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Abstract

Extending large language models (LLMs) to

process longer inputs is crucial for a wide range

of applications. However, the substantial com-

putational cost of transformers and limited gen-

eralization of positional encoding restrict the

size of their context window. We introduce

Context Expansion with Parallel Encoding

(CEPE ), a framework that can be applied

to any existing decoder-only LLMs to extend

their context window. CEPE employs a small

encoder to process long inputs chunk by chunk,

enabling the frozen decoder to utilize addi-

tional contexts via cross-attention. CEPE is

efficient, generalizable, and versatile: trained

with 8K-token documents, it extends the con-

text window of LLAMA-2 to 128K tokens,

offering 10× the throughput with only 1/6 of

the memory. CEPE yields strong performance

on language modeling and in-context learning.

CEPE also excels in retrieval-augmented appli-

cations, while existing long-context models de-

generate with retrieved contexts. We further in-

troduce a CEPE variant that can extend the con-

text window of instruction-tuned models using

only unlabeled data, and showcase its effective-

ness on LLAMA-2-CHAT, leading to a strong

instruction-following model that can leverage

very long contexts on downstream tasks.1

1 Introduction

Enabling long and extensible context is crucial for

large language models (LLMs) to effectively per-

form complex tasks, such as summarizing a book

or answering questions with hundreds of retrieved

Web pages. However, several challenges limit the

ability of LLMs to leverage long context: (1) LLMs

and popular positional encodings (Raffel et al.,

2020; Su et al., 2021) do not generalize to sequence

lengths longer than the lengths seen during training

1Code and models are available at https://github.

com/princeton-nlp/CEPE.
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Figure 1: A comparison between CEPE and other tech-

niques of extending LLMs’ context window, including

YARN (Peng et al., 2024), STREAMINGLLM (Xiao

et al., 2024b), and REPLUG (Shi et al., 2024). CEPE

trained on 8K tokens can generalize to 128K tokens

with minimal computational and memory costs.

(Press et al., 2022), even after additional fine-tuning

(Chen et al., 2023, 2024; Peng et al., 2024, inter

alia). (2) Transformers (Vaswani et al., 2017)—

the predominant architecture of LLMs—incur a

quadratic computational cost and a linear mem-

ory cost with respect to the input length, making

it expensive to use for long sequences. (3) High-

quality long-context data, such as long instruction-

following data, are scarce and difficult to obtain

(Wang et al., 2023; Xiong et al., 2023).

Besides directly fine-tuning LLMs on longer in-

puts, a series of inference-time modification meth-

ods have been proposed recently to scale up the

effective context window, either by modifying the

attention mechanism (Bertsch et al., 2023; Xiao

et al., 2024b; Ivgi et al., 2023) or encoding chunks

of context in separate forward passes (Shi et al.,

2024; Ratner et al., 2023; Lin et al., 2023). While

these methods generalize to longer sequences, the

model often fails to effectively leverage the extra

tokens and can incur larger inference costs.
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Figure 2: The CEPE architecture. The encoder model encodes the additional 3 chunks (k = 3) of context C in

parallel, and the final hidden representations from the encoder model are concatenated and used as inputs to the

cross-attention layers in the decoder model. The cross-attention layers attend to the encoder representations between

the self-attention and feed-forward layers in the decoder model.

In this work, we propose an efficient and

lightweight solution to extending the context win-

dow of LLMs, called Context Expansion with

Parallel Encoding (CEPE ). CEPE is applicable

to any pre-trained decoder-only LM by adding two

components: (1) a small encoder that encodes the

long context in chunks, and (2) a cross-attention

module that is inserted at each layer of the decoder

to attend to the encoder representations (Figure 2).

With a careful selection of unlabeled training data,

CEPE can leverage not only long-context docu-

ments, but also retrieved documents effectively.

CEPE offers several benefits: (1) length gen-

eralization: CEPE is not limited by positional

encoding constraints as the long context is encoded

in chunks, each with its own positional encoding;

(2) efficiency: using a small encoder and process-

ing contexts in parallel reduce computational cost.

Since cross-attention attends only to the last layer’s

representations from the encoder, CEPE requires

much less memory compared to decoder-only LMs,

which cache the key-value pairs of every token in

every layer; (3) reduced training cost: unlike full

fine-tuning approaches, we only tune the encoder

and the cross-attention while keeping the large de-

coder LM frozen; augmenting a 7B decoder with a

400M encoder and cross-attention layers (1.4B pa-

rameters) can be done with one A100 80GB GPU.

We apply CEPE to LLAMA-2 (Touvron et al.,

2023b) and train it on a filtered version of Red-

Pajama (Together, 2023b) for 20B tokens—only

1% of the pre-training budget of LLAMA-2. We

first show that CEPE-LLAMA-2, trained with

8K input length, continues to improve perplex-

ity on longer input up to 128K tokens. Then, we

apply CEPE to a retrieval-augmented setting, as

our larger context window allows incorporating

more retrieved documents. Compared to exist-

ing methods, CEPE achieves better performance

on both retrieval-augmented language modeling

and open-domain question answering. Addition-

ally, we demonstrate that CEPE can effectively

leverage more demonstrations for in-context learn-

ing (Brown et al., 2020). All the above is achieved

with a much lower memory and computational cost

than most previous solutions.

Finally, we propose CEPE-Distilled (CEPED),

which extends the context window of instruction-

tuned models, using only unlabeled data. CEPED

distills the behavior of the original instruction-

tuned model to the new architecture through an

auxiliary KL divergence loss, which eliminates the

need to curate expensive long-context instruction-

following data (Ivison et al., 2023). We apply

CEPED to LLAMA-2-CHAT and show that while

preserving their instruction understanding ability,

CEPED-LLAMA-2-CHAT can incorporate more

context and improve performance on long-text un-

derstanding tasks (Shaham et al., 2023).

To conclude, CEPE is a lightweight framework

that can extend context windows of any base or

instruction-tuned LMs. We hope CEPE can em-

power future LLM research with cheap and effec-

tive long-context abilities.

2 Method: CEPE

We design CEPE to adapt pre-trained LLMs to per-

form long-context language modeling on sequences

with many tokens (e.g., books). For retrieval aug-

mentation, these long contexts may contain a set

of retrieved passages instead. We first describe

how CEPE modifies the architecture of LLMs to
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attend to representations encoded by a small en-

coder, and then describe how the CEPE modules

are trained. Finally, we extend CEPE to CEPED,

which expands the context window of instruction-

tuned models using only unlabeled data.

2.1 Architecture

CEPE augments off-the-shelf decoder-only LMs

by (1) adding a small, bidirectional pre-trained en-

coder model and (2) inserting cross-attention layers

between the self-attention and feed-forward layers

in every transformer block of the decoder model.

Notation. Given an input context with T to-

kens x1, ..., xT , we consider the first m tokens

x1, ..., xm as the additional context C and the last

n = T − m tokens xm+1, ..., xT as the main in-

put X . The additional context is split into chunks

C = C1, ..., Ck, which can contain either segments

within a long document or a set of retrieved pas-

sages. We use Menc to denote the encoder model

with hidden dimension denc and Mdec to denote the

decoder-only LLM with hidden dimension ddec.

Encoding chunks. We first encode C1, ..., Ck

chunk by chunk using the trainable encoder Menc:

φi = Menc(Ci) Φ = CONCAT({φi}
k
i=1)

where φi ∈ R
|Ci|×ddec is the token-wise last layer

hidden state from Menc and Φ ∈ R
m×ddec . Note

that Menc is bidirectional, which results in more

information-rich representations compared to unidi-

rectional ones. While we do not preserve global po-

sitions across different chunks, experiments show

that CEPE achieves better or comparable perfor-

mance to full-attention models that do.

Cross-attention modules. In every decoder layer

of the transformer, we insert a cross-attention mod-

ule between the self-attention and feed-forward

layers. To construct the cross-attention module,

we provide Φ as keys and values, and the hidden

states of X as queries. Note that in order for Mdec

to attend to Φ, the key and value projection matri-

ces in the cross-attention module also serve as an

up-projection that transforms the denc-dimensional

Φ into a ddec-dimensional embedding. Figure 2

illustrates the architecture of CEPE.

Efficiency. Menc is much smaller and encodes

contexts in parallel to avoid the quadratic complex-

ity of full attention. This enables CEPE to ex-

hibit a substantially higher training and inference

speed than if we were to use Mdec to process all

T = m+ n tokens. Moreover, CEPE drastically

reduces memory consumption by avoiding caching

(m+n)L key-value pairs (L is the number of layers

of Mdec) and instead caching only Φ and nL key-

value pairs. In particular, using a standard decoder-

only model requires O((m + n)Lddec) memory

whereas CEPE requires O(mdenc + nLddec). In

our setting, m k n and ddec k denc, so in practice,

we observe a substantial gap: for each additional

token, CEPE requires only 1/256 of the memory

compared to encoding them in Mdec.

Comparison with existing retrieval-augmented

LMs. CEPE takes inspiration from retrieval-

augmented models such as FiD (Izacard and Grave,

2021), Atlas (Izacard et al., 2022b), and RETRO

(Borgeaud et al., 2022) for attending to parallel

encodings. Our method differs in the following

key aspects: FiD, Atlas, and RETRO are all full-

parameter training methods for encoder-decoder

models; Atlas and RETRO are pre-training meth-

ods that rely on expensive large-scale retrieval-

augmented data; FiD is a fine-tuning method

for open-domain QA tasks, which requires task-

specific data. In contrast, CEPE is a lightweight

framework that can extend the context window of

any existing decoder-only model; we only fine-tune

an added small encoder and the cross-attention lay-

ers; instead of retrieval-augmented data, CEPE

only requires a small amount of filtered unlabeled

data, as described in the following section; because

CEPE is built on top of powerful pre-trained mod-

els, it can be easily adapted to a wide range of tasks

without explicit fine-tuning.

2.2 Data

We use RedPajama (RP; Together, 2023b) as our

training corpus, which is an open-source reproduc-

tion of the LLAMA-1 (Touvron et al., 2023a) train-

ing data. It contains about 1 trillion tokens from

seven domains: ArXiv, Books, C4-RP, CC, Github,

StackExchange, and Wiki. We first partition the

corpus into three sets of documents: training, test,

and retrieval; we leverage the retrieval corpus for

retrieval-augmented language modeling.

We design a data mixture with strong long-range

dependencies and a diversity of domains. The train-

ing data is preprocessed into two subsets, each of

which is a collection of 8192-token sequences: (1)

In RPtrain-cat, we concatenate documents together to

form training sequences; (2) In RPtrain-filter, we keep

documents from the Arxiv and Books domains that
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have at least 8, 192 tokens and sample sequences

within document boundaries.

Our qualitative analysis found that data from the

ArXiv and Books domains naturally contain long

documents that are especially useful when training

long-context models. It is also important to use a

mixture of data from all domains to ensure better

generalization. Thus, we use a mixture ratio of 2:1

between RPtrain-filter and RPtrain-cat for training. We

alternatively consider using retrieval supervision

when generating the training data to improve the

model’s ability to leverage retrieved documents.

However, our ablations found that our unlabeled

data mixture transfers well to retrieval-augmented

settings at a much cheaper cost (§7.1).

2.3 Training

We use LLAMA-2-7B (Touvron et al., 2023b) as

Mdec (originally trained on 4K length), and insert

the new cross-attention layers described in Sec-

tion 2.1 into it. We add a bidirectional encoder

Menc with 435M parameters, yielding 1.8B added

parameters in the CEPE model.

Encoder. We first pre-train a bidirectional masked-

language model on the RedPajama dataset. Menc

follows the configuration of RoBERTa-large (Liu

et al., 2019b) but shares the vocabulary with Mdec,

LLAMA-2. 2 We train Menc for 100K steps with

a batch size of 2, 048 and sequence length of 512
tokens. For more details, refer to §A.1.

Cross-attention. We freeze the weights of Mdec

and train only the added cross-attention layers as

well as fine-tuning Menc using the cross-entropy

loss. We first adopt a warmup training stage de-

signed to teach Mdec to copy from Menc through

cross-attention—for each position i f T , the

objective is to generate xi+1, conditioned on

Menc(x1, . . . , xT ) and Mdec(x1, . . . , xi)—Menc

and Mdec share the same input. The warmup stage

uses 131M tokens from the training set of RP.3

After the warmup stage, we move to the stan-

dard training, where each sequence has T = 8, 192
tokens. We use the last 4, 096 tokens as the de-

coder input X , and chunk the first 4, 096 tokens

into k = 16 contexts of |Ci| = 256 tokens each

as the encoder input C, and train for 20B tokens.

Freezing the decoder allows CEPE to be trained

2Future works applying CEPE to LLAMA-2 models can
simply use our pre-trained encoder.

3Preliminary experiments suggest this stage can stabilize
training; ablations can be found in §7.1.

on a single A100 GPU, which is a significant re-

duction in computational cost compared to training

Mdec with sequence length T . For more training

details and hyperparameters, please refer to §A.2.

2.4 CEPED for Instruction-Tuned Models

We extend our method to CEPE-DISTILLED

(CEPED) to augment instruction-tuned models

with longer context. Instruction-tuned models

(Ouyang et al., 2022; Taori et al., 2023; Touvron

et al., 2023b) excel in many downstream applica-

tions, but their limited context window restricts

their performance in tasks that require long doc-

uments (Shaham et al., 2023) or a large number

of retrieved passages (Gao et al., 2023). It is chal-

lenging to extend these models to longer context

windows directly through fine-tuning due to the

scarcity of high-quality instruction data.

To this end, we propose CEPED, which uses an

auxiliary distillation loss to encourage Menc and

the cross-attention layers to learn the capabilities

of the already instruction-tuned Mdec. This can be

especially useful for settings where the fine-tuning

data are not open-sourced, which is the case for

LLAMA-2-CHAT (Touvron et al., 2023b).

Distillation loss. We design a distillation objective,

where the original Mdec acts as the “teacher” and

the CEPED model acts as the “student”. We use

the input context CONCAT(C, X) with m + n =
4, 096 tokens, which can fit in the context window

of LLAMA-2-CHAT, our choice of Mdec. First,

we input CONCAT(C, X) to Mdec and save the log-

its of X as the teacher logits. During training, C
and X are used as inputs to Menc and Mdec, re-

spectively, and we minimize the KL divergence

between the output logits of X and the correspond-

ing teacher logits as well as the cross-entropy loss.

We train the model for 10B tokens from our data

mixture. For more details, see §A.3.

3 Long-context Language Modeling

We start by evaluating CEPE on long-context lan-

guage modeling benchmarks to assess basic LM

abilities, and compare with existing approaches in

terms of perplexity, memory, and throughput.

Datasets. We evaluate on ArXiv and Books from

our RedPajama test split, as well as three long-

context datasets: PG19 (Rae et al., 2020), Proof-

Pile (Azerbayev et al., 2023), and CodeParrot (Wolf

et al., 2023). We filter all documents to have at

least 32, 768 tokens, and sample 5, 000 sequences
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ArXiv Book PG19 ProofPile CodeParrot Throughput Mem. (GB)

Total Tokens = 4, 096

LLAMA-2 2.597 6.282 7.614 2.409 1.735 1.00× 19.2
LLAMA-2-32K 2.601 6.621 7.945 2.414 1.785 1.00× 19.2
YARN-64K 2.651 6.337 7.326 2.457 1.764 1.04× 19.2
CEPE 2.579 6.292 7.536 2.396 1.763 1.31× 19.8

Total Tokens = 8, 192

LLAMA-2 > 10
3 > 10

3 > 10
3 > 10

3 > 10
3 - -

LLAMA-2-32K 2.505 6.339 7.744 2.221 1.729 1.00× 24.9
YARN-64K 2.561 6.077 7.146 2.267 1.714 2.52× 24.8
REPLUG 2.589 6.149 7.554 2.307 1.728 0.17× 18.8
STREAMINGLLM 2.740 6.327 7.783 2.437 1.806 1.94× 20.0
CEPE 2.496 6.049 7.372 2.219 1.715 3.48× 22.6

Total Tokens = 32, 768

LLAMA-2-32K 2.322 6.178 7.420 2.158 1.664 1.00× 59.1
YARN-64K 2.359 5.884 6.809 2.193 1.640 1.03× 58.9
STREAMINGLLM 2.752 6.358 7.627 2.503 1.853 1.16× 20.0
CEPE 2.421 6.015 7.204 2.218 1.702 3.72× 25.6

Total Tokens = 131, 072

LLAMA-2-32K > 10
3 > 10

3 > 10
3 > 10

3 > 10
3 - -

YARN-64K > 10
3 > 10

3 > 10
3 > 10

3 > 10
3 - -

YARN-128K 2.359 5.270 6.306 2.242 1.264 1.00× 235.6
STREAMINGLLM 2.371 5.058 6.681 2.270 1.280 2.56× 20.0
CEPE 2.217 4.869 6.305 2.099 1.266 9.90× 38.6

Table 1: Long-context language modeling text perplexity on ArXiv and Book from RedPajama, PG19, ProofPile,

and CodeParrot. Throughput compares the speed (number of tokens/second) of each model with that of LLAMA-2.

All experiments are conducted on one A100 80GB GPU, except for LLAMA-2-32K and YARN with 128K tokens,

which require model parallelism, and are conducted on four A100 GPUs.

for each dataset. We calculate the perplexity on the

last 256 tokens of each sequence. Following Peng

et al. (2024), for the experiments with 128K tokens,

we filter documents to have at least 131, 072 tokens

and evaluate on only 10 sequences.4

Models. We focus on 7B parameters model. Our

baseline includes LLAMA-2 and its long-sequence

fine-tuned versions: LLAMA-2-32K (Together,

2023a), YARN-64K, and YARN-128K (Peng

et al., 2024). LLAMA-2-32K was trained on

RP with upsampled ArXiv and Books domains,

and a mixture of other data , and YARN was

trained on PG19. While YARN-64K and YARN-

128K were fine-tuned for only 1.7B and 3.4B to-

kens, respectively, fine-tuning all parameters re-

quires much more memory relative to CEPE. We

also evaluate on training-free long-context meth-

ods: STREAMINGLLM (Xiao et al., 2024b) and

REPLUG (Shi et al., 2023) with LLAMA-2-7B.

Although REPLUG was originally evaluated in a

retrieval-augmented setting, we found that it also

works well in long-context modeling, when view-

4This is due to computational cost and scarcity of long
documents. All 10 sequences are from different documents.

ing the long context as retrieved context. See §B

for more implementation details.

For CEPE, we put 2K tokens in the decoder

when T = 4, 096, and 4K tokens in the decoder

in other settings. Additional tokens are split into

chunks of 256 tokens and fed into the encoder.

Results. We show the results in Table 1. Com-

pared to the two fully fine-tuned models, LLAMA-

2-32K and YARN-64K, CEPE achieves either

lower or comparable perplexity across all datasets

with lower memory usage and higher throughput

despite being trained only 8K sequences. Further-

more, CEPE continues to improve on perplexity

while maintaining low memory use at 128K to-

kens, well beyond its training lengths (8K); on

the other hand, LLAMA-2-32K and YARN-64K

cannot generalize beyond its training length and

the memory cost increases significantly. At 128K

tokens, we outperform or achieve comparable per-

plexity with all applicable baselines on all domains.

Although CEPE observes higher perplexity than

YARN-64K on PG19 and Book at 32K, we note

that YARN-64K was fine-tuned on PG19, and thus

has a significant domain advantage.
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ArXiv Book C4-RP CC Github StackEx Wiki Avg.

k = 0 (T = 2, 048)

LLAMA-2 3.541 6.524 6.916 5.564 1.865 4.043 4.816 4.753
LLAMA-2-32K 3.561 6.892 7.798 5.931 1.932 4.262 4.958 5.048
YARN-64K 3.633 6.631 7.164 5.701 1.930 4.164 4.837 4.866

k = 8 (T = 4, 096)

LLAMA-2 3.602 6.581 6.963 5.348 1.829 4.044 4.815 4.740
LLAMA-2-32K 3.642 6.985 7.767 5.645 1.893 4.270 4.988 5.027
YARN-64K 3.752 6.718 7.218 5.466 1.894 4.178 4.847 4.868
REPLUG 3.535 6.494 6.895 5.395 1.833 4.029 4.798 4.711
CEPE 3.486 6.481 6.884 5.319 1.793 3.709 4.302 4.568

k = 20 (T = 7, 168)

REPLUG 3.531 6.490 6.894 5.386 1.830 4.028 4.795 4.708
CEPE 3.475 6.463 6.875 5.266 1.782 3.703 4.296 4.551

k = 50 (T = 14, 848)

REPLUG 3.530 6.491 6.899 5.392 1.830 4.028 4.794 4.709
CEPE 3.467 6.457 6.881 5.273 1.777 3.701 4.292 4.550

Table 2: Retrieval-augmented language modeling. We report test perplexity on RedPajama across all domains. We

calculate perplexity on the last 1792 tokens of the decoder input (to exclude the query tokens). k is the number of

retrieved contexts used, and T is the total number of tokens. For LLAMA-2, YARN-64K, and LLAMA-2-32K,

we concatenate the contexts and prepend to the input. Avg. is the macro average across all domains.
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Figure 3: Open-domain QA results. We report the exact match (EM) scores. LLAMA-2 is limited to 20 passages,

and REPLUG is limited to 30 passages due to memory constraints. For the complete results, refer to Table 7.

We also outperform REPLUG across all do-

mains while achieving much higher throughput—

REPLUG encodes additional context in chunks but

each chunk requires a forward pass of the main

input, incurring slow speed, due to which we omit

REPLUG at longer length. STREAMINGLLM main-

tains a low memory usage and a reasonable through-

put, but the perplexity does not always decrease

as the sequence length increases, likely due to

the model only using a limited number of cached

key-value pairs. Compared to STREAMINGLLM,

CEPE can leverage all input tokens and achieve

better perplexity with better throughput.

4 Retrieval-augmented Applications

Retrieval-augmented settings naturally benefit from

long-context LMs, as models can leverage the ad-

ditional context to include more retrieval results.

Thus, we test if CEPE trained on long-context data

can transfer to retrieval-augmented settings.

4.1 Retrieval-augmented Language Modeling

Datasets. We use the test and retrieval split of Red-

Pajama described in §2.2 for retrieval-augmented

LM evaluation. Each sequence contains 2, 048 to-

kens, and the first 256 tokens are used as the query

to retrieve passages from the retrieval split. The

retrieval corpus contains 200M documents of 256
tokens each, and we use Contriever (Izacard et al.,

2022a) to retrieve k passages for each sequence.

Models. We evaluate full-context baselines,

LLAMA-2, LLAMA-2-32K, and YARN-64K,

by simply prepending the retrieved passages to the

input sequence. We also evaluate REPLUG, which
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runs one forward pass for each retrieved passage

and aggregates the results. CEPE uses 2, 048 to-

kens in the decoder and retrieved passages are fed

through the encoder in parallel.

Results. The results are shown in Table 2. CEPE

can effectively improve perplexity by using the re-

trieved contexts, outperforming REPLUG. Notably,

CEPE continues to improve perplexity even with

k = 50 (trained with k = 16). CEPE transfers

well to the retrieval-augmented setting whereas the

full-context decoder models degrade.

4.2 Open-domain Question Answering

Given a question and a large corpus of documents,

open-domain question answering (QA) requires the

model to retrieve relevant passages and generate the

answer. A model that can leverage a large number

of retrieved passages without being distracted by

irrelevant ones is desirable for this task.

Datasets. We adopt three open-domain QA

datasets: Natural Questions (NQ; Kwiatkowski

et al., 2019; Lee et al., 2019), TriviaQA (Joshi et al.,

2017), and PopQA (Mallen et al., 2023). For each

question, we use Contriever to retrieve k passages

from Wikipedia.5

Models. We compare CEPE with LLAMA-2,

LLAMA-2-32K, and REPLUG. For each model,

we use two in-context demonstrations. For CEPE,

we use 10 passages in the decoder, and all other

passages are encoded separately by the encoder.

Refer to §C.1 for more details.

Results. The results are shown in Figure 3

CEPE consistently outperforms all models across

all datasets and k. Notably, CEPE outperforms

LLAMA-2-32K on NQ and TriviaQA by over 3

and 4 EM points, respectively. Furthermore, CEPE

does not degrade in performance as the k increases,

while other models often perform worse at larger k,

as they are sensitive to the large amount of redun-

dant or irrelevant passages (Liu et al., 2024).

5 In-Context Learning

In-context learning (ICL; Brown et al., 2020) is one

of the most important emerging qualities of LLMs.

In this experiment, we examine whether CEPE can

effectively utilize demonstrations from the encoder

context to improve performance. Specifically, we

use a range of classification tasks that contains a

5Snapshot from 2018-12-20, and each passage is 100
words (Karpukhin et al., 2020).

large number (up to 150) of categories (Ratner et al.,

2023), where the model can benefit from additional

demonstrations. Following Ratner et al. (2023), we

use a test set size of 250 examples for each dataset.

Models. Our baseline is LLAMA-2 with 2 demon-

strations. For CEPE, we add additional demon-

strations in the encoder. We also compare with an

“oracle”, where the LLAMA-2 decoder takes 40

demonstrations. Note that the oracle is significantly

more expensive. More details are in §C.2.

Results. The results are shown in Table 3. We

first observe that compared to the decoder-only

baseline, CEPE can effectively use the additional

demonstrations from the encoder context; the per-

formance further increases or remains consistent

with more demonstrations in the encoder. However,

there is still a large gap to the 40-demonstration

oracle. Our hypothesis is that in-context learning

requires both query-demonstration interactions and

demonstration-demonstration interactions, which

CEPE cannot provide. Regardless, CEPE can be

always applied on top of the decoder-only model

to add additional demonstrations, with little extra

computational and memory cost.

6 Instruction-tuned Models for Long Text

Understanding

In this section, we show that applying CEPED on

LLAMA-2-CHAT produces instruction-following

models that can leverage long inputs.

Datasets. ZeroSCROLLS (Shaham et al., 2023) is a

collection of zero-shot long-context understanding

tasks that require instruction-following abilities.

Specifically, we test on NarrativeQA, QASPER,

QuALITY, GovReport, SummScreenFD, and QM-

Sum, which all have large validation sets made

available. We follow the formats and instructions

of Shaham et al. (2023) for each dataset, except the

long text is placed before the instructions.

Models. For CEPED, we use 2, 048 tokens in

the decoder and put the remaining tokens to the

encoder as chunks of 256 tokens. We compare

with LLAMA-2-CHAT and LLAMA-2-32K IN-

STRUCT,6 which was fine-tuned on multi-round

conversational data as well as long-context sum-

marization and QA data. We allow the model to

generate 1, 024 tokens for the summarization tasks

and 50 tokens for the question answering tasks.

6
https://huggingface.co/togethercomputer/

Llama-2-7B-32K-Instruct
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k SST2 MR AGNews SST5 TREC TREC-F DBPedia NLU-S NLU-I BANKING CLINIC

LLAMA-2 2 89.1 96.7 72.7 3.9 48.0 16.7 94.0 42.3 22.3 38.4 59.1

+ CEPE
2 + 18 90.7 98.4 71.9 46.7 47.1 22.8 94.0 48.9 30.4 42.5 62.4
2 + 38 92.9 98.0 73.2 45.5 47.5 25.1 93.3 48.8 31.6 46.0 62.8

LLAMA-2† 40 94.3 98.7 74.7 52.3 87.7 54.8 95.1 76.7 62.1 50.4 72.0

Table 3: ICL results averaged across 3 seeds. k is the number of demonstrations. All models use 2 demonstrations

in the decoder, and we add +k′ demonstrations to the encoder for CEPE.  denotes the oracle setting with k = 40
demonstration in the decoder.

Question Answering Summarization

Total tokens NQA Qspr QALT GvRp SSFD QMSum

LLAMA-2-CHAT 2K 17.1 14.6 28.6 16.0 16.4 19.3

+ CEPED
2K + 2K 19.5 20.5 30.2 16.5 16.4 19.6
2K + 30K 21.6 19.9 29.6 15.8 16.7 19.5
2K + All 21.9 - - - - -

LLAMA-2-CHAT 4K 18.6 16.1 30.0 17.7 17.1 19.7
LLAMA-2-32K INSTRUCT 32K 12.2 18.1 41.6 19.9 10.0 10.3

Table 4: ZeroSCROLLS validation results. The total number of tokens includes both the input and generated tokens.

For NarrativeQA (NQA) and Qspr (QASPER), we report the F1 scores. For QALT (QuALITY), we report accuracy.

For GovReport (GvRp), SummScreenFD (SSFD), and QMSum, we report the ROUGE-L scores. CEPED uses 2K

tokens in the decoder, and additional tokens are inputted through the encoder. Only NQA has a substantial number

of test examples with more than 32K tokens, so we exclude other dataset on 2K + All setting; see Table 11.

Results. Table 4 shows that CEPED improves

upon LLAMA-2-CHAT with 2K tokens across all

tasks. The performance of CEPED improves or

remains consistent as we scale up the number of to-

kens in the context window. Notably, on NQA—the

only dataset with a significant number of samples

longer than 32K tokens (see Table 11)—CEPED

improves upon LLAMA-2-CHAT by 3 points in

F1 scores. Furthermore, CEPED outperforms

LLAMA-2-32K INSTRUCT on 4 out of the 6 tasks,

despite being trained on unlabeled data. We pro-

vide qualitative examples and analysis in §C.3.

7 Ablation Studies

We conduct comprehensive ablations to show the

effectiveness of our training data mixture, pre-

training and fine-tuning the encoder, and the

warmup training stage. We also ablate to verify the

effectiveness of the KL divergence loss in CEPED.

Lastly, we evaluate on Needle in the Haystack

(Kamradt, 2024), and analyze the results in §D.

7.1 Training Settings

Training with retrieved documents. Even

though CEPE was trained with long docu-

ments, it achieves strong performance on retrieval-

augmented applications. We also test a different

Long-context Retrieval-

(total Tokens) augmented (k)

8K 32K 8 50

CEPE 3.97 3.91 4.57 4.55

w/ RetDoc 4.01 3.99 4.53 4.50

w/ RPtrain-cat only 4.01 3.96 4.56 4.54

w/ RPtrain-filter only 3.96 3.89 4.75 4.72

w/ Frozen encoder 4.01 3.99 4.62 4.61

w/ Random encoder 4.03 4.02 4.60 4.60

w/o Warmup 4.03 4.02 4.61 4.61

Table 5: Test perplexity in long-context and retrieval-

augmented language modeling, averaged over all

datasets. Full results are in Table 12 and Table 13.

data strategy: training CEPE with retrieved docu-

ments using the training settings from §2.3.

As shown in Table 5, we find that train-

ing on retrieved documents (RetDoc) results in

slightly stronger performances in the retrieval-

augmentation setting, but perform worse on long

documents. Augmenting a pre-training corpus with

retrieval contexts is extremely computationally and

storage expensive. CEPE’s simple long-document

data strategy achieves a good balance between ef-

ficient training and strong performance on both

long-context and retrieval-augmented applications.

Choices of unlabeled data. In Table 5, we show

the results of training CEPE with only the fil-
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tered documents from the ArXiv and Books do-

mains (RPtrain-filter), and only the concatenated

RP documents (RPtrain-cat). We find that train-

ing on RPtrain-filter is more beneficial for the long-

document setting and training on RPtrain-cat is bet-

ter for the retrieval setting, but using a mixture of

both leads to a more balanced and generalizable

model. Our findings corroborate with the recent

work on long-context data engineering (Fu et al.,

2024). We also ablate different training strategies

for the encoder, and find both the warmup stage

and fine-tuning are crucial for strong performance.

More details on the training ablations are in §E.1.

7.2 KL Divergence

The key component of CEPED is the KL Di-

vergence loss. To understand the importance of

this auxiliary loss, we explore the performance of

CEPED when trained without the KL Divergence

loss as well as with difference coefficients for each

loss. Results are shown in Table 14, and we find

that the KL Divergence loss is crucial for summa-

rization tasks and QALT. More details are in §E.2.

8 Related Work

Long-context language models. Many recent

works on long-context LMs aim to solve the prob-

lem of positional embedding extrapolation in trans-

formers (Peng et al., 2024; Chen et al., 2023).

Others fine-tune LMs on longer sequences (Xiong

et al., 2023; Chen et al., 2024; Together, 2023a) or

compress the context into shorter forms (Yoshida

et al., 2020; Choromanski et al., 2021; Chevalier

et al., 2023). Notably, several recent papers propose

to extend the context window of LMs by modify-

ing the attention mechanism: Xiao et al. (2024b)

discover the use of “sink tokens” in sliding win-

dows, and Bertsch et al. (2023); Xiao et al. (2024a)

retrieve relevant tokens from a cache instead of

attending to all tokens. This results in memory-

efficient long-context LMs, but they have dimin-

ishing returns with longer contexts, as the same

positional embedding may be seen multiple times

and they can not fully utilize all tokens. The key

advantage of CEPE is that it does not degrade for

inputs longer than the training length while achiev-

ing great efficiency compared to full fine-tuning

approaches. Techniques have been designed for

specific applications, such as for in-context learn-

ing (Ratner et al., 2023; Hao et al., 2022), but we

focus on general long-context language modeling.

Novel architectures and pre-training methods,

such as S4 (Gu et al., 2022), RPT (Rubin and Be-

rant, 2023), YOCO (Sun et al., 2024), and Mamba

(Gu and Dao, 2023), also extend the context win-

dow at greater efficiency. However, pre-training

is extremely expensive at scale and these meth-

ods cannot leverage existing powerful pre-trained

LLMs. It is also unclear if state-space models can

achieve comparable performance with transformers

(Jelassi et al., 2024).

Retrieval-augmented language models. Aug-

menting LMs with retrieval has been useful in many

applications, such as open-domain question answer-

ing. Recently, combining LMs with retrieval sys-

tems for more generalized purposes has been ex-

plored: Guu et al. (2020); Borgeaud et al. (2022);

Izacard et al. (2022b); Min et al. (2023) pre-train

LMs with retrieval, and Shi et al. (2024); Lin et al.

(2023) use logits interpolation from separate for-

ward passes to incorporate retrieval information.

Our architecture is similar to Atlas (Izacard et al.,

2022b), RETRO, and RETRO-Fitting (Borgeaud

et al., 2022) , but they use retrieval-augmented data

for pre-training, which can be expensive to acquire

at a large scale. CEPE only requires fine-tuning on

long document data, which are much more efficient

to obtain; CEPE is also applicable to any decoder-

only LM, allowing us to extend context windows

for pre-existing strong models. Finally, these works

do not consider long-context language modeling

settings in addition to retrieval-augmented settings.

9 Conclusion

We propose CEPE to extend the context window of

existing language models. The key idea is to lever-

age a small encoder and cross-attention modules

to process long inputs and achieve low memory

and computational complexity. Compared to exist-

ing methods, CEPE extrapolates to input lengths

well beyond the training length, while remain-

ing efficient and effective. Consequently, CEPE

augments pre-trained models to be performant on

both long-context and retrieval-augmented applica-

tions. We also show that CEPED can be applied

to instruction-tuned models with additional con-

texts using an auxiliary loss with only unlabeled

data. We believe that there is still room for im-

provement through better data to train flexible and

robust models. We hope our work can be a use-

ful and accessible tool for the community to study

long-context models in diverse applications.
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Limitations

One limitation of our work is the focus on LLAMA-

2-7B. We hope that future work can investigate the

applicability of our framework to a wider variety

of LLMs of different sizes. Similarly, we only

applied CEPED to LLAMA-2-CHAT-7B, but we

look forward to other researchers applying it to

other instruction-tuned or fine-tuned models.

We also acknowledge that certain hyperparame-

ters are not studied in depth due to training costs –

such as the ratio between RPtrain-filter and RPtrain-cat,

learning rate, and the size of the small encoder

model. We also fixed Contriever (Izacard et al.,

2022a) to be the retriever in this work, but studying

a greater range of retrievers would be useful.

Ethics Statement

LLMs are known to potentially output harmful

and/or offensive language, and the LLAMA-2-

based models we use in this work are no excep-

tions. Since these models are trained on internet-

size corpora (e.g., RedPajama), it can be difficult

and expensive to filter out such offensive language.

Our models are also fine-tuned on RedPajama,

which means they may also generate undesirable

language. Although addressing this issue in the

large-scale pre-training corpus is out of the scope of

this work, we hope that future work will carefully

resolve possible misuse issues in these models.
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A Training Details

A.1 Pre-training Encoder

The encoder follows the configuration of RoBERTa-

large (Liu et al., 2019b) – it has 24 layers, a hidden

size of 1024, and 16 attention heads. However, we

use the architecture of LLAMA-2, which means

that the vocabulary size is different and the atten-

tion module contains an additional output projec-

tion. We refer to Liu et al. (2019b) and Touvron

et al. (2023a) for more details.

We pre-trained the encoder for 100K steps on

RP using the masked language modeling objective

(Devlin et al., 2019). We used a batch size of 2048

sequences, where each sequence consisted of 512

tokens. The learning rate was set to 10−3 with a

warm-up of the first 4% of the steps. We used eight

A6000 GPUs with a gradient accumulation of 16.

Furthermore, we employed a masking rate of 30%

and disabled the next sentence prediction objective.

We always replace the token with the [MASK] token

if it is masked instead of replacing it with a random

token or the original token. Finally, we used the

AdamW optimizer (Loshchilov and Hutter, 2019)

with ´1 = 0.9, ´2 = 0.999, and ϵ = 10−8, as

implemented by the HuggingFace Transformers

library (Wolf et al., 2020).

A.2 Training CEPE

The attention module in LLAMA-2 consists of

four projection matrices: key, value, query, and out-

put. In contrast to original transformers (Vaswani

et al., 2017), the output projection matrix is used

as an additional attention output projection. When

we first insert the cross-attention layers into the

decoder, we initialize the weights of the key, value,

and query projection matrices with the respective

weights from the decoder’s self-attention layer in

the same transformer block. Furthermore, since the

hidden dimension of the encoder is smaller than the

hidden dimension of the decoder, d < D, we use

only copy the first d rows of the key and value pro-

jection matrices from the self-attention module to

the cross-attention module. Lastly, the output pro-

jection matrix is initialized with all zeros. While we

did not investigate this initialization in detail, the

intuition is that we want the model should use the

tokens from the encoder using a similar mechanism

as the decoder uses for its own tokens. However,

we want the model to learn the output projection

from scratch, as it may be too disruptive to have

doubled the number of attention modules.

Then, we employ a warmup initialization

method that simply trains the model to copy the in-

put tokens from the encoder to the decoder. Specif-

ically, we use the same inputs X = C for both

Menc and Mdec, and X consists of n = 256 to-

kens. However, for the encoder, we chunk X into

k = 4 sequences of 64 tokens to construct C. This

step was trained for 4K steps with a batch size of

128 and peak learning rate of 5× 10−4, which to-

tals to 131M tokens. We noticed that the model

quickly learned to copy the input tokens from the

encoder to the decoder, and the loss was close to

zero after just 1K steps. The intuition behind this

initialization strategy was to instill a strong induc-

tive bias between the encoder input and decoder

outputs. From our early experiments, we found

that this initialization strategy helped stabilize the

later training.

Finally, we train CEPE for 20K steps with a

batch size of 128. We use eight A100 80 GB GPUs

with a per-device batch size of 2 and gradient accu-

mulation of 8, which took approximately 750 GPU

hours. We also use a peak learning rate of 3×10−4

with a warm-up of 4% of the steps and a cosine

learning rate schedule. We use the AdamW opti-

mizer with ´1 = 0.9, ´2 = 0.999, and ϵ = 10−8.

During the standard training, we also use mask-

ing to inject noise into the parallel encodings. In-

tuitively, additional contexts may not always be

in chunks of exactly 256 tokens in practice; for

example, in open-domain question answering, the

retrieved passages may vary in length. Further-

more, we may not always use exactly k = 16 con-

texts during inference, so we may want to train

CEPE with instances with different k. To this end,

for each encoder context Ci ∈ C, we apply mask-

ing with a probability of 0.3. When masking, we

mask out the entire context Ci with probability 0.1.

With probability 0.9, we mask out the suffix tokens

x|Ci|−t+1, . . . , x|Ci|, where x1, . . . , x|Ci| are the to-

kens in Ci and t ∼ U(1, |Ci|). We choose to only

mask out suffixes to maintain a natural distribution

for encoder inputs. While we did not study the

masking rate extensively, we found in preliminary

experiments that masking did not hurt perplexity

while improving performance on downstream tasks.

We leave further explorations on masking in the en-

coder input for future work.

A.3 Training CEPED

We leverage an additional distillation loss for

CEPED. For encoder input C and decoder input X ,
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we first calculate the logits Mdec(concat(C, X))
by running forward passes with the original model

parameterized by Mdec. Due to storage constraints,

we only store the top 50 likelihoods and their in-

dices in the vocabulary for each token in X , fol-

lowing (Askell et al., 2021; Bai et al., 2022).

Then, during training, we define the distillation

loss as the KL Divergence between the teacher

model’s probability distribution and the student

model’s probability distribution for the previously

stored top 50 tokens. Concretely, our distillation

loss is defined as follows:

LKL = DKL(Mdec(S)||MCEPE(C, X))

where S = concat(C, X), Mdec(S) is the proba-

bility distribution of the top 50 tokens for X , and

MCEPE(C, X) takes C as the encoder input and

X as the decoder input and outputs the probability

distribution of the same 50 tokens on X .

Although Bai et al. (2022) also uses an additional

category that represents the sum of all other tokens’

probabilities, we found that this may cause the KL

Divergence to be undefined when the sum of other

probabilities is 0. For our main model, we use a

coefficient of 2 in front of LKL when adding to the

cross-entropy loss to calculate the total loss. We

experiment with this coefficient in §7.1.

B Baseline Implementations

REPLUG. Although REPLUG (Shi et al., 2024)

was introduced as a method to augment language

models with retrieval, we found that the technique

of interpolating logits from separate forward passes

can also transfer well to the long context setting.

Among the methods that we compare to, REPLUG

uniquely improves performance upon the base

model in both the long-context and the retrieval-

augmented LM settings. This gives us an additional

point of comparison across the two settings.

Following the original authors, we use Con-

triever (Izacard et al., 2022a) to calculate the scores

for each previous context by using the first 256

tokens following the previous context as the query

in the long-context setting. We did not include

the additional memory and inference time costs of

calculating the Contriever scores in our evaluation.

STREAMINGLLM. We follow the implementation

of STREAMINGLLM from the original authors7

7
https://github.com/mit-han-lab/

streaming-llm

(Xiao et al., 2024b). Specifically, we use their best

settings, where we enable the positional shifts and

cache 4 sink tokens and 2044 recent tokens.

The original code evaluates the model using a

stride of 1 token at a time, where the cache is up-

dated after every token, but this is not feasible for

our large-scale evaluation. Therefore, we use a

stride of 2048 tokens, and we update the cache

after each stride. We show the difference in perfor-

mance between the two settings in Table 6, and we

found that STREAMINGLLM benefits from using

a larger stride. We leave future exploration in this

direction to future work.

C Evaluation Settings

C.1 Open-domain Question Answering

The full results for the open-domain question an-

swering experiments are shown in Table 7. RE-

PLUG only uses up to k = 30 passages due to

memory constraints, and LLAMA-2 has a window

size of 4096, which limits k to 20. While LLAMA-

2-32K can use more than k = 60 passages with a

context size of 32K, we only use up to 60 passages

due to the cost of generation. For each demonstra-

tion, we only show the top 1 retrieved passages

instead of the top k passages.

C.2 In-context Learning

For our in-context learning experiments, we use

the datasets commonly used in previous works

(Zhao et al., 2021; Lu et al., 2022; Han et al., 2023;

Ratner et al., 2023): SST-2 (Socher et al., 2013),

MovieReview (MR Pang and Lee, 2005), AGNews

(Zhang et al., 2015), SST-5 (Socher et al., 2013),

TREC (Voorhees and Tice, 2000), DBPedia (Zhang

et al., 2015), NLU (Liu et al., 2019a), BANKING77

(Casanueva et al., 2020), CLINIC150 (Larson et al.,

2019). We follow the prompts used in Ratner et al.

(2023) for all datasets. During evaluation, we first

calculate the log-likelihood of each option and se-

lect the option with the highest likelihood. We sam-

ple the in-context learning demonstrations from

the training set such that each label has an equal

number of demonstrations (except for possible re-

mainders).

Furthermore, we first calculate the accuracy for

each dataset using four different metrics: likeli-

hood, likelihood normalized for length, calibrated

likelihood, and calibrated likelihood normalized

for length. We calibrate using Domain Conditional

PMI (Holtzman et al., 2021), but use the empty
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Stride ArXiv Book PG19 ProofPile CodeParrot

Total Tokens = 8192

STREAMINGLLM
1 2.823 6.381 7.817 2.522 1.848

2048 2.740 6.327 7.783 2.437 1.806

Table 6: Performance of STREAMINGLLM with different stride lengths.

k NQ TQA PopQA

LLAMA-2

1 28.37 56.44 27.17

5 31.91 61.08 33.83

10 32.27 62.09 34.67

15 31.19 61.35 33.67

20 30.39 60.31 31.35

LLAMA-2-32K

10 30.64 56.00 32.38

15 31.27 56.98 33.48

20 31.97 57.28 33.75

30 30.66 57.57 33.90

60 30.58 57.03 34.61

REPLUG

5 31.27 61.21 32.40

10 31.52 61.35 32.31

15 30.80 60.89 31.62

20 30.30 60.41 31.11

30 29.78 59.99 30.27

CEPE

10 32.27 62.09 34.67

15 33.30 62.30 34.67

20 33.85 62.26 34.83

30 33.91 62.33 34.85

60 34.07 62.26 34.98

Table 7: Open-domain QA results. We report exact

match scores for the Natural Questions(NQ) test set,

TriviaQA(TQA) validation set, and PopQA test set. All

models use two-shot in-context learning. k is the num-

ber of retrieved passages, and CEPE uses the top 10

passages in the decoder and all passages in the encoder.

string as the domain string for all datasets for sim-

plicity. We then choose the metrics that yield the

highest score for the LLAMA-2 model in the two-

shot setting and apply the same metrics to all other

models. The metrics used for each dataset are

shown in Table 8. In this work, we did not inves-

tigate how to best calibrate CEPE in ICL settings.

We leave these explorations for future work.

C.3 ZeroSCROLLS

We use a subset of the ZeroSCROLLS (Shaham

et al., 2023) with large validation sets: NarrativeQA

(Kočiský et al., 2018), Qasper (Dasigi et al., 2021),

QuALITY (Pang et al., 2022), GovReport (Huang

et al., 2021), SummScreenFD (Chen et al., 2022),

and QMSum (Zhong et al., 2021). Specifically,

Normalized Calibrated

SST2 No Yes
MR No No
AGNews No No
SST5 No Yes
TREC No No
TREC-F No No
DBPedia Yes Yes
NLU-S Yes Yes
NLU-I No No
BANKING No No
CLINIC No No

Table 8: Metrics used for each dataset. For normaliza-

tion, we divide the log-likelihood by the length of the

prompt. For calibration, we use Domain Conditional

PMI (Holtzman et al., 2021) with the empty string as

the domain string for all datasets for simplicity.

we use the validation sets of these datasets made

available by SCROLLS (Shaham et al., 2022).

However, we follow the same evaluation setup as

ZeroSCROLLS, where models are evaluated in the

zero-shot setting. We also use the same evaluation

metrics as ZeroSCROLLS for each dataset. For the

question answering datasets (NarrativeQA, Qasper,

and QuALITY), we allow the model to generate up

to 50 tokens, and we use greedy decoding.

For the summarization datasets (GovReport,

SummScreenFD, and QMSum), we allow the

model to generate up to 1, 024 tokens, following

the original authors. For SummScreenFD and QM-

Sum, we use greedy decoding, and for GovReport

we use nucleus sampling (Holtzman et al., 2020)

with a temperature of 1.0 and top-p of 0.95 and a

minimum generation length of 10 tokens.

This is because GovReport has a much longer

gold summary than the other datasets, and sampling

methods are typically used in long-generation set-

tings. Furthermore, greedy decoding may degener-

ate. The minimum generation length helps prevent

trivial outputs, such as empty strings. To account

for the randomness in the sampling method, we

averaged GovReport performance over 3 seeded

runs, and we found that the standard deviation is

less than 0.20 ROUGE-L scores in all settings.

Furthermore, we hypothesize that LLAMA-2-
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Figure 4: Needle in the Haystack evaluation on CEPE-

LLAMA-2. The white dotted line denotes the training

length.

32K INSTRUCT may overfit to specific domains

such as GovReport due to being trained on Book-

Sum, a summarization dataset that also has long

gold summaries (Kryscinski et al., 2022).

We also show some generation examples in Ta-

ble 9 and 10. We find that CEPED can especially

benefit from the additional contexts in the encoder

in the QA datasets, where the answer may be local-

ized to just one small part of the entire input. On

the other hand, summarization tasks do not catas-

trophically fail when the model only has access to

only part of the input, as the model can still gener-

ate a coherent summary for the provided context,

achieving reasonable ROUGE-L scores.

D Needle in the Haystack

Needle in the Haystack (Kamradt, 2024) is a syn-

thetic task designed to test in-context retrieval abil-

ities of long-context language models. In this task,

a needle (e.g., “The best thing to do in San Fran-

cisco is to eat a sandwich and sit in Dolores Park

on a sunny day”) is placed in a long text of essays,

and the model is tasked with retrieving the needle

from the context—that is, the model is expected

to answer “What is the best thing to do in San

Francisco?” with the needle.

We evaluate CEPE-LLAMA-2, where 2K to-

kens are used in the decoder, and the rest of the

context is used in the encoder. For this experiment,

we also scale the cross-attention scores with the ra-

tio between the number of tokens during inference

and the number of tokens during training, follow-

ing Peng et al. (2024). We follow the evaluation

setting of Fu et al. (2024), but split the context

by sentence boundaries when inputting additional

tokens to the encoder. We find that while CEPE-

LLAMA-2 is able to perfectly retrieve the needle

in context at the training sequence length (~10K to-

kens) and at some longer sequences (~14K tokens),

it struggles at other lengths. This is likely due to

the training/inference discrepancies on the input

length and we will explore training objectives that

can mitigate such discrepancies in the future. Other

efficient methods, such as StreamingLLM (Xiao

et al., 2024b), also struggle with copying tokens

that are far from the current context.

E Ablations

We show the full results for the ablation studies in

Table 12 and 13, and 14. The subsections below

describes the ablation settings in more details.

E.1 Training Settings

Training with retrieved documents. In this sub-

section, we study training CEPE with retrieved

documents. Specifically, we pair the training se-

quences described in §2.2 with retrieved passages

from the retrieval split of RP using Contriever. We

use the first 256 tokens of the decoder input X as

the query and retrieve k = 16 passages to form

the additional contexts C. Then, we train CEPE

with retrieved passages (RetDoc) using the same

training settings as in §2.3.

Encoder training. We also investigate how to best

train the encoder. To this end, we train CEPE

with (1) freezing the encoder after pre-training and

the warmup stage, (2) training with a randomly

initialized encoder, and (3) using the pre-trained

model without the warmup stage. As shown in

Table 5, we find that the copying warmup stage and

fine-tuning the encoder during training are both

crucial for strong performance.

E.2 KL Divergence

The key component of CEPED is the KL Di-

vergence loss. To understand the importance of

this auxiliary loss, we explore the performance

of CEPED with changes to the loss function in

this subsection. Let LCE ,LKL be the cross en-

tropy loss and the KL Divergence loss, respectively.

Then, the total loss is L = cCELCE + cKLLKL,

where cCE and cKL are coefficients for the cross

entropy loss and the KL Divergence loss, respec-

tively. We vary the coefficients cCE and cKL to

study the importance of the KL Divergence loss.

The results are presented in Table 14. Without the

KL Divergence loss, CEPED may still perform

well on NarrativeQA and Qasper, but the perfor-

mance on the summarization tasks and QuALITY

may decrease as a result.
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Encoder Input C1:

We propose a novel pre-training method called BRLM, which can effectively alleviates the

distance between different source language spaces. Our proposed approach significantly improves

zero-shot translation performance, consistently surpassing pivoting and multilingual approaches.

Meanwhile, the performance on supervised translation direction remains the same level or even

better when using our method. Related Work In recent years, zero-shot translation in NMT has

attracted widespread attention in academic research. Existing methods are mainly divided into

four categories: pivot-based method, transfer learning, multilingual NMT, and unsupervised NMT.

Pivot-based Method is a common strategy to obtain a source→target model by introducing a pivot

language. This approach is further divided into pivoting and pivot-synthetic. While the former

firstly translates a source language into the pivot language which is later translated to the

target language BIBREF4, BIBREF5, BIBREF12, the latter trains a source→target model with pseudo

Encoder Input C2:

, NMT heavily relies on large-scale parallel data, resulting in poor performance on low-resource

or zero-resource language pairs BIBREF3. Translation between these low-resource languages (e.g.,

Arabic→Spanish) is usually accomplished with pivoting through a rich-resource language (such as

English), i.e., Arabic (source) sentence is translated to English (pivot) first which is later

translated to Spanish (target) BIBREF4, BIBREF5. However, the pivot-based method requires

doubled decoding time and suffers from the propagation of translation errors. One common

alternative to avoid pivoting in NMT is transfer learning BIBREF6, BIBREF7, BIBREF8, BIBREF9

which leverages a high-resource pivot→target model (parent) to initialize a low-resource

source→target model (child) that is further optimized with a small amount of available parallel

data. Although this approach has achieved success in some low-resource language pairs, it still

performs very poorly in extremely low-resource or zero-resource translation scenario.

Specifically, BIBREF8 reports that without any child model training data,

Encoder Inputs [C3, . . . , C17] Omitted...

Decoder Input X:

tokens are selected to be masked. Among the selected tokens, 80% of them are replaced with

[MASK] token, 10% are replaced with a random BPE token, and 10% unchanged. The prediction

accuracy of masked words is used as a stopping criterion in the pre-training stage. Besides, we

use fastalign tool BIBREF34 to extract word alignments for BRLM-HA. Experiments ::: Main Results

Table TABREF19 and TABREF26 report zero-shot results on Europarl and Multi-UN evaluation sets,

respectively. We compare our approaches with related approaches of pivoting, multilingual NMT

(MNMT) BIBREF19, and cross-lingual transfer without pretraining BIBREF16. The results show that

our approaches consistently outperform other approaches across languages and datasets,

especially surpass pivoting, which is a strong baseline in the zero-shot scenario that

multilingual NMT systems often fail to beat BIBREF19, BIBREF20, BIBREF23. Pivoting translates

source to pivot then to target in two steps, causing inefficient translation process. Our

approaches use one encoder-decoder model to translate between any zero-shot directions, which is

more efficient than pivoting. Regarding the comparison between transfer approaches, our

cross-lingual pretraining based transfer outperforms transfer method that does not use

pretraining by a large margin. Experiments ::: Main Results ::: Results on Europarl Dataset.

Regarding comparison between the baselines in table TABREF19, we find that pivoting is the

strongest baseline that has significant advantage over other two baselines. Cross-lingual

transfer for languages without shared vocabularies BIBREF16 manifests the worst performance

because of not using source↔pivot parallel data, which is utilized as beneficial supervised

signal for the other two baselines. Additional Decoder Input Omitted...

You are given a scientific article and a question. Answer the question as concisely as you can,

using a single phrase or sentence if possible. If the question cannot be answered based on the

information in the article, write "unanswerable". If the question is a yes/no question, answer

"yes", "no", or "unanswerable".

Question:

what are the pivot-based baselines?

Answer:

Model Outputs:

LLAMA-2-CHAT output: unanswerable.

CEPE output with encoder contexts: pivot-based baselines include pivoting and pivot-synthetic.

Gold answers: pivoting, pivotingm

Table 9: ZeroSCROLLS generation example on the Qasper dataset. CEPE sees the entire article through the decoder

and the encoder, whereas LLAMA-2-CHAT only sees a 2K token window. For brevity, we omit part of the decoder

input and only show 2 out of k = 17 encoder inputs for CEPE.
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Encoder Input C1:

Phoebe: Almost sunrise. Do you think you’re ready to try the window again? Prue: Yeah, yeah, but

Abraxas will be ready for us here. We have to take him by surprise, go where we’re most powerful,

where we’re most connected. [Cut to the park. Prue, Piper and Phoebe have joined hands around a

stone.] Prue, Piper and Phoebe: "Hear now the words of the witches, the secrets we hid in the

night, the oldest of Gods are invoked here, the great work of magic is sought." [Cut to Abraxas

undoing the spell that gave them their powers.] [Cut back to the girls.] Prue, Piper, Phoebe:

"In this night, and in this hour we call upon the ancient power." [Cut back to Abraxas. The pages

of the Book of Shadows turn over. He turns back to the spell and continues to read it backwards.]

[Cut back to the girls.] Prue, Piper, Phoebe: "Hear

Encoder Input C2:

hoebe: Honey, we’ve done a lot of good as witches too. You know that. But that doesn’t mean that

bad things still aren’t gonna happen. But just because we can’t help that, doesn’t mean that is

our fault. Piper: Or yours. Phoebe: Come here. (They all hug.) Grams’ Voice: The Power of Three.

(They look around.) Phoebe: Okay, did you guys hear that? Piper: Mm-hmm. Prue: Grams? Grams’

Voice: The Power of Three. Prue: How is that possible? Phoebe: I don’t know but it’s gotta to be

a good thing if we’re all hearing it. Piper: Maybe it means we’re connected. Phoebe: To be as

one. Maybe that’s what the Book meant by the Power of One. Piper: The three of us working as one.

Prue: Which is what the triquetra represents. (Phoebe looks at her watch)

Encoder Inputs [C3, . . . , C44] Omitted...

Decoder Input X:

the secrets we hid in the night, the oldest of Gods are invoked here, the great work of magic is

sought." [Cut back to Abraxas. The Book disappears.] [Cut back to the girls. The Book drops out

from the sky and lands on the rock.] Phoebe: Prue, Piper... Prue: Keep chanting. Prue, Piper,

Phoebe: Hear now the words of the witches, the secrets we hid in the night..." (Abraxas appears

above them) Abraxas: What are you doing? How’d you bring me here? Prue, Piper, Phoebe: "The

oldest of Gods are invoked here, the great work of magic is sought. In this night, and in this

hour we call upon the ancient power. In this night, and in this hour we call upon the ancient

power. In this night, and in this hour we call upon the ancient power." (Abraxas is vanquished.

Phoebe grabs the Book.) Additional Decoder Input Omitted...

You are given a script of a TV episode. Summarize the episode in a paragraph.

Summary:

Model Outputs:

LLAMA-2-CHAT output (ROUGE-L = 19.1): Prue, Piper, and Phoebe find an old Book of Shadows in

the attic of their home, which they believe to be the original Book of Shadows. They start to

read it, but Abraxas, the demon who wrote the book, appears to them, warning them to stop reading

the book because he has returned to Earth and is seeking the power in the book to take over. The

three sisters are able to defeat Abraxas and close the book, but the experience causes them to

reflect on their lives as witches and their bond as sisters..

CEPE output with encoder contexts (ROUGE-L = 19.3): In this episode of Charmed, Prue is worried

about the future because Andy is not coming back and they don’t know what their new life will be

like. Prue and Piper have a hard time coming to terms with the fact that their powers are no

longer needed and they are losing their sense of purpose and identity. At the same time, they are

struggling to cope with their feelings for each other and their relationship. Phoebe, meanwhile,

has found a new source of power and is learning to control her abilities in a new way. As the

three sisters work together to defeat an evil spirit that is threatening their home, they are

able to come to terms with their powers and their relationship and find a new sense of purpose

and identity.

Gold answers: The sisters face a demon named Abraxas , who steals the Book of Shadows and undoes

some of the spells they’ve cast (in reverse order), releasing old vanquished enemies of the

Charmed Ones and forcing them to remember the vanquishing spells from memory alone. The sisters

have one chance to recapture the Book of Shadows or they will lose their powers forever. The

sisters also meet their new neighbors, Jenny and her uncle Dan Gordon . Phoebe and Piper learn

through the Wiccan community that because their anniversary of activating their inherent powers

falls on an equinox , a wiccan holy day , each of their powers will be more developed and greatly

magnified but only temporarily.

Table 10: ZeroSCROLLS generation example on the SummScreenFD dataset. CEPE sees the entire TV script

through the decoder and the encoder, whereas LLAMA-2-CHAT only sees a 2K token window. For brevity, we

omit part of the decoder input and only show 2 out of k = 44 encoder inputs for CEPE.
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Dataset Mean Median Max. Min. l ∈ [4K, 32K] (%) l > 32K (%)

NarrativeQA 75998.7 69163 264143 18260 5.8 94.2
QASPER 5278.5 4896.0 17626 2003 61.6 0.0
QuALITY 8035.8 8285.5 10779 3443 96.2 0.0
GovReport 11345.4 10128.5 48074 2441 91.2 0.6
SummScreenFD 9924.2 9364.0 27565 3078 99.1 0.0
QMSum 16027.7 14811.5 34543 3120 94.1 4.8

Table 11: ZeroSCROLLS length statistics. l is the number of input tokens in each example. We report the mean,

median, maximum, and minimum number of input tokens in each dataset. We also report the percentage of examples

that have between 4, 096 and 32, 768 tokens (l ∈ [4K, 32K]) and the percentage of examples that have over 32, 768
tokens (l > 32K). We observe that only NarrativeQA has a substantial number of test examples with more than

32K tokens, making it the most useful for evaluating long-context language models.

ArXiv Book PG19 ProofPile CodeParrot

Total Tokens = 4096

CEPE 2.579 6.292 7.536 2.396 1.763
w/ RetDoc 2.649 6.340 7.586 2.465 1.775
w/ RP Only 2.633 6.335 7.604 2.446 1.766
w/ AB Only 2.569 6.287 7.525 2.386 1.772
w/ Frozen Encoder 2.631 6.353 7.603 2.446 1.785
w/ Random Encoder 2.680 6.374 7.617 2.488 1.797
w/ No Warmup 2.678 6.372 7.613 2.487 1.796

Total Tokens = 8192

CEPE 2.496 6.049 7.372 2.219 1.715
w/ RetDoc 2.553 6.089 7.417 2.278 1.724
w/ RP Only 2.543 6.085 7.434 2.262 1.718
w/ AB Only 2.485 6.040 7.357 2.208 1.720
w/ Frozen Encoder 2.541 6.099 7.430 2.261 1.734
w/ Random Encoder 2.571 6.108 7.439 2.291 1.739
w/ No Warmup 2.572 6.113 7.439 2.292 1.739

Total Tokens = 32768

CEPE 2.421 6.015 7.204 2.218 1.702
w/ RetDoc 2.546 6.088 7.280 2.332 1.726
w/ RP Only 2.497 6.059 7.271 2.288 1.709
w/ AB Only 2.396 5.995 7.178 2.195 1.702
w/ Frozen Encoder 2.520 6.091 7.282 2.297 1.739
w/ Random Encoder 2.571 6.108 7.303 2.346 1.752
w/ No Warmup 2.571 6.110 7.301 2.346 1.752

Table 12: Test perplexity for all ablation settings in the long-context language modeling evaluation setting.
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ArXiv Book C4-RP CC Github StackEx Wiki Avg.

Total Tokens = 2048 (k = 0)

CEPE 3.486 6.481 6.884 5.319 1.793 3.709 4.302 4.568
w/ RetDoc 3.413 6.399 6.854 5.263 1.788 3.694 4.287 4.528
w/ RP Only 3.485 6.479 6.901 5.313 1.777 3.700 4.281 4.562
w/ AB Only 3.505 6.504 7.185 5.444 1.859 4.018 4.763 4.754
w/ Frozen Encoder 3.501 6.495 6.933 5.505 1.821 3.734 4.323 4.616
w/ Random Encoder 3.426 6.442 6.904 5.541 1.838 3.728 4.338 4.602
w/ No Copy Init 3.452 6.459 6.914 5.546 1.842 3.732 4.344 4.613

Total Tokens = 7168 (k = 20)

CEPE 3.475 6.463 6.875 5.266 1.782 3.703 4.296 4.551
w/ RetDoc 3.413 6.393 6.839 5.169 1.779 3.693 4.286 4.510
w/ RP Only 3.479 6.467 6.894 5.249 1.767 3.696 4.276 4.547
w/ AB Only 3.491 6.481 7.140 5.401 1.846 4.004 4.738 4.729
w/ Frozen Encoder 3.485 6.482 6.930 5.500 1.815 3.727 4.318 4.608
w/ Random Encoder 3.426 6.442 6.904 5.540 1.837 3.727 4.337 4.602
w/ No Copy Init 3.447 6.457 6.913 5.545 1.841 3.721 4.332 4.608

Total Tokens = 14848 (k = 50)

CEPE 3.467 6.457 6.881 5.273 1.777 3.701 4.292 4.550
w/ RetDoc 3.413 6.392 6.835 5.098 1.776 3.692 4.287 4.499
w/ RP Only 3.472 6.465 6.900 5.243 1.762 3.693 4.274 4.544
w/ AB Only 3.480 6.471 7.114 5.412 1.838 3.994 4.719 4.718
w/ Frozen Encoder 3.474 6.474 6.930 5.509 1.814 3.723 4.316 4.606
w/ Random Encoder 3.426 6.442 6.904 5.540 1.837 3.726 4.337 4.602
w/ No Copy Init 3.445 6.456 6.913 5.545 1.841 3.716 4.329 4.606

Table 13: Test perplexity on RedPajama across all domains in the retrieval-augmented setting for all ablation

experiments. k is the number of additional contexts used. Avg. is the macro average across all domains.
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Question Answering Summarization

cKL NQA Qspr QALT GvRp SSFD QMSum

Total Tokens = 4K

2 19.5 20.5 30.2 16.5 16.4 19.6

1 21.6 20.7 27.2 16.3 5.3 4.7

0 21.3 21.0 27.4 14.6 14.9 15.6

Total Tokens = 16K

2 20.6 19.9 29.6 15.9 16.8 19.4

1 21.8 20.6 26.8 16.0 15.2 16.1

0 22.9 20.6 26.4 14.8 5.2 4.7

Total Tokens = 32K

2 21.6 19.9 29.6 15.8 16.7 19.5

1 22.7 20.6 26.8 16.0 15.2 15.8

0 22.3 20.6 26.4 14.6 5.2 4.7

All Tokens

2 21.9 19.9 29.6 15.9 16.7 19.5

1 22.6 20.6 26.8 15.9 15.2 15.8

0 23.0 20.6 26.4 14.6 5.2 4.7

Table 14: ZeroSCROLLS results using different losses

during training, where cKL is the coefficient of the KL

Divergence loss. cCE = 1 is the coefficient of the Cross-

Entropy loss for all experiments.
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