, e.g., the Dlib library [26] 
and the Apple’s ARKit API [20]. Despite their satisfactory tracking 
performance, these technologies usually require capturing the full 
face in the image, which does not work well when the user’s face is 
occluded. Some researchers have put eforts in reconstructing users’ 
facial expressions when part of their face is occluded [16, 29, 71]. 
However, the frontal-camera-based algorithms are still easily im-
pacted by lighting conditions in the environment and does not work 
well while users are in motion. 

Apart from frontal camera based methods, recently some re-
searchers placed speakers and microphones in front of the user to 
recognize facial expressions and emotional gestures [10]. This alle-
viated some privacy concerns brought by camera-based methods, 
but the system can only recognize discrete expressions and emo-
tions. In the meantime, other researchers also use frontal speakers 
and microphones to detect more subtle facial movements of the 
user, which are blinking [36]. mm3DFace [73] reconstructed users’ 
facial expressions continuously with a competitive performance by 
placing a millimeter wave (mmWave) radar in front of them. These 
non-camera-based technologies demonstrate the potential of sens-
ing modalities other than cameras for tracking facial movements 
but still sufer from the limitations of non-wearable devices that 
they do not work well when the user’s face is occluded or the user 
is walking around. 

2.2 Wearable Facial Expression Tracking 
2.2.1 Smart Glasses. Several prior projects implemented facial ex-
pression recognition on glasses [17, 28, 42, 55, 74], using a variety 
of sensors, including piezoelectric sensors [55], photo refective 
sensors [42], cameras [17, 28], biosensors [28], speakers and micro-
phones [74]. However, all of them are only capable of distinguishing 
several discrete facial expressions. To the best of our knowledge, we 
have not seen any prior work that can track full facial movements 
continuously on glasses. Usually, glasses are small and lightweight, 
thus having a limited battery and processor. Therefore, it places 
a high demand for the sensing technology on its size, weight and 
energy consumption. 

2.2.2 Other Wearables. Other wearables designed to track facial ex-
pressions include ear-mounted devices using cameras [6], speakers 
and microphones [34, 82], EMG or/and electrooculography (EOG) 
sensors [12, 72], Inertial Measurement Unit (IMU) sensors [63], 
or barometers [2], face mask using acoustic signals [22], neck-
lace/neckband using cameras [5], and VR headsets using cam-
eras [68] or an antenna [25]. However, most of the work are only 
able to recognize discrete facial gestures. Six recent work, C-Face [6], 
NeckFace [5], BioFace-3D [72], EarIO [34], Pantœnna [25], and 
EARFace [82], show the ability to track facial expressions contin-
uously on wearables, which we will compare in detail in the next 
subsubsection. 

2.2.3 Comparison between EyeEcho and Prior Work. We summarize 
continuous facial expression tracking technologies on wearables 
that are closest to our work in Tab. 1. Compared with previous 
work, EyeEcho excels in at least one of the following aspects: 1) 
tracking capability (continuous vs. discrete, 3D blendshapes vs. 2D 
landmarks), 2) obtrusiveness, 3) power consumption and 4) perfor-
mance. For example, C-Face [6] and NeckFace [5] use cameras as 
the sensing unit, which leads to high energy consumption. Neck-
Face operates at 4� which is 24 times higher than our system. 
Pantœnna [25] instrumenting the VR headset with an antenna to 
emit RF signals also consumes power as high as 1� . Furthermore, 
Pantœnna can only track mouth, i.e. lower-face, movements and 
the size of the antenna makes it difcult to be deployed on glasses 
which are smaller and more lightweight. BioFace-3D [72] does a 
great job in maintaining lower-power but its device requires at-
taching electrodes of biosensors onto the skin, which may make 
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it uncomfortable to wear. Besides, it is unclear how it will work 
after the user remounts the device or is in motion. EARFace [82] 
achieves promising facial expression tracking performance on ear-
phones powered by acoustic sensing. However, their system needs 
to operate in a frequency range as high as 40���, requiring a sam-
pling rate of at least 80���, which cannot be satisfed by many 
commodity speakers, microphones and audio interfaces. Moreover, 
EARFace emits acoustic signals into the ears and depends on the 
refections from the ear canals to track facial expressions. It is not 
clear whether their system can work on glasses as well as on ear-
phones since the sensing area is completely diferent and the signal 
refection is more complicated outside human body. 

In order to compare our work to EarIO, which also uses acoustic 
sensing [34] to infer facial expressions from the movements on the 
back of the chin using two earables, we conducted a rigorous and 
thorough comparison and demonstrated that our EyeEcho sensing 
system outperforms EarIO in terms of the performance, the training 
data needed, the ability to detect blinks, and stability. We detail our 
investigation into this matter in Sec. 8.5. 

3 BACKGROUND 
In this section, we introduce the background information on the 
following aspects: (1) a defnition of continuous facial expression 
tracking; (2) principle of operation of EyeEcho. 

3.1 Continuous Facial Expression Tracking 
In order to position our work better in the previous literature, 
we would like to provide a precise defnition of continuous facial 
expression tracking. Generally, there are two types of systems for 
monitoring facial expressions, determined by whether the task they 
aim to solve is classifcation task or regression task: 

The frst category focuses on recognizing a set of pre-defned 
discrete facial expressions or gestures. Most prior wearable sens-
ing systems [2, 22, 63, 74] fall into this category. They perform 
classifcation tasks and report the accuracy of distinguishing these 
facial expressions or gestures as performance metrics. However, the 
output of these systems does not provide information on how the 
face appears during the process of making a facial expression. This 
information is needed for downstream applications such as adding 
facial expressions to render a personalized avatar or enabling video 
conferencing on smart glasses without the need of holding a camera 
in front of the face. 

The second category aims to estimate the position and shapes of 
all parts of the face (such as the nose, eyes, eyebrows, cheeks, and 
mouth) continuously, often multiple times per second. Technologies 
in this category usually carry on regression tasks. Most camera-
based methods have been able to track facial expressions contin-
uously. However, achieving continuous tracking with wearable 
sensing systems has been challenging, as it requires high-quality 
and reliable information about facial movements. Recently, several 
wearable methods have started exploring continuous estimation 
of facial expressions [5, 6, 25, 34, 72, 82]. As a starting point, they 
defne a set of facial expressions for participants to perform. Unlike 
the methods in the frst category, these systems are able to con-
tinuously provide the position and shapes of diferent facial parts 
as a user makes a facial expression, ranging from a neutral face to 

the most extreme state. The position and shapes of the facial ex-
pressions are represented using landmark parameters [6, 25, 72, 82] 
or blendshape parameters [5, 34], which are the output of these 
sensing systems. The performance is measured using the Mean 
Absolute Error (MAE) between the predicted parameters and the 
ground truth captured by a frontal camera. EyeEcho belongs to the 
second category, as it tracks facial expressions continuously using 
wearables. In Subsection 8.8, we further discuss various potential 
applications that can be enabled by the ability to continuously track 
facial expressions on glasses. 

3.2 Principle of Operation 
Prior work [6, 34, 72, 82] have demonstrated that partial skin and 
muscle deformations behind and inside ears are highly informa-
tive to reconstruct full facial expressions when they are captured 
by diferent kinds of sensors. Xie et al. [74] proved that the skin 
and muscle deformations around the eyes and the cheeks contain 
information that can be extracted to recognize upper facial ges-
tures. The sensing hypothesis of EyeEcho is that these deforma-
tions around eyes and cheeks are highly informative about detailed 
facial movements on both lower and upper face including eyes, 
eyebrows, cheeks, and mouth. Considering that people’s facial skin 
and muscles are interconnected, moving any part of the face would 
inevitably stretch the muscles and skin on the entire face. EyeEcho 
applies this skin-deformation-based sensing hypothesis on glasses 
to develop research questions: is it possible to infer full facial ex-
pressions by only observing skin deformations around glasses (e.g., 
cheeks)? If so, what is the appropriate hardware set up including the 
number, orientation and position of the sensors? How well can it 
track facial movements on diferent areas of the face (e.g., blinking) 
under diferent real-world scenarios? To explore these research 
questions, we developed EyeEcho using active acoustic sensing to 
capture the skin deformations on glasses, which we will detail later. 
We chose acoustic sensing because its sensors are small, lightweight, 
low-power and have been successfully applied to various tasks on 
tracking human activities, including health-related activities detec-
tion [45, 65], novel interaction methods [3, 66, 77, 78], silent speech 
recognition [61, 80, 81, 83], authentication [11, 18, 23, 40, 67], dis-
crete facial expression recognition [74], gaze tracking [33], fnger 
tracking [46, 60], hand gesture recognition [31, 79], body pose esti-
mation [41], and motion tracking [35, 84]. 

4 DESIGN AND IMPLEMENTATION OF 
EYEECHO 

4.1 Hardware Prototype Design 
4.1.1 MCU and Sensor Selection. The core sensing hardware of 
our acoustic-based tracking system includes two MEMS micro-
phones (ICS-43434 [21]), two speakers (SR6438NWS-000 [27]) and 
a bluetooth module (SGW1110 [70]) housed on customized Printed 
Circuit Boards (PCB), as shown in Fig. 2 (a). The Nordic’s nRF52840 
Bluetooth Low Energy (BLE) 5.0 System-on-Chip (SoC) [59] in the 
Bluetooth module drives the speaker, microphone and data trans-
missions. The speakers and microphones are both connected to the 
Inter-IC Sound (I2S) interface of nRF52840 via FPC wires. We set the 
sample depth of the data as 8��� , which requires a bit rate of about 
800���� to transmit two channels of received data to a smartphone 
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(a) Customized PCB (b) Diferent Sensor Positions (c) Final Prototype (d) Wear the Prototype 

Figure 2: Design of Hardware and Glasses Form Factor. 

(Xiaomi Redmi) via BLE in real-time without signifcant packet 
loss. This is well supported by BLE 5.0 [58]. This setup of the core 
acoustic sensing unit allows transmitting two channels of acoustic 
data reliably via BLE without compromising the performance. 

4.1.2 Exploring Diferent Sensor Positions on Glasses. To imple-
ment EyeEcho on the form factor of glasses (e.g., smart glasses, 
AR glasses), we fabricated a pair of glasses using 3D printing and 
incorporated multiple holes at various positions. These openings 
allowed us to securely attach the speakers and microphones using 
screws. Given the limited space available on glasses, we identifed 
three primary positions suitable for sensor placement to capture 
skin deformations without interfering with users’ daily activities: 
1) on the legs of the glasses; 2) at the bottom of the frame; 3) under 
the bridge of the frame, as depicted in Fig. 2 (b). 

Position 1 involves placing one pair of speakers and microphones 
on each leg of the glasses, directed downward toward the user’s 
face. This setup enables the capture of skin deformations on both 
the left and right sides of the cheeks, facilitating the detection 
of respective facial movements on each side. The second option, 
Position 2, relocates the two pairs of speakers and microphones 
to the bottom of the glasses frame, also pointing downward and 
closer to the user’s cheeks. In addition to these two setups, the last 
option involves positioning only one speaker under the bridge of 
the glasses frame (Position 3), while keeping the microphones at 
Position 2. This confguration consumes less energy as it requires 
only one speaker. 

We conducted a preliminary cross-session experiment involving 
two researchers to assess the tracking performance of the three 
positions using the algorithms detailed in the subsequent sections. 
Across the three setups, we obtained average Mean Absolute Errors 
(MAE) of 18.0, 18.0, and 22.8, respectively, for 52 blendshape param-
eters when comparing the ground truth with our predictions. Based 
on these experimental results, the frst two setups outperformed 
the last option in terms of tracking performance. Notably, Position 
2 was found to be more obtrusive than Position 1, as the sensing 
unit on the glasses frame had a higher likelihood of obstructing the 
user’s face and impacting their daily activities. Furthermore, it’s 
worth noting that most commodity smart glasses integrate sensors 
on their legs. Therefore, placing the sensors on the legs aligns with 
the potential future adoption of this sensing technology on glasses. 
Consequently, we chose Position 1, which involves attaching a pair 
of speakers and microphones to each leg of the glasses. 

4.1.3 Form Factor Design. After fnalizing the positions of the 
speakers and microphones, we designed and 3D printed one case 
with a sliding cover to house the BLE module and the battery. 
The case is mounted on the left leg of the glasses and specifcally 
designed to match the shape of the leg. We cut a narrow slot on 
one side of the case in order to let the FPC wires go through and be 
connected with the speakers and microphones. While connecting 
the speakers and microphones to the BLE module, the FPC wires 
are routed along the glass frame, so that the wires will not block 
the user’s view and be less obtrusive. The fnal complete prototype 
is shown in Fig. 2 (c). We think the fnal prototype is minimally-
obtrusive and very close to a normal glass frame in appearance, as 
shown in Fig. 2 (d). 

4.2 Sensing Skin Deformations using 
FMCW-based Acoustic Sensing 

With the prototype of glasses completed, we then introduce how we 
adopt FMCW-based acoustic sensing to sense the skin deformations 
on glasses. The system overview of EyeEcho is displayed in Fig. 3. 

4.2.1 FMCW Signal Transmission. We choose FMCW as the acous-
tic sensing technique, because it has demonstrated robust perfor-
mance on wearable-based sensing applications, including tracking 
fnger positions [46], breathing patterns [45, 65], and skin deforma-
tions around ear [34]. We set the frequency range of transmitted 
FMCW signals in our system to 16 − 20���, which is nearly inaudi-
ble to most adults and can be reliably achieved by most commodity 
speakers and microphones as demonstrated in many prior work 
[46, 83]. In order to emit the transmitted signals in this ultrasonic 
frequency range, we set the sampling rate at 50���, which can 
support the frequency range up to 25��� in theory. Besides, the 
FMCW sample length is set as 600, which is 0.012 seconds long 
(600 �������/50���). In this setting, our system is capable of esti-
mating facial expressions 83.3 times per second, which is enough to 
proivde similar sample rate to as video recordings (30 or 60 frames 
per second (FPS)). This FMCW signal is pre-generated as shown in 
Fig. 3 (c), and stored in the BLE module to drive the speakers. 

4.2.2 Echo Profile Calculation. Once acoustic signals are refected 
by the face and received by the microphone (Fig. 3 (e)), we conduct 
further data processing. We frst apply a 5-order Butterworth band-
pass flter with low-cut and high-cut frequencies as 15.5��� and 
20.5��� to flter out noise that is outside the frequency range of 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Li et al. 

Figure 3: Overview of EyeEcho System. 

our interest, as shown in Fig. 3 (f). Then we obtain the Echo Profle 
of received signals by calculating the cross-correlation between the 
received signals and transmitted signals [65], which can display 
the deformations of the skin in both temporal and spacial domains 
(Fig. 3 (g)). 

With the echo profles calculated, EyeEcho provides a spacial 
tracking resolution of 6.8�� (340�/� / 50���) and a maximum 
tracking distance of 4.08� (6.8�� × 600 �������). Because the 
speaker and microphone are placed very close to each other, the 
signals travel in round trips from the speaker to the face and back 
to the microphone. Thus, the real tracking resolution in space and 
the maximum one-way tracking distance are 3.4�� and 2.04� 
respectively. This means that each "echo bin" in the echo profle 
reports the total signal strength our system receives at a specifc 
distance from our system and two consecutive echo bins are 3.4�� 
apart from each other. As the skin deforms by small amount, the 
way the signal strength is distributed in diferent bins is changing. 
Observing these changes in the echo profle makes the EyeEcho 
system work. In order to remove the static objects in the background 
and alleviate the impacts of remounting the device, we further 
calculated Diferential Echo Profle by subtracting the echo profle 
between two adjacent echo frames, like the one shown in Fig. 3 (h). 
Please note that signals at the negative distance in the echo profle 
are the refected signals of the last echo frame from a very long 
distance and are usually useless in tracking facial expressions. 

Fig. 4 demonstrates the diferential echo profles of three facial 
movements performed by a researcher. When the user performs 
one facial expression that only relates to one half of the face (Fig. 4 
(a) and (b)), a clear pattern can be observed in the diferential echo 
profle in the corresponding channel. The other channel also con-
tains weaker information because people’s facial skin and muscles 
are interconnected. Moreover, the major parts of the patterns are 

within 0 − 10�� because the user’s face is located within this dis-
tance from our EyeEcho system approximately. Because the signal 
we emit is fnite in the frequency domain, it difuses into further 
echo bins in the time domain when the cross-correlation is calcu-
lated. Also considering the multi-path refection, some patterns can 
be observed at the negative distance and the distance beyond 10��. 
However, the echo bins between 0−10�� contain most information 
for EyeEcho to track facial expressions. When the user blinks (Fig. 4 
(c)), patterns can be observed in the diferential echo profles of 
both channels. Compared with the patterns caused by sneering left 
or right, the patterns related to blinking are weaker and shorter 
because of the nature of people’s blinks. All these features support 
our hypothesis that the skin and muscle deformations around eyes 
and cheeks are informative for both upper-face and lower-face 
movements and can be captured by acoustic sensors to track users’ 
full facial expressions. 

Since the distance between the glasses and the face is usually un-
der 10��, we remove any echoes that are beyond 10.2�� (3.4�� × 
30 ��ℎ� ����) in the diferential echo profle. This will help us to 
minimize the impact of the acoustic echos from environment ob-
jects which are usually placed at a much further distance. This 
diferential echo profle with a length of one second is sent to a cus-
tomized learning algorithm to estimate the full facial expressions, 
as detailed in Sec. 4.3. 

4.3 Learning Algorithms for Continuous Facial 
Expression Tracking 

In order to infer full facial expressions continuously from the skin 
deformations represented by diferential echo profles, we adopted 
a customized deep learning pipeline. 
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Figure 4: Comparison of Diferential Echo Profles of Three Facial Movements. 

4.3.1 Ground Truth Acquisition. The deep learning model requires 
reliable ground truth of the facial expressions to train the model. We 
choose to use the TrueDepth camera on an iPhone powered by Ap-
ple’s ARKit API [20] to record the ground truth of facial expressions 
at 30 FPS, represented by 52 blendshape parameters. Each param-
eter is in charge of the shape and position of one part of the face 
(e.g., jawOpen). The original range of each blendshape parameter 
is from 0 to 1. We multiply the value of each blendshape parameter 
by 1000 to better train the model. After this operation, the maxi-
mum possible value of each parameter is 1000. As demonstrated in 
previous work [5, 34], this method can provide reliably track 3D 
facial movements on the cheeks, the eyes, the eyebrows, the nose, 
the mouth, and the tongue. We chose to use this blendshape-based 
ground truth instead of 2D landmarks because it can provide more 
visual expressiveness by showing the movements of diferent parts 
of the face in 3D. 

4.3.2 Deep Learning Model. We apply a sliding window of one 
second on the received acoustic data, which leads to 84 frames in 
Diferential Echo Profles of each window. Each Diferential Echo 
Profle has 60 data points including 30 data points representing the 
echo distance of 10.2�� for each microphone. In total, the dimension 
of the input vector for the deep learning model is 60 × 84. To make 
predictions for the current frame, we utilize the current frame 
plus the 83 frames prior to the current frame as input data so that 
there is minimum delay for the real-time prediction. Technically, 
the maximum possible delay caused by the sliding window is the 
length of one frame which is 12�� . As we apply the sliding window 
technique, for each prediction, we can store and reuse the last 83 
echo frames from last prediction and just calculate the current 
echo frame so that the calculation will be fast enough for real-time 
prediction at our expected refresh rate. 

To estimate full facial expressions from these Diferential Echo 
Profles, we adopted an end-to-end Convolutional Neural Network 

(CNN) model. We chose CNN in our system rather than other mod-
els such as Recurrent Neural Network (RNN) because after process-
ing the raw audio data and obtaining the Diferential Echo Profle, 
the time series data is converted to images containing information 
in both spatial and temporal domains. Adopting CNN achieves a 
better performance in this kind of tasks. Thus, a 34-layer Residual 
Neural Network (ResNet-34) is used as the backbone learn the fea-
tures from the input data vectors and a fully-connected decoder is 
utilized to estimate the facial expressions including 52 parameters 
of the blendshapes. MAE between the prediction and the ground 
truth was used as the evaluation metric to train the model. 

5 EVALUATION OF EYEECHO IN AN IN-LAB 
STUDY 

We aim to design a facial expression tracking system that is light-
weight, low-power and robust in various real-life scenarios. To 
achieve this, we evaluated EyeEcho with both controlled in-lab 
study and naturalistic semi-in-the-wild study. The in-lab study 
aims to provide an in-depth analysis of the performance of EyeE-
cho with diferent controlled setups, more granular metrics, and 
more comprehensive experiments, while the semi-in-the-wild study 
focuses on showcasing EyeEcho’s actual performance in near-real-
world settings. We present the details of the frst in-lab study in this 
section followed by Sec. 6 which introduces another in-lab study 
evaluating EyeEcho comparing diferent settings, while details of 
the semi-in-the-wild study are in Sec. 7. 

In the frst study, we considered several scenarios that commonly 
occur in real life, such as sitting, walking, and remounting. The val-
idation within these contexts serves as a crucial step in establishing 
the system’s potential efectiveness in real-world applications. 
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Figure 5: The Degree of Deformation of Diferent Facial Parts when Performing Diferent Facial Expressions to the Most 
Extreme State. 

5.1 Study Design 
5.1.1 Apparatus. We used the hardware and form factor described 
in Sec. 4.1 to conduct the study. We used a smartphone, Xiaomi 
Redmi to function as a server, receiving transmitted data from the 
BLE module. To record the ground truth of facial movements and 
play the instruction video, an iPhone 12 with the TrueDepth camera 
was placed in front of participants. In walking scenario, participants 
wore a chest mount which kept the iPhone in front of the face. 

5.1.2 Selection of Facial Expressions for Continuous Tracking. We 
selected nine distinct facial expressions that involve movements 
of both the upper and lower face, as visually represented in Fig. 1. 
It’s important to note that while these expressions were chosen 
for testing purposes, our system continuously tracks facial expres-
sions. These particular expressions were carefully chosen to enable 
a comprehensive evaluation of EyeEcho’s performance in estimat-
ing a wide range of common facial expressions, encompassing 
movements in various facial regions, including the eyes, eyebrows, 
mouth, and cheeks. 

To emphasize this point, we initially defned the "degree of de-
formation of one facial part" as the average of the blendshape pa-
rameters associated with that specifc part out of the 52 blendshape 
parameters provided by the ARKit API, as introduced in Sec. 4.3.1. 
Subsequently, we plotted the degree of deformation of diferent 
facial parts while participants performed these nine facial expres-
sions to the most extreme state, as depicted in Fig. 5. As previously 
discussed in Sec. 4.3.1, theoretically, the maximum possible degree 
of deformation for one facial part is 1000. The fgure illustrates that 
nearly all facial parts, with the exception of the tongue (related 
to only one blendshape parameter), exhibit some degree of move-
ment when performing either upper or lower facial expressions. 
This observation underscores the interconnected nature of facial 
muscles. Moreover, the movements of the mouth, cheeks, and nose 
are even more pronounced when upper facial expressions, such as 

"Close Eyes," are performed. This substantiates our claim that these 
nine selected facial expressions efectively evaluate our system’s 
performance in tracking multiple facial parts simultaneously. It’s 
worth noting that these expressions have also been utilized in prior 
studies, such as [34]. During the study, participants were presented 
with these facial expressions multiple times in an instructional 
video to mimic, and the order of presentation was randomized in 
each session to mitigate the infuence of expression sequence. In 
Fig. 5, we also included a subtle facial movement, blinks, because 
they happened spontaneously to the participants in the study. 

While the theoretical maximum degree of deformation is 1000, 
practical facial deformations performed by humans are signifcantly 
lower than this maximum value. As illustrated in Fig. 5, even when 
participants reach the most extreme state of a particular facial 
expression, the degree of deformation for all or most facial parts 
remains below 250. This observation underscores that in practice, 
facial deformations are well below the theoretical maximum. 

To provide readers with a visual understanding of varying de-
grees of deformation for diferent facial expressions, we calculated 
the "degree of deformation of one facial expression" by averag-
ing the values of the 52 blendshape parameters representing that 
specifc facial expression. We then visually presented how four dif-
ferent facial expressions appear at diferent degrees of deformation, 
specifcally when the degree of deformation is 0 (neutral face), 50, 
100, and 150, as depicted in Fig. 6. Notably, we could not plot the 
150-degree deformation for "Open Mouth" because the degree of de-
formation could not reach 150 even when the mouth was opened to 
the extreme. From our empirical observations presented in the fg-
ure, it can be inferred that when the degree of deformation reaches 
150, most facial expressions visually attain their most extreme state. 

5.1.3 Study Procedure. This study was approved by the IRB at the 
researcher’s institution. We successfully recruited 12 participants 
in this study. We have 3 female and 9 male participants, ranging 
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Figure 6: Visualization of Varying Degrees of Deformation. 

from 18 to 25 years old. Each participant flled out a questionnaire 
to collect their demographic information and was compensated 
USD $15 after they came to participate in the study. 

The study was conducted in a large experiment room on campus, 
across diferent times of the day. During the user study, partici-
pants were asked to remove their own glasses before the study (if 
applicable) to wear the testing glasses. The evaluation process has 
two scenarios: sitting and walking. We started the study with the 
sitting scenario to initially assess the optimal system performance 
while participants remained relatively stationary. After the sitting 
scenario, adjustments were made before transitioning to the walk-
ing scenario. For example, participants wore a chest mount to hold 
the iPhone in front of them to capture their faces while walking. 

Each scenario comprised 12 sessions, each of which lasted for 
approximately two minutes. During each of these sessions, the 
instruction video displayed on the screen of the iPhone placed in 
front of the participants featured a researcher performing all nine 
facial expressions six times in a random order, with brief pauses be-
tween expressions. Participants were directed to emulate the facial 
expressions shown in the video. Following the correct placement of 
the device, participants underwent a two-minute practice session 
to acquaint themselves with the testing system and the required 
facial expressions. 

Before each session, participants were instructed to clap his/her 
hands for synchronization between the EyeEcho device and the 
ground truth acquisition system. After each session, participants 
were asked to remount the device by themselves, including taking 
of the device, taking a short break, and putting the device back 
on. The goal was to evaluate how our system can perform after 
the device was remounted which introduced shifts on the wearing 
positions. During the walking scenario, participants were instructed 
to walk around in the study room at their comfortable walking 
speed while mimicking the facial expressions displayed on the 
screen of the iPhone held by the chest mount they wore. 

In total, for each participant, we collected around 48 minutes of 
data from 24 sessions for two scenarios combined. This includes 
1296 facial expressions (9 facial expressions × 6 repetitions × 12 
sessions × 2 scenarios). 

5.2 Evaluation Metrics 
As discussed in Sec. 4.3.1, a full facial expression is represented by 52 
blendshape parameters in our system. We evaluate the performance 
using the Mean Absolute Error (MAE) of the 52 parameters between 
the prediction of EyeEcho and the ground truth. Employing this 
common metric allows us to compare EyeEcho’s performance with 
that of prior work. It is important to note that the same MAE value 
can yield substantially diferent visualization results for the lower 
face and upper face in terms of how closely the predicted facial 
expression matches the ground truth, as perceived by human eyes. 
In order to help readers better understand the true performance of 
our system, we divided our evaluation metrics into two categories: 
1) Lower-face MAE (LMAE) - evaluating 33 lower-face blendshape 
parameters related to the movements of cheeks, mouth, nose and 
tongue and 2) Upper-face MAE (UMAE) - evaluating the remaining 
19 upper-face blendshape parameters related to the movements of 
eyes and eyebrows. Based on our observation and also from prior 
work [5, 34], there is little visual diference between the prediction 
and ground truth when LMAE is below 40 and UMAE is below 60. 
Therefore, we adopted two other evaluation metrics in the results, 
the Percentage of Frames with LMAE under 40 (PL40) and the 
Percentage of Frames with UMAE under 60 (PU60). In total, we 
report fve metrics, including MAE, LMAE, UMAE, PL40 and PU60 
in the following sections when reporting the tracking performance 
of EyeEcho. 

We plotted the visualization of facial expressions with diferent 
MAE for three facial expressions, Open Mouth, Open Eyes, and 
Blink, in Fig. 7. The fgure shows that for large facial movements 
such as Open Mouth (lower-face) and Open Eyes (upper-face), the 
prediction is visually similar to the ground truth when MAE is 
under 40. When MAE is around 20, the prediction is almost indis-
tinguishable to the ground truth. For subtle facial movements, like 
blinking, the prediction is also highly similar to the ground truth 
visually when MAE is under 20. 

5.3 User-Dependent Model 
We frst analyze the performance of EyeEcho to track facial ex-
pressions continuously. With all the 12 remounting sessions of 
data collected under each scenario, we conducted a 6-fold cross-
validation using 10 sessions to train the model and 2 sessions as the 
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Figure 7: Visualization of Facial Expressions under Diferent Values of MAE. 

testing sessions to evaluate the results. We report the fve evaluation 
metrics, as shown in Tab. 2. 

Table 2: Evaluation Results for both Scenarios. 

Scenario MAE LMAE UMAE PL40 PU60 

Sitting 22.9 20.4 27.1 88.8% 92.6% 
Walking 26.9 22.7 34.3 87.1% 88.5% 

5.3.1 Numerical Results. In the sitting scenario, the average MAE 
for all 12 participants is 22.9, ranging from 16.3 to 27.8 with a 
standard deviation of 3.2. We plotted the cumulative distribution 
function (CDF) of LMAE and UMAE in average and also for each 
participant in Fig. 8 (a). These results validate EyeEcho’s ability to 
track the continuous movements of both the lower face and upper 
face of users in the sitting scenario across diferent remounting 
sessions. 

In the walking scenario, the average MAE is 26.9, ranging from 
20.0 to 31.6 with a standard deviation of 3.1. Same as the sitting sce-
nario, we plotted CDF of LMAE and UMAE in Fig. 8 (b). Compared 
to the result in the sitting scenario, the performance of EyeEcho 
slightly decreases in all metrics. 

To assess the statistical signifcance of this diference, we ran a 
repeated measure t-test between the MAE of the sitting scenario 
and the walking scenario across all 12 participants and found a sig-
nifcant diference (� (11) = 5.51, � = 0.0002 < 0.05). The diference 
in performance is expected because walking scenarios introduced 
more noise caused by the motion of the user (e.g., shaking of the 
head) and displacement of the device. We also observed the acoustic 
signals were refected diferently from diferent background objects 
like walls and tables while participants were in motion. These fac-
tors collectively contribute to the slight drop in performance during 
user motion. Nevertheless, the results showed that our system is 

capable of tracking facial expressions accurately and reliably, even 
when the users are walking. 

5.3.2 Visualized Results. To visually demonstrate the tracking per-
formance of our system, we present the visualization results on two 
facial expressions, Smile Face and Close Eyes. We decided to pick 
3 frames with the MAE close to 15, 25, and 35 for the smile face 
expression and 3 frames with the MAE close to 30, 40, and 50 for 
the close eyes expression. Each frame was randomly selected from 
the data we collected from all 12 participants. As we can see from 
Fig. 9, a predicted frame with an LMAE under 40 and an UMAE 
under 60 is highly similar to the ground truth visually. Comparing 
this standard to our study results in Tab. 2 with average LMAE at 
20.4 and 22.7 and UMAE at 27.1 and 34.3 for the sitting and walking 
scenarios, our system can reliably track facial movements across 
diferent scenarios, even after remounting. 

5.4 Performance on Tracking Facial Expressions 
with Varying Degrees of Deformation 

Since our EyeEcho system tracks facial expressions continuously 
rather than classifying them, we capture the entire process of a fa-
cial expression transitioning from a neutral face to its most extreme 
state. In the previous subsection, we validated the overall perfor-
mance of our EyeEcho system. However, it is also important to 
assess its performance in tracking diferent degrees of deformation 
for these facial expressions. Fig. 5 depicts the degree of deformation 
of diferent facial parts in frames where the facial expressions are 
performed to the most extreme state but they usually only account 
for a small portion of all frames in the entire process of making 
facial expressions because this is a continuous process from the 
neutral face to the most extreme state of facial expressions and 
then back to the neutral face. To quantify this proportion, based on 
our analysis in Sec. 5.1.2, we calculated the degree of deformation 
for each frame and categorized all frames in the user study into 
four groups based on their degrees of deformation. We present the 
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(a) Sitting Scenario (b) Walking Scenario 

Figure 8: Cumulative Distribution Function (CDF) of MAE for all Participants. Red Lines: LMAE, Blue Lines: UMAE. Pale Lines: 
MAE for Each Participant, Solid Lines: Average MAE, Dash Lines: 40 LMAE and 60 UMAE. 

Figure 9: Visualized Results. Datapoint: P (Participant), S (Sitting), W (Walking). 

evaluation results in terms of average MAE for each category in 
Tab. 3, along with the percentage that each category represents 
among all the frames. 

As shown in the table, the majority of frames in our user study 
have deformation levels below 150, in alignment with what has 
been shown in Fig. 6. The frames plotted in Fig. 5 mostly fall into 
the last category in the table with the degree of deformation larger 
than 150, taking up less than 10% of all the frames. Note that the 
maximum degree of deformation that the subtle facial movement 
blinking can reach is usually below 100, as shown in Fig. 5. Our 
system demonstrates satisfactory performance on tracking facial 
expressions for the frames with a degree of deformation smaller 
than 150, as Subsec. 5.2 and Fig. 7 establish that the prediction and 
ground truth are visually highly similar when the MAE is below 40. 
For frames with deformation levels exceeding 150, the performance 
of our system is slightly lower, but it still maintains an acceptable 

level of accuracy, as depicted in Fig. 7 and Fig. 9. For blinking 
which has more subtle degree of deformation (smaller than 100), our 
system also achieves promising tracking performance considering 
that the MAE is around 20, as compared to the visualization in Fig. 7. 
This analysis demonstrates that our system performs well across 
varying degrees of deformation for diferent facial expressions. 

Table 3: Evaluation Results vs. Diferent Degrees of Defor-
mation (Data Format: MAE [Percentage of Total Frames]). 

Degree of Deformation Sitting Walking 

<50 16.1 [8.8%] 17.5 [12.1%] 
50-100 18.8 [64.8%] 22.6 [62.4%] 
100-150 35.8 [18.0%] 42.8 [17.2%] 
>150 39.6 [8.4%] 43.5 [8.3%] 
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5.5 Determining Minimum Training Data 
Requirement 

In the previous experiments, we used the data from 10 sessions (20 
minutes of data) to train the model. However, 20 mins of training 
may not be always preferable for users in real-world deployments. 
Therefore, we further explore how much training data is needed 
before the system reaches an acceptable accuracy. We chose two 
sessions of data as the testing sessions and employed 2, 4, 6, 8 and 
10 sessions of data respectively to train the model for each scenario. 
We showed the evaluation results in Fig. 10. As we can see in the 
fgure, the average performance of the system improved with more 
training data. However, even with just 2 training sessions (4 minutes 
of training data), the system achieved a MAE of 29.7 and 34.3 for the 
two scenarios. According to the analysis in Sec. 5.2 and Sec. 5.3.2, 
this result is already good enough to provide an acceptable tracking 
performance on facial expressions that are highly similar to the 
ground truth visually. In essence, two sessions of training data 
are likely enough to provide satisfactory tracking performance in 
real-world deployments for the majority of users. More training 
sessions could be collected for users who do not have good enough 
performance. 

Figure 10: Impact on MAE with Diferent Number of Training 
Sessions (NT). 

5.6 User-Adaptive Model 
In the previous experiments, we employed a user-dependent model 
to predict facial expressions for each individual participant. This 
model was trained using the data specifc to each participant. To 
investigate the degree of user dependency within the system, we 
conducted a Leave-One-Participant-Out (LOPO) experiment for 
each scenario. In this experiment, we utilized the data from 11 
participants to train the model and then evaluated the results on 
the data from the remaining participant. This process was repeated 
for each participant, and an average result was obtained using this 
user-independent model. 

The results of this user-independent model are presented in 
Fig. 11. Notably, in comparison to the results of the user-dependent 
model, the results were worse, with a MAE of 49.0 and 53.2 for 
the sitting and walking scenarios, respectively. However, this out-
come was anticipated because our system relies on the refection 

of acoustic signals on the face and head, which varies signifcantly 
among participants. Additionally, diferences in how participants 
wore the device and executed facial expressions also contributed to 
this variance. 

Figure 11: Impact on MAE with Diferent Models. 

Subsequently, we explored a user-adaptive model, where we used 
a small portion of data collected from this participant (2 sessions) 
to fne-tune this LOPO model. As shown in the fgure, the results 
for both scenarios signifcantly improved compared with the user-
independent model, with an MAE of 25.7 and 30.5. Besides, the 
results were also better than those trained using a user-dependent 
model with the same amount of training data (2 sessions), with an 
MAE of 29.7 and 34.3. This result showed the potential for further 
performance enhancement. If the model can be trained with a much 
larger data set from more participants in the future, the performance 
of the model can be further improved with minimal training data 
from a new user. 

5.7 Transfer Learning using Data from Sitting 
to Walking Scenario 

All the experiments and analysis above separated the sitting and 
walking scenarios and reported the performance independently. 
This indicates a new user is required to provide data for both sitting 
and walking scenarios, which may not ofer the optimal user ex-
perience. In this experiment, we explored using the data collected 
from the sitting scenario to train a model, which is transferred and 
evaluated on the testing data collected in the walking scenario. For 
this experiment, we compared three models. Among the three types 
of models, the testing data was the same two sessions collected 
in the walking scenario. The results were averaged across all 12 
participants. 

The frst model is User-dependent Model (NT10), where 10 ses-
sions from the walking scenario were used to train the model with 
no transfer learning applied. The average MAE for this model is 
26.9. In the second model (Transfer learning Model (NT2)), the 
model was trained with 10 sessions of data from the sitting scenario 
and fne-tuned using 2 sessions of data from the walking scenario. 
This model yields an average MAE of 29.0. In the third model, only 
2 sessions from the walking scenario were used to train the model. 
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Figure 12: MAE for all Participants in the Study with Operating Frequency Range 20-24 kHz. 

The average MAE in this case is 34.3. The results show that transfer 
learning improves the MAE from 34.3 to 29.0, using the same size 
of training sessions from the walking scenario. It shows that Eye-
Echo has the potential to be adapted to the new walking scenario 
with minimal training data needed. We plan to explore how to use 
advanced transfer learning to further reduce the training data for 
new scenarios in the future. 

6 EVALUATION OF EYEECHO WITH 
DIFFERENT SETTINGS 

In this section, we conducted a new study in the lab to evaluate 
EyeEcho’s performance with diferent operating frequency ranges 
and under diferent noisy environments, as well as the usability of 
EyeEcho. 

6.1 Impact of Operating Frequency Range 
The EyeEcho system was designed to operate within the frequency 
range of 16 − 20���, with the goal of easy adoption on most com-
modity speakers and microphones since the acoustic sensors in 
most commodity devices can sample up to 48KHz. In post-study 
surveys, participants did not report any issues with hearing the 
acoustic signals. While it is possible that some users may be able to 
hear it, EyeEcho can readily adapt to higher inaudible frequencies 
with minimal impact on tracking performance. In order to validate 
this assumption, we shifted the operating frequency range of the 
EyeEcho system to 20 − 24��� and conducted a new in-lab user 
study of the same procedure described in Sec. 5.1 with 10 partici-
pants (3 females and 7 males, 22 years old on average). With the 12 
sessions of data we collected from each participant, we also ran a 
6-fold cross-validation by using 10 sessions to train the model and 
2 sessions to evaluate the performance. The average MAE of each 
participant and all 10 participants on average are demonstrated in 
Fig. 12. 

As shown in Fig. 12, the average MAE of all 10 participants 
in this study is 23.6, which is comparable to the MAE of 22.9 in 

the frst study in Sec. 5 with the operating frequency range set 
at 16 − 20���. This validates that EyeEcho can be adapted to a 
higher inaudible frequency range (20 − 24���) with little impact 
on the system performance. Furthermore, we specifcally asked 
each participant "Can you hear the sound emitted from our system? 
Yes / No" in the questionnaires collected at the end of this study 
and all 10 participants answered ’No’ to this question. Therefore, 
we believe that EyeEcho can operate at a frequency range that 
has minimal impact on users’ daily activities with a satisfactory 
tracking performance. 

6.2 Impact of Environmental Noises 
Since EyeEcho uses acoustic signals as the sensing method, there is 
a chance that everyday environmental noise could have a negative 
impact on the tracking performance. To investigate how diferent 
environmental noises can afect performance, we further extended 
the new study in Sec. 6.1. The study was originally conducted in 
a quiet meeting room with the background noise of the air con-
ditioner, as shown in Fig. 13 (a). To evaluate the EyeEcho system 
under diferent noisy environments, after the frst part study was 
completed in the quiet room, we then asked the participants to 
move to diferent environments to collect testing data with the exis-
tence of various types of noises: (1) Music Noise: in the experiment 
room with random music played (Fig. 13 (a)); (2) Cafe Noise: in a 
cafe with cafe staf and customers talking (Fig. 13 (b)); (3) Street 
Noise: on the street near a crossroad with vehicles and pedestrians 
passing by (Fig. 13 (c)). In every one of the three noisy environments 
above, each participant performed facial expressions for 2 sessions 
(4 minutes) as testing data. 

Then, we used the frst 10 of 12 sessions of data collected in the 
quiet room to train a model, which was tested using the remaining 
2 sessions of data in the quiet room and 2 sessions of testing data 
collected in diferent noisy environments. Please note that no data 
collected in the noisy environments was used for training. The 
evaluation results are displayed in Tab. 4. We also measured the 
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Figure 13: Three Diferent Noisy Environments. 

Table 4: Evaluation Results in MAE for Diferent Noisy Environments. 

Environments P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 AVG 

Quiet Meeting Room (40.6 dB) 31.3 16.7 26.0 20.7 13.4 24.9 20.1 29.4 20.0 39.1 24.2 
Play Music (64.5 dB) 35.1 27.6 32.0 17.2 15.2 29.6 29.8 23.3 26.6 36.4 27.3 
In Cafe (56.9 dB) 38.7 22.1 38.2 24.5 17.6 25.9 27.0 23.4 28.0 41.6 28.7 
On Street (69.3 dB) 47.7 41.9 62.1 51.7 42.9 46.8 44.6 39.8 33.8 54.2 46.6 

noise level in each noisy environment for each participant and 
showed the average measurement in Tab. 4. 

The evaluation results in Tab. 4 demonstrate that the average 
MAE for 10 participants remains consistent at 27.3 and 28.7 with 
the presence of music noise and cafe noise compared with the MAE 
of 24.2 in the quiet environment. There is a small performance 
variance for some participants among these three environments 
because testing data is not large-scale but overall the system is 
resistant to these two noises considering that the prediction is 
visually similar to the ground truth when the MAE is below 40 as 
discussed in Sec. 5.2. However, the system performance dropped 
signifcantly when the user study was conducted on the street. We 
further explore the possible causes below. 

We frst plotted both the signal with noises and the pure noises 
in the frequency domain in Fig. 14. As we can see in the fgure, 
all three noises are mostly within the audible frequency ranges 
and will be fltered out by the band-pass flter in our system. Be-
sides, the strength of the noises is much smaller than the signal 
because the sources of these noises are relatively far away from 
the microphones in our system. This helps explain why the music 
noise and the cafe noise have little impact on the system perfor-
mance. In theory, street noise should also have a limited impact on 
the system’s performance. However, the evaluation results suggest 
otherwise. Hence, we further analyzed the received acoustic sig-
nal in the frequency domain in diferent noisy environments. We 
used P5’s data as an example for illustration and plotted the signals 
under diferent noisy environments since the signal patterns are 
similar among all participants. As shown in Fig. 15, the signals are 
very similar to each other in the frequency domain under the frst 
three environments while the signal looks quite diferent when 
collected on the street. Fig. 14 already shows that the noises have a 
limited impact on the signal so we believe this diference is mainly 

caused by the temperature diference between indoor and outdoor 
environments. According to prior research [13, 53], the frequency 
response of both speakers and microphones can be largely impacted 
by the temperature of the environment where they operate. The 
datasheets of the speakers [27] and the microphones [21] used in 
our system suggest that the speakers can be more vulnerable to 
the temperature change. Our study was conducted in a cold region 
where the outdoor temperature varied from −5°� to 5°� when the 
testing data on the street was collected for 10 participants while 
the indoor room temperature remained between 20°� to 25°� . 

To further verify this hypothesis, we did one experiment: we 
moved the EyeEcho system from the indoor environment (22°�) 
to the outdoor environment (1°�) and recorded the received signal 
with our system at diferent times after the system was brought 
outdoors. The change of the received signal in the frequency domain 
is presented in Fig. 16. As the fgure shows, the received signal in the 
EyeEcho system visually changed after the temperature decreased. 
Since only the on-street testing data was collected outdoors, this 
change only afected the system performance for the testing data 
collected on the street, because the training data and testing data 
are signifcantly diferent in this condition. 

In summary, our EyeEcho system is robust to diferent kinds of 
daily noises because it operates in the ultrasonic band. However, 
our system may need further calibration in the areas where the 
temperature is signifcantly low. This can be achieved by choosing 
sensors whose frequency response is more resistant to temper-
ature changes and collecting more training data under diferent 
temperatures. We will explore this in the future. 

6.3 Usability of EyeEcho 
To explore the usability of the EyeEcho system, participants were 
requested to fnish a questionnaire at the end of the study in Sec. 6.1. 
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Figure 14: Signal with Noises in Frequency Domain and Zoom-in Plots of Noises. 

Figure 15: Signal in Frequency Domain under Four Noisy Environments. All fgures are plotted using the data collected with P5. 

Figure 16: Signal in Frequency Domain at Diferent Time after EyeEcho being Moved from Indoor (22°�) to Outdoor (1°�). 

The participants frst rated their overall experience with EyeEcho 
by answering two questions: (1) "How comfortable is this wearable 
device to wear around the face? (0 most uncomfortable, 5 most com-
fortable)"; (2) "How acceptable do you fnd the weight of our wearable 
device? (0 most unacceptable, 5 most acceptable)". On average, 10 
participants gave scores of 4.2 and 4.8 to the two questions above. 
All 10 participants agreed with the statement "The pair of glasses 
is easy to use." except that P9 reported that "glasses would fall in 
a squeeze gesture". As for the question "Compared with normal 
glasses, what do you think of this device?", 9 participants thought 
that EyeEcho is generally very similar to a pair of normal glasses 
while P1 thought it is a little bit more hard to be put on than normal 
glasses because the legs of the glasses cannot be bent. Meanwhile, 

P3 and P10 suggested that EyeEcho could have selected prescription 
lenses for diferent users in future while P4 believed that it will 
be easier to wear EyeEcho if all sensors are completely embedded 
into the legs of the glasses. We believe that all these suggestions 
are valuable and we will take them into consideration in future 
improvement of the prototype design. 

At last, we asked participants that "If there is a product like this 
to track your facial expressions in future, do you want to use it?". 
7 participants answered ’Yes’ to this question while 2 participants 
answered ’Maybe". P8’s choice is dependent on the performance 
of the system and he "may consider this device if it can perform 
nearly as well as existing technology". 
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(a) Living Room (b) Bedroom (c) Kitchen 

Figure 17: Apartment used for the Semi-in-the-wild Study. 

7 EVALUATION OF EYEECHO IN A 
SEMI-IN-THE-WILD STUDY 

7.1 Study Design 
Evaluating a facial expression tracking system in real-world en-
vironments presents signifcant challenges, primarily due to the 
absence of a suitable method for acquiring ground truth data that 
users can comfortably wear during their daily activities. For in-
stance, prior research, as well as our own study for both sitting and 
walking scenarios in the lab, have relied on placing a camera in front 
of the users’ face to capture ground truth data of facial expressions. 
However, it becomes nearly impractical to expect participants to 
wear a ground truth acquisition device in a completely uncontrolled 
environment, where they have the freedom to go to any location 
(especially outdoor locations) and engage in any activity (especially 
activities such as driving) without the presence of researchers. 

The lack of reliable and minimally-obtrusive wearable systems 
that can track users’ facial expressions continuously has also been 
a signifcant motivator behind the development of EyeEcho. In our 
initial study, we successfully showcased the promising performance 
of EyeEcho in a controlled lab setting, where we simulated various 
real-world scenarios, including factors like motion and noise. Based 
on the exciting results, we also would like to demonstrate that 
our proposed system can perform efectively in a more naturalistic 
setting since our core sensing principle, which involves tracking 
inaudible acoustic refections on the face, is less susceptible to 
environmental infuences. 

To validate our hypothesis, we designed and conducted a sec-
ond study, referred to as a semi-in-the-wild user study in which 
participants engaged in various daily activities within a more natu-
ralistic setting—a one-bedroom apartment. In this study, we aim to 
evaluate EyeEcho in an environment as natural as the real-world 
setting, while ensuring that the ground-truth acquisition system 
works well. To the best of our knowledge, this study marks the 
frst attempt in the feld to evaluate a non-camera-based wearable 
facial expression tracking system in a more naturalistic real-world 
setting instead of controlled lab settings. 

The primary goals of this study are as follows: 

• Evaluate the performance of EyeEcho in multiple rooms 
within a home environment, where furniture and layouts 
vary; 

• Assess how well EyeEcho can track natural facial expressions 
that occur during various daily activities. 

7.2 Study Environment and Activities 
The study was conducted in a one-bedroom apartment of a re-
searcher of campus, with three rooms: the living room, bedroom, 
and kitchen, as depicted in Fig. 17. The participants were instructed 
to perform diferent activities in a random order while wearing the 
experimental devices within these rooms, as follows: 

• Living room: Watching videos on a computer, reading, de-
scribing things, having conversation with the researcher 
while walking around; 

• Bedroom: Watching videos on a computer, reading, describ-
ing things, having conversation with the researcher while 
making the bed; 

• Kitchen: Watching videos on a computer, describing things, 
having conversation with the researcher while washing the 
dishes and using the microwave oven. 

These activities were intentionally designed to elicit a range of 
natural facial expressions and movements that happen in everyday 
life. For example, the videos that participants watched included 
online videos categorized to specifcally evoke diferent emotional 
experiences1 and pre-selected YouTube videos consisting of var-
ious funny/scary scenes that happened in a movie or in real life. 
Watching these videos led to spontaneous and varied facial expres-
sions. While reading, describing things and having conversations, 
participants had facial movements frequently. According to the 
standard defned in Sec. 5.1.2, among all the frames collected in this 
user study, there are 84.4% and 24.6% frames in which participants 
deformed their face with a degree of deformation over 50 and 100, 
respectively. This is comparable to the degrees of deformation that 
the participants performed in the in-lab study. 

7.3 Study Procedure 
For this semi-in-the-wild study, we recruited 10 participants (8 
female, 2 male) with an average age of 23 years. Each participant 
received USD $20 compensation for each study day. The study was 
conducted in the one-bedroom apartment as detailed above. 

1https://www.alancowen.com/video 

https://www.alancowen.com/video
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(a) MAE vs. Participants (without fne-tuning) (b) MAE vs. Experiment Rooms (without and with fne-
tuning) 

Figure 18: Performance of EyeEcho for the Semi-in-the-wild Study. 

Throughout the study, the participants wore the glasses embed-
ded with the EyeEcho system and a chest mount, as used in the 
walking study, to facilitate ground truth capture via an iPhone 
placed in front of them. The chest mount was tested for comfort 
and usability before the study. Each participant completed the study 
over two days with a gap less than one week, engaging in various 
activities as described earlier. On the frst day, participants con-
ducted a 10-minute training session in the living room, followed 
by 10-minute testing sessions in all three rooms. The order of the 
rooms was randomized. On the second day, participants completed 
10-minute testing sessions in all three rooms, with no additional 
training data collected. In total, each participant contributed ap-
proximately 70 minutes of data (10 minutes training on Day One, 
60 minutes testing on both days). The entire study duration for 
each participant did not exceed 2.5 hours. 

In the study, a researcher remained outside the experiment room 
to provide instructions and engage in conversations with partici-
pants via smartphone, simulating real-world scenarios where users 
may have video conferences while multitasking or moving around 
without a camera continuously in front of them. 

7.4 Study Results 
7.4.1 Evaluation Protocol. To predict the facial expressions per-
formed by participants in the semi-in-the-wild study, we utilized 
the same deep learning model described in Sec. 4.3. Initially, we 
trained a large base model using all the data collected during the 
in-lab study, as outlined in Sec. 5. This included data from both 
sitting and walking scenarios. Please note that there was no overlap 
between the two groups of participants in the two studies. Incorpo-
rating more data resulted in improved performance compared to 
solely using data collected in the second user study (semi-in-the-
wild) as training data, based on our preliminary experiments in 
pilot studies. Subsequently, we conducted further training on the 
large base model using the 10-minute training data collected in the 
living room on the frst day for each participant. 

7.4.2 Data Augmentation for Enhanced Model Robustness. During 
the training process, we implemented two data augmentation meth-
ods to enhance the robustness of our system. 1) Firstly, we applied 
random vertical shifts to the input diferential echo profles to miti-
gate the impact of device remounting; 2) Secondly, we introduced 
random walking patterns, collected by a researcher, into the train-
ing data to augment the model’s ability to make predictions while 
participants were walking. These data augmentation techniques 
were employed to improve the model’s performance and ensure its 
adaptability to varying conditions and scenarios. 

7.4.3 Results. The evaluation results across diferent participants 
are shown in Fig. 18 (a). On average, the MAE across 10 partici-
pants are 44.4 and 45.5 for Day One and Day Two. Separately, the 
MAE are 36.7, 43.8 and 52.7 for the living room, the bedroom and 
the kitchen on Day One and are 40.7, 47.4 and 48.3 for these three 
rooms on Day Two. This performance was achieved when we only 
collected 10-minute training data in the living room on Day One 
for each participant. The living room has the best performance 
because the training data was only collected in it. The kitchen has 
a relatively worse performance because the activities performed in 
it had more diferences from those performed in the living room. 
Please note that P9 has the worst performance among all partici-
pants because this participant wore a Hijab (a head covering) during 
the study which we believe partially blocked the transmission and 
refection of the signals. We ran a repeated measures t-test between 
the average MAE of three rooms on two diferent days across 10 
participants and did not fnd a statistically signifcant diference 
(� (9) = 0.79, � = 0.45 > 0.05). This proves that the performance of 
our system maintains solid across diferent days and users do not 
have to collect new training data on diferent days. 

7.4.4 Fine-tuned results. To further boost the performance of the 
system, we used 30-second data at the beginning of each 10-minute 
session to fne-tune the trained model for this session. The compar-
ison between results with and without fne-tuning is demonstrated 
in Fig. 18 (b). As shown in the fgure, fne-tuning improved the 
overall MAE from 44.4 to 40.3 for Day One and from 45.5 to 41.7 for 
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Figure 19: Visualized Results for Semi-in-the-wild Study. Datapoint: P (Participant), D (Day), L (Living Room), B (Bedroom), K 
(Kitchen). 

Day Two. Specifcally: (1) for the living room, MAE was improved 
from 36.7 to 35.3 on Day One and from 40.7 to 38.2 on Day Two; (2) 
for the bedroom, it was improved from 43.8 to 40.7 on Day One and 
from 47.4 to 45.1 on Day Two; (3) for the kitchen, it was improved 
from 52.7 to 44.7 on Day One and from 48.3 to 41.9 on Day Two. The 
fne-tuning mainly improves the performance of our system in a 
new room where no training data was collected before and it can be 
done only once in this room. Although fne-tuning with 30-second 
data improves the performance of our system, it might impact users’ 
experience when they use our system in the real world. However, 
we believe that the results without fne-tuning (44.4 for Day One 
and 45.5 for Day Two on average) are also acceptable even though 
they are not as good as the in-lab results because the prediction is 
still visually similar to the ground truth when MAE is around 40 
according to the analysis in Sec. 5.2 and Sec. 5.3.2. If we can collect 
more training data in various scenarios from more participants in 
the future, the performance of our system can be further improved 
even without the fne-tuning process. 

7.4.5 Visualized Results. To help readers better understand the per-
formance of our system, we visually illustrate its ability to track fa-
cial expressions in the semi-in-the-wild study, as we did in Sec. 5.3.2. 
We selected frames with diferent MAE from the data we collected 
in this study to show the visualized output results of facial expres-
sions. We selected 3 frames from each of the two typical activities 
during which participants had frequent facial expressions, watching 
videos and talking. The results are shown in Fig. 19. 

As we can see in Fig. 19, a prediction with an MAE of around 
40 is visually similar to the ground truth. According to Fig. 18 
(b), our EyeEcho system reaches an average MAE of 44.4 and 45.5 
for Day One and Day Two without fne-tuning. This validates the 
performance of our system in this semi-in-the-wild study, where 
users conducted activities in diferent rooms and used the device 
on diferent days. Furthermore, in this study, participants played 
the sound while they were watching videos and created loud noise 
while they were using the microwave oven and washing the dishes. 

This confrms that our system is not easily impacted by common 
daily noises. 

8 DISCUSSION 
8.1 Power Consumption Analysis 
We used a current ranger and a multimeter to measure the current 
and voltage of our EyeEcho system while all components were 
in operation. The measurements showed that the current fowing 
through our system was 41.1�� at the voltage of 4.07� . There-
fore, the power consumption of EyeEcho is around 167�� . This 
power consumption should allow EyeEcho to work on current smart 
glasses or AR glasses for a reasonable period of time. 

Smart glasses often come with limited battery size due to their 
compact device size. For instance, Amazon Echo Frame with 4 speak-
ers can last about 2 hours with audio on [48]. The Ray-ban Stories 
Smart Glasses have a battery capacity of 167��ℎ [56]. If EyeEcho 
is deployed on it and used alone, the glasses can last 4 hours in 
theory. On the other hand, AR glasses often come with a larger 
size and battery life. For instance, the battery capacity of Google 
Glass, Espon Moverio, and Microsoft HoloLens are 570��ℎ [69], 
3400��ℎ [9] and 16500��ℎ [47], guaranteeing around 14, 83, and 
402 hours of battery life in theory, if EyeEcho is used alone. 

As stated above, our power consumption is already relatively 
low, especially compared to using cameras for facial expression 
tracking. However, what we present in this paper is just a start-
ing point. The power consumption of our system can be further 
optimized in the future. For instance, our measurement indicates 
that the two speakers take up about 80% (135�� ) of the system’s 
power consumption (167�� ). Therefore, depending on applica-
tions, EyeEcho, especially the speakers, do not need to be turned on 
all the time. Besides, reducing the loudness of the speakers and/or 
using high-efciency speakers can also lead to lower power con-
sumption. For instance, we replaced the two speakers in our system 
(SR6438NWS-000) with two speakers that are more power-efcient, 
OWR-05049T-38D [4] as shown in Fig. 20, and adjusted the Sound 
Pressure Level (SPL) to the same value as the previous speakers. 
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Then we measured the current fowing through the system again 
and got the value 17.3�� with the new speakers, which gave us a 
power consumption of 71�� . This validated that EyeEcho’s power 
can be further reduced by adopting more power-efcient speakers. 

Figure 20: Comparison of Two Speakers: SR6438NWS-000 
(Left) and OWR-05049T-38D (Right). 

8.2 Real-time Deployment on Smartphones 
To demonstrate how EyeEcho can be integrated with commercial de-
vices, we deployed the data processing and deep learning pipeline of 
EyeEcho with the help of PyTorch Mobile [1] on an Android smart-
phone (Xiaomi Redmi K40, Android 12, Qualcomm Snapdragon 
870 SoC). Keeping the algorithms deployed on the smartphone will 
eliminate the need to transmit the data to a server on the cloud, 
which can better preserve the privacy of the user. 

In order to keep the algorithm making predictions fast enough 
in real-time, we replaced the deep learning model with a ResNet-18 
architecture. To demonstrate that this lighter model results in a 
similar performance, we trained the lighter model (ResNet-18) in 
the same way as we did in Sec. 5.3 for the sitting scenario, achieving 
comparable performance with the full model (23.1 vs 22.9). For the 
usage of the real-time pipeline, we frst trained the deep learning 
model with the data collected from users in PyTorch on a NVIDIA 
GeForce RTX 2080 Ti GPU. Then we traced the trained model 
to make it applicable to deployment on smartphones. The traced 
model was loaded onto the Android phone (Xiaomi Redmi K40) and 
used in the Android application we developed for data collection 
and facial expression prediction. During the inference stage, the 
running App continuously received data streamed from the BLE 
module in our EyeEcho system via Bluetooth, preprocessed the 
received data (i.e. organizing data based on channels, fltering the 
raw data, and calculating the echo frames), and fed echo profles 
into the traced deep learning model for predictions. The predicted 
blendshape parameters representing users’ facial expressions were 
fnally streamed from the smartphone to a laptop via Wi-Fi for 
downstream applications. On average, it took 34�� to make one 
inference, which led to a refresh rate of 29 FPS. We believe that 
this is sufcient for most applications since most videos can be 
played at 30 FPS. With the system implemented on the smartphone, 
we were able to predict users’ facial expressions in real-time and 
rendered them with a personalized avatar powered by Avaturn2, as 
shown in Fig. 21. 

8.3 Evaluating Blink Detection 
Blinking is an important part of facial movements and can be used 
to monitor health conditions and help diagnose many eye diseases 
of users [8, 49]. In the past, in order to detect blinks, separate sensors 
2https://avaturn.me/ 

Figure 21: Real-time Pipeline Implemented on a Phone with 
Personalized Avatar Powered by Avaturn. 

have been installed on glasses, such as cameras [75] and capacitive 
sensor [37]. To be best of our knowledge, there is no acoustic-based 
system that can detect blinks based on skin deformations around 
the cheeks. 

In our preliminary experiments, we noticed that blinks also lead 
to substantial deformations on tissue and skin around the face. This 
was visually evident in the echo profles extracted from the received 
acoustic data. Consequently, we believe that, in addition to tracking 
facial expressions, our system has the capacity to detect blinks. 

To evaluate the feasibility of EyeEcho for blink detection, we 
conducted a follow-up study with 6 participants. In this follow-up 
study, we asked each participant to watch some video clips of land-
scapes while wearing the EyeEcho system. We did not instruct them 
to blink intentionally. Instead, EyeEcho system detected the natural 
blinks of participants while watching these videos. While wearing 
the EyeEcho device, they watched fve 2-min video clips. Between 
two videos, they remounted the device. For the fve sessions of 
data, we ran a 5-fold cross-validation using 4 sessions to train the 
model and testing on the remaining session. During training, we 
only used 2 out of 52 blendshape parameters that are related to 
blinking (eyeBlink_L/R) as the ground truth for the model to op-
timize blinking detection performance. The average F1 score of 
blinking detection across 6 participants was 82% (��� = 12%) for 
our system. It’s important to note that EyeEcho was not specif-
cally designed for blink detection, so performance could be further 
enhanced by incorporating additional sensors positioned closer to 
the eyes on glasses and oriented directly towards the eyes. This 
study aims to showcase the potential feasibility of using EyeEcho 
to simultaneously track facial expressions and blinks. 

8.4 Long-term Evaluation of the System 
Over time, the prediction of the system could become worse because 
the user’s body status is changing every day and will not be exactly 
the same as the day when the training data is collected. In the semi-
in-the-wild study in Sec. 7, we validated that our system still works 
well on Day Two when training data is collected on Day One. In this 
subsection, we would like to conduct a more thorough long-term 
evaluation of the system. Thus two researchers collected the same 
amount of training data as we did in the in-lab user study and tested 
the performance of the system on the same day as well as 1 day, 
2 days, 1 week and 2 weeks after the training data was collected. 

https://avaturn.me/
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The average testing results are shown in Tab. 5. The average MAE 
across the two researchers are 19.9, 33.6, 40.4, 36.3 and 36.0 for the 
test data collected on the same day and 1 day, 2 days, 1 week and 
2 weeks after the training data was collected. The result shows 
that the performance of our system decreases over time but is still 
good enough even after 2 weeks, based on analysis in Sec. 5.2 and 
Sec. 5.3.2, which proves the stability of our EyeEcho system. 

Table 5: Long-term Evaluation Results. 

0 Day 1 Day 2 Days 1 Week 2 Weeks 

MAE 19.9 33.6 40.4 36.3 36.0 

8.5 Comparison with EarIO 
8.5.1 Diferent form factors and sensor positions to track difer-
ent movements. EarIO [34] bears close relevance to EyeEcho as 
both utilize active acoustic sensing for continuous facial expression 
tracking. However, EarIO places sensors on a pair of earphones 
with a 3D-printed attachment to monitor movements beneath the 
ears, whereas EyeEcho enables facial expression tracking on glasses 
with sensors placed on the legs of the glasses to capture skin de-
formations around the eyes and cheeks. These difering hardware 
confgurations result in distinct performance and limitations. Fur-
thermore, the use of earphones difers signifcantly from that of 
glasses. While many people are used to wearing glasses throughout 
the day, most people may not be comfortable wearing earphones 
for daily activities. Therefore, even though earphones have the 
capability to track facial expressions, it remains essential to explore 
the tracking of facial expressions on glasses. 

To enable a comprehensive and rigorous comparison between 
EyeEcho and EarIO, we reproduced the EarIO system, including 
algorithms and data and conducted a side-by-side evaluation. 

8.5.2 Beter performance with less training data. First, the full user 
study of EyeEcho and EarIO employed the same ground truth acqui-
sition method (TrueDepth camera) and evaluation metrics (MAE). 
Based on the results displayed in Tab. 6, EyeEcho with 20 minutes 
of training data outperforms EarIO with 32 minutes of training 
data in both static settings (22.9 vs 25.9 in MAE) and mobile set-
tings (26.9 vs 33.9 in MAE), indicating improved robustness. In the 
meantime, if EyeEcho only uses 4 minutes of training data, it still 
achieves comparable performance to EarIO which uses 32 minutes 
of training data (29.7 vs 25.9 for sitting and 34.3 vs 33.9 for walking). 
This demonstrates that to obtain a similar tracking performance, 
EyeEcho only requires 12.5% training data compared with EarIO (4 
mins vs 32 mins). 

8.5.3 New ability to detect blinking. As described in Sec. 8.3, Ey-
eEcho achieves an F1-score of 82% for blinking detection across 
diferent sessions. EarIO did not conduct studies on blinking de-
tection. Therefore, we replicated the sensing system of EarIO and 
implemented similar blinking detection algorithms from our sys-
tem. To compare two systems side by side, three researchers and 
one participant evaluated blinking detection using both EyeEcho 
and EarIO with a similar study procedure and setup as Sec. 8.3. 
To better demonstrate the best performance of each system for 

blinking detection, we collected data within one session for this 
experiment. Results show that EyeEcho can detect blinks with an 
F1 score of 99% while EarIO achieved an F1-score of 0% even within 
one session across these four people. We believe this is because 
the movements behind the ear and chin, which EarIO captures, 
are not sensitive to subtle eye movements compared to the skin 
deformations around the cheeks, captured by EyeEcho. 

8.5.4 Beter stability over a long period of time. In addition, we also 
tested the facial expression tracking performance of both systems 
in a longitude study. EyeEcho maintains consistent performance 
even after 2 weeks, as illustrated in Sec. 8.4. By contrast, tested by 
one researcher, the performance of EarIO degrades signifcantly 
from 20.5 to 47.1, 42.7, and 51.2 in MAE when tested 2 hours, 12 
hours and 1 day after training data was collected. It indicated that 
our system can have better stability if being deployed in a long 
period of time. We think this is because the glass frame is more 
stable compared to earables. For instance, the wearing position of 
glass frames is relatively consistent while the wearing position of 
earables can shift after each remounting session. 

In summary, the results from these preliminary studies showed 
that EyeEcho outperforms EarIO [34] in terms of performance, 
the training data needed, the ability to detect blinks, and stability. 
Moreover, EyeEcho includes a semi-in-the-wild evaluation, demon-
strating consistent performance in naturalistic settings, while EarIO 
was only evaluated in controlled lab settings. 

8.6 Health Implications 
In Sec. 6.1, we validated that EyeEcho can operate in the frequency 
range 20−24���, which is inaudible to users. However, even though 
the users cannot hear the signal, it may still cause health concerns to 
them. Thus, we used the NIOSH Sound Level Meter App3 to measure 
the signal level of the EyeEcho system. We kept the speakers in the 
system emitting the signals and attached the microphones of the 
phone with the NIOSH app running directly onto the speakers. The 
average sound level measured was 48.2 dB. When we moved the 
microphones of the phone to the same distance from the speakers 
of EyeEcho as where the users’ ears will be if they wear the system, 
the measurement of the sound level was 37.8 dB. According to 
Howard et al. [15], the recommended ultrasound exposure limit for 
frequency around 20��� is 75 dB. Therefore, we believe that our 
EyeEcho system is safe to wear for long-term use since the sound 
level is far from the recommended limit. 

8.7 Privacy Preservation Mechanisms in 
EyeEcho 

EyeEcho can preserve privacy by avoiding the use of cameras and 
limiting the frequency range of the sensing system. EyeEcho uses a 
band-pass flter to remove all frequencies other than 16 − 20��� in 
the received signal, which means that all audible sounds including 
heavy privacy information (e.g., human speaking, environmental 
sounds) are removed. Furthermore, we also demonstrated that Eye-
Echo can conduct all computations locally on a smartphone without 
sending any data over the Internet in Sec. 8.2. In this way, sensitive 
information stays confdential because only the predicted facial 

3https://www.cdc.gov/niosh/topics/noise/app.html 

https://www.cdc.gov/niosh/topics/noise/app.html
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Table 6: Comparison with EarIO in MAE and Training Data Needed. 

Project Training Data Needed Performance in Sitting Scenario Performance in Walking Scenario 

EyeEcho 4 Minutes 29.7 (MAE) 34.3 (MAE) 
20 Minutes 22.9 (MAE) 26.9 (MAE) 

EarIO [34] 32 Minutes 25.9 (MAE) 33.9 (MAE) 

expressions represented by 52 parameters instead of the original 
signals captured by microphones are shared with others. With fu-
ture advancement in low-power on-chip deep learning, it is also 
possible to deploy everything on a single chip, further eliminating 
the privacy and security risks. 

8.8 Applications on Commodity Devices 
Enabling facial expression tracking on glasses have a wide range 
of applications, from enhancing video conferencing experience 
to novel input methods. Video conferencing, a common mode of 
communication, can be signifcantly improved using our system. 
Currently, during online video conferences, participants must po-
sition themselves in front of a camera or hold it to ensure others 
can see their facial expressions. However, with EyeEcho integrated 
into smart glasses, users can engage in real-time video conferences 
and convey facial expressions efortlessly, even while walking or 
multitasking. We have implemented a system capable of generat-
ing personalized avatars with facial expressions for each user, as 
detailed in Sec. 8.2. Consequently, the user experience in video 
conferencing with EyeEcho resembles traditional camera-based 
methods, but with the added convenience of hands-free operation. 

Facial expressions can also serve as a novel input method, a con-
cept has been explored in previous research eforts [30, 43, 44, 51]. 
Our glasses-based system is well-suited for implementing this func-
tionality, allowing diferent facial expressions to serve as distinct 
commands for interacting with smart or augmented reality glasses. 

Moreover, facial expressions are linked to various health condi-
tions. For instance, individuals with Parkinson’s disease may expe-
rience a loss of facial expressions. EyeEcho can be instrumental in 
tracking and monitoring the symptoms of such diseases, potentially 
contributing to improved healthcare outcomes. 

8.9 Limitations and Future Work 
Despite the promising performance, EyeEcho also has limitations 
that need further investigation. 

8.9.1 Impact of Vigorous Exercises. The system performance might 
be negatively impacted if the user conducts vigorous exercises (e.g., 
shaking heads, and running). This can potentially be alleviated if 
we improve the form factor design and collect training data from 
these sessions. 

8.9.2 More Diverse Evaluation Setings and Environments. We only 
evaluated the system when the participants were performing a 
selected set of facial expressions in our in-lab study. In the semi-in-
the-wild study, we only conducted the study in an apartment. The 
goal of this paper is to demonstrate the feasibility of the frst acous-
tic continuous facial expression tracking system on glasses. We 

plan to assess the system in more daily settings and environments 
(e.g., ofces, classrooms, dining halls) in the future. 

8.9.3 Environmental Impact. Although we validated that our sys-
tem works equally well at the frequency range of 20−24���, which 
is inaudible to most people, it may still be heard by certain peo-
ple (especially kids) and animals. We will conduct experiments to 
understand how our system impacts the environment and choose 
frequency and sensors accordingly. 

8.9.4 Impact of Real-world Factors. Even if it did not happen in our 
user study, it is possible that certain types of long hair can cover the 
sensors which may lead to the failure of the sensing system. People 
with heavy beards on their cheeks may also encounter problems 
while using this system. This can be a limitation of this sensing 
system. 

8.9.5 Explore More Sensor Positions. While prototyping EyeEcho, 
we explored three sensor positions on glasses which we thought 
are most likely to deploy sensors and picked the one that achieved 
the best performance and obtrusiveness. We plan to explore more 
possible positions on glasses to determine the optimal one for our 
system. 

9 CONCLUSION 
This paper introduces EyeEcho, a low-power and minimally ob-
trusive technology designed for glasses that enables continuous 
facial expression tracking. It represents the frst successful imple-
mentation of on-device acoustic sensing for tracking facial expres-
sions continuously. The system’s capabilities were assessed through 
both in-lab and semi-in-the-wild studies, revealing promising per-
formance across diverse scenarios. Additionally, we successfully 
demonstrated the system can be deployed on an of-the-shelf smart-
phone for real-time processing. These outcomes underscore the 
signifcant potential for EyeEcho to be integrated into future smart 
glasses for real-world applications. 

ACKNOWLEDGMENTS 
This work is supported by National Science Foundation (NSF) under 
Grant No. 2239569, NSF’s Innovation Corps (I-Corps) under Grant 
No. 2346817, NSF Award IIS-1925100, the Ignite Program at Cornell 
University, the Nakajima Foundation, and the Ann S. Bowers Col-
lege of Computing and Information Science at Cornell University. 
We also appreciate the help of our lab mates on providing feed-
back on the hardware prototypes and paper writing. Specifcally, 
we would like to thank Devansh Agarwal and Jian Wang for their 
eforts on developing the real-time demonstration of the system. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Li et al. 

REFERENCES 
[1] Meta AI. 2022. PyTorch Mobile - Home | PyTorch. Retrieved Aug 19, 2022 from 

https://pytorch.org/mobile/home/ 
[2] Toshiyuki Ando, Yuki Kubo, Buntarou Shizuki, and Shin Takahashi. 2017. 

Canalsense: Face-related movement recognition system based on sensing air 
pressure in ear canals. In Proceedings of the Annual ACM Symposium on User 
Interface Software and Technology (UIST). 679–689. 

[3] Md Tanvir Islam Aumi, Sidhant Gupta, Mayank Goel, Eric Larson, and Shwetak 
Patel. 2013. DopLink: using the doppler efect for multi-device interaction. In 
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous 
Computing. 583–586. 

[4] BOGO. 2023. OWR-05049T-38D. Retrieved Sept 13, 2023 from https://www. 
bogosemi-ca.com/products/B01976428/OWR-05049T-38D.html 

[5] Tuochao Chen, Yaxuan Li, Songyun Tao, Hyunchul Lim, Mose Sakashita, Ruidong 
Zhang, François Guimbretière, and Cheng Zhang. 2021. NeckFace: Continuously 
Tracking Full Facial Expressions on Neck-mounted Wearables. In Proceedings of 
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 
Vol. 5. 1–31. 

[6] Tuochao Chen, Benjamin Steeper, Kinan Alsheikh, Songyun Tao, François Guim-
bretière, and Cheng Zhang. 2020. C-Face: Continuously Reconstructing Facial 
Expressions by Deep Learning Contours of the Face with Ear-mounted Miniature 
Cameras. In Proceedings of the Annual ACM Symposium on User Interface Software 
and Technology (UIST). 112–125. 

[7] Bose Corporation. 2023. Bose Frames Tempo. Retrieved Sept 14, 
2023 from https://www.bose.com/p/headphones/bose-frames-tempo/TEMPO-
FRAMES.html?dwvar_TEMPO-FRAMES_color=BLACK&quantity=1 

[8] Artem Dementyev and Christian Holz. 2017. DualBlink: A Wearable Device 
to Continuously Detect, Track, and Actuate Blinking For Alleviating Dry Eyes 
and Computer Vision Syndrome. Proc. ACM Interact. Mob. Wearable Ubiquitous 
Technol. 1, 1, Article 1 (2017), 19 pages. https://doi.org/10.1145/3053330 

[9] Epson. 2022. Moverio® BT-35ES Smart Glasses. Retrieved Aug 19, 
2022 from https://mediaserver.goepson.com/ImConvServlet/imconv/ 
b1cac7eaccf8017600cf8e0ac112f5403b86e4de/original?assetDescr=Moverio_BT-
35ES_Glasses_and_Intelligent_Controller_Specifcation_Sheet_CPD-
60652R1.pdf 

[10] Yang Gao, Yincheng Jin, Seokmin Choi, Jiyang Li, Junjie Pan, Lin Shu, Chi Zhou, 
and Zhanpeng Jin. 2022. SonicFace: Tracking Facial Expressions Using a Com-
modity Microphone Array. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 
5, 4, Article 156 (2022), 33 pages. https://doi.org/10.1145/3494988 

[11] Yang Gao, Wei Wang, Vir V. Phoha, Wei Sun, and Zhanpeng Jin. 2019. EarEcho: 
Using Ear Canal Echo for Wearable Authentication. Proc. ACM Interact. Mob. 
Wearable Ubiquitous Technol. 3, 3, Article 81 (sep 2019), 24 pages. https://doi.org/ 
10.1145/3351239 

[12] Anna Gruebler and Kenji Suzuki. 2010. Measurement of distal EMG signals 
using a wearable device for reading facial expressions. In Annual International 
Conference of the IEEE Engineering in Medicine and Biology. IEEE, 4594–4597. 

[13] Akio Hayashida, Yosuke Mizuno, and Kentaro Nakamura. 2020. Estimation of 
room temperature based on acoustic frequency response. Acoustic Science and 
Technology 41, 4 (2020), 693–696. https://www.jstage.jst.go.jp/article/ast/41/ 
4/41_E1954/_pdf/-char/ja#:~:text=The%20frequency%20response%20exhibits% 
20many,dip%20frequencies%20change%20with%20temperature. 

[14] Shan He, Shangfei Wang, Wuwei Lan, Huan Fu, and Qiang Ji. 2013. Facial 
expression recognition using deep Boltzmann machine from thermal infrared 
images. In Humaine Association Conference on Afective Computing and Intelligent 
Interaction. 239–244. 

[15] Carl Howard, Colin Hansen, and A Zander. 2005. A review of current airborne 
ultrasound exposure limits. The Journal of Occupational Health and Safety -
Australia and New Zealand 21 (01 2005), 253–257. 

[16] Pei-Lun Hsieh, Chongyang Ma, Jihun Yu, and Hao Li. 2015. Unconstrained 
realtime facial performance capture. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 1675–1683. 

[17] Yigong Hu, Jingping Nie, Yuanyuting Wang, Stephen Xia, and Xiaofan Jiang. 
2020. Demo Abstract: Wireless Glasses for Non-contact Facial Expression Moni-
toring. In ACM/IEEE International Conference on Information Processing in Sensor 
Networks (IPSN). 367–368. https://doi.org/10.1109/IPSN48710.2020.000-1 

[18] Jun Ho Huh, Hyejin Shin, HongMin Kim, Eunyong Cheon, Youngeun Song, 
Choong-Hoon Lee, and Ian Oakley. 2023. WristAcoustic: Through-Wrist Acoustic 
Response Based Authentication for Smartwatches. Proc. ACM Interact. Mob. 
Wearable Ubiquitous Technol. 6, 4, Article 167 (jan 2023), 34 pages. https://doi. 
org/10.1145/3569473 

[19] Earnest Paul Ijjina and C Krishna Mohan. 2014. Facial expression recognition 
using kinect depth sensor and convolutional neural networks. In International 
Conference on Machine Learning and Applications. 392–396. 

[20] Apple Inc. 2022. Tracking and Visualizing Faces | Apple Developer Documentation. 
Retrieved Aug 19, 2022 from https://developer.apple.com/documentation/arkit/ 
content_anchors/tracking_and_visualizing_faces 

[21] InvenSense. 2022. ICS-43434 | TDK. Retrieved Aug 19, 2022 from https: 
//invensense.tdk.com/products/ics-43434/ 

[22] Yasha Iravantchi, Yang Zhang, Evi Bernitsas, Mayank Goel, and Chris Harrison. 
2019. Interferi: Gesture Sensing Using On-Body Acoustic Interferometry. In 
Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–13. 

[23] Shunsuke Iwakiri and Kazuya Murao. 2023. User Authentication Method for 
Wearable Ring Devices using Active Acoustic Sensing. In Proceedings of the 2023 
ACM International Symposium on Wearable Computers (Cancun, Quintana Roo, 
Mexico) (ISWC ’23). Association for Computing Machinery, New York, NY, USA, 
17–21. https://doi.org/10.1145/3594738.3611357 

[24] Samira Ebrahimi Kahou, Christopher Pal, Xavier Bouthillier, Pierre Froumenty, 
Çaglar Gülçehre, Roland Memisevic, Pascal Vincent, Aaron Courville, Yoshua 
Bengio, Raul Chandias Ferrari, et al. 2013. Combining modality specifc deep 
neural networks for emotion recognition in video. In Proceedings of the ACM on 
International Conference on Multimodal Interaction. 543–550. 

[25] Daehwa Kim and Chris Harrison. 2023. Pantœnna: Mouth Pose Estimation 
for VR/AR Headsets Using Low-Profle Antenna and Impedance Characteristic 
Sensing. In Proceedings of the Annual ACM Symposium on User Interface Software 
and Technology (UIST) (UIST ’23). Article 83, 12 pages. https://doi.org/10.1145/ 
3586183.3606805 

[26] Davis E King. 2009. Dlib-ml: A machine learning toolkit. In The Journal of Machine 
Learning Research, Vol. 10. 1755–1758. 

[27] Knowles. 2022. SR6438NWS-000. Retrieved Aug 19, 2022 from https://www. 
knowles.com/docs/default-source/model-downloads/sr6438nws-000.pdf 

[28] Jangho Kwon, Jihyeon Ha, Da-Hye Kim, Jun Won Choi, and Laehyun Kim. 2021. 
Emotion Recognition Using a Glasses-Type Wearable Device via Multi-Channel 
Facial Responses. In IEEE Access, Vol. 9. 146392–146403. https://doi.org/10.1109/ 
ACCESS.2021.3121543 

[29] Ying-Hsiu Lai and Shang-Hong Lai. 2018. Emotion-preserving representation 
learning via generative adversarial network for multi-view facial expression 
recognition. In IEEE International Conference on Automatic Face & Gesture Recog-
nition (FG). 263–270. 

[30] Michael Lankes, Stefan Riegler, Astrid Weiss, Thomas Mirlacher, Michael Pirker, 
and Manfred Tscheligi. 2008. Facial Expressions as Game Input with Diferent 
Emotional Feedback Conditions. In Proceedings of the International Conference on 
Advances in Computer Entertainment Technology. 253—-256. https://doi.org/10. 
1145/1501750.1501809 

[31] Chi-Jung Lee, Ruidong Zhang, Devansh Agarwal, Tianhong Catherine Yu, Vipin 
Gunda, Oliver Lopez, James Kim, Sicheng Yin, Boao Deng, Ke Li, Mose Sakashita, 
Francois Guimbretiere, and Cheng Zhang. 2024. EchoWrist: Continuous Hand 
Pose Tracking and Hand-Object Interaction Recognition Using Low-Power Active 
Acoustic Sensing On a Wristband. In Proceedings of the 2024 CHI Conference on 
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association 
for Computing Machinery, New York, NY, USA, 21 pages. https://doi.org/10. 
1145/3613904.3642910 

[32] Lenovo. 2022. ThinkReality A3 Smart Glasses. Retrieved Aug 
19, 2022 from https://www.lenovo.com/us/en/p/smart-devices/virtual-reality/ 
thinkreality-a3/wmd00000500 

[33] Ke Li, Ruidong Zhang, Boao Chen, Siyuan Chen, Sicheng Yin, Saif Mahmud, 
Qikang Liang, François Guimbretière, and Cheng Zhang. 2024. GazeTrak: Explor-
ing Acoustic-based Eye Tracking on a Glass Frame. In Proceedings of the Annual 
International Conference on Mobile Computing and Networking (Washington D.C., 
DC, USA) (MobiCom ’24). Association for Computing Machinery, New York, NY, 
USA, 16 pages. https://doi.org/10.1145/3636534.3649376 

[34] Ke Li, Ruidong Zhang, Bo Liang, François Guimbretière, and Cheng Zhang. 
2022. EarIO: A Low-Power Acoustic Sensing Earable for Continuously Tracking 
Detailed Facial Movements. In Proceedings of the ACM on Interactive, Mobile, 
Wearable and Ubiquitous Technologies (IMWUT), Vol. 6. Article 62, 24 pages. 

[35] Jie Lian, Jiadong Lou, Li Chen, and Xu Yuan. 2021. EchoSpot: Spotting Your 
Locations via Acoustic Sensing. In Proceedings of the ACM on Interactive, Mobile, 
Wearable and Ubiquitous Technologies (IMWUT), Vol. 5. 1–21. 

[36] Jialin Liu, Dong Li, Lei Wang, and Jie Xiong. 2021. BlinkListener: "Listen" to Your 
Eye Blink Using Your Smartphone. Proc. ACM Interact. Mob. Wearable Ubiquitous 
Technol. 5, 2, Article 73 (2021), 27 pages. https://doi.org/10.1145/3463521 

[37] Mengxi Liu, Sizhen Bian, and Paul Lukowicz. 2022. Non-Contact, Real-Time 
Eye Blink Detection with Capacitive Sensing. In Proceedings of the 2022 ACM 
International Symposium on Wearable Computers (ISWC ’22). 49–53. https://doi. 
org/10.1145/3544794.3558462 

[38] Mengyi Liu, Shiguang Shan, Ruiping Wang, and Xilin Chen. 2014. Learning 
expressionlets on spatio-temporal manifold for dynamic facial expression recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). 1749–1756. 

[39] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. 2014. Facial expression recog-
nition via a boosted deep belief network. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR). 1805–1812. 

[40] Li Lu, Jiadi Yu, Yingying Chen, Hongbo Liu, Yanmin Zhu, Linghe Kong, and 
Minglu Li. 2019. Lip reading-based user authentication through acoustic sensing 

https://pytorch.org/mobile/home/
https://www.bogosemi-ca.com/products/B01976428/OWR-05049T-38D.html
https://www.bogosemi-ca.com/products/B01976428/OWR-05049T-38D.html
https://www.bose.com/p/headphones/bose-frames-tempo/TEMPO-FRAMES.html?dwvar_TEMPO-FRAMES_color=BLACK&quantity=1
https://www.bose.com/p/headphones/bose-frames-tempo/TEMPO-FRAMES.html?dwvar_TEMPO-FRAMES_color=BLACK&quantity=1
https://doi.org/10.1145/3053330
https://mediaserver.goepson.com/ImConvServlet/imconv/b1cac7eaccf8017600cf8e0ac112f5403b86e4de/original?assetDescr=Moverio_BT-35ES_Glasses_and_Intelligent_Controller_Specification_Sheet_CPD-60652R1.pdf
https://mediaserver.goepson.com/ImConvServlet/imconv/b1cac7eaccf8017600cf8e0ac112f5403b86e4de/original?assetDescr=Moverio_BT-35ES_Glasses_and_Intelligent_Controller_Specification_Sheet_CPD-60652R1.pdf
https://mediaserver.goepson.com/ImConvServlet/imconv/b1cac7eaccf8017600cf8e0ac112f5403b86e4de/original?assetDescr=Moverio_BT-35ES_Glasses_and_Intelligent_Controller_Specification_Sheet_CPD-60652R1.pdf
https://mediaserver.goepson.com/ImConvServlet/imconv/b1cac7eaccf8017600cf8e0ac112f5403b86e4de/original?assetDescr=Moverio_BT-35ES_Glasses_and_Intelligent_Controller_Specification_Sheet_CPD-60652R1.pdf
https://doi.org/10.1145/3494988
https://doi.org/10.1145/3351239
https://doi.org/10.1145/3351239
https://www.jstage.jst.go.jp/article/ast/41/4/41_E1954/_pdf/-char/ja#:~:text=The%20frequency%20response%20exhibits%20many,dip%20frequencies%20change%20with%20temperature.
https://www.jstage.jst.go.jp/article/ast/41/4/41_E1954/_pdf/-char/ja#:~:text=The%20frequency%20response%20exhibits%20many,dip%20frequencies%20change%20with%20temperature.
https://www.jstage.jst.go.jp/article/ast/41/4/41_E1954/_pdf/-char/ja#:~:text=The%20frequency%20response%20exhibits%20many,dip%20frequencies%20change%20with%20temperature.
https://doi.org/10.1109/IPSN48710.2020.000-1
https://doi.org/10.1145/3569473
https://doi.org/10.1145/3569473
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_visualizing_faces
https://developer.apple.com/documentation/arkit/content_anchors/tracking_and_visualizing_faces
https://invensense.tdk.com/products/ics-43434/
https://invensense.tdk.com/products/ics-43434/
https://doi.org/10.1145/3594738.3611357
https://doi.org/10.1145/3586183.3606805
https://doi.org/10.1145/3586183.3606805
https://www.knowles.com/docs/default-source/model-downloads/sr6438nws-000.pdf
https://www.knowles.com/docs/default-source/model-downloads/sr6438nws-000.pdf
https://doi.org/10.1109/ACCESS.2021.3121543
https://doi.org/10.1109/ACCESS.2021.3121543
https://doi.org/10.1145/1501750.1501809
https://doi.org/10.1145/1501750.1501809
https://doi.org/10.1145/3613904.3642910
https://doi.org/10.1145/3613904.3642910
https://www.lenovo.com/us/en/p/smart-devices/virtual-reality/thinkreality-a3/wmd00000500
https://www.lenovo.com/us/en/p/smart-devices/virtual-reality/thinkreality-a3/wmd00000500
https://doi.org/10.1145/3636534.3649376
https://doi.org/10.1145/3463521
https://doi.org/10.1145/3544794.3558462
https://doi.org/10.1145/3544794.3558462


EyeEcho: Continuous and Low-power Facial Expression Tracking on Glasses CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

on smartphones. In IEEE/ACM Transactions on Networking (TON), Vol. 27. 447– 
460. 

[41] Saif Mahmud, Ke Li, Guilin Hu, Hao Chen, Richard Jin, Ruidong Zhang, François 
Guimbretière, and Cheng Zhang. 2023. PoseSonic: 3D Upper Body Pose Es-
timation Through Egocentric Acoustic Sensing on Smartglasses. Proc. ACM 
Interact. Mob. Wearable Ubiquitous Technol. 7, 3, Article 111 (sep 2023), 28 pages. 
https://doi.org/10.1145/3610895 

[42] Katsutoshi Masai, Yuta Sugiura, Masa Ogata, Kai Kunze, Masahiko Inami, and 
Maki Sugimoto. 2016. Facial Expression Recognition in Daily Life by Embedded 
Photo Refective Sensors on Smart Eyewear. In Proceedings of the International 
Conference on Intelligent User Interfaces (IUI). 317—-326. https://doi.org/10.1145/ 
2856767.2856770 

[43] Denys J. C. Matthies, Bernhard A. Strecker, and Bodo Urban. 2017. 
<i>EarFieldSensing</i>: A Novel In-Ear Electric Field Sensing to Enrich Wearable 
Gesture Input through Facial Expressions. In Proceedings of the CHI Conference 
on Human Factors in Computing Systems. 1911—-1922. https://doi.org/10.1145/ 
3025453.3025692 

[44] Delina Beh Mei Yin, Amalia-Amelia Mukhlas, Rita Zaharah Wan Chik, Abu 
Talib Othman, and Shariman Omar. 2018. A Proposed Approach for Biometric-
Based Authentication Using of Face and Facial Expression Recognition. In IEEE 
International Conference on Communication and Information Systems (ICCIS). 
28–33. https://doi.org/10.1109/ICOMIS.2018.8644974 

[45] Rajalakshmi Nandakumar, Shyamnath Gollakota, and Nathaniel Watson. 2015. 
Contactless sleep apnea detection on smartphones. In Proceedings of the Annual 
International Conference on Mobile Systems, Applications, and Services. 45–57. 

[46] Rajalakshmi Nandakumar, Vikram Iyer, Desney Tan, and Shyamnath Gollakota. 
2016. Fingerio: Using active sonar for fne-grained fnger tracking. In Proceedings 
of the CHI Conference on Human Factors in Computing Systems. 1515–1525. 

[47] Niora. 2022. Microsoft HoloLens - Review - Full specifcation - Where to buy?
Retrieved Aug 19, 2022 from https://www.niora.net/en/p/microsoft_hololens 

[48] Amazon.com Inc. or its afliates. 2022. Echo Frames Battery Life and Testing 
Information - Amazon Customer Service. Retrieved Aug 19, 2022 from https://www. 
amazon.com/gp/help/customer/display.html?nodeId=GSVK3ZY3G43K435E 

[49] Jinhwan Park and Sehyun Baek. 2019. Dry eye syndrome in thyroid eye disease 
patients: The role of increased incomplete blinking and Meibomian gland loss. 
Acta ophthalmologica [Acta Ophthalmol] 97, 5 (2019), e800–e806. https://research-
ebsco-com.proxy.library.cornell.edu/c/u2yil2/details/bmwiotplxn 

[50] John AM Paro, Rahim Nazareli, Anadev Gurjala, Aaron Berger, and Gordon K Lee. 
2015. Video-based self-review: comparing Google Glass and GoPro technologies. 
Annals of plastic surgery 74 (2015), S71–S74. 

[51] Ville Rantanen, Pekka-Henrik Niemenlehto, Jarmo Verho, and Jukka Lekkala. 
2010. Capacitive facial movement detection for human–computer interaction 
to click by frowning and lifting eyebrows. In Medical & biological engineering & 
computing, Vol. 48. Springer, 39–47. 

[52] Marc’Aurelio Ranzato, Joshua Susskind, Volodymyr Mnih, and Geofrey Hinton. 
2011. On deep generative models with applications to recognition. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2857– 
2864. 

[53] Santiago Rayes. 2022. What are microphone environmental coefcients? 
Retrieved Dec 6, 2023 from https://www.grasacoustics.com/blog/working-
with-environmental-coefcients#:~:text=Higher%20frequencies%20(above% 
20about%206,frequency%20response%20depending%20on%20temperature. 

[54] Salah Rifai, Yoshua Bengio, Aaron Courville, Pascal Vincent, and Mehdi Mirza. 
2012. Disentangling factors of variation for facial expression recognition. In 
European Conference on Computer Vision. 808–822. 

[55] Jocelyn Scheirer, Raul Fernandez, and Rosalind W. Picard. 1999. Expression 
Glasses: A Wearable Device for Facial Expression Recognition. In CHI Extended 
Abstracts on Human Factors in Computing Systems. 262—-263. https://doi.org/10. 
1145/632716.632878 

[56] John Scott-Thomas. 2023. Ray-Ban Stories smart glasses use two frame mounted 
cameras to capture images in a frst step towards Augmented Reality. Retrieved 
Sept 13, 2023 from https://www.techinsights.com/blog/ray-ban-stories-smart-
glasses-cameras 

[57] Nicu Sebe, Michael S Lew, Yafei Sun, Ira Cohen, Theo Gevers, and Thomas S 
Huang. 2007. Authentic facial expression analysis. In Image and Vision Computing, 
Vol. 25. 1856–1863. 

[58] Nordic Semiconductor. 2022. Bluetooth Low Energy data through-
put - Nordic Semiconductor Infocenter. Retrieved Aug 19, 2022 from 
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsds_s140%2FSDS% 
2Fs1xx%2Fble_data_throughput%2Fble_data_throughput.html&cp=4_7_4_0_16 

[59] Nordic Semiconductor. 2022. nRF52840 - Bluetooth 5.2 SoC - nordicsemi.com. 
Retrieved Aug 19, 2022 from https://www.nordicsemi.com/Products/nRF52840 

[60] Ke Sun, Ting Zhao, Wei Wang, and Lei Xie. 2018. Vskin: Sensing touch gestures 
on surfaces of mobile devices using acoustic signals. In Proceedings of the Annual 
International Conference on Mobile Computing and Networking (MobiCom). 591– 
605. 

[61] Rujia Sun, Xiaohe Zhou, Benjamin Steeper, Ruidong Zhang, Sicheng Yin, Ke Li, 
Shengzhang Wu, Sam Tilsen, Francois Guimbretiere, and Cheng Zhang. 2023. 

EchoNose: Sensing Mouth, Breathing and Tongue Gestures inside Oral Cavity 
using a Non-contact Nose Interface. In Proceedings of the 2023 ACM International 
Symposium on Wearable Computers (Cancun, Quintana Roo, Mexico) (ISWC 
’23). Association for Computing Machinery, New York, NY, USA, 22–26. https: 
//doi.org/10.1145/3594738.3611358 

[62] Justus Thies, Michael Zollhöfer, Matthias Nießner, Levi Valgaerts, Marc Stam-
minger, and Christian Theobalt. 2015. Real-time expression transfer for facial 
reenactment. In ACM Transactions on Graphics, Vol. 34. Article 183, 14 pages. 

[63] Dhruv Verma, Sejal Bhalla, Dhruv Sahnan, Jainendra Shukla, and Aman Parnami. 
2021. ExpressEar: Sensing Fine-Grained Facial Expressions with Earables. In 
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies (IMWUT), Vol. 5. 1–28. 

[64] Ulrich von Agris, Moritz Knorr, and Karl-Friedrich Kraiss. 2008. The signifcance 
of facial features for automatic sign language recognition. In IEEE International 
Conference on Automatic Face & Gesture Recognition. 1–6. https://doi.org/10.1109/ 
AFGR.2008.4813472 

[65] Tianben Wang, Daqing Zhang, Yuanqing Zheng, Tao Gu, Xingshe Zhou, and 
Bernadette Dorizzi. 2018. C-FMCW based contactless respiration detection using 
acoustic signal. In Proceedings of the ACM on Interactive, Mobile, Wearable and 
Ubiquitous Technologies (IMWUT), Vol. 1. 1–20. 

[66] Wei Wang, Alex X Liu, and Ke Sun. 2016. Device-free gesture tracking using 
acoustic signals. In Proceedings of the Annual International Conference on Mobile 
Computing and Networking (MobiCom). 82–94. 

[67] Zi Wang, Yili Ren, Yingying Chen, and Jie Yang. 2022. ToothSonic: Earable 
Authentication via Acoustic Toothprint. Proc. ACM Interact. Mob. Wearable 
Ubiquitous Technol. 6, 2, Article 78 (jul 2022), 24 pages. https://doi.org/10.1145/ 
3534606 

[68] Shih-En Wei, Jason Saragih, Tomas Simon, Adam W. Harley, Stephen Lombardi, 
Michal Perdoch, Alexander Hypes, Dawei Wang, Hernan Badino, and Yaser 
Sheikh. 2019. VR Facial Animation via Multiview Image Translation. In ACM 
Transactions on Graphics, Vol. 38. Article 67, 16 pages. https://doi.org/10.1145/ 
3306346.3323030 

[69] Wikipedia. 2023. Google Glass. Retrieved Sept 14, 2023 from https://en.wikipedia. 
org/wiki/Google_Glass 

[70] SG Wireless. 2022. SGW111X BLE Modules. Retrieved Aug 19, 2022 from https: 
//www.sgwireless.com/product/SGW111X 

[71] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai, and Qiang Zhou. 2018. 
Look at boundary: A boundary-aware face alignment algorithm. In Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2129– 
2138. 

[72] Yi Wu, Vimal Kakaraparthi, Zhuohang Li, Tien Pham, Jian Liu, and Phuc Nguyen. 
2021. BioFace-3D: Continuous 3d Facial Reconstruction through Lightweight 
Single-Ear Biosensors. In Proceedings of the Annual International Conference on 
Mobile Computing and Networking (MobiCom). 350–363. 

[73] Jiahong Xie, Hao Kong, Jiadi Yu, Yingying Chen, Linghe Kong, Yanmin Zhu, and 
Feilong Tang. 2023. mm3DFace: Nonintrusive 3D Facial Reconstruction Lever-
aging mmWave Signals. In Proceedings of the Annual International Conference 
on Mobile Systems, Applications and Services (MobiSys) (MobiSys ’23). 462–474. 
https://doi.org/10.1145/3581791.3596839 

[74] Wentao Xie, Qian Zhang, and Jin Zhang. 2021. Acoustic-Based Upper Facial 
Action Recognition for Smart Eyewear. In Proceedings of the ACM on Interactive, 
Mobile, Wearable and Ubiquitous Technologies (IMWUT), Vol. 5. Article 41, 28 pages. 
https://doi.org/10.1145/3448105 

[75] Sijie Xiong, Sujie Zhu, Yisheng Ji, Binyao Jiang, Xiaohua Tian, Xuesheng Zheng, 
and Xinbing Wang. 2017. IBlink: Smart Glasses for Facial Paralysis Patients. 
In Proceedings of the 15th Annual International Conference on Mobile Systems, 
Applications, and Services (MobiSys ’17). 359–370. https://doi.org/10.1145/3081333. 
3081343 

[76] Xreal. 2024. Xreal Air 2 Ultra. Retrieved Feb 13, 2024 from https://developer. 
xreal.com/?lang=en 

[77] Xuhai Xu, Haitian Shi, Xin Yi, Wenjia Liu, Yukang Yan, Yuanchun Shi, Alex 
Mariakakis, Jennifer Mankof, and Anind K Dey. 2020. EarBuddy: Enabling On-
Face Interaction via Wireless Earbuds. In Proceedings of the CHI Conference on 
Human Factors in Computing Systems. 1–14. 

[78] Sangki Yun, Yi-Chao Chen, Huihuang Zheng, Lili Qiu, and Wenguang Mao. 2017. 
Strata: Fine-grained acoustic-based device-free tracking. In Proceedings of the 
Annual International Conference on Mobile Systems, Applications, and Services. 
15–28. 

[79] Cheng Zhang, Qiuyue Xue, Anandghan Waghmare, Ruichen Meng, Sumeet Jain, 
Yizeng Han, Xinyu Li, Kenneth Cunefare, Thomas Ploetz, Thad Starner, et al. 2018. 
FingerPing: Recognizing fne-grained hand poses using active acoustic on-body 
sensing. In Proceedings of the CHI Conference on Human Factors in Computing 
Systems. 1–10. 

[80] Ruidong Zhang, Hao Chen, Devansh Agarwal, Richard Jin, Ke Li, François 
Guimbretière, and Cheng Zhang. 2023. HPSpeech: Silent Speech Interface for 
Commodity Headphones. In Proceedings of the 2023 ACM International Sym-
posium on Wearable Computers (Cancun, Quintana Roo, Mexico) (ISWC ’23). 
Association for Computing Machinery, New York, NY, USA, 60–65. https: 

https://doi.org/10.1145/3610895
https://doi.org/10.1145/2856767.2856770
https://doi.org/10.1145/2856767.2856770
https://doi.org/10.1145/3025453.3025692
https://doi.org/10.1145/3025453.3025692
https://doi.org/10.1109/ICOMIS.2018.8644974
https://www.niora.net/en/p/microsoft_hololens
https://www.amazon.com/gp/help/customer/display.html?nodeId=GSVK3ZY3G43K435E
https://www.amazon.com/gp/help/customer/display.html?nodeId=GSVK3ZY3G43K435E
https://research-ebsco-com.proxy.library.cornell.edu/c/u2yil2/details/bmwiotplxn
https://research-ebsco-com.proxy.library.cornell.edu/c/u2yil2/details/bmwiotplxn
https://www.grasacoustics.com/blog/working-with-environmental-coefficients#:~:text=Higher%20frequencies%20(above%20about%206,frequency%20response%20depending%20on%20temperature.
https://www.grasacoustics.com/blog/working-with-environmental-coefficients#:~:text=Higher%20frequencies%20(above%20about%206,frequency%20response%20depending%20on%20temperature.
https://www.grasacoustics.com/blog/working-with-environmental-coefficients#:~:text=Higher%20frequencies%20(above%20about%206,frequency%20response%20depending%20on%20temperature.
https://doi.org/10.1145/632716.632878
https://doi.org/10.1145/632716.632878
https://www.techinsights.com/blog/ray-ban-stories-smart-glasses-cameras
https://www.techinsights.com/blog/ray-ban-stories-smart-glasses-cameras
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsds_s140%2FSDS%2Fs1xx%2Fble_data_throughput%2Fble_data_throughput.html&cp=4_7_4_0_16
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsds_s140%2FSDS%2Fs1xx%2Fble_data_throughput%2Fble_data_throughput.html&cp=4_7_4_0_16
https://www.nordicsemi.com/Products/nRF52840
https://doi.org/10.1145/3594738.3611358
https://doi.org/10.1145/3594738.3611358
https://doi.org/10.1109/AFGR.2008.4813472
https://doi.org/10.1109/AFGR.2008.4813472
https://doi.org/10.1145/3534606
https://doi.org/10.1145/3534606
https://doi.org/10.1145/3306346.3323030
https://doi.org/10.1145/3306346.3323030
https://en.wikipedia.org/wiki/Google_Glass
https://en.wikipedia.org/wiki/Google_Glass
https://www.sgwireless.com/product/SGW111X
https://www.sgwireless.com/product/SGW111X
https://doi.org/10.1145/3581791.3596839
https://doi.org/10.1145/3448105
https://doi.org/10.1145/3081333.3081343
https://doi.org/10.1145/3081333.3081343
https://developer.xreal.com/?lang=en
https://developer.xreal.com/?lang=en
https://doi.org/10.1145/3594738.3611365
https://nordicsemi.com
https://Amazon.com


CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

//doi.org/10.1145/3594738.3611365 
[81] Ruidong Zhang, Ke Li, Yihong Hao, Yufan Wang, Zhengnan Lai, François Guim-

bretière, and Cheng Zhang. 2023. EchoSpeech: Continuous Silent Speech Recog-
nition on Minimally-obtrusive Eyewear Powered by Acoustic Sensing. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing Systems 
(Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New 
York, NY, USA, Article 852, 18 pages. https://doi.org/10.1145/3544548.3580801 

[82] Shijia Zhang, Taiting Lu, Hao Zhou, Yilin Liu, Runze Liu, and Mahanth Gowda. 
2023. I Am an Earphone and I Can Hear My Users Face: Facial Landmark 
Tracking Using Smart Earphones. ACM Trans. Internet Things (TIOT) (Aug 2023). 

Li et al. 

https://doi.org/10.1145/3614438 
[83] Yongzhao Zhang, Wei-Hsiang Huang, Chih-Yun Yang, Wen-Ping Wang, Yi-Chao 

Chen, Chuang-Wen You, Da-Yuan Huang, Guangtao Xue, and Jiadi Yu. 2020. 
Endophasia: Utilizing Acoustic-Based Imaging for Issuing Contact-Free Silent 
Speech Commands. In Proceedings of the ACM on Interactive, Mobile, Wearable 
and Ubiquitous Technologies (IMWUT), Vol. 4. 1–26. 

[84] Yunting Zhang, Jiliang Wang, Weiyi Wang, Zhao Wang, and Yunhao Liu. 2018. 
Vernier: Accurate and fast acoustic motion tracking using mobile devices. In IEEE 
International Conference on Computer Communications (INFOCOM). 1709–1717. 

https://doi.org/10.1145/3594738.3611365
https://doi.org/10.1145/3544548.3580801
https://doi.org/10.1145/3614438

	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-wearable Facial Expression Tracking
	2.2 Wearable Facial Expression Tracking

	3 Background
	3.1 Continuous Facial Expression Tracking
	3.2 Principle of Operation

	4 Design and Implementation of EyeEcho
	4.1 Hardware Prototype Design
	4.2 Sensing Skin Deformations using FMCW-based Acoustic Sensing
	4.3 Learning Algorithms for Continuous Facial Expression Tracking

	5 Evaluation of EyeEcho in an In-lab Study
	5.1 Study Design
	5.2 Evaluation Metrics
	5.3 User-Dependent Model
	5.4 Performance on Tracking Facial Expressions with Varying Degrees of Deformation
	5.5 Determining Minimum Training Data Requirement
	5.6 User-Adaptive Model
	5.7 Transfer Learning using Data from Sitting to Walking Scenario

	6 Evaluation of EyeEcho with Different Settings
	6.1 Impact of Operating Frequency Range
	6.2 Impact of Environmental Noises
	6.3 Usability of EyeEcho

	7 Evaluation of EyeEcho in a Semi-in-the-wild Study
	7.1 Study Design
	7.2 Study Environment and Activities
	7.3 Study Procedure
	7.4 Study Results

	8 Discussion
	8.1 Power Consumption Analysis
	8.2 Real-time Deployment on Smartphones
	8.3 Evaluating Blink Detection
	8.4 Long-term Evaluation of the System
	8.5 Comparison with EarIO
	8.6 Health Implications
	8.7 Privacy Preservation Mechanisms in EyeEcho
	8.8 Applications on Commodity Devices
	8.9 Limitations and Future Work

	9 Conclusion
	Acknowledgments
	References



