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ABSTRACT

Few natural examples exist where climate’s influence on tectonics is clear. Based on a
study of the Sangre de Cristo Mountains in southern Colorado, we argue that climate-driven
changes in ice loads affected spatial and temporal slip patterns on the range-front normal
fault. Relict glacial features enable the reconstruction of paleoglacier extents and show
variable amounts of footwall ice coverage during the Last Glacial Maximum (LGM). Line
load models indicate post-LGM ice melting reduced fault clamping stress by ~20-55 kPa
at seismic depths. Flexural isostatic modeling shows several meters of footwall uplift due to
ice unloading with spatial patterns and magnitudes consistent with post-LGM fault throw
measured from offset Holocene and late Pleistocene alluvial fans. Post-LGM fault throw
rates are at least a factor of five higher than middle and early Pleistocene rates. We infer
that climate-modulated ice-load changes can pace fault clamping stress and slip patterns

on range-bounding normal faults.

INTRODUCTION

Geologists have long been interested in solid
earth—climate interactions (Molnar and Eng-
land, 1990; Willett, 1999). While the impact
of mountain building on climate is apparent
(Zhisheng et al., 2001; Ehlers and Poulsen,
2009), demonstrating climate’s effect on tec-
tonics remains challenging (Whipple, 2009).
Studies have explored the impact of orography
on convergent orogen kinematics with equiv-
ocal results, leading many to infer that tec-
tonic mechanisms dominate system dynamics
(Godard et al., 2014; Whipple and Gasparini,
2014). Other studies assessed the role of cli-
mate-modulated ice and water loads on fault
activity in extensional settings (Hampel and
Hetzel, 2006; Hampel et al., 2007, 2021; Larsen
etal., 2019). This work demonstrated the poten-
tial of climate-paced loading by ice and water
bodies to affect fault stress and slip rate. Dur-
ing loading, the lithosphere bends, reducing
differential stress, pushing faults further from
failure, and depressing slip rates (Figs. 1A and
1B). The reduction in differential stress occurs
because flexural stresses elevate the minimum
principal stress, o;, more so than load-induced
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increases of the maximum principal stress, o,
(Figs. 1A and 1B; Hampel and Hetzel, 2006).
When unloaded, the lithosphere rebounds, dif-
ferential stress increases, and enhanced slip is
promoted (Figs. 1A and 1B). However, the only
documented example of postglacial slip accel-
eration is the Teton normal fault (Hampel et al.,
2007, 2021).

We explored the hypothesis that deglacia-
tion of the northern Sangre de Cristo Moun-
tains (SCM) affected spatial and temporal
slip patterns on the range-front normal fault
(Fig. 1C). The SCM are ideal for this investi-
gation because (1) they are a relatively simple
normal fault-bounded range, (2) they preserve
evidence of Last Glacial Maximum (LGM)
glacial extents, (3) the active range-bounding
fault offsets Quaternary alluvial fans of vari-
ous ages, and (4) high-resolution airborne light
detection and ranging (LiDAR) data are avail-
able (Figs. 1C-1G). We used these attributes
to quantify paleoglacial ice loads and their
effect on fault clamping stress and footwall
isostatic rebound and compare results to ver-
tical fault displacement measurements. Our
findings have implications for understanding
controls on spatial and temporal patterns of
fault slip in the SCM, other glaciated normal
fault systems, and the potential for climate to
impact tectonics.

BACKGROUND

The SCM lie in the footwall of the Sangre de
Cristo normal fault, an ~60°WSW-dipping com-
posite fault system in the northern Rio Grande
rift (Fig. 1C). The SCM consists primarily of
late Paleozoic sedimentary rocks in the center
and east and Precambrian granites and gneisses
in the west, north, and south (Lindsey, 2010).
Their modern topographic expression is associ-
ated with Rio Grande rifting. Low-temperature
thermochronometry from the footwall and the
sediments in the San Luis Basin indicates that
rifting began ca. 28-25 Ma with rapid exhuma-
tion initiating between ca. 20—-10 Ma (Ricketts
etal., 2016; Abbey and Niemi, 2020). West-dip-
ping faults in the San Luis Basin accommodate
~8.2-9.2 km of total displacement (Kluth and
Schaftenaar, 1994), and the range-front fault oft-
sets Quaternary alluvial fans (Figs. 1F and 1G;
McCalpin, 1982).

The SCM were glaciated during the Quater-
nary, carving deep U-shape valleys and leaving
evidence of LGM ice extents as moraines and
trimlines (Figs. 1C—-1E). Glaciation peaked at ca.
21-17 ka, deglaciation was rapid between ca. 16
and 14 ka, and modern glaciers are absent today
(Refsnider et al., 2009; Leonard et al., 2017,
2023). Quaternary climate change paced both
glaciations and alluvial-fan sedimentation; it is
inferred that fans formed during cooler intervals
(McCalpin, 1982; Ruleman and Brandt, 2021).
Primarily based on relative soil development,
sedimentologic characteristics, and surface
roughness, fans have been assigned to broad age
classifications that we adopt here (Ruleman and
Brandt, 2021).

Alluvial fans offset by the Sangre de Cristo
fault show variable displacement along strike.
Trenching indicates that the number of offset-
generating earthquakes varies spatially. Radio-
carbon and luminescence dating from trenches
implies two distinct events at Major Creek at
ca. 13-8 ka and ca. 8 ka, and three events at
Carr Gulch at ca. 27.5-22.5 ka, ca. 20 ka, and
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Figure 1. (A) Conceptual models of effects of lithospheric flexure due to ice loading (left) on
fault stress in Mohr diagram (right) (after Hampel and Hetzel, 2006). During loading, flexure
reduces differential stress by increasing ¢, relative to ¢,, pushing fault away from failure, and
opposite occurs during unloading. t; and t, are shear and normal stress, respectively. (B)
Schematic fault-slip variations for system with (blue) and without (orange) changing ice loads.
(C) Satellite map of Sangre de Cristo Mountains (SCM) with black line showing bounding faulit.
Inset map (top left) shows location of SCM (green box) in context of Rio Grande rift faults (gray
lines); CO—Colorado; NM—New Mexico. Inset photos are from drainage just north of Crestone,
Colorado. (D) Google Earth™ image showing glacial features. (E) Perspective view showing
terminal moraines (view from green eye in C). (F) Hillshade image showing Quaternary fault
scarp (location is purple box in C). (G) Field photo of fault scarp in alluvium north of Crestone.

ca. 8 ka (Fig. 1C; McCalpin, 1982; McCalpin
and Kirkham, 2006). Estimated earthquake
recurrence intervals are 5-50 k.y., and Qua-
ternary slip rates are <0.2 mm yr~' (McCal-

pin, 1982; McCalpin et al., 2011). These values
are on the lower end of long-term horizontal
extension rates estimated for the northern Rio
Grande rift (0.1-1.5 mm yr'; Murray et al.,

2019) and San Luis Basin (0.1-1.1 mm yr;
van Wijk et al., 2018).

METHODS
Ice Reconstruction

We reconstructed LGM ice extent using the
paleoglacier reconstruction (GLaRe) model (Pel-
litero et al., 2016). GLaRe approximates an equi-
librium glacial valley profile along the flow center-
line using plastic rheology, local valley slope, and
ice density, assuming a basal shear stress of 100
kPa and a shape factor related to valley cross-sec-
tional geometry (see Supplemental Material for
details'). We implemented GlaRe in Matlab, build-
ing on TopoToolbox (Schwanghart and Scherler,
2014). We identified glacial valleys on the east
and west sides of the SCM from topographic data
and satellite imagery (Figs. 1D and 1E) and used
TopoToolbox to select glacial valley centerlines.
For each valley, we defined the lower boundary
condition as the intersection of the centerline and
terminal moraines where preserved and the transi-
tion from U-shaped to V-shaped valley elsewhere.
We calculated glacial centerline heights and inter-
polated them to valley walls to approximate a two-
dimensional (2-D) glacial surface. We iteratively
adjusted the shape factor in each valley until there
was correspondence between the modeled glacial
surface and lateral moraines and trimlines.

Stress Modeling

We explored the impact of ice unloading on
range-front fault clamping stress using a one-
dimensional (1-D) line load model (Jaeger et al.,
2007; see Supplemental Material for details).
This model assumes an elastic half-space to pre-
dict stress change on a fault of a given dip strik-
ing perpendicular to the load. Ice-load thick-
ness and extent perpendicular to the fault were
estimated based on 5-km-wide swath profiles of
the ice reconstructions, which we used to deter-
mine the line load based on the average load
thickness and width, assuming typical glacial
ice density. We modeled stress change resolved
onto the trace of a 60°W-dipping fault, which
was converted to unclamping stress assuming
Coulomb failure and a coefficient of friction of
0.6 (Gallen and Thigpen, 2018).

Flexural Isostasy

We modeled the flexural-isostatic response
to ice unloading using a 2-D infinite elastic plate
model (Watts, 2001). The ice-load magnitude and
extent, assumed ice and mantle densities (920 km
m~ and 3300 km m, respectively), and the litho-
spheric rigidity, approximated by the effective elas-
tic thickness, 7, determined the isostatic response.

!Supplemental Material. Extended methods, sup-
plemental figures, and supporting citations. Please
visit https://doi.org/10.1130/GEOL.S.27473175 to
access the supplemental material; contact editing@
geosociety.org with any questions.
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Figure 2. (A) Ice reconstructions over hillside image with mapped fault (black line) and locations of panels B and C and swath profiles in D. (B)
Perspective view of ice reconstructions. (C) Zoom-in of ice reconstructions in central Sangre de Cristo Mountains (SCM). (D) Left panel shows
swath profiles of change in ice load and simplified line load approximations with reference to fault surface trace (green line) and assumed
fault geometry. Right panel shows unclamping magnitudes resolved along assumed fault.

We assumed a 7, of 5 km and 2 km based on a
regional analysis of topographic deflections along
the northern Rio Grande rift (Peterson and Roy,
2005) and our analysis of footwall deflection in
the SCM, respectively (see Supplemental Mate-
rial for details). To approximate a broken plate,
we mirrored the load across the fault, calculated
flexure on both sides, and removed the response on
the hanging wall. This approximation mimics 1-D
broken plate flexure in the middle of the fault while
accounting for along-strike lithospheric rigidity
away from the fault center.

Fault Mapping and Scarp Offsets

We used 1-m-resolution bare-earth LIDAR
data to map the surface expression of the Sangre
de Cristo fault at the 1:4,400 scale (see Supple-
mental Material for details). Mapped fault traces
were based on inspection of the LIiDAR data and
topographic derivatives (e.g., hillshade, slope,
and curvature). To quantify vertical scarp offset,
we extracted 579 topographic profiles perpen-
dicular to the local fault strike. Nearly all profiles
were simple steps, allowing projections of linear
regression above and below scarps to determine
the vertical offset. From these measurements,
we calculated the vertical separation by consid-
ering fan slope and fault dip to more accurately
determine throw (see Supplemental Material for
details; Caskey, 1995; Hampel et al., 2021).

Most fault scarps cut Quaternary alluvial
fans, enabling approximation of the time scale
over which vertical fault displacement accrued.
We classified alluvial fans into three age groups
based on the best available maps of the area
(1:75,000 scale) and ages inferred by Ruleman

and Brandt (2021): early-to-middle Pleistocene
(2588-129 ka), late Pleistocene (129-11.7 ka),
and Holocene (<11.7 ka). We also included off-
sets in bedrock and assumed they record dis-
placement since at least the early Pleistocene
(2588-788 ka). The coarse scale of the alluvial-
fan mapping and age associations contributed
this study’s largest source of uncertainty.

RESULTS

The paleoglacier reconstructions show that
glaciation affected three higher-elevation sec-
tions of the SCM, separated by two unglaciated
segments (Figs. 2A—2C). Modeled ice loads are
62 £ 42 m (p £ 1o) thick. Our ice reconstructions
in the Blanca Massif are consistent with sophisti-
cated models that consider climate and hydrologi-
cal mass balance, giving confidence in our recon-
structions (Brugger et al., 2021). Swath profiles
extracted from the glaciated sections indicate ice
loads were ~50-70 m thick and ~5-15 km wide
(Fig. 2D). Line load models of the ice unload-
ing suggest that deglaciation reduced downdip
fault clamping stress by ~20-55 kPa at depths
of ~8-15 km (Fig. 2D). Flexural isostatic deflec-
tion is greatest at the fault center, with maximum
values of ~3-5 m, depending on assumed 7, and
taper to the fault tips (Figs. 3A and 3B). A second-
order, shorter-wavelength deflection pattern shows
local highs in glacial segments, with the higher 7,
models exhibiting a smoother deflection pattern
(Figs. 2A, 3A, and 3B).

Fault mapping shows a composite fault sys-
tem with a relatively simple large-scale geometry
(Figs. 1C and 3C), with one exception: a series
of faults, known as the “Villa Grove Swarm”
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between Carr Gulch and Major Creek, which
strike NW away from the main fault trace at a
relay zone (Fig. 1C). Fault throw ranges between
~0.66 and 35m (6.1 + 5.2 m, p & 1o), with
higher throw in the center of formerly glaciated
segments and the highest offsets in the center of
the range (Figs. 3D and 4A). We calculated time-
averaged throw rates for scarps in Quaternary allu-
vial fans. To be conservative, we used maximum
age estimates for Holocene rates and minimum
ages for middle (-to-early) Pleistocene rates; we
assumed late Pleistocene fans were abandoned
during the LGM at ca. 25 ka. We included bed-
rock offsets and conservatively assumed that they
record displacement since at least the early Pleis-
tocene. Rates are faster for shorter integrated time
scales, with median (+75th/-25th percentiles)
Holocene rates of 0.316 (4-0.256/-0.082) mm yr!
and late, middle, and early Pleistocene rates of
0.168 (+0.129/-0.068), 0.034 (+0.028/-0.015),
and 0.008 (4+0.003/-0.003) mm yr', respectively
(Fig. 4B).

DISCUSSION AND CONCLUSIONS
Modeling shows LGM deglaciation of the
SCM reduced range-front fault clamping stress by
~20-55 kPa at depths where most seismic activity
is observed today (Fig. 2D; Bell, 2020). Flexural
isostatic rebound at the fault trace approximates
fault-scarp throw magnitudes and along-strike
patterns, where the low 7., models closely mimic
postglacial (Holocene and late Pleistocene) throw
(Fig. 4A). Postglacial throw rates are conserva-
tively estimated to be at least a factor of five higher
than middle and early Pleistocene rates (Fig. 4B).
These results are compelling evidence that ice
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Figure 3. (A, B) Flexural isostatic rebound for different effective elastic thickness (T.) values,
with locations of 597 profiles used to calculate scarp offset colored by Quaternary unit age
from Ruleman and Brandt (2021) (see Supplemental Material for details [see text footnote 1]).
Note early Pleistocene is in quotes because measurements are from scarps in bedrock, which
are assumed to be at least this old. Dashed black line is used to project fault-scarp offset and
flexural results across range shown in Figure 4. (C) Zoom-in of mapped fault and alluvial fans
(Ruleman and Brandt, 2021) near Major Creek (location shown by purple box in A and B). (D)
Typical scarp profile (black line) and linear regression projections (dashed blue lines) + 16
(blue shading) used to determine scarp vertical separation, from which vertical fault offset
was calculated after Caskey (1995), as detailed in Supplemental Material.

melting in the SCM affected the spatial and tem-
poral patterns of fault stress and slip.

It might be argued that fault segments with
the highest long-term slip rates produce the
highest topography and are more likely to be
occupied by glaciers, so the correspondence
between high throw rates and glaciers is coin-

cidental. However, this argument does not mean
glaciers do not modulate fault stress and activity,
and it is difficult to explain the increase in slip
rates over shorter integrated time scales in this
context (Fig. 4B). Enhanced post-LGM rates
could be a “Sadler effect” (Sadler, 1981), yet
short-term perturbations to a long-term aver-

age produce the Sadler effect (Fig. 1B; Nicol
et al., 2009). When fault-slip rate varies about
along-term average, short-term rates are a func-
tion of the integration time scale and whether
one measures the rate during a slow-slip or
rapid-slip phase (Fig. 1B). Thus, the increase
in throw rate determined here is likely due to
actual post-LGM fault-slip-rate acceleration.
Our results suggest that deglaciation of the
SCM unclamped the Sangre de Cristo fault and
affected spatial and temporal slip patterns. Long-
term tectonic extension dominates spatial and
temporal slip patterns, but our results support the
notion that climate, via glacial advance and retreat,
can affect fault-slip variability, implying that
earthquakes can be clustered in space and time.
Differential stress drops on faults when loaded,
allowing more elastic strain accumulation dur-
ing glaciation due to slow, persistent tectonically
driven extension. When ice melts, differential
stress increases, allowing accelerated postglacial
fault-slip and earthquake activity (Hampel and
Hetzel, 2006; Hampel et al., 2007, 2021). This
interpretation emphasizes that climate-driven
hydrologic cycle perturbations should be consid-
ered when interpreting fault-slip and earthquake
recurrence interval data. It is possible that tectoni-
cally active regions experiencing rapid changes
in ice and water loads due to recent and ongoing
climate change could experience elevated fault
activity due to changing boundary conditions.
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Extended Methods:
Ice reconstructions

Quantifying the load on the Sangre de Cristo Mountains due to glaciers required reconstruction of
glacial extents in the drainage basins affected by glaciers. Based on the basin geometries left
behind by glacial erosion, it is clear that the alpine glaciers that inhabited the valleys had large
asymmetries between the east and west sides of the range. On the east side of the range, the
glaciers tend to be consistently narrow and linear, whereas, on the west side, the glaciers have
more varying geometries and tend to cover more area.

The glacial extent reconstruction process was adapted from the equations and workflow in the
Pellitero et al. (2016) ArcMap-based GlaRe toolbox (Figure S1). This toolbox allows the user to
recreate the 3D surface of a land-terminating paleo-glacier by calculating ice thickness along the
main flow lines of the glacier. Using a DEM of the modern topography for the bed slope, a user-
defined input for the terminus of the glacier, and a user-defined input identifying the channel head
locations, GlaRe uses a derivation of the shear stress equation:

T = pgHsin(a) (1)

where Tis the basal shear stress, p is the density of glacial ice, g is the acceleration due to gravity, H
is the thickness of the glacier in meters, and ais the surface slope of the glacier. The derivation of
this equation to calculate glacier height, H, at nodes spaced along the main channel of the glacier,
GlaRe utilizes an iterative process put forth by Shilling and Hollin (1981):

Tay AX

hive =hi + 20

(2)

where h is the elevation of the glacier surface, i is the node number moving up valley from the
terminus node, iteration number, 7., is the basal shear stress, F is the shape factor, and Ax is the
length between nodes to recreate a one-dimensional representation of the glacier profile. Ice
typically cannot tolerate shear stresses exceeding 150 kPa, but will not deform under stresses less
than 50 kPa, therefore, an average of 100 kPa was used for each glacial reconstruction presented
here (Pierce, 1979; Bennett and Glasser, 2010; Pellitero et al., 2016). The shape factor, F, was
designed to account for the lateral drag that valley glaciers encounter. The shape factor is
calculated by the following equation by Benn and Hulton (2010):

F= @)
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where A is the cross-sectional area, and p is the length of the intersection of the cross-sectional
area and the underlying glacier bed. The F-factor decreases with increasing constriction, therefore,
an F-factor of 1 is best suited to an ice field or an ice cap, which is nhot constrained by the
topography, whereas valley glacier F-factors can vary between 0.7-0.9 (Jiskoot, 2011) (Figure S2). In
the reconstructions for this work, the F-factor values were constrained by both erosional and
depositional evidence observed in satellite and lidar imagery.

We coded these equations in Matlab and used them in tandem with TopoToolbox v2 (Schwanghart
and Scherler, 2014) functions to reconstruct glacier profiles for every drainage that had
depositional and/or erosional evidence of glaciation (Figures 1, 2, S1). With the glacial profiles and
topographic constraints, we interpolated a two-dimensional glacial ice surface using standard
griddata and meshgrid Matlab functions (Figure S1). Glacier termini were approximated using
preserved terminal moraines where available or alternatively locations where the valley
morphology changes from U-shaped to V-shaped. In total, 24 glacial reconstructions were
completed for the west side, and 34 glacial reconstructions were completed for the east side
(Figure 2).

Stress modeling

We quantified the amount of stress along the dipping fault trace due to the various removal ice
loads by utilizing an analytical line load model (Jaeger et al., 2007). The two-dimensional stress
components Ty, and T,, at a given point caused by a distributed line load N, referenced to the 6,
and 8, angles from the load edges (measured clockwise from the positive x direction, z is the
positive downward direction) (Figure S3):

No

Txx = ra [(61 — 62) + sin(6; — 6;) cos (61 + 6,)] (4)
Tpr = 3201 — 62) —sin(8; — 62) cos (6, + 6,)] (5)
Tyr = 5= [sin(8; — 6;) sin (61 + 6)] (6)

where a is half of the width of the load. The shear stress, 75, and normal stress, T,,, elements on the
fault plane can then be solved for, with dip angle ¢ on a strike perpendicular to the xz plane (Figure
S3):

Ts = (Tzz — Txx) sin(g) cos(e) + sz(cosz((p) — sin? (9)) (7)
Tn = TZZCOSZ((p) — 2T,,sin(¢) cos(p) + Txxsm'2 () (8)

If a line perpendicular to the general strike of the Sangre de Cristo fault is chosen, we can calculate
the unclamping stress on the fault by assuming a dip angle of 60° for the fault if the coefficient of
friction, pore-fluid pressure, and cohesion do not vary significantly over time:

Ao, = Altg| + uArt, 9)

where Ag, is the change in Coulomb stress (termed the unclamping stress), and u is the coefficient
of friction. Using techniques put forth by Jaeger et al. (2007) and Amos et al. (2014), we can model
the stress changes with line load distributions reproducing the elastic response of the lithosphere
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to the various loads (Figure S3). We calculate the change in stress in four different glaciated
sections of the Sangre de Cristo Mountains resolved onto a 60° west-dipping fault plane. We are
most interested in stress change at depths between 8 and 15 km because previous studies
estimate this depth range is where most historic earthquake nucleation occurs in Basin and Range
(Doser and Smith, 1989) and near the Blanca Massif (Bell, 2020).

Flexural Isostasy

The objective for the flexural isostasy modeling was to estimate the expected deflection of the
lithosphere in response to the removal of the eroded loads (both the maximum and the minimum to
provide the upper and lower bounds) from the footwall, the removal of the glacial load from the
footwall, and the addition of the depositional load on the hanging wall. We chose an elastic model
as opposed to a viscoelastic model for the isostatic response estimations to simplify the
calculation and retain similar assumptions between the isostasy model and the line load stress
modeling. For the erosional unloading, the viscous relaxation time for the asthenosphere is well
within the timeline of erosion of the footwall and deposition of the hanging wall (~10 yrs), so the
elastic model is appropriate over these longer timescales. However, we acknowledge that the
glacial unloading period is closer to the asthenospheric viscous relaxation timescale, and thus
interpret my ice unloading isostatic rebound estimates as maximum deflection estimates.

We used a 2D infinite plate elastic half-space model to simulate the flexural isostatic response to a
surface load change as (Watts, 2001):

d*w
dx*

q=D

+ Apgw (10)

where g is the surface load, D is the lithospheric rigidity, w is the vertical plate deflection, Ap is the
difference between the mantle density and the eroded material density, and g is the acceleration
due to gravity. The D parameter is solved by (Watts, 2001):

_ ETS?
(1-v?)

(11)

We solved the modelin the spectral domain, using inverse and forward Fourier Transforms to
alternate between the spatial and spectral domains.

We used a locally calibrated effective thickness, T., of 5 km from the gravity and flexure modeling
work of Peterson and Roy (2005) and assumed spatially consistent T.across the study area. We
attempted independently calibrating effective elastic thicknesses for this work by fitting the pattern
of footwall topography using a broken-plate flexural approximation, but, through both brute force
and Bayesian inversion techniques, we found T, values (~2 km) (Figure S4). This effective elastic
thickness is low but comparable to values reported in several other extensional settings (Armijo et
al., 1996; Goren et al., 2014; Gallen and Fernandez-Blanco, 2021). The other inputs into the flexural
isostatic model are a mantle density of 3300 kg m™®, a glacial ice density of 920 kg m=3, a Young’s
modulus of 70 GPa, and a Poisson’s ratio of 0.25. Flexural response modeling was completed using
Matlab functions after Gallen and Thigpen (2018). To ensure that the model result is not affected by
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edge effects, we extended the model domain approximately 60 km NW of the study area, ~80 km SE
of the study area, and 95 km on either side of the fault.

To mimic a broken plate segment for the fault, we modeled loads on either side of the fault
independently and did not allow the flexural signal from nodes on one side of the fault to
communicate to nodes on the other side of the fault. This is similar to Foster et al.'s (2010)
approach, but we additionally mirrored each load on either side of the fault (Figure S5). By doing
this, edge effects at the fault location are eliminated, which erroneously dampens the deflection at
the fault (Figure S4). While imperfect, this model design enables a reasonable approach to simulate
the broken segment of the plate. This procedure was done by importing each reconstructed load as
araster into ArcGIS and then creating duplicates of each raster to manipulate its placementin a
mirrored reflection across the regional orientation of the Sangre de Cristo fault. Using the Mirror,
Rotate, and Shift tools in ArcGIS, we created a reflected raster of each load across the fault, then
used the Mosaic to New Raster tool to merge the minored load with the original load, resulting in a
combined raster with both the original and reflected data. This raster was input into the isostasy
model, and we only recorded the flexural response on the side of the fault with the original load.
This approach serves to eliminate the rounding that occurs when the load is not mirrored (Figure
S5A,B), creating a discontinuous boundary that is expected for a normal fault (Figure S5C,D).

Fault Mapping and Scarp Offsets

We mapped the fault at the 1:4,400 scale utilizing the USGS 3DEP lidar product, which was available
at a 1 m-resolution for the study area. We additionally created hillslope, slope, and curvature maps
to further enhance any signature of a fault scarp not visible solely through the lidar. Each identified
fault strand was mapped in ArcGIS Pro, and given seven attributes: an identifier, a type (fault or
lineament), an origin (tectonic, fluvial, questionable), identification confidence (certain,
questionable, uncertain), measurability (measurable or unmeasurable), mapping confidence
(certain, inferred, concealed), and any relevant notes (such as fluvially or anthropogenically
modified). In total, 980 fault strands were identified throughout the mapping process, including the
Villa Grove Fault Zone group of fault scarps (Figures 1C, 2A, & 3C).

We conducted two field surveys in August and October of 2022 to determine if using a kinematic GPS
would further refine the fault scarp profiles. We completed 27 transects across 14 scarps in August.
When reviewing the data, it was clear that due to the increased vegetation in the central and southern
parts of the study area, the high-resolution kinematic GPS could not adequately penetrate the
vegetative cover, resulting in erroneous transect data (Figure S6). To further determine the accuracy
of this reasoning, we conducted a follow-up field visitin October to verify that vegetation was causing
issues and not human error. During this excursion, we completed 14 transects across 7 scarps.
Based on the results from this field excursion, it was clear that the vegetation was inhibiting the
accuracy of the readings and that this method of data collection would not be as accurate as using
the USGS 3DEP LiDAR data. Although this was a helpful set of trips to the field site to get a sense of
the size of the scarps and the state of diffusion (e.g. degradation), they exhibited, this method did not
produce fruitful results for the purposes of this analysis.
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We developed a Matlab tool to measure the fault offsets along perpendicular profiles in the 1 m
LiDAR data (Figure S7). The tool allows us to first load in the raster of the area of interest and draw
transect profiles normal to the fault scarp strike. With the profile drawn, we fit linear regressions
through the upper and lower ramps of the scarp, then identify the midpoint of the scarp to calculate
the vertical separation at that point with 95% uncertainty. After the vertical separation is calculated,
the user can input a quality ranking. We used a scale of 1-5 to rank the quality of the offset
measurements recorded. The tool saves the location data, offset data, quality ranking, and linear
regression data into an Excel file. We only used offset data that were ranked a 4 or 5 for the quality
ranking to ensure only the most accurate data were used. The final dataset for the analysis of the
fault scarp offset included 579 profiles on 180 individual fault scarps.

We convert scarp vertical separation, 4z, to scarp offset, S,, following Caskey (1995). This
calculation uses the surface slope of the alluvial fan, Hf, and fault dip angle, §, to make a geometric
correction to more accurately calculate fault throw, where scarp offset is a proxy for throw (Figure
S8):

Az

Sz = (1-coté8 tanfy)

(11).

As shown by Hampel et al. (2021), this correction becomes more important for fans with high surface
slopes. For this calculation, we measure 4z and Bf and associated one standard deviation
uncertainties from each topographic profile extracted from the lidar (e.g., Figure 3D), and we assume
arange of fault dips from 55° to 65°. We calculate S, and propagate uncertainties in all measured and
assumed values using a Monte Carlo routine.

To associate the age of the fault scarps, we assigned each fault scarp to the mapped alluvial fan it
cuts, as mapped by Ruleman and Brandt (2021) (Figure 3C). This map specifies the surficial geology
at a scale of 1:75,000, which is considerably larger than the scale of the fault mapping, which could
introduce a degree of inaccuracy in the age estimates. Although the scale is notideal for this analysis,
this is the most accurate and up-to-date map of the area at the time of this research. The relevant
units for the purposes of this study included: Qa, Qac, and Qls units that spanned the Holocene (0 -
11.7 ka); Qai, Qay, Qtb, and Qtp, units that were associated with the late Pleistocene (11.7 - 129 ka)
and late-to-mid Pleistocene (11.7 — 744 ka); Qao, Qao2, Qao3, and Qtpb units that were associated
with mid-Pleistocene (129 ka - 774 ka) and mid-to-early Pleistocene (129 - 2588 ka); and R
(undifferentiated bedrock) that we assume represent offset since at least the early Pleistocene (744
— 2588 ka). To calculate conservative estimates of fault slip rates, we divided the average offset
maghnitudes by the age associated with the alluvial unit in which the fault scarp was mapped. We
used 11.7 ka for faults found in Holocene units, 25 ka for the late Pleistocene, as it is assumed they
were last active during the LGM, and late-to-mid Pleistocene offsets, 129 ka for mid-Pleistocene and
mid-to-early-Pleistocene offsets, and 774 ka for the early Pleistocene offsets assumed in the
bedrock. These values were chosen to estimate the slowest possible rates for the Holocene and
compare them to the highest possible rates for the Middle and Middle-to-Early Pleistocene to
conservatively explore the idea of faster slip during the postglacial period (i.e., post-LGM).
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187 Figure S1: Schematic showing simplified glacial extent reconstruction via GlaRe process in tandem
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189 rationale, see supplementary figure S2.
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blue lines indicating glacier elevation and black lines indicating modern topography in right
columns.
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Figure S6: Comparison of scarp profile processes with Hot Springs Creek (A) as a less heavily
vegetated scarp and Cotton Creek (D) as a more heavily vegetated scarp. (B) Scarp profile near Hot
Springs Creek with the kinematic GPS profile taken in the field and (C) the 1 m-resolution 3DEP
digital elevation model profile done in Matlab. (E) Scarp profile near Cotton Creek with the
kinematic GPS profile taken in the field and (F) the Tm-resolution 3DEP digital elevation model

profile done in Matlab.
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Figure S7: Example of offset measuring tool. Background: DEM overview map showing selected
profiles for a round of profile measurements. Inset: scarp profile example with linear regressions on
upper and lower ramps of scarp, midpoint selected at the center of the scarp, and the offset
calculation with uncertainty shaded.
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Figure S8: A scarp topographic profile from the Sangre de Cristo Mountains (black line) with fan
slope, 8¢, regressions above and below fault scarp (dashed blue lines). The orange line with arrows
shows the measured scarp vertical separation, 4z. A fault of a given dip, §, is schematically shown
as the purple line. This schematic (after Caskey, 1995 and Hampel et al., 2021) shows that a
geometric correction is needed to accurately determine the fault vertical offset, S,, which best
approximates fault throw (Eq. 11).
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