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Abstract—In this paper, we study the problem of constructing
projective systematic authentication schemes based on binary
linear codes. In systematic authentication, a tag for authentication
is generated and then appended to the information, also referred
to as the source, to be sent from the sender. Existing approaches
to leverage projective constructions focus primarily on codes over
large alphabets, and the projection is simply into one single
symbol of the codeword. In this work, we extend the projective
construction and propose a general projection process in which
the source, which is mapped to a higher dimensional codeword in
a given code, is first projected to a lower dimensional vector. The
resulting vector is then masked to generate the tag. To showcase
the new method, we focus on leveraging binary linear codes
and, in particular, Reed-Muller (RM) codes for the proposed
projective construction. More specifically, we propose systematic
authentication schemes based on RM codes, referred to as RM-A-
codes. We provide analytical results for probabilities of deception,
widely considered as the main metrics to evaluate the performance
of authentication systems. Through our analysis, we discover and
discuss explicit connections between the probabilities of deception
and various properties of RM codes.

I. INTRODUCTION

With the rapid expansion of wireless networks, the need
for providing message integrity and authenticity has become
increasingly crucial, and is widely regarded as one of the
major goals of cryptography systems [[1]. Authentication codes
were first introduced in [2]]. A theoretical framework for
authentication was then introduced by Simmons [3]], which
considers an unconditionally secure authentication system, i.e.,
where the adversary may have unlimited computational power.

A conventional authentication system involves three parties:
a sender who sends a message, a receiver who is the intended
recipient of the message, and an adversary who attempts
to attack by either impersonating the sender and inserting a
message into the channel, or substituting an intercepted message
with a fraudulent one. These two types of attacks are termed the
impersonation attack and the substitution attack, respectively.
The communication is assumed to take place over a public
channel. To protect the system from the aforementioned attacks,
the sender and the receiver utilize a shared secret key, known
only to them, which is then used in the encoding rule of the
underlying authentication code. The probabilities of successful
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impersonation and substitution attacks by the adversary are the
probabilities of deception, which are considered to evaluate
the performance of the authentication system.

A vast body of work is dedicated to designing authentication
codes with various methodologies and under various constraints.
Some of the major approaches to this problem include geo-
metric codes [4]], [5], nonlinear functions [6]—[8]], algebraic
constructions [[9]-[11]], and error-correcting codes [12]]—[|17]].
In this work, we focus on authentication codes without
secrecy, which are also known as systematic authentication
codes, constructed via error-correcting codes using a projective
construction [I5]-[17]. In systematic authentication codes,
a message is sent from the sender to the receiver through
the public channel, including the source state (i.e., plaintext),
appended with a tag. The tag is generated by an encoding rule
from a shared secret key between the sender and the receiver.
The projective constructions proposed in prior works [15]-
[17], are specifically for codes over rather large underlying
alphabets, and the projection is simply into one single symbol
of the codeword.

In this paper, we extend upon the projective authentication
methods and consider a general notion of projecting higher
dimensional codewords generated by a specific error-correcting
code to a lower dimensional vector, e.g., sub-blocks of
codewords. This constitutes a major building block of the
system. More specifically, the secret key is split into two
sub-parts. The first part is used to indicate the subset of
the codeword to be projected to the lower dimension, where
it is masked by the second part of the key. In order to
showcase the proposed scheme, we focus on designing new
projective authentication codes based on binary linear codes,
and in particular, Reed-Muller (RM) codes, referred to as
RM-A-codes. The main motivation behind this choice is to
demonstrate that the already existing physical layer blocks for
binary error correction can be leveraged for authentication as
well, leading to potential solutions for low-complexity low-
cost communication devices in massive networks, such as in
Internet-of-Things (IoT) networks. RM codes are one of the
oldest families of codes, which have received renewed attention
in recent years due to their capacity-achieving properties
[18]], [[19] as well as their excellent performance in short
blocklengths [20]-[22]. We demonstrate that RM codes are
a perfect fit as a building block for the proposed systematic
authentication based on binary linear codes, and present closed-
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Fig. 1: Systematic authentication system
form expressions for the probability of success of attacks by
an adversary in the considered authentication system. As for Adversary Adversary
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The rest of the paper is structured as follows. In Section |1 Public Public
Channel Channel

we provide the preliminaries of systematic authentication codes.
In Section [lII} we present the proposed projective constructions.
We then analyze the theoretical results for our proposed
construction in Section [[V] Finally, we conclude the paper
in Section [Vl

II. PRELIMINARIES
A. Systematic authentication codes

The systematic authentication code is defined as a four-tuple
(S, T,K,{& : k € K}), where S is the source space, T is
the tag space, K is the key space, and & : S — T is the
encoding rule. During the authentication phase, which may
happen only once at the beginning of the communication or
at the beginning of every new round of communication, the
sender first generates a source s € S. Then given the secretly
shared key k between the sender and the receiver, the encoding
rule & : S — T generates a tag t = Ex(s) € T. The message
m € M =S5 x T sent from the sender to the receiver is then
denoted by the concatenation of s and t as m = [s, t]. When
the receiver receives a message (which includes a source vector
and a tag vector), it checks the authenticity by verifying whether
the received tag can be generated from the secretly shared key
k through the encoding rule & : S — T or not. If yes, the
receiver accepts the received message; otherwise, the receiver
discards it. We summarize the systematic authentication system
in Fig. [T} Note that we will specify the dimension for each of
the underlying vectors in the next section when we formally
propose our construction.

The adversary is assumed to have the ability to insert
messages into the public channel and/or to intercept messages
that are sent over the public channel and to modify them. Two
types of attacks are often considered in the authentication
systems, referred to as the impersonation attack and the
substitution attack. An impersonation attack occurs when the
adversary inserts a new message m’ = [s/, t'] into the public
channel, see Fig.[2al A substitution attack is when the adversary
observes a message m = [s, t] that exists in the public channel,
intercepts it, then inserts a new message m’ = [s’,t/] into the
channel, where s’ # s, this attack is demonstrated in Fig.

(a) Impersonation attack (b) Substitution attack

Fig. 2: Two types of attacks

The security guarantees of the system are measured in terms of
the adversary’s probability of success with respect to each of
the attacks. The probabilities of success for the impersonation
and the substitution attacks by the adversary are denoted by
Pr and Ps, respectively. These quantities are defined more
explicitly in the next subsection.

B. Probability of deception

The probability of success of the impersonation attack is
denoted by P and defined as

P :=max P([¢, t] valid), (D
st/

where
{k € K:t' = &(s)}]
[{k € £}

Note that this probability is with respect to the space of all
possible keys under a uniform distribution.

The probability of success of the substitution attack is
denoted by Ps and defined as

P([s',t] valid) =

Ps := max max P([s’,t] valid | [s, t] observed),
s,t s/#s,t/

@

Hk <k :'felf(ss%}‘

H{k € K:t=¢&(s)

where

P([s’, t'] valid | [s, t] observed) = i
3
In this analysis, it is assumed that both the key and the source
state are from uniform distributions on the key space and the
source space, respectively.
It is shown in [23] that we have Py > P, > ‘—71_| The
core design criterion for constructing a good systematic



authentication code is minimizing the probabilities of deception
P and Ps.

C. RM codes: A brief overview

An RM code [20] is denoted by RM(m, ), where m is
a positive integer that defines the blocklength of the code
as n = 2™, r is termed as the order of the code with r €
{0,1,...,m}, which determines the dimension of the code as
i (). Note that RM(m, r) generates a (2, >";_, ())-
code. The resulting generator matrix G is constructed by

G,
G=|":

Gy
Golsr, (7)xan
where G is an all-one vector with n entries, G is a matrix
of dimension m X n that each column vector is a unique m-bit
binary vector, and G; is an (T) X n matrix that each row is
constructed by an entry-wise product of a distinct set of j rows
from G, for j € {2,3,...,r}. Thus, G has }_|_ (") rows,
with a minimum distance of 2™~".

Note also that the last row of each of the G;’s, for
i €{1,2,...,r}, are in the form of [1ym-i,0,_gm-:]. Such
vectors, consisting of two separate sub-blocks of all-ones and
all-zeros, play a critical role in the analysis of the probability
of success for the substitution attacks. This is an advantage of
employing RM-A-codes, where the set of such codewords is
exactly known and can be characterized.

III. THE PROPOSED RM-A-CODES

First, recall a systematic authentication code, defined in
Section A, as a four-tuple (S,7,K,{& : k € K}). We
define the proposed projective construction based on RM codes,
referred to as RM-A-codes, as follows:

Definition 1 (RM-A-codes). Consider the source s € S =
{0,1}M, tag t € T = {0,1}!, and let the key k € K to be
a concatenation of two keys k; € K1 C {0,1}" and ko €
K2 = {0,1}, such that k = [ki,ks] € K = K1 x Ka, for
some positive integers n, M, [ with n > M > [. More details
on /C; are discussed later in Remark [I| The tag t is defined as
t = &k(s) = cs k, + ko, where cg i, is a vector selected as a
subset of [ entries from the entries of the codeword cs with
the indices determined by k;, cs is a codeword encoded from
the source s € {0,1}* as a subset of the information input
u € {0, 1}25:0 (T), such that u = [02: o (T)-m-1>
(n, >, ("))-code from RM(m, r) with a generator matrix

i

G, where M < Y7 o (") and n = 2™, such that ¢s = uG.

s, 0], for a

Remark 1. The key k; is a length-n binary vector with a
weight of [, i.e., containing [ ones, where the indices of ones
indicate the indices of the selected [ entries from cg to construct
Csk,- Thus, given a systematic authentication code, we have
IK1| = (7). Note that we may reduce the length of k; to

[logy [K1 [T = [log, (7)1

To generate cs given s and G from RM(m,r) in @), one
needs to specify u. To this end, we start by presenting the
following lemmas.

Lemma 1. Given a generator matrix G from RM(m,r), we
have cs +cy = 1,, when u = s and 0’ = s’, where cs = uG
and cg = 0'G, if s and s' are binary vectors that differ only
in the last entry (referred to as neighboring vectors).

Proof. Let u = [uy,us,... YUy ()1 0] and u =
[u1, ug, . .. YUy (7)1 1] to be a pair of binary neighboring
vectors. Then we have

cs+cg =uG+u'G = (u+u')G = [OZLO (7)1 1]G. (5)

Equivalently, cs + ¢y is equal to the last row in G, which is
the all-one vector according to (). [

The next lemma demonstrates that using plain RM codes
results in the probability of success for the substitution attack
being one. Hence, we will modify the structure by considering
sub-codes of RM codes, i.e., by letting s be a sub-vector of u
while the remaining entries of u are fixed to zeros. This will
be clarified later.

Lemma 2. For any codeword cs, the adversary can pick cg,
where s,s8' € S, with ¢cs + ¢y = 1, resulting in Ps = 1.

With Lemmas [T] and 2] we have the following proposition.

Proposition 3. RM-A-codes ensure Ps < 1 if we set the last
entry in u frozen to be 0.

Proof. Lemma E] indicates that we will have ¢g + ¢y = 1,,
if we do not set the last entry of u to be 0. Consequently,
Lemma [2] implies that it will lead to an authentication code
with Ps = 1, which is undesirable. Except cg, there is no
other codeword (together with a tag), that form a valid pair for
all choices of the key. Hence, removing cg results in Ps < 1.

O

Proposition [3| implies that we should set the last entry of u
frozen to be 0, since the core design criterion for constructing
a good authentication code is to minimize the probabilities of
deception and one should naturally avoid Pg = 1.

As specified by Proposition 3 with M < >0 ("), we
obtain u = [OZ::0 (m)-m1s S 0] such that ¢ = uG =
[Ogr (7)-ar10S) 0]G. To construct an RM-A-code as defined
in Definition 1, we need to determine the length of the source
M, the length of the tag I, and RM(m,r) to generate a
(2,30 (7))-code which has a blocklength n = 2. We
end this section by illustrating a toy example of RM-A-codes.
Example 1. Let M =2, =1, and choose m = 2,7 =1 to
generate a (4, 3)-code by RM(2,1). In such code, we obtain
the generator matrix as

1
G=|1 6)
1

— = O
—_ O =
_ o O



! [ co.0 [ o | epap | ¢

0, 1,
Cs,[1,07070} + [0] 0 1 1 0
Cs.,[1,0,0,0] + [1] 1 0 0 1
Cs,[O,l,O,O} + [O] 0 0 1 1
Cs,[0,1,0,0] + [1] 1 1 0 0
Cs,[0,0,1,0] T [0] 0 1 0 1
Cs,[0,0,1,0] + [1] 1 0 1 0
Cs,[0,0,0,1] T [0] 0 0 0 0
Cs,[0,0,0,1] + [1] 1 1 1 1

TABLE I: Authentication matrix for the toy example

The information input u is a length-3 vector as u = [s, 0] =
[s1, 82,0], where s = [s1, s3] € S = {[0,0],[0,1],[1,0], [1,1]}.
We obtain the codeword as ¢ = uG = [s1 + s2, s2, 51, 0].
The keys k; and ks are constructed as k; € K1 =
{[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]} and ky € Ky =
{[0],[1]}. Then, the tags can be generated from the given
key, recall that t = csx, + ko. Then, for instance, given
k; =[1,0,0,0] and ko = [0], we have t = cq [1,0,0,0) + [0] =
[s1 + s2], where cq [1,0,0,0) denotes selecting the first entry in
the codeword cs. By calculating the tags t’s over all sources
in S and all keys L = IC; x K2, we have the authentication
matrix shown in TABLE |I} Applying the definitions of the
probabilities of deception yields P = 0.5, Ps = 0.5.

This example shows a simple case for our construction. In
the next section, we analyze theoretical closed-form expressions
for P; and Ps.

IV. ANALYSIS

A. The probability of success of the impersonation attack P

The following theorem shows that the proposed scheme has
the lowest possible probability of success of the impersonation
attack, i.e., the adversary cannot do better than a random
assignment of the tag.

Theorem 4. Given an RM-A-code as defined in Definition 1,
we have

|{k cek:t = gk(S/) = C¢' Kk, +k2}| _ 1

Fr=mmax Tk e KJ] o )
Proof. Since |K1| = (7) and |Kz| = 2', we have
ke = k=6 <kl = (1) 2 @
Furthermore, with 7 = Ko, we have
Hk €K 1t/ = E(s) = cox, + Ko} = |K1| = (7) )
Thus, with () and (), we have P, = % O

B. Analysis for Ps: The probability of success of the substitu-
tion attack

The following theorem presents a simplified form for the
calculation of Pg, enabling a more efficient method for
calculating and characterizing the probability of success of

the substitution attack, with the assistance of a straightforward
linearity property that given s,s’ € S = {0,1} and a
generator matrix G from RM(m, ), we have cs+cs' = Cs g/

Theorem 5. The quantity Ps, defined in @), can be equivalently
computed as

|{k1 S K:l 1Csk, = t}|
(1)

where § € S, excluding the all-zero source vector, and teT.

Ps = max max
$A0nM ¢

(10)

Proof. We have

Ps = max max P([s',t] valid | [s, t] observed)

s,t s'#s;t
t=c k +k2
kek: s,k s
H t' = cs i, +ko
= Imax max
s,t s/#s,t/ |{k ek:t= Cs k, + k2}|

t=c k +k2
k : S ’
JeexiZomse l w

S 8
k IC ot tl = ’
— max max {ki € Ky ‘tl Cs+s’ ki }|
s,t s/#s,t’ (l)
(c) |{k1€K12£=C§7k1}|
= Inax max n )
§£A0n ¢ (l)
where (b) is by the linearity of the codes that

Csk, + Csk, = Csis' k. together with noting that
{keK:t=csx, +ko}| = (}). In (c), we let § = s + '
and t = t + t’. Note that since s # s’, we must have § # 0,
which implies cz # 0,,. O

Remark 2. Theorem E] implies that, in RM-A-codes, the
expression for Ps in (Z) involving two maximizations over
all codewords can be simplified to (I0) which involves only a
maximization over all nonzero codewords with calculating the
maximum number of appearance of the valid tags corresponding
to each codeword. Later, we show this can be even more
simplified to a search only over the values of the weight of
the codewords.

For further analysis, we define the maximum probability of
appearance of a valid tag t in a nonzero codeword cz given
the key k; as

(12)

where |{k1 el :t= c§,k1}‘ can be regarded as the number
of appearance of t in the coordinates of cg, such that, according
to Theorem [5] we have
Ps = max P;(cg).
Cs
For instance, considering Example |1| in the previous section,
a valid nonzero codeword would be cs = [1,1,0, 0] (setting
§ = [0,1]). To generate a valid tag t = [1], we have either
k; = [1,0,0,0] or k; = [0,1,0,0]. Thus, the number of



appearance of t = [1] is [{ki € K1 :t =[] =csu, }| =
I{[1,0,0,0],[0,1,0,0]}| = 2.

The following lemma presents an expression for the number
of appearances of the tag t given certain weights for both the
nonzero codeword cs and the tag t. We denote wt(-) as the
weight of a vector.

Lemma 6. For a given nonzero codeword cg with wt(cs) = w,
the number of tags t with wt(t) = w; is given by

i E :Cé,kla = w now
’{kl ISR wt(cs) = w, wt(t) = wt}‘ B <wt> (l - wt).
(13)

There exists a special case in which the nonzero codeword
cs with wt(cs) = w can be divided into two sub-blocks where
one vector is an all-one vector as 1,,, while the other one is
an all-zero vector as 0,,_,, i.e., ¢z = [Ly, 05—y ]. We analyze
the number of appearances of the tags in such special cases in
the following lemma.

Lemma 7. Given a nonzero codeword cs = |1y, 0p—yy] with

wt(cs) = w, there exists exactly one valid tag t = [14,,0;_,]
with wt(t) = wy. Furthermore, for this t we have

E = Cgk, — [11117 On—w]a
’ w n—uw
kleKltC§:[1w,0n,w],~ :(w><l—’w>
wt(cg) = w, wt(t) = wy t t

(14)
The following lemma states that the maximum P;(-) over

weight-w nonzero codewords occurs for a nonzero codeword
of the type ¢z = [14, 0,,—4], if such a codeword exists.

Lemma 8. Given a nonzero codeword cg = [1,,,0,,_,,] and an
arbitrary valid nonzero codeword cf which wt(cs) = wt(ck) =
w, we have Py(cs = [Ly, 0n—y]) > Pi(ck).

Furthermore, the following lemma helps us to further reduce
the complexity of calculating the probability of success of the
substitution attack Ps.

Lemma 9. Given ¢z = [1,,0,_y] and ¢k = [1y,0p—y],
when w' = n — w, we have P,(cs = [1y,0,—y]) = Pi(ck =
[1w’7 0n—w’])~

With Lemmas [§] and 0] we end the theoretical analysis by
presenting the theorem which demonstrates the closed-form
expression for Ps.

Theorem 10. Given an RM-A-code as defined in Definition 1,

we have N
(wt) (l—'w,,)
n 9
(7)
where the maximization is over all w, with 2% <w< % Sfor
which there exists a codeword of the form [1,,0,_,].

Ps = max max (15)

w we

Proof. Based on Lemmalg] we know that the nonzero codeword
cz with the largest P;(cg) among all valid nonzero code-
words cf with identical weights wt(cs) = wt(cl) = w is
always the nonzero codeword cz = [14,0,_,], such that
Ps = maxy, Pi(cg = [14,0,_4]). Thus, by maximizing

Pi(cz = [14,0,—y]) from choosing the weight w from all
valid nonzero codewords with [1,,,0,,_,]’s naturally meets
Py. Lemma E] indicates that, when w’ = n — w, we have
P,(cs = [1u,04—y]) = Pi(ck = [14,0n—yr]). Then, when
w =w' = %, we have cs = c. Therefore, the optimization
problem only has to consider w < 5 as the upper bound.
Combining the lower bound which depends on the chosen
RM(m,r) and M, as 5 < w, yields 3= <w < 3. O
Remark 3. The proposed projective construction can be, in
principle, generalized to all binary linear codes. RM-A-code,
in fact, is a special case for constructing such a projective
construction for systematic authentication codes. The structure
of RM codes allows us to express the range of w’s explicitly in
the statement of Theorem [I0] which reduces the computational
overhead significantly compare to the expression for Pg in
(). For general codes, finding the range of w’s for which
codewords of the form [1,,, 0,,—,,] exist is difficult and can be
exponentially complex.

C. Numerical Analysis

Next, we provide numerical results for the proposed RM-
A-codes with different blocklengths. The results are shown in
TABLE In this setting, the source length is set as M = 4,
tag length as | = 3, and the order of the RM code is r = 1,
together with m = {4,5,6,7,8}. In TABLE [II} it can be
observed that Pg decreases while the blocklength increases.
Furthermore, since [ is fixed as [ = 3, we have P as a constant
P = 2% = 0.125, which meets the lower bound. We leave a
more thorough numerical analysis for our future works.

m 1 5 6 7 8
Size || (16,5) | (32,6) | (64,7) | (128,8) | (256,9)
P || 0.125 | 0.125 | 0.125 | 0.125 | 0.125
Ps 04 | 0.3817 | 0.3810 | 0.3780 | 0.3765

TABLE II: M =4, =3, and » = 1, varies m

V. CONCLUSION

In this paper, we proposed a projective construction of
systematic authentications based on binary linear codes, and
studied a particular case based on RM codes, referred to as
the RM-A-codes. The theoretical results are provided for the
probabilities of deception. Furthermore, we have discussed
explicit connections between the probability of success for the
substitution attack and the RM code structure, which captures
certain properties in the structures of error-correcting codes that
are not very well understood. A potential direction for future
work is to extend the projective construction for systematic
authentications to more general classes of binary linear codes.
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