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Abstract—Secret sharing is an instrumental tool for sharing
secret keys in distributed systems. In a classical threshold setting,
this involves a dealer who has a secret/key, a set of parties/users to
which shares of the secret are sent, and a threshold on the number
of users whose presence is needed in order to recover the secret.
In secret sharing, secure links with no leakage are often assumed
between the involved parties. However, when the users are nodes
in a communication network and all the links are physical
links, e.g., wireless, such assumptions are not valid anymore.
In order to study this critical problem, we propose a statistical
leakage model of secret sharing, where some noisy versions
of all the secret shares might be independently leaked to an
adversary. We then study the resilience of the seminal Shamir’s
secret sharing scheme with statistical leakage, and bound certain
measures of security (i.e., semantic security, mutual information
security), given other parameters of the system including the
amount of leakage from each secret share. We show that for
an extreme scenario of Shamir’s scheme, in particular when the
underlying field characteristic is 2, the security of each bit of the
secret against leakage improves exponentially with the number
of users. To the best of our knowledge, this is the first attempt
towards understanding secret sharing under general statistical
noisy leakage.

I. INTRODUCTION

Secret sharing, introduced by Shamir [1], and Blakey [2],
is a fundamental cryptographic primitive central to security
in many distributed systems. Secret sharing protects against
collusion by allowing a secret to be shared among parties/users
in such a way that only some selected subsets of users can
recover the secret by aggregating their shares together. Such
schemes have found several applications, such as in multi-
party computation [3]–[6], zero-knowledge proofs [7], [8],
threshold cryptographic systems [9]–[11], access control [12],
generalized oblivious transfer [13], [14], and others. Secret
sharing is widely used, yet it is still not fully understood
how communication constraints such as leakage, noise, and
scalability impact the security and reliability of such schemes.

The massive deployment of communication networks makes
information security unprecedentedly important [15]. Anyone
within the geographical range of a communication network can
potentially gain unauthorized access to the data transmitted
over the physical links. Protocols involving secret sharing
often assume that the dealer has a reliable and secure com-
munication channel to all the parties (users in a wireless
network), i.e. links with no leakages. However, real-world
implementations are susceptible to side-channel attacks which

may lead to the adversary gaining some information about the
secret shares of the non-colluding (honest) users.

Motivated by the emergence of such attacks, protocols
which attempt to provide provable security guarantees against
information leakage, have attracted a lot of attention in the
cryptographic community (survey [16]). In the context of
secret sharing, wireless leakage attacks allow an adversary to
obtain some bounded leakage from the secret shares of honest
parties. Such leakage may help the adversary reconstruct the
secret. In the past few years, substantial research has examined
the feasibility and efficiency of leakage-resilient secret sharing
against diverse models of potential leakages [17]–[26].

Initiated by the fundamental work of Wyner on wiretap
channels [27], developing information-theoretic methods for
secure communications has been an active area of research
[28]–[30]. The wiretap channel is a model of information
leakage used to study physical layer security in wireless
communications. In this work (Section III), we propose a
statistical leakage model for secret sharing schemes where
the adversary leaks information from all secret shares through
independent wiretap channels. Subsequently, in Section IV,
we study the resilience of Shamir’s secret sharing scheme
with statistical leakage. For the Shamir’s scheme with a
general threshold, ShamirSS(N, t), we show that the mutual
information leaked from the secret is less than the sum of
mutual information leaked by the shares individually. Then, for
an extreme scenario of the Shamir’s scheme, ShamirSS(N,N),
in particular when the underlying field characteristic is 2; we
show that the mutual information leaked from each bit of the
secret reduces exponentially with the number of users.

The rest of this paper is organized as follows. We discuss the
preliminaries to the Shamir’s secret sharing protocol, and recall
the relationship among information-security metrics for the
wiretap channel in Section II. Then, we describe the proposed
statistical leakage model and discuss some related leakage
models in Section III. In Section IV we present results on
the leakage resilience of Shamir’s secret sharing under the
proposed leakage model. Finally, the paper is concluded in
Section V.

II. PRELIMINARIES

In this section, we first review the Shamir’s secret sharing
scheme [1], [2]. The scheme provably leaks no information



from the secret even when an adversary has access to secret
shares of some (less than a threshhold t) users. Subsequently,
we discuss the wiretap channel [27]; and the relationship
among mutual information security (MIS), semantic security
(SS), and distinguishing security (DS) metrics for this channel
[31]. The new leakage model proposed in Section III is in-
spired by the wiretap channel, and the relationship between the
metrics is used to provide security guarantees in Section IV.

A. Shamir’s Secret Sharing Scheme

Given a secret s ∈ Fq , Shamir’s secret sharing scheme aims
to distribute secret shares s1, s2, . . . , sN ∈ Fq among N users
in such a way that

• the secret s can be reconstructed given any t (threshold)
or more secret shares;

• the knowledge of less than t secret shares does not reveal
any information about the secret.

Such a scheme with N users and threshold t, denoted as
ShamirSS(N, t), achieves this by constructing a (t−1)-degree
random polynomial P (x) ∈ Fq[x] written as

P (x) = s+ p1x+ · · ·+ pt−1x
t−1 (1)

where the coefficients of the polynomial p1, · · · , pt−1 are
i.i.d. variables selected uniformly at random from Fq . Once
the polynomial is constructed, the secret share si of user
i ∈ [N ] is the evaluation of the polynomial P (x) at dis-
tinct predetermined values γi ∈ Fq , i.e., si = P (γi). The
coefficients of P (x) are determined uniquely by its evaluation
on t distinct points, i.e., given at least t of the evaluation
points {γ1, · · · , γN}; and their corresponding t secret shares.
Then s = P (0) is reconstructed. Using Lagrange’s polynomial
interpolation formula, given t evaluation points γe1 , . . . γet ;

P (0) = (−1)t−1
t∑︂

i=1

∏︁t
j=1,j ̸=i γej∏︁t

j=1,j ̸=i(γei − γej )
P (γei). (2)

Remark 1 ( [32]). This is equivalent to saying that the secret
can be represented as a unique linear combination of any t
secret shares.

B. The Wiretap Channel and Security Metrics

The wiretap channel, introduced by Wyner [27], is a pair
of communication channels (ChR, ChA) with the same input
and output sets where ChR is a channel from the sender to
a receiver, and ChA is the wiretap that goes from the sender
to an adversary. The setting aims to analyze the security of
the communicated data based solely on the assumption that
the channel from sender to adversary is “noisier” than the
channel from sender to receiver; the adversary considered
is computationally unbounded. In their seminal work [31],
Bellare et. al. show that security of the communicated data
does not depend on the receiver channel and establish a
relationship between the classical notions of semantic security
(SS), distinguishing security (DS), and mutual information
security (MIS). Let M denote the message being sent, and
let ChA : {0, 1}m → {0, 1}l be the adversary channel.

Definition 1 (Mutual information security, [31]). The amount
of information revealed about the message M can be measured
using the MIS-security metric ηMIS defined as

ηMIS = max
PM

I (M ;ChA(M)) , (3)

where PM is the probability mass function of the message M .

Theorem 1 ( [31], Theorem 1,5). For the wiretap channel,
semantic security ηSS, distinguishing security ηDS, and mutual-
information security ηMIS satisfy the following inequality

ηSS ≤ ηDS ≤
√︁
2ηMIS. (4)

We refer the reader to [31] for the exact formulation of
semantic security and distinguishing security, which are all
statistical measures of security.

III. STATISTICAL LEAKAGE MODEL

In this section, we formally introduce the problem of
statistical leakage in secret sharing schemes. Leakage resilient
secret sharing aims to guarantee the security of the secret,
even if the adversary obtains partial information from the
secret shares of all honest parties. In the proposed model, all
honest parties leak information to the adversary independently
through wiretap channels (Section II-B), while the adversary
has the complete knowledge of the secret shares of the collud-
ing users. Later in this section, we present some other leakage
models which have been studied in cyrptography literature.

A. System Model

We study the leakage resilience of secret sharing schemes
for communication systems. The wiretap setting (Section II-B)
emerges naturally as a model of information leakage for
analyzing the information-theoretic security of such schemes.
Consider a secret sharing scheme ith N users where the dealer
shares the secret s, which is sampled from a random variable
S. The leakage we consider has the following properties

• some information can be leaked from every user;
• the information leaked to the adversary from each user is

independent of the leakage from other users.

Fig. 1. Secret sharing with statistical leakage

The links between the dealer and users are assumed to be
perfect channels while the adversary channels have informa-
tion capacity constraints. Framing this model mathematically,
let the random vector corresponding to the N secret shares



be U = (U1,U2, . . . ,UN ), and let their leaked versions be the
random vector Z = (Z1, Z2, . . . , ZN ). Let l denote the bit-
length of the secret and secret shares, assuming they belong
to a field of characteristic 2 and represented as vectors over
the binary field. Then the proposed model is characterized by
the following two assumptions:

• Leakage. I(Uj ;Z)/l = 1 for the colluding parties, and
I(Uj ;Z)/l ≤ ϵj for the honest parties.

• Independence assumption. The random variables Zi/Ui

i.e. the leakage channels are mutually independent.

B. Related Prior Work

Leakage resilient secret sharing has garnered a lot of atten-
tion in the cryptographic community in recent years [17]–[26].
Guruswami and Wootters’ reconstruction algorithm [32], [33]
for Reed Solomon codes showed that even a single bit leaked
from each secret share compromises the security of Shamir’s
scheme over fields of characteristic 2. This led Benhamouda
et al. [22], [26] to investigate the leakage resilience of linear
secret sharing schemes for other finite fields. They prove that
Shamir’s secret sharing scheme is leakage-resilient against one
bit leakages, when the underlying field is of a large prime
order, and the reconstruction thresholds is at least 0.92 times
the number of parties. This threshold has been progressively
refined to 0.69 in a series of works by different authors [18],
[22], [23], [34].

Various works have tried to assess the resilience of secret
sharing against diverse models of information leakage. The
works of Benhamouda et al. [26], and Nielsen and Simkin
[25], assume each secret share leaks information independently
through arbitrary leakage functions with bounded output-
length. Maji et. al. in [24], and Adams et. al. in [21], consider
probing attacks which leak physical-bits from the memory
hardware storing the secret shares. In a separate work [19],
Maji et al. consider joint leakage, where the adversary can
leak any bounded output-length joint function of the shares.

A majority of these contributions consider an adversary
who is able to obtain the precise outputs of the leakage func-
tions computed on secret shares. However, in practice, side-
channel attacks are inherently noisy and there are practical
techniques that can amplify this noise. Adams et al. [21]
consider noisy physical-bit leakage, where each physical-bit
leakage is replaced by noise with some fixed probability.
In [17], Hoffmann et. al. consider a leakage model where
some random subset of the leakages is replaced by uniformly
random noise. In this work, we aim at providing a general
framework for secret sharing under statistical leakage from a
communication/information-theoretic perspective.

IV. BOUNDS ON SECURI TY

In this section, we study the resilience of Shamir’s secret
sharing under the proposed statistical leakage model. For the
Shamir’s scheme with a general threshold, ShamirSS(N, t),
we show that the mutual information leaked from the secret is
less than the sum of mutual information leaked by the shares
individually. Then, for an extreme scenario of the Shamir’s

scheme, ShamirSS(N,N), we show that the mutual informa-
tion leaked from each bit of the secret reduces exponentially
with the number of users. Let the secret being shared be
denoted by the random variable S. For the ShamirSS(N,N)
scheme, we give bounds for two different cases where

• Case 1. the secret S is uniformly distributed but the
leakage channel is arbitrary (Proposition 7); and

• Case 2. the secret S is arbitrarily distributed but the leak-
age channels are independent binary symmetric channels
(BSCs) (Proposition 11).

The relationship between mutual information security (MIS),
and other well-known notions of security in the literature
i.e. semantic security(SS), and distinguishing security (DS)
(Theorem 1) is used in Corollary 12.

A. Shamir’s Scheme with General Threshold

We begin by showing that the analysis of the security
guarantees for the Shamir’s secret sharing scheme can be
reduced to the scenario with no colluding users.

Lemma 2. ShamirSS(N, t) scheme with t′ < t colluding
users, under the statistical leakage model introduced in Sec-
tion III, is as secure as the ShamirSS(N − t′, t − t′) scheme
with no colluding users.

Proof. The problem of recovering the secret in
ShamirSS(N, t) is equivalent to the problem of recovering the
corresponding (t − 1)-degree polynomial from its evaluation
on N distinct points in the space Fq[x]. The problem is
equivalent to the Chinese Remainder Theorem for rings and
reduces to finding the unique element in the ring Fq[x]/(x

t)
which satisfies the given N evaluation points. Using the
shares of the colluding users, we can interpolate and find
the unique monic polynomial h(x) of degree t′ such that it
satisfies the interpolation points of the colluding users. The
problem is therefore reduced from finding unique element in
the ring Fq[x]/x

t, to finding a unique element in the ring
(Fq[x]/(x

t)) /(h(x)) satisfying the N − t′ evaluation points.
This is equivalent to finding a unique element in the ring
Fq[x]/(x

t−t′) satisfying N − t′ evaluation points which in
turn is equivalent to the ShamirSS(N − t′, t− t′) scheme.

Corollary 3. The security analysis of Shamir’s scheme with t′

colluding users can be reduced to a scheme with no collusion.

Proposition 4. The mutual information leakage in
ShamirSS(N, t) with t′ colluding users is bounded as

I(S;Z)

l
≤

N−t′∑︂
i=1

ϵi, (5)

where ϵi’s are the constants characterizing the per bit informa-
tion leaked from the honest secret shares i.e., I(Ui, Zi)/l ≤ ϵi.

Proof sketch. Let U ′ be a set of t − 1 secret shares which
contains the shares of the t′ colluding users. Using Lemma 2,
this scheme is as secure as the ShamirSS(N−t+1, 1) scheme
with the same adversary leakage channels for the remaining



users. Then I(S;Z)/l ≤
∑︁i=N−t+1

i=1 ϵi. Refer [35] for the
complete proof.

Corollary 5. The MIS-security metric can be characterized
as ηMIS ≤

∑︁i=N−t′

i=1 l · ϵi. Using Theorem 1, semantic and
distinguishing security metrics can be bounded as ηSS ≤

ηDS ≤
√︃
2l
(︂∑︁i=N−t′

i=1 ϵi

)︂
.

B. The Extreme-Threshold Scenario

In general, it might be possible to improve upon the upper
bound on the leakage provided in Proposition 4. In order
to demonstrate this, in the remainder of this section, we
consider an extreme scenario of the Shamir’s scheme, where
the ShamirSS(N,N) scheme is deployed, and the adversary
has access to a noisy version of all the secret shares. In
subsequent analysis, in light of Lemma 2, it is sufficient to
consider scenarios without colluding users, that is, assume
that the adversary only has a noisy observation of each secret
share. Furthermore, we will assume that each secret share is
leaked with I(Uj ;Z)/l ≤ ϵ per bit leakage rate for some
ϵ < 1. Recall from Section II-A, in (2), once someone has
access to the evaluation points, the secret recovery equation
for ShamirSS(N,N) can be uniquely written as

s =

N∑︂
i=1

cisi, (6)

for some ci ∈ Fq . The unique representation of the secret as a
linear combination of all the secret shares is a consequence of
the following system of equations having a unique solution:⎡⎢⎢⎢⎣

1 γ1 γ2
1 · · · γN−1

1

1 γ2 γ2
2 · · · γN−1

2
...

...
...

...
1 γN γ2

N · · · γN−1
N

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

s
p1
...

pN−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
s1
s2
...
sN

⎤⎥⎥⎥⎦ .

Remark 2. The coefficients ci’s in (6), i.e. the secret recovery
equation for ShamirSS(N,N), are the elements of the first row
in the inverse of the Vandermonde matrix:

V −1 =

⎡⎢⎢⎢⎣
1 γ1 γ2

1 · · · γN−1
1

1 γ2 γ2
2 · · · γN−1

2
...

...
...

...
1 γN γ2

N · · · γN−1
N

⎤⎥⎥⎥⎦
−1

.

Therefore, replacing the matrix V by any invertible matrix
gives us a linear secret sharing scheme with a unique secret
recovery equation whose coefficients are determined by the
first row of the inverse of the chosen matrix. If the chosen
matrix is such that first row of its inverse is filled entirely with
1s, the resulting linear secret sharing scheme has the recovery
equation

s = s1 + s2 + · · ·+ sN . (7)

To bound the information leaked from the secret S by the
leaked secret shares, for the two cases,

• Case 1. we will use Mrs. Gerber’s Lemma (MGL) [36]
(Lemma 6) in proving Proposition 7; and for

• Case 2. we will use Corollary 10 in proving Proposi-
tion 11.

Note that both the MGL, and Corollary 10 only hold true for
the field F2. Since addition in the field F2l can be done by bit-
wise addition of the vector representations over F2, we only
provide bit-wise security guarantees. To bound information
leakage for each bit, separate equations for each bit of the
secret need to be formed from the secret recovery equation (6).
But multiplication in the field F2l depends on the choice of the
primitive (splitting) polynomial. Assuming that the adversary
has access to all the coefficients of the secret shares and the
splitting polynomial, the adversary has access to the l bit-wise
equations for each bit of the secret. Our bounding results, to be
presented in Propositions 7, and 11, depend upon the number
of summands in the estimation of the sum of the random
variables. Alternatively, one can replace the ShamirSS(N,N)
with another linear scheme where all the secret shares, si’s,
appear in the reconstruction of the secret s with coefficient
1, as discussed in Remark 2. This automatically improves the
bounds, which we will see in Remarks 4 and 5.

Remark 3. In general, it is not straightforward to characterize
the exact number of summands in the l bit-wise equations for
the l bits of the secret. Let Ñ denotes the minimum of the
number of non-zero summands across the l bit-wise equations
(derived from (6)). We will utilize Ñ in the expression of
the bounds in order to simplify them. Note that given the
randomized coefficient selection inherent in Shamir’s scheme
(Section II-A), it is expected that Ñ grows at least linearly
with the number of users, i.e., Ñ = Ω(N).

C. Security Analysis

Lemma 6 (Mrs. Gerber’s Lemma, [36]). Let A0, A1 be in-
dependent Z2-valued random variables with side information
B = (B0, B1) (i.e. B0 −A0 −A1 −B1 is a Markov chain) ,
and C = A0 ⊕A1. Then

H(C|B) ≥ h
(︁
h−1 (H(A0|B0)) ⋆ h

−1 (H(A1|B1))
)︁
, (8)

where a ⋆ b = a(1− b) + b(1− a).

Proposition 7. Given that the secret S is a uniform random
variable in F2l , the mutual information leakage from each bit
of the secret in ShamirSS(N,N) with t′ colluding users is
bounded as,

I(Si;Z) ≤ δ2(Ñ−t′), (9)

where Si is the random variable characterizing the ith bit of
the secret, Ñ is defined in Remark 3, and δ = 1−2h−1 (1− ϵ).

Proof sketch. Using Lemma 2, we can work with a scheme
without colluding users i.e. Ñ → (Ñ−t′). Let Si = ⊓1+· · ·+
⊓Ñi

, where Ñ i > Ñ is the number of non-zero summands in
the equation for Si. Since the secret S is uniformly distributed,
using Mrs. Gerber’s Lemma for each bit and the inequality
h(p) ≥ 4p(1 − p), we get the required result. Refer [35] for
the complete proof.



Corollary 8. For the ShamirSS(N,N) scheme with Ñ > κN ,
where κ < 1; the mutual information leaked from each bit of
the secret reduces exponentially with the number of users.

Remark 4. If a linear secret sharing scheme is of the form
described in Remark 2, with its secret recovery equation as
(7); the bit Si is the summation of ith bit of each secret share,
and the leakage can be bounded as I(Si,Z) ≤ δ2(N−t′).

To use Mrs. Gerber’s lemma, we need independence of
the random variables being added. In this application of Mrs.
Gerber’s lemma, the summand random variables are the secret
shares, and they are independent if and only if the secret S
is distributed uniformly. But as seen in Definition 1, MIS-
security requires bounding mutual information leakage for all
distributions of the secret. Therefore, even for the Shamir’s
scheme with a general threshold, ShamirSS(N, t), Mrs. Ger-
ber’s Lemma cannot be used to provide MIS-security guaran-
tee. To understand the leakage resilience of ShamirSS(N,N),
we consider the case of leakage through BSCs.

Lemma 9. Let X = (X0, · · · , Xk−1) be Z2-valued uniformly
distributed random variables with every k − 1 of them being
mutually independent. Let Y = (Y0, · · · , Yk−1) be the output
of a BSC with X as the input. Then

(X0 + · · ·+Xk−1)− (Y0 + · · ·+ Yk−1)−Y (10)

is a Markov chain.

Proof sketch. Let x̂ = (x0, . . . , xk−1) be a realization of X.
Define the parity check function s(x̂) = x0 + · · · + xk−1

mod 2. Since Xi are binary random variables with every k−1
of them being mutually independent, Pr(X = x̂) = ps(x̂) ∈
{p0, p1}. For leakage through independent BSCs, observe that
the probability Pr(Y = ŷ, s(X = x̂) = sx), is the same for
all ŷ with the same parity s(ŷ), given sx ∈ F2. Thererfore,
Pr(Y = ŷ/s(x̂) = sx, s(Y) = s(ŷ)) = 21−k, which implies
the Markov chain in (10). Refer [35] for the complete proof.

Corollary 10.

I ((X0 + · · ·+Xk−1);Y) =

I ((X0 + · · ·+Xk−1); (Y0 + · · ·+ Yk−1)) .

Proof. From Lemma 9, we know that (X0 + · · · +Xk−1) −
(Y0 + · · ·+ Yk−1)−Y is a Markov Chain. Since (Y0 + · · ·+
Yk−1) is a function of Y, (X0 + . . .+Xk−1)−Y − (Y0 +
· · ·+Yk−1) is also a Markov chain. The corollary now follows
from using the data processing inequality twice.

Proposition 11. Given that all the secret shares leak in-
formation independently for every bit through BSC(q); the
mutual information leakage from each bit of the secret in
ShamirSS(N,N) with t′ colluding users is bounded as

I(Si;Z) ≤ δ2(Ñ−t′), (11)

where Si is the random variable characterizing the ith bit of
the secret, Ñ is defined in Remark 3, and δ = 1−2h−1 (1− ϵ).

Proof sketch. Using Lemma 2, we can work with a scheme
without colluding users i.e. Ñ → (Ñ−t′). Let Si = ⊓1+· · ·+
⊓Ñi

, where Ñ i > Ñ is the number of non-zero summands
in the equation for Si. The secret S is arbitrarily distributed,
and the bits of these (Ñ i − 1) secret shares are uniformly
distributed and mutually independent. Using Corollary 10 and
the inequality h(p) ≥ 4p(1 − p) again, we get the required
result. Refer [35] for the complete proof.

Corollary 12. Since Proposition 11 is valid for all distri-
butions of the secret share, the bit-wise MIS-security metric
can be characterized as ηMIS ≤ δ2(Ñ−t′). Using Theorem 1,
semantic and distinguishing security metrics for each bit of
the secret can be bounded as ηSS ≤ ηDS ≤

√
2δÑ−t′ . For

Ñ > κN , where κ < 1, the bit-wise security-metrics improve
exponentially with the number of users.

Remark 5. If a linear secret sharing scheme is of the form
described in Remark 2; the bit Si is the summation of ith bit
of each secret share, and the security metrics can be bounded
as ηMIS ≤ δ2(N−t′), and ηSS ≤ ηDS ≤

√
2δN−t′ .

V. CONCLUSION

To examine the leakage resilience of secret sharing schemes
in distributed systems, we proposed the statistical leakage
model. This is an information-theoretic model of leakage,
characterized by the honest parties leaking information to
an adversary through independent wiretap channels. We then
study the leakage resilience of Shamir’s secret sharing with
statistical leakage. For ShamirSS(N,N) scheme over fields of
characteristic 2, we show that the bit-wise mutual information
security (MIS), and consequently, the semantic security (SS)
and distinguishing security (DS), improve exponentially with
the number of users. The leakage model proposed in this work
can be adapted to understand the leakage resilience of other
protocols, such as for the recently proposed secret sharing in
analog domain [37], and for multi-user secret sharing [38].

There are several directions for future research. We believe
that Lemma 9 can be generalized to all Abelian groups, which
lets us generalize Proposition 11 beyond bit-wise security.
Proposition 11 provides security guarantees when the leak-
age channels are BSCs; similar results should hold true for
other channels. For ShamirSS(N, t), the secret has

(︁
N
t

)︁
secret

recovery equations. By generalizing Lemma 9 to every subset
of t random variables being mutually independent for a secret
S satisfying a system of linear equations, it might be possible
to improve upon the upper bound on the leakage provided in
Proposition 4, to grow exponentially with the threshold t.
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