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Abstract

Patient-derived tumor organoids (PDTOs) are novel cellular models that maintain the

genetic, phenotypic and structural features of patient tumor tissue and are useful for study-

ing tumorigenesis and drug response. When integrated with advanced 3D imaging and anal-

ysis techniques, PDTOs can be used to establish physiologically relevant high-throughput

and high-content drug screening platforms that support the development of patient-specific

treatment strategies. However, in order to effectively leverage high-throughput PDTO

observations for clinical predictions, it is critical to establish a quantitative understanding of

the basic properties and variability of organoid growth dynamics. In this work, we introduced

an innovative workflow for analyzing and understanding PDTO growth dynamics, by inte-

grating a high-throughput imaging deep learning platform with mathematical modeling,

incorporating flexible growth laws and variable dormancy times. We applied the workflow to

colon cancer organoids and demonstrated that organoid growth is well-described by the

Gompertz model of growth. Our analysis showed significant intrapatient heterogeneity in

PDTO growth dynamics, with the initial exponential growth rate of an organoid following a

lognormal distribution within each dataset. The level of intrapatient heterogeneity varied

between patients, as did organoid growth rates and dormancy times of single seeded cells.

Our work contributes to an emerging understanding of the basic growth characteristics of

PDTOs, and it highlights the heterogeneity in organoid growth both within and between

patients. These results pave the way for further modeling efforts aimed at predicting treat-

ment response dynamics and drug resistance timing.
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Author summary

Patient-derived tumor organoids (PDTOs) are miniaturized models of tumors, developed
using a patient’s own tumor tissue, which can be grown outside of the body in a laboratory
setting. PDTOs enable researchers to better understand tumor biology and to model how
an individual’s tumor may respond to various cancer treatments. In this work, by integrat-
ing PDTOs with dynamic imaging and mathematical modeling, we develop a method for
investigating the fundamental laws of tumor organoid growth on a patient-by-patient
basis (S1 Fig). We identify a simple mathematical model which applies to the growth of
PDTOs derived from three different patients, and we quantify variability in organoid
growth both within and between patients. Our work is ultimately motivated by the poten-
tial of combining mathematical modeling with drug screening data for personalized treat-
ment optimization.

Introduction

Patient-derived tumor organoids (PDTOs) are a valuable cell culture model system for study-
ing dynamic tumor cell growth, tissue-specific cellular differentiation and cell-cell interactions.
PDTOs mimic features of the in vivo microenvironmental conditions and support physiologi-
cally relevant drug testing [1–4]. PDTOs also maintain the genetic and phenotypic features of
patient tumor tissues, overcoming many limitations of traditional preclinical models by reca-
pitulating both intra- and interpatient heterogeneities. Target identification and selection of
effective treatments using PDTOs can pave the way for functional precision medicine
approaches based on genetic and environmental factors [5, 6]. Indeed, the recent FDA mod-
ernization Act 2.0 expedites the use of alternative models to replace, reduce and refine current
animal model testing in pre-clinical drug studies [7]. 3D cell culture models may reduce the
costs associated with drug discovery and help mitigate the poor clinical translation of labora-
tory results in oncology [8].

PDTOs can be combined with multiple assay methods and analysis tools to enable high-
throughput and high-content investigations of patient-specific heterogeneities and tumor
microenvironmental interactions. Advances in 3D imaging techniques have been used to
examine quantitative phenotypic changes in organoid models subjected to environmental and
drug perturbations [9, 10]. Additionally, the surge in machine learning and deep learning tech-
niques for image analysis presents novel approaches to analyze extensive 3D imaging data [11–
14]. However, standard solutions for measuring and interpreting spatial and temporal dynam-
ics of PDTOs are limited. Quantification of these dynamics will provide additional insights
into the complex processes governing tissue development, disease progression, and response
to treatment.

For decades, mathematical modeling has proven to be useful for understanding cancer initi-
ation, tumor progression and the evolution of drug resistance [15–21], as well as for develop-
ing new clinical strategies [22–25]. In the context of precision medicine, mathematical and
computational modeling can aid in the drug discovery process [26, 27] and in the selection of
personalized treatment strategies [28–30]. A crucial first step toward this goal is to understand
the basic mathematical properties of tumor growth in the untreated condition. A large stream
of literature has applied classical growth models like the exponential, power law, Gompertz,
logistic and von Bertalanffy models to tumor data from human patients, animal models and in
vitro tumor spheroids. These investigations, which are reviewed in Section 1 of S1 Text, indi-
cate that the most appropriate growth model is context-dependent. For patient-derived
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organoids, the recent review by Montes-Olivas and colleagues [31] points out that relative to
advancements in the development of experimental protocols, mathematical and computa-
tional models of organoid growth remain comparatively underdeveloped. These models are
usually agent-based computational models which describe the spatial dynamics of stem cell
differentiation within the organoids, often taking into account the signaling dynamics of key
cell fate regulators [31]. For the specific case of colon cancer organoids, Yan et al. [32] recently
developed a mathematical model involving stem, committed progenitor and terminally differ-
entiated cells. Their results show that the dynamics of organoid growth are highly dependent
on quantitative parameters such as the mitosis rate of stem cells and the strength of positive
and negative feedback loops, as well as the presence of external signaling factors. More
recently, Montes-Olivas et al. [33] modified an existing two-dimensional agent-based model
[34] to simulate the formation of budding structures in intestinal organoids.

The main goal of this work is to combine quantitative imaging with mathematical modeling
to develop a novel integrated pipeline for studying the growth characteristics of PDTOs. Our
pipeline incorporates label-free, deep learning image analysis that provides multi-parametric
information of tracked individual PDTOs over time. We apply the integrated imaging–model-
ing method to experimental data involving colon cancer organoids derived from three differ-
ent patients, with the aim of characterizing the fundamental growth characteristics of
organoids using classical mathematical growth models. Throughout, we place special emphasis
on analyzing the heterogeneity in organoid growth both within and between patients. Our
work is ultimately motivated by the potential of combining mathematical modeling with high-
throughput drug screening data for drug discovery, drug testing and personalized treatment
optimization. Therefore we aim to identify simple models of untreated organoid growth that
are appropriate for the level of data resolution attainable in the high-throughput setting.

Materials and methods

Ethics statement

The use of patient samples was reviewed and approved by the USC Biomedical Institutional
Review Board Committee, under protocol number HS-06–00678. All patients provided written
consent prior to sample collection. Samples were de-identified to research staff.

Patient tissue processing and organoid cultures

We developed organoids using three different CRC patient samples in this study. Patient infor-
mation was de-identified and randomized internal IDs (000UP, 000US and 000UK) were
assigned to each patient sample. To simplify, the first 3 digit number, 000, was omitted in our
study. The genomic analyses for each patient sample are described in Table 1. The CRC patient
tissues (UP, US, UK) were processed as described previously in [35]. Briefly, tumor tissue was
enzymatically digested into single cells and dissociated cells were seeded into 3D extracellular
matrix (ECM) gel (Cultrex Reduced Growth Factor Basement membrane extract, Type 2,
BME) with media tailored to form and maintain tumor organoids. H2B-GFP labeled US orga-
noids were generated by lentiviral transduction [35] and used to create an organoid image
dataset labeled with ground-truth live and dead classifications for neural network (NN) train-
ing. Organoid cultures were maintained in 24-well plates and passaged by mechanical break-
down with pipetting in the Gentle cell dissociation reagent (StemCell). For single cell
dissociation, TrypLE (ThermoFisher) digesting solution (1:1, TrypLE:PBS with 1:1,000 Y-
27632 (StemCell)) was used. TruSight Oncology 500 assay (Illumina) and Tempus xT V4 pan-
nel (Tempus) were used to detect DNA mutations in cancer-related genes.
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Two UK datasets were produced, with experiments conducted on 12.09.2022 (UK–1) and
12.16.2022 (UK–2). Two UP datasets were produced, with experiments conducted on
11.04.2022 (UP–1) and 12.09.2022 (UP–2). Three US datasets were produced, with experiments
conducted on 08.26.2022 (US–1) and 11.04.2022. On the latter date, two experiments were per-
formed which were conducted by different researchers (US–2 and US–3). These datasets are
collectively referred to as the UK/UP/US datasets. Additional data from a previously published
dataset, the US-GFP organoid dataset (Plate 1 and Plate 2) [35] was also used in our analyses.

Confocal 3D live cell imaging and quantitative image analysis

1,000 dissociated single cells of each organoid line were seeded into each well of a 96 multi-
well plate with BME. After 4 days of culturing, confocal imaging (Evident-Olympus FV3000
microscope) was performed with multiple Z scans to capture the entire organoid culture area
on three different timepoints (Days 0, 3, 5). cellSens (Evident-Olympus) software was used to
create 2D projection images using the extended focal imaging (EFI) process and perform live-
dead organoid classification with the pre-trained neural network (NN). The labeled NN train-
ing image dataset was prepared with H2B-GFP-labelled US organoids with and without 1 μM
staurosporine (ST) treatment. To generate the training dataset, each organoid was segmented
from the GFP channel, and live and dead organoids were classified in untreated control and
ST-treated groups, respectively. The brightfield (Transmitted) channel was used as an input to
train the NN (Standard U-net). The training was done with 75,000 iterations and an optimal
checkpoint was selected and saved after confirming with validation images.

Table 1. Patient-derived sample information.

PDO Name UK UP US

Tumor Stage pT3N2bM1a (Stage 4A) pT4bN1aM1a (Stage 4) pT4aN0Mx (Stage 2)

Tissue Type Colon Colon Colon

Mutations from
Tissue Sequencing

PI3KCA, TP53, AR, ALK, EPHA5,
MDC1, PTPRS, CD3EAP, PTPRT,
NCOA3, FANCA, PARP1, MED12,
PREX2

TP53, ASXL1, RUNX1, FOXP1, SOCS1, CIC, CCND3,
DNMT3B, PTPRT, PAX7, ARID5B, VTCN1, RFWD2

KRAS, TP53, SMAD4, ERBB4, MAP3K1,
AXL, PBRM1, SH2B3, CIC, MCL1,
AMER1, PTPRD, GATA6, NCOR1,
INPP4A

CNVs (Tissue) FGFR1 (2.072), MYC (2.588) BRCA2 (1.437), ERBB2 (1.516), FGF14 (1.659) BRCA2 (1.539), FGF14 (1.538), FGFR4
(1.595), PDGFRB (1.419)

MSI (Tissue) 3.33 0.87 0.88

TMB (Tissue) 1.6 4.7 7.1

Organoid
Morphology

Cryptic Cryptic Cryptic

Mutations from
Organoid
Sequencing

APC,NF1, TP53, ALK, EPHA5,
DNMT1, MCL1, CTLA4, ANKRD26,
CD3EAP

TP53, APC, ASXL1, RUNX1, FOXP1, SH2B3, SOCS1,
CIC, CCND3, MDM2, DNMT3B, PTPRT, MCL1

APC, KRAS, TP53, SMAD4, FLT3,
ERBB4, EP300, SH2B3, ZFHX3, KAT6A,
MCL1, PTPRD, GATA6

CNVs (Organoid) AKT2 (1.604), BRCA2 (1.576), CCNE1
(1.477), EGFR (2.203), ERBB2 (1.45),
ERCC2 (1.788), JAK2 (1.542)

BRCA2 (1.513), CDK4 (1.548), EGFR (1.73), ERBB3
(1.461), FGF10 (1.671), FGF23 (1.55), FGF6 (1.556),
KRAS (1.464), LAMP1 (1.454), MET (1.62), RICTOR
(1.787)

BRCA2 (1.872), CDK4 (1.515), FGF14
(1.666), FGF9(1.651), FGFR4(1.739),
LAMP1 (1.645), PDGFRB (1.586)

MSI (Organoid) 1.67 3.33 0.84

TMB (Organoid) 1.6 9.4 7.1

Tumor stage and molecular alterations from sequenced tissues and organoid samples are listed including, single nucleotide variants (SNVs), insertions and deletions

(InDels), copy number variations (CNVs), micro-satellite instability (MSI) score and tumor mutational burden (TMB). CNVs larger than 1.3 are considered as

significant. MSI is shown as percentages of unstable sites, with over 20 percent considered as MSI high. TMB score is shown as a number of mutations per megabase of

DNA. Over 10 mutations per megabase of DNA is considered as TMB high. Common mutated genes between tissue and organoid were highlighted with bolded texts.

https://doi.org/10.1371/journal.pcbi.1012256.t001
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Brightfield organoid image datasets were collected from UP, US and UK organoids. Three
timepoint (Days 0, 3, 5) images were combined as a time series and EFI processing was per-
formed to generate 2D projected images. Automatic NN batch processing segmented label-
free brightfield images of organoids while simultaneously classifying each detected object as
live or dead. Each organoid was tracked over time to examine longitudinal organoid growth
and morphological changes. Organoid size (area), sphericity, shape factor, convenity, XY posi-
tion and tracking information were exported as spreadsheets and used to test different growth
models. R 4.3.2 and GraphPad Prism 10 was used to generate graphs and analysis.

For S2 Fig and S1 Video, live cell imaging of US-GFP organoids was performed with Oper-
etta high-content imaging system (PerkinElmer) using 20x objective. Single Z plane (middle)
images were taken every 20 minutes for 12 hours. Additionally for immunostaining, organoid
cultures were fixed with 4 percent of paraformaldehyde (PFA) and stained with anti-rabbit
Ki67 (1:500, Abcam), anti-mouse E-cadherin (1:300, Cell signaling) and DAPI (1:60,000).
Alexa-488 and Alexa-555 conjugated secondary antibodies were used. Confocal 3D imaging
was performed with the Evident-Olympus FV3000 system.

Conversion from organoid area to cell number

As the mathematical models we employ are intended to model the number of cells or individu-
als in a population, we convert the area measurements produced by the NN into cell number
estimates before fitting the mathematical models to the UK/UP/US datasets. First, we convert
organoid area to organoid volume. For the conversion, we assume that each organoid is an
ellipsoid, which implies that its two-dimensional projection is an ellipse with axes a and b and
area A = πab. We furthermore assume that the third axis, which is not ascertainable from the

2D projected images, is the geometric mean of the other two axes, c à
ÅÅÅÅÅ
ab
p

. Under these
assumptions, the volume of an organoid can be written in terms of its area as

V à 4

3
pabc à 4

3
ÅÅÅ
p
p A3=2:

Alternative volume conversion methods are discussed in Section 4 of S1 Text. We then con-
vert the volume estimate for each organoid to an estimate of the number of live cells in the
organoid. For the conversion, we refer to the US–GFP dataset, which includes data both on
the volume and the number of live cells in each organoid. We computed the ratio between the
volume and the number of live cells for each organoid on Day 0, which has a median value of
7,208 μm3. We did the same calculation on Days 1, 3 and 6 and observed similar median val-
ues. Then, for each organoid in the UK/UP/US datasets, we divide the volume estimate
obtained as above by 7,208 μm3 to get an estimate of the number of live cells in the organoid.

Mathematical models

Each mathematical model we employ is defined by a differential equation for N(t), the number
of live cells in the organoid at time t. In the first five subsections below, we describe the models,
and in the final subsection, we state a general differential equation from which all the models
can be derived. A visual overview is given in Fig 1. The exponential and power law models are
unconstrained growth models, in the sense that the population grows without bound as time
passes (N(t)!1 as t!1). The Gompertz, logistic and von Bertalanffy models are “S-
shaped” growth models, where the population size eventually converges to a so-called “carry-
ing capacity”. We refer to Section 1 of S1 Text for a review of previous works applying these
mathematical models to data from human patients, animal tumor models and tumor
spheroids.
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Exponential model. The first model we consider is the exponential growth model, which
assumes that each cell in the organoid divides at the same rate a> 0. Equivalently, it can be
assumed that a constant proportion of cells actively divides at any time. Under the exponential
model, the time evolution of organoid cell number is described by the differential equation

dN
dt
à aN; NÖ0Ü à N0; Ö1Ü

which has the explicit solution

NÖtÜ à N0eat; t � 0: Ö2Ü

We note that the differential equation Eq 1 can also be viewed as describing the average
dynamics of a stochastic growth model where cell divisions are asynchronous and cell cycle
lengths are assumed to be independent exponential random variables with rate a> 0.

Power law model. The second model we consider is the power law growth model. As
opposed to assuming that all cells in the organoid divide at the same rate, the power law model
assumes that only a subset of cells, which has a lower spatial dimension than the full organoid,
is actively dividing at any time. This can for example happen when cell divisions are restricted
to the surface of the organoid. The power law model is described by the differential equation

dN
dt
à aNg; NÖ0Ü à N0; Ö3Ü

Fig 1. Overview of mathematical models. A: The exponential model assumes that all cells in the organoid divide at
the same rate a, while the power law model assumes that cell divisions are restricted to a subset of cells, for example at
the surface of the organoid. The Gompertz and logistic models each assume that initial growth is exponential at rate a
and that the growth slows down over time. This can either be due to the cell division rate decreasing uniformly across
the organoid, or due to a decreasing subset of actively dividing cells over time. The von Bertalanffy model assumes that
cell proliferation follows the power law model, but in addition that cells die uniformly across the organoid at rate b. B:
The exponential and power law models are models of unconstrained growth, while the Gompertz, logistic and von
Bertalanffy models all assume that the growth eventually stops, with the organoid reaching a so-called “carrying
capacity” K.

https://doi.org/10.1371/journal.pcbi.1012256.g001
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with 0< γ< 1, which has the explicit solution

NÖtÜ à ÖN1�g
0 á Ö1� gÜatÜ1=Ö1�gÜ; t � 0: Ö4Ü

Note that the power law differential equation Eq 3 can be viewed as a generalization of the
exponential differential equation Eq 1. If the organoid grows as a three-dimensional ball, then
taking γ = 2/3 produces a model where cell divisions only occur at its (two-dimensional) sur-
face. In our analysis, we consider three power law models: γ = 1/2, γ = 2/3 and γ = 3/4, as we
further explain in Section “von Bertalanffy model”.

Gompertz model. The third model we consider is the Gompertz model, where it is
assumed that an initial exponential growth rate a> 0 decays exponentially over time according
to a decay parameter b� 0. In other words, the time evolution of the model is given by the dif-
ferential equation

dN
dt
à ae�btN; NÖ0Ü à N0; Ö5Ü

which has the explicit solution

NÖtÜ à N0 expÖÖa=bÜÖ1� e�btÜÜ; t � 0: Ö6Ü

As t!1, the Gompertz model reaches a carrying capacity K≔ N0ea/b. An alternative for-
mulation of the Gompertz model, which involves an initial growth rate α and the carrying
capacity K, is given by the differential equation

dN
dt
à a logÖK=NÜN à a logÖKÜN � aN logÖNÜ; NÖ0Ü à N0; Ö7Ü

which has the explicit solution

NÖtÜ à K expÖ logÖN0=KÜe�atÜ; t � 0: Ö8Ü

Logistic model. The fourth model we consider is the logistic growth model. This model
also involves an initial exponential growth rate a> 0, but here, the growth rate decays linearly
with the size of the population until the population reaches a carrying capacity K. In other
words, the logistic model is given by the differential equation

dN
dt
à aN 1� N=KÖ Ü à aN � aN2=K; NÖ0Ü à N0; Ö9Ü

which has the explicit solution

NÖtÜ à N0KÖN0 á ÖK � N0Üe�atÜ
�1; t � 0: Ö10Ü

We note that the logistic differential equation can be viewed as a nonspatial single-species
competition model, where the frequency of interactions between cells is on the order of N2,
and population growth is impeded proportionally to the frequency of interactions.

In both the Gompertz and logistic models, the division rate of cells in the organoid is
assumed to decrease over time. Alternatively, it can be assumed that a smaller and smaller pro-
portion of cells actively divides as the organoid grows. This can for example be due to lack of
nutrients or growth factors, spatial limitations or an increasing level of cell interference. The
main difference between the two models is that the logistic model is symmetric, where the ini-
tial and final growth phases mirror one another, while the Gompertz model is asymmetric.
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von Bertalanffy model. The final model we consider is the von Bertalanffy growth model.
In the classical version of the model, the organoid is assumed to grow as a three-dimensional
ball and cell divisions are assumed to occur only at the surface of the organoid, with cell deaths
occurring uniformly across the organoid at some rate b> 0. In other words, the time-evolu-
tion of the model is given by the differential equation

dN
dt
à aN2=3 � bN; NÖ0Ü à N0:

A broader version of the von Bertalanffy model assumes more generally that the subset of
actively dividing cells has a lower spatial dimension than the full organoid, i.e. that cell prolifer-
ation follows a power law (Section “Power law model”). This leads to the differential equation

dN
dt
à aNg � bN; NÖ0Ü à N0; Ö11Ü

for 0< γ< 1, which has the explicit solution

NÖtÜ à ÖÖa=bÜ á ÖN1�g
0 � a=bÜe�Ö1�gÜbtÜ1=Ö1�gÜ; t � 0: Ö12Ü

As t!1, the generalized von Bertalanffy model reaches a carrying capacity K≔ (a/b)1/(1

− γ). Reparametrizing in terms of b, γ and K, Eq 12 can be rewritten as

NÖtÜ à KÖ1á ÖÖN0=KÜ
1�g � 1Üe�Ö1�gÜbtÜ1=Ö1�gÜ; t � 0: Ö13Ü

Same as for the power law models, in our analysis, we consider three versions of the von
Bertalanffy model, with γ = 1/2, γ = 2/3 and γ = 3/4. The latter two choices are biologically
motivated, with γ = 2/3 corresponding to the classical von Bertalanffy model and γ = 3/4 corre-
sponding to the general ontogenetic growth model of West et al. [36]. This is further discussed
in our mathematical modeling review, Section 1 of S1 Text.

Relationship between the models. We note that all of the growth models discussed in the
previous subsections can be derived from a differential equation of the form

dN
dt
à aNg � bNd; Ö14Ü

where a> 0, b� 0 and γ< δ. For the exponential model, b = 0 and γ = 1, and for the power
law model, b = 0 and 0< γ< 1. For the logistic model, b = a/K, γ = 1 and δ = 2, and for the
von Bertalanffy model, 0< γ< 1 and δ = 1. The Gompertz model cannot be written directly in
the form of Eq 14, but when properly reparametrized, it emerges as a limiting case of Eq 14 as
γ! δ [37, 38]. In particular, if we rewrite Eq 14 as

dN
dt
à cNd � dNd�ε Nε � 1

ε
; Ö15Ü

where ε = δ − γ> 0, d = a(δ− γ)> 0 and c = a − b, and send ε! 0, we get

dN
dt
à cNd � dNd logÖNÜ: Ö16Ü

This differential equation has the form of the Gompertz differential equation Eq 7 if we take
δ = 1. Thus, the von Bertalanffy model with γ = 1 − ε where ε> 0 is small and a> b approxi-
mates the Gompertz model with the appropriate reparametrization of a and b. This is one rea-
son we do not consider the von Bertalanffy model with γ above 3/4, as is further discussed in
Section 3 of S1 Text.

PLOS COMPUTATIONAL BIOLOGY Modeling patient-derived tumor organoid growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012256 August 2, 2024 8 / 26

https://doi.org/10.1371/journal.pcbi.1012256


Variable dormancy time

In the UK/UP/US datasets, organoids are seeded as single cells on Day −4, and cell number
estimates based on two-dimensional area measurements are obtained for each organoid on
Days 0, 3 and 5 (Section “Conversion from organoid area to cell number”). In the US–GFP
dataset, organoids are seeded as single cells on Day −7, and the number of live cells in each
organoid is available on Days 0, 1, 3 and 6. When fitting the mathematical models to the data
(Section “Mathematical models”), we assume that each organoid starts growing from a single
cell at some time before Day 0. As there is significant heterogeneity in organoid size on Day 0,
both within and between patients, we allow the time at which the organoid starts growing to
be variable. This modeling decision also reflects the fact that after single cells are extracted
from the patient tissue and seeded into the 3D extracellular matrix with growth media, it can
take them varying amounts of time to adjust to the new environment. More precisely, we
assume that each organoid starts growing from a single cell on Day −τ, where τ is an organoid-
specific parameter. For the UK/UP/US datasets, we allow τ to be any number in the range 0
τ 4, and for the US–GFP dataset, we allow 0 τ 7. Since each model is started with a sin-
gle cell, N0 = 1.

Data filtering

There is still no clear definition concerning the specific size and cell number at which 3D cell
aggregates are considered organoids. Before fitting the mathematical models to the UK/UP/
US datasets (Section “Mathematical models”), we removed any tracked object identified as
being dead on Day 3 or Day 5, and any tracked object with an area below 300 μm2 on Days 0, 3
or 5, to remove any smaller size cell clusters and debris. We furthermore only consider orga-
noids increasing in estimated cell number between each pair of time points, since our aim is to
study growing organoids, and our mathematical models are intended for that purpose. We
finally apply one additional level of filtering intended to alleviate segmentation errors made by
the NN image analysis. These errors include the misidentification of two organoids that over-
lap in the 2D projected images as a single organoid, and the misidentification of a single large
and differentiated cryptic organoid as two or more smaller organoids. See further Section 2 of
S1 Text. The results of each filtering step and the number of organoids included in the final
analysis are shown in S1 Table.

Model fitting

For each individual organoid and each growth model, the model parameters θ and the starting
time parameter τ are estimated by minimizing the sum of squared errors between the model
prediction and the data. More precisely, if n1, . . ., nk are cell number estimates collected on
Days t1, . . ., tk, and N(t; θ, τ) is the model prediction at time t, the parameters are estimated as

Öθ̂; t̂Ü≔ argminθ;tφ2Öθ; tÜ; Ö17Ü

where

φ2Öθ; tÜ≔ Pk
ià1Öni � NÖtá ti; θ; tÜÜ2:

Note that time 0 in the model is Day −τ in the experiments. Also note that N(0) = N0 = 1.
The estimate Eq 17 is the maximum likelihood estimate for the statistical model

ni à NÖtá ti; θ; tÜ á εi; Ö18Ü

where ε1, . . ., εk are independent and identically distributed N(0, σ2) random variables with σ2
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> 0. To see why, note that the log-likelihood function for Eq 18 is

logLÖθ; t; sÜ à � k
2
logÖ2ps2Ü � 1

2s2
φ2Öθ; tÜ: Ö19Ü

This function is maximized with respect to (θ, τ) by Öθ̂; t̂Ü as defined in Eq 17. The optimal

value for σ2 > 0 can be computed as ŝ2 ≔ Ö1=kÜφ2Öθ̂; t̂Ü.
For each organoid and each growth model, the minimization in Eq 17 is performed 1,000

times using fmincon in MATLAB, starting from different random guesses for the parameters
in question. For all supplementary analyses in S1 Text, the minimization is performed 500
times.

The statistical model Eq 18 assumes that the Gaussian errors ε1, . . ., εk are additive and that
they have the same magnitude at each time point. However, since the organoids being mod-
eled are growing over time, it is also reasonable to assume that the magnitude of the error
scales with organoid size. In Section 5 of S1 Text, we ensure that our main results continue to
hold under a logarithmic transformation of the models and data, which leads to a multiplica-
tive error that scales with organoid size.

Model selection

If we include the starting time parameter τ, the exponential and power law models (the uncon-
strained models) have two parameters, while the Gompertz, logistic and von Bertalanffy mod-
els (the constrained models) have three parameters. To account for differences in model
complexity, we use the Bayesian information criterion (BIC) to evaluate model fit quality. For
the statistical model Eq 18, the BIC is given by

BIC à �2 logLÖθ̂; t̂; σ̂Ü á Öpá 1Ü logÖkÜ

à kÖ1á logÖ2pÜÜ á k logÖφ2Öθ̂; t̂Ü=kÜ á Öpá 1Ü logÖkÜ;

where p is the number of parameters in the model. Due to the limited number of datapoints

per organoid, the error φ2Öθ̂; t̂Ü is small for many organoids. In our analysis, we set 10−6 as the
smallest possible value for the error and consider it effectively zero error.

When evaluating model fit quality, we also use the mean normalized fitting error across all
organoids in each dataset. The normalized fitting error is a simpler metric which is computed
for each individual organoid as

1

k
Xk

ià1
ni

✓ ◆�1 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅPn
ià1 Öni � NÖtá ti; θ; tÜÜÜ2

q
:

The normalization accounts for the fact that the sizes of individual organoids vary across
orders of magnitude. It also gives an easily interpretable error measurement, since the mean
normalized error can be viewed as the mean percentage error in the estimation.

Results

Patient-specific organoid size and morphological changes can be measured
by AI-driven image analysis with individual organoid tracking

We used three different colorectal cancer (CRC) patient organoids (UK, UP, and US) with dis-
tinct clinical and genomics signatures as described in Table 1 (Patient-derived sample infor-
mation). Gene mutations, copy number variation, tumor mutational burden, and
microsatellite instability status were determined for each PDTO using next generation
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sequencing. We observed agreement in gene mutations between each patient organoid and the
corresponding tumor tissue, indicating that PDTOs serve as a suitable model for the patient’s
tumor tissue. Taken together, inter-patient heterogeneity, reflective of the CRC clinical popu-
lation, is apparent in the PDTOs selected for this study.

To analyze organoid growth and morphology features, we established a novel pipeline com-
bining high-throughput PDTO experiments with deep learning-based image analysis and
mathematical modeling of organoid growth dynamics. The overall workflow, involving the
processes of organoid development, 3D imaging and image analysis, and mathematical model-
ing is visualized in Fig 2A. To generate our deep-learning neural network (NN) training data-
set, we utilized H2B-GFP labeled US PDTOs that were generated by lentiviral transduction in
our previous study [35], since the GFP signal improves organoid detection and segmentation.
Specifically, an extended focal imaging (EFI) method was used to project multi-z stack images
to generate 2D images. After pre-processing, individual organoids were labeled as either live
(Untreated) or dead (1 uM Staurosporine-treated). These labels were used to train a NN based
on a standard U-Net (Fig 2B).

Fig 2. Overview of organoid mathematical modeling. A: Colorectal cancer patient organoids were imaged at multi-time points and analyzed using an
AI-based method. The exported results were analyzed using our mathematical models. The diagram was created using LucidChart and BioRender
software. B: NN training with H2B-GFP US organoid data. Pre-processing with extended focal imaging was done with an automated macro. Live/dead
organoid training labels were generated from untreated and 1uM ST-treated organoids. Training was performed with 750,000 iterations and validated
with auto-selected images. C: NN processing with brightfield images and tracking. NN processing and data export were automated with macro for
batch processing.

https://doi.org/10.1371/journal.pcbi.1012256.g002
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The resulting trained NN was then applied to new label-free PDTO images. We prioritized
label-free imaging to optimize the speed and throughput of data collection. Specifically, new
brightfield channel images at different timepoints were treated as a time series (Day 0, 3, 5)
and segmented using the trained NN with an automated macro process. Individual organoid
tracking was performed with the NN segmented layer to follow organoid changes over time.
Organoid size (area) and morphology (shape factor, sphericity, convexity) measurements were
exported to generate graphs for visualization (Fig 2C). This multi-timepoint analysis enabled
exploration of the temporal dynamics of organoid growth using mathematical modeling, the
results of which are discussed in the following sections.

Fig 3A highlights the inter-patient differences in area and morphological changes over time
for each patient organoid (S2, S3 and S4 Videos). UK and UP organoids are on average larger
than US organoids (Fig 3B). The distribution of individual organoids for sphericity, shape fac-
tor and convexity on Day 5 are visualized with raincloud plots in Fig 3C to 3E. The UP orga-
noids tended to be the most spherical (Fig 3C). On the other hand, the UK organoids had a
lower shape factor and sphericity compared to the other PDTOs, suggesting that UK organoids
form more cryptic structures (Fig 3D). The average convexity of UK organoids was also lower
suggesting that there are more non-spherical cryptic organoids in the population consistent
with the shape factor results (Fig 3E).

Organoid growth is well-described by the Gompertz model, indicating an
initial exponential growth phase

We leveraged the tracked imaging-based time series data introduced in the previous section to
investigate the mathematical growth dynamics of PDTOs. Fig 1 gives an overview of the classi-
cal mathematical growth models employed in our analysis. Before fitting the models to the
data, the number of live cells in each organoid was estimated from area measurements
obtained via the NN image analysis (Section “Conversion from organoid area to cell number”).
Then, for each individual organoid and each model, best-fit model parameters were computed
by minimizing the least-squares error between the model prediction and the data (Section
“Model fitting”). In total, seven datasets were analyzed, which included at least two biological
replicates for each of the three patient organoid lines (Section “Patient tissue processing and
organoid cultures”).

We first used the Bayesian Information Criterion (BIC), a common model selection tool
[39], to assess the fit of each mathematical model to the observed data. The model with the
lowest BIC is considered the most parsimonious model, taking into account that the mathe-
matical models vary in complexity in terms of the number of model parameters (Section
“Model selection”). Table 2 shows the average BIC across model fits for individual organoids
in each of the UK/UP/US datasets. For the UP and US organoids, the Gompertz model fits the
data the best, followed by the logistic model and then the von Bertalanffy model with exponent
γ = 3/4 (Section “Mathematical models”). For the UK organoids, the Gompertz and logistic
models show similar fit quality, and each model fits the data significantly better than the von
Bertalanffy models. For all datasets, the models of constrained growth (Gompertz, logistic and
von Bertalanffy) outperform the models of unconstrained growth (exponential, power law),
indicating that most organoids show signs of reaching a growth plateau during the
experiments.

In Table 3, we also compare the fit of the Gompertz, logistic and von Bertalanffy models
using a simpler metric of model fit quality, which can be interpreted as the average percentage
error between the model prediction and the observed data (Section “Model selection”). The
model ranking using this simpler metric is consistent with the BIC ranking, with the Gompertz
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model performing the best overall. Table 3 furthermore shows model fitting errors relative to
the Gompertz model error, which reveals that the difference between the Gompertz and von
Bertalanffy models is more pronounced for the UK organoids than for the UP and US orga-
noids. This suggests inter-patient heterogeneity in the organoid growth dynamics, which is
further explored in the following sections. A more detailed comparison of fitting errors for
individual organoids shows that for the UK datasets, the Gompertz and logistic models have
essentially the same fitting error for almost all organoids (S3 Fig). Furthermore, many orga-
noids in all datasets are well-fit by the logistic and von Bertalanffy models, and for some orga-
noids the fit is even better than for the Gompertz model. However, a greater number of

Fig 3. Organoid tracking and morphology measurement. A: Each patient organoid segmented with NN. Representative images show the changes of
tracked organoids over time. Blue: live organoids, Red: dead organoids, Green: tracks. B: Area measurements of tracked individual UK, UP and US
organoids at Day 0, 3 and 5. Thick dotted lines = Median, Thin dotted lines = Quartile. C: Distribution of sphericity at Day 5. Sphericity is
approximately the squared quotient of width and length. D: Distribution of shape factor at Day 5. The shape factor is an area relative to the area of a
circle with an equal perimeter. E: Distribution of convexity at Day 5. The convexity is an area relative to the area of object’s convex hull. UK = 303
organoids, UP = 496 organoids, US = 136 organoids.

https://doi.org/10.1371/journal.pcbi.1012256.g003
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organoids is better fit by the Gompertz model, which results in it being the best-fit model
overall.

To further support our findings, we performed the same analysis on a different dataset
(US–GFP dataset; Section “Patient tissue processing and organoid cultures”) [35]. This dataset
is small but has the advantages of an extra datapoint per organoid (Days 0, 1, 3, 6) and direct
measurements of the number of live cells in each organoid. In short, the Gompertz model con-
tinues to be the best-fit model for this dataset, followed by the logistic and von Bertalanffy
models (S2 Table). For the two US-GFP biological replicates, the mean normalized fitting
errors of the von Bertalanffy model with γ = 3/4 were 25.9% (Plate 1) and 37.6% (Plate 2)
larger, respectively, than for the Gompertz model (S3 Table). This is comparable to the relative
errors of the von Bertalanffy and Gompertz models for the US–2 and US–3 datasets (Table 3).

Table 2. Model comparison results using BIC.

Exp PL 1/2 PL 2/3 PL 3/4 Gomp Log vB 1/2 vB 2/3 vB 3/4

UK–1 12.50 20.25 15.08 11.57 -20.90 -21.09 15.92 7.96 -0.74

UK–2 12.89 22.10 17.36 14.18 -20.53 -21.11 19.04 10.24 1.51

UP–1 20.91 18.49 16.50 16.51 -16.75 -10.75 5.45 -3.05 -7.91

UP–2 23.71 21.16 16.92 17.06 -18.54 -13.17 14.32 1.50 -4.71

US–1 12.66 11.70 11.81 10.94 -18.55 -15.75 1.20 -6.57 -9.55

US–2 14.66 12.76 12.25 12.06 -7.41 -5.96 3.51 -1.79 -3.82

US–3 14.30 13.81 11.99 12.32 -15.44 -13.06 -2.56 -7.37 -10.08

Average BIC obtained by fitting the mathematical models (Section “Mathematical models”) to each individual organoid in the UK/UP/US datasets (Section “Model

selection”). The lowest BIC indicates the most parsimonious model, i.e. the best-fit model taking into account that the models vary in complexity in terms of the number

of model parameters. The models considered are the exponential model (Exp), power law model (PL) with exponents γ 2 {1/2, 2/3, 3/4}, Gompertz model (Gomp),

logistic model (Log) and von Bertalanffy model (vB) with exponents γ 2 {1/2, 2/3, 3/4}. The best-fit model for each dataset is indicated by bold.

https://doi.org/10.1371/journal.pcbi.1012256.t002

Table 3. Model comparison results using normalized fitting error.

Gompertz Logistic vB 1/2 vB 2/3 vB 3/4

UK–1 0.0309 0.0314 0.3149 0.1562 0.0975

1.0157 10.1822 5.0509 3.1521
UK–2 0.0237 0.0241 0.3600 0.1766 0.1053

1.0194 15.2229 7.4683 4.4512
UP–1 0.0317 0.0440 0.1605 0.0859 0.0622

1.3855 5.0545 2.7071 1.9601
UP–2 0.0201 0.0323 0.1554 0.0681 0.0445

1.6033 7.7158 3.3823 2.2114
US–1 0.0334 0.0376 0.1515 0.0926 0.0713

1.1251 4.5383 2.7742 2.1363
US–2 0.1011 0.1287 0.1789 0.1397 0.1252

1.2735 1.7698 1.3823 1.2388
US–3 0.0490 0.063 0.1449 0.0942 0.0767

1.2858 2.9587 1.9233 1.5662

Mean normalized fitting error for the Gompertz, logistic and von Bertalanffy (vB) models with exponents γ 2 {1/2, 2/3, 3/4} across individual organoids in the UK/UP/

US datasets (Section “Model selection”). The normalized fitting error can be interpreted as the percentage error in the estimation. The best-fit model for each dataset is

indicated by bold. The number in italics shows the mean normalized error relative to the Gompertz model error.

https://doi.org/10.1371/journal.pcbi.1012256.t003
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It should be noted that the model fit difference between the Gompertz and von Bertalanffy
models is even more pronounced for the UK and UP organoids according to Tables 2 and 3.

Distribution of the initial exponential growth rate is lognormal and
indicates significant intrapatient heterogeneity

An inspection of the growth trajectories of individual organoids reveals significant heterogene-
ity in the growth dynamics, even for multiple organoids from the same patient. To investigate
this intrapatient heterogeneity, we analyzed how the estimated values of the Gompertz model
parameters a and b for individual organoids are distributed within each dataset. The Gompertz
model parameter a captures the initial exponential growth rate of the organoid, while the
parameter b captures how quickly organoid growth decays over time (Section “Gompertz
model”). Under the Gompertz model, each organoid eventually reaches a so-called “carrying
capacity” K, which is the predicted final size of the organoid (Fig 1 and Section “Gompertz
model”).

Fig 4A shows that for each of the UK/UP/US datasets, the distribution of log10(a) across
individual organoids is consistent with a normal distribution, where log10(a) denotes the loga-
rithm of a with base 10. The same is true if we combine the datasets for each patient before
testing for normality (S4 Fig). This is confirmed by Kolmogorov-Smirnov statistical tests at the
5% significance level. We applied a logarithmic transformation to a before assessing normality
since the estimated values of a vary across an order of magnitude within each dataset, which
indicates significant intrapatient heterogeneity in the values of a. We performed the same anal-
ysis for the US–GFP dataset and continued to observe a lognormal distribution for a, both for
the individual replicates and the overall dataset (S5 Fig).

We were next interested in examining the two-dimensional distribution of (a, b) for the
three patient samples, shown on a logarithmic scale in Fig 4B. We first note that for many
organoids in each dataset, the growth decay parameter b is effectively zero (b = 10−4), in which
case the organoid grows at exponential rate a through the end of the experiment. We will refer
to these organoids as “exponential” and the remaining organoids as “nonexponential”. The
proportion of exponential organoids varies between the patient samples (24.8% for UK, 10.7%
for UP, 16.2% for US), but the growth rates of these organoids are clearly smaller for US than
for UK and UP (Figs 4B and S8A). We then recall that under the Gompertz model, the carry-
ing capacity of an organoid with parameters a and b is given by K = ea/b (Sections “Mathemati-
cal models” and “Variable dormancy time”). Thus, organoids that share a common ratio a/b =
k between the parameters a and b have the same carrying capacity. In Fig 4B, we have drawn
slanted lines along which the carrying capacity is K = 10, 102, 103, 104. We note that for all the
patient samples, several nonexponential organoids are estimated to have carrying capacities
over 10,000 cells. For these organoids, the estimated carrying capacity is significantly larger
than the observed final size on Day 5 (S6 Fig), indicating that only a small part of the overall
growth trajectory has been observed in the experiment. We finally note that the distribution of
nonexponential organoids is more concentrated for the UK and UP organoids than the US
organoids, indicating greater heterogeneity in organoid growth for the US organoids. We dis-
cuss inter-patient differences further in the following section.

For the nonexponential organoids, the Gompertz parameters a and b display a high degree
of correlation (0.77 for UK, 0.76 for UP and 0.85 for US). This indicates a strong linear rela-
tionship between a and b, in the sense that smaller values of a tend to coincide with smaller
values of b. Vaghi et al. [40] recently modeled the growth of three animal models of breast and
lung cancer using the Gompertz model. For each animal model, they observed an almost exact
linear relationship a = kb between a and b, indicating a common carrying capacity for all
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Fig 4. Intrapatient heterogeneity in tumor organoid growth. A: Distribution of log10(a) within the UK/UP/US datasets, where log10(a) denotes the
logarithm of a with base 10. For each organoid in each dataset, the initial exponential growth rate a of the organoid was estimated using the Gompertz
model (Sections “Gompertz model” and “Model fitting”). Each panel shows how the estimated values of a are distributed across individual organoids within
the indicated dataset, under a logarithmic transformation of a. The logarithmic transformation is applied since the estimated values of a vary across an
order of magnitude within each dataset. For each dataset, the distribution of log10(a) is consistent with a normal distribution, meaning that we fail to reject
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animals transplanted with the same cancer cells. This and similar evidence from the literature
[19, 41–43] led the authors to model their data using a reduced Gompertz model, where the
carrying capacity was assumed fixed among all animals with the same cancer. For our organoid
datasets, even though a and b are highly correlated, they do not appear to obey an exact linear
relationship leading to a common carrying capacity within each patient sample. This again
highlights the level of heterogeneity in organoid growth, even for organoids derived from the
same patient and grown in the same environment.

To ensure that the observed intrapatient heterogeneity in a and K is not caused by differ-
ences in the positions of organoids within the experimental wells, we verified that there is no
clear relationship between the values of a and K and the distance of the organoid from the cen-
ter of the well within any of the patient samples, see S7 Fig.

Differences in growth characteristics between patients can be explained by
differences in growth rate and dormancy time

We finally used the Gompertz modeling perspective to gain insights into the differences in
growth dynamics between the different patient organoids. In Fig 5A, we compare the distribu-
tions of log10(a) for the UK, UP and US organoids. The US organoid distribution is signifi-
cantly different from the UK and UP distributions according to a Kolmogorov-Smirnov test,
whereas the difference between UK and UP is not significant at the 5% level when a Bonferroni
correction is applied (p-values 1.3 � 10−4 for UK vs. US, 1.7 � 10−5 for UP vs. US and 0.039 for
UK vs. UP). The US organoid distribution is the widest and has the lowest average growth
rate. However, for the most part, the three distributions overlap, indicating that the level of
intrapatient heterogeneity in growth rates exceeds the level of interpatient heterogeneity. In
particular, even though the US organoids grow the slowest on average, it is not the case that all
US organoids have smaller growth rates than all UK and UP organoids.

In Fig 5B, we show for each patient sample how the predicted carrying capacities of nonex-
ponential organoids are distributed between the size categories of Fig 4B. A more detailed dis-
tribution is shown in S8B Fig. The carrying capacities of UK organoids are generally larger
than for the UP organoids, while the US organoids have significantly smaller carrying capaci-
ties overall. In our formulation of the Gompertz model, we have assumed that a seeded single
cell starts growing into an organoid on Day −τ, where 0 τ 4 is allowed to vary between
organoids (Section “Variable dormancy time”). This reflects the fact that after seeding, individ-
ual cells may stay dormant for varying amounts of time while adjusting to the new environ-
ment. If a seeded cell starts growing on Day −τ with an initial exponential growth rate a, then
under the Gompertz model, the growth rate has decreased to ae−bτ by Day 0 (Section “Gom-
pertz model”). Interestingly, the UK organoids are the smallest on average on Day 0 (Fig 5C),
even smaller than the US organoids, yet they have the largest growth rates on Day 0 according
to the Gompertz model fits (Fig 5D). On Day 5, the UK organoids have grown to be

the null hypothesis of normality under a Kolmogorov-Smirnov statistical test at the 5% significance level. B: Distribution of the Gompertz parameters (a, b)
within the UK/UP/US datasets, shown on a logarithmic scale. The different datasets for each patient have been combined. For each organoid in each
dataset, the initial exponential growth rate a and the rate of growth decay b were estimated using the Gompertz model (Sections “Gompertz model” and
“Model fitting”). Each dot in each panel represents a single organoid, where the horizontal position of the dot indicates the value of a for that organoid and
the vertical position indicates the value of b. When fitting the Gompertz model to individual organoids, we set b = 10−4 as the smallest possible value for b
and treat it as effectively zero. Organoids with b = 10−4 are referred to as “exponential organoids”, while the remaining organoids are referred to as
“nonexponential”. The exponential organoids are all situated on the horizontal axis and their position on the axis represents their rate of exponential
growth. The slanted lines indicate carrying capacities of K = 10, 102, 103, 104, where the carrying capacity is the predicted final size of the organoid under the
Gompertz model (Fig 1). All organoids falling on the same line share the indicated carrying capacity. Organoids falling below the lowest line are predicted
to have a final size above 104 cells.

https://doi.org/10.1371/journal.pcbi.1012256.g004
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Fig 5. Interpatient heterogeneity in tumor organoid growth. A: Comparison of the distributions of log10(a) between the different patient samples, where the datasets
for each patient have been combined. B: Comparison of the distributions of carrying capacities between the different patient samples. Only nonexponential organoids are
considered (b> 10−4). For each organoid in each dataset, the carrying capacity K = ea/b of the organoid was estimated using the Gompertz model (Sections “Gompertz
model” and “Model fitting”). The columns indicate for each patient the proportion of organoids falling within each category K< 10, 10 K< 102, 102 K< 103, 103
K< 104 and K� 104. C: Comparison of the distributions of log10(n1) between the different patient organoids, where the datasets for each patient have been combined,
and n1 is the observed size of the organoid on Day 0. Here, log10(n1) denotes the logarithm of n1 with base 10. For each patient sample, the graph of the cumulative
distribution function (CDF) of log10(n1) is shown, which gives for each value of x the proportion of organoids satisfying log10(n1) x. The CDF has been estimated using
the ksdensity function in MATLAB. The fact that the UK organoid graph lies farthest to the left means that UK organoids are the smallest on average on Day 0, while the
UP organoids are the largest on average on Day 0. D: Comparison of the distributions of log10(ae−bτ) between the different patient organoids, where ae−bτ is the growth
rate of the organoid on Day 0 according to the Gompertz model. The UK organoids have the largest growth rates on average on Day 0, while the US organoids have the
smallest growth rates on average. E: Comparison of the distributions of log10(n3) between the different patient organoids, where n3 denotes the observed size of the
organoid on Day 5. The UP organoids are slightly larger than the UK organoids overall on Day 5, and both the UP and UK organoids are significantly larger than the US
organoids overall. F: Comparison of the distributions of log10(ae−b(τ+5)) between the different patient organoids, where ae−b(τ+5) is the growth rate of the organoid on Day
5 according to the Gompertz model. The UK organoids have the largest growth rates on average on Day 5. G: Median organoid size projected to Day 20 for each patient
sample. To generate the curves, we sampled 100,000 sets of Gompertz parameters (a, b) from the observed parameter distributions for each patient, and computed the
medians of the sampled curves. H: UK organoid size projected to Day 20 with error bars. The limits of the error bars represent the 5th and 95th percentile, respectively, of
the 100,000 sampled curves from part G.

https://doi.org/10.1371/journal.pcbi.1012256.g005
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significantly larger than the US organoids, and they have almost caught up in size with the UP
organoids (Fig 5E). In addition, the UK organoids still have the largest growth rates ae−b(τ+5)

on Day 5 (Fig 5F). As a result, the UK organoids are eventually predicted to become larger
than the UP organoids overall, as is indicated by the distributions of carrying capacities for UK
and UP organoids in Fig 5B.

One useful application of our mathematical modeling is that it enables prediction of orga-
noid growth beyond the final observed experimental date. In Fig 5G, we show median pro-
jected growth trajectories for the three patient samples up until Day 20. Consistent with
previous insights, the median UK organoid starts growing later than the other two organoids,
and the UK organoid is smaller than the UP organoid during the experimentally observed
period. On Day 20, the median UK organoid is larger than the UP organoid, which is in turn
significantly larger than the median US organoid. In Fig 5H, we show the projected growth tra-
jectory for the UK organoid with error estimates, which capture both the intrapatient hetero-
geneity in the growth dynamics up until Day 5 and the increasing uncertainty in the projected
trajectory as it extends further beyond the experimental dates.

To interpret our findings in a clinical context, it is important to note that the in vitro
dynamics of organoid growth are significantly faster than the dynamics of tumor growth
within a human patient. A direct comparison of time scales is difficult since under Gompert-
zian growth, for example, the tumor doubling time decreases as the tumor grows larger. How-
ever, to get a sense, we note that for the median UK organoid trajectory, the model-estimated
doubling time is around 16 hours at the beginning of organoid growth, while it has decreased
to 2.6 days by Day 10. In contrast, in a recent study of clinical data from 43 colorectal cancer
patients, the median tumor doubling time was found to be 211 (112–404) days [44]. If we use a
scaling factor of 211/2.6, then 20 days in the in vitro setting correspond to 4.4 years in a patient.
We stress that this number is only an indication, as the doubling times depend on several fac-
tors such as the disease stage, and they are heterogeneous between patients. However, it is
clear that understanding organoid growth over a time span of 20 days in the in vitro setting
can potentially yield clinical insights on a much longer time scale.

Discussion

Biological investigations using organoid models necessitate the application of 3D imaging
techniques to examine dynamic organoid features. However, capturing multi-dimensional
information (size, morphology, viability status) from a time series of images is difficult. By
training and applying a NN on EFI projected images, we were able to automate the process,
supporting multi-scale batch analysis with non-uniform phenotypic measurements. The ability
to individually track organoids facilitates the monitoring of their temporal dynamics, intro-
ducing an additional layer of patient-specific features. Since PDTOs replicate inter- and intra-
patient heterogeneity, it is important to understand their growth and morphological character-
istics before exploring biological mechanisms and utilizing them as a platform for investigating
drug effectiveness. In this work, we suggest an integrated experimental-computational method
to explore PDTO growth by combining a high-throughput imaging-based platform with math-
ematical modeling. While our method was initially applied to CRC PDTOs, it can easily be
adapted to different organoid types.

The integration of organoid imaging data with mathematical modeling has enabled us to
gain quantitative insights into organoid growth dynamics and to predict their future growth.
This integration can further be leveraged for drug discovery and to assist in selecting drugs
when faced with drug resistance, or in identifying optimal combination therapies. Through
our mathematical analysis, we found that organoid growth is well-described by the Gompertz
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model, which involves an initial exponential growth phase. Exponential growth entails that on
average, a constant proportion of cells in the organoid divides over time, where divisions can
nevertheless occur in an asynchronous and stochastic manner (Section “Exponential model”).
The fact that the Gompertz model is preferred over the von Bertalanffy model indicates that at
the very initial stages of organoid growth, cell divisions occur uniformly across the organoid,
as opposed to being restricted to the outermost cell layer. We note that in our model formula-
tion, seeded single cells are assumed to lay dormant for some period before starting to grow
and form organoids (Section “Variable dormancy time”). When we say that the initial growth
is exponential, we mean that it is exponential from the time the organoid starts growing. Alter-
native potential explanations of the initial growth dynamics are discussed below.

In further analysis of the Gompertz model fits, we observed significant intrapatient hetero-
geneity in the Gompertz model parameters a, the initial exponential growth rate, and K, the
carrying capacity. The distribution of a amongst individual organoids was consistently lognor-
mal [45–48], both across different datasets for the same patient and across the different
patients. As for interpatient heterogeneity, the UK and UP organoids showed similar distribu-
tions for a and K, despite the UK organoids being the smallest on average on Day 0 and grow-
ing the fastest between Day 0 and Day 5. Our mathematical model suggests a simple
explanation for this, which is that the UK organoids have longer dormancy times after seeding
than the UP and US organoids. This is reflected in how the estimated values of the starting
time parameter τ are distributed within each patient sample. The distribution of τ is skewed
toward τ = 0 for the UK organoids, meaning that the organoids usually start growing close to
Day 0, and toward τ = 4 for the UP organoids, meaning that the organoids usually start grow-
ing close to Day −4 (S9 Fig). For the US organoids, the distribution of τ more resembles a
bimodal distribution, with small and large values of τ both being common. Overall, the US
organoids showed quite distinct growth characteristics from the UK and UP organoids, and
the estimated values of a, K and τ indicated an elavated level of heterogeneity in organoid
growth compared to the UK and UP organoids.

The UK and UP organoids were established from advanced tumor tissues (stage 4A and 4,
respectively) compared to US organoids (stage 2), potentially explaining why UK and UP orga-
noids grow faster than US organoids (Table 1). In Burke et al. [44], they found that the median
colon tumor growth per time period of 62 days was greater for more advanced tumors, sup-
porting our in vitro PDTO findings. Additionally, the US organoid has a KRAS G12A muta-
tion and a high tumor mutational burden, which may contribute to the observed
heterogeneity in US organoid growth through dysregulation of cell proliferation. It is unclear
to what extent the carrying capacities of organoids predict the carrying capacities of the tumors
themselves. Organoids are good in vitro models for patients’ tumors but the physiological envi-
ronment is not the same as in vivo. Tumor cells in tissue interact with a variety of stromal cells
(fibroblasts, endothelial cells, immune cells, etc.) and tumor growth can be affected by other
microenvironmental factors such as tissue stiffness, oxygen gradient and nutritional supports.
Further studies are needed to directly correlate the carrying capacities of organoids with carry-
ing capacities of patient tumors. Overall, molecular differences between patients play a signifi-
cant role in shaping organoid growth, morphology and response to drugs. Subsequent work
will examine connections between the current growth model and individual patient character-
istics, aiming to explore personalized therapeutic strategies.

Limitations

We acknowledge uncertainty in the estimation of growth parameters and in the selection of
the most appropriate growth model due to a limited number of datapoints per organoid.
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Nevertheless, our results show that the Gompertz model is useful for understanding the basic
mathematical properties of organoid growth, and these results are consistent with previous
evidence for the relevance of the Gompertz model for tumor growth. We note that three-
dimensional imaging data indicates that some of our PDTOs become hollow, cystic-like, as
they grow larger. Since the Gompertz model is nonspatial and empirical in nature, this does
not preclude its application to the data. However, in future work we plan to develop growth
models which take the spatial characteristics of organoid growth into account, while remaining
simple enough to be applicable to the high-throughput setting. We also note that the mathe-
matical models employed in this study assume that each organoid can be treated as a homoge-
neous cell population, while in reality, each organoid is likely composed of a mix of different
cell types, both stem and differentiated cells. In future work, we plan to explore models which
incorporate intra-organoid heterogeneity in cell type, since the observed variability in growth
profiles is likely driven in part by heterogeneity in cell type composition. The new growth
models could potentially leverage the morphology data described in Section “Patient-specific
organoid size and morphological changes can be measured by AI-driven image analysis with
individual organoid tracking”, which we have not incorporated into the mathematical models
of the present study.

Furthermore, in our model formulation, we have assumed that after seeding, a cell may
remain dormant for some time before starting to grow and form an organoid, and this time is
allowed to vary between different organoids. We have shown that this is sufficient to explain
the fact that UK organoids are significantly smaller than UP organoids on Day 0 while growing
faster between Days 0 and 5. However, there are several other potential explanations for this
behavior. For example, organoid growth at the initial stages may be partly driven by cell aggre-
gation, the level of which may differ between the UK and UP organoids. It is also possible that
the growth dynamics at very low cell densities, before cell-cell interactions become a significant
factor, deviate from the overall dynamics. For example, an in vitro culture of BT-474 luminal B
breast cancer cells was recently observed to display an Allee effect, under which population
growth is significantly slower at very low densities [49].

We finally note that in this work, we have employed a data filtering process in part to allevi-
ate segmentation errors made by the NN (Section “Data filtering”). In future work, we plan to
continue to develop and improve the NN image analysis, for example by generating training
data involving more patient samples. In addition, we have in this work only considered alive
organoids that grow between every pair of time points, whereas modeling drug screening data
may require extending the models to allow for nonmonotone growth.

Conclusions

As far as we are aware, this is the first work to use simple tumor growth models to gain insights
into the growth characteristics of patient-derived tumor organoids and to highlight both intra-
and interpatient differences in the dynamics. Understanding these differences promotes the
development of model-driven precision medicine, since knowing the growth dynamics of the
different patient organoids in the untreated condition sets the baseline for understanding how
the same organoids are affected by drug treatment. Deriving translational value from the com-
bination of mathematical modeling with organoid growth experiments and organoid drug
screens will require further development both on the experimental and mathematical model-
ing side. Ultimately, we hope to integrate mathematical modeling with high-throughput drug
screenings to facilitate drug discovery, drug testing and personalized treatment optimization.
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Supporting information

S1 Text. Supplementary text.
(PDF)

S1 Fig. Graphical abstract. Image was generated using the BioRender software.
(TIF)

S2 Fig. Live-cell imaging. A: Live cell imaging of US-GFP organoid. Cell division events are
highlighted. Single Z plane at the center of organoid was imaged over time (every 20 minutes
for 12 hours). Time stamp, hours: minutes: seconds. Scale bar, 20 micrometer. (S4 Video) B:
Immunostaining of US organoid shows the actively proliferating cells (Green-labeled). Ki67
(Green): Cell proliferation, E-cadherin (Red): Cell junction, DAPI (Blue): Cell nuclei.
(TIF)

S3 Fig. Comparison of normalized fitting errors between Gompertz, logistic and von Ber-
talanffy models. A: Comparison of normalized fitting errors (Section “Model selection”) indi-
vidual organoids in the UK/UP/US datasets between the Gompertz and logistic models. Each
dot represents a single organoid. B: Comparison of normalized fitting errors between the
Gompertz model and the von Bertalanffy model with γ = 3/4.
(PDF)

S4 Fig. Distribution of log10(a) across individual organoids in the UK/UP/US datasets. The
different datasets for each patient have been combined. The mean and standard deviation of
each distribution are shown. For each patient, the distribution of log10(a) is consistent with a
normal distribution according to a Kolmogorov-Smirnov test at the 5% significance level,
meaning that we fail to reject the null hypopthesis of normality.
(PDF)

S5 Fig. Distribution of log10(a) across individual organoids on each experimental plate
(left two panels) and overall (rightmost panel) for the US–GFP dataset. The mean and stan-
dard deviation of each distribution are shown. For each plate individually and for the two
plates combined, the distribution of log10(a) is consistent with a normal distribution according
to a Kolmogorov-Smirnov test at the 5% significance level.
(PDF)

S6 Fig. Final observed organoid size on Day 5 vs. the carrying capacity predicted by the
Gompertz model. The datasets for each patient have been combined. Each dot represents a
single organoid and only nonexponential organoids are considered (b> 10−4). Carrying
capacities above 1010 cells are set to 1010.
(PDF)

S7 Fig. Intrapatient heterogeneity in organoid growth is not driven by position within
experimental wells. A: Comparison between the distance r of an organoid from the center of
the experimental well and the initial exponential growth rate a of the organoid. Each dot repre-
sents a single organoid. The datasets for each patient have been combined. For each patient, a
best-fit line is shown. The slope of the line cannot be distinguished from zero at the 5% signifi-
cance level for any of the patient samples when a Bonferroni correction is applied. B: Compari-
son between the distance r of an organoid from the center of the experimental well and its
estimated carrying capacity K according to the Gompertz model. Only nonexponential orga-
noids are considered (b> 10−4), and carrying capacities above 1010 cells are set to 1010. For
each patient, a best-fit line is shown. The slope of the line cannot be distinguished from zero at
the 5% significance level for any of the patient samples, whether or not a Bonferroni correction
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is applied.
(PDF)

S8 Fig. Interpatient heterogeneity in initial growth rate and carrying capacity. A: Compari-
son of the distributions of log10(a) between the different patient samples, where only exponen-
tial organoids are considered (b = 10−4), and the datasets for each patient have been combined.
For each patient sample, the graph of the cumulative distribution function (CDF) of log10(a) is
shown, which gives for each value of x the proportion of organoids satisfying log10(a) x. B:
Comparison of the distributions of carrying capacities between the different patient samples,
where only nonexponential organoids are considered (b> 10−4). For each patient sample, the
graph of the CDF of log10(K) is shown.
(PDF)

S9 Fig. Distribution of τ across individual organoids for the different patient samples,
where the datasets for each patient have been combined. In our model, it is assumed that
each single cell starts growing into an organoid on Day −τ, where the parameter τ is
allowed to vary between organoids. For each organoid in each dataset, the value of the
parameter τ was estimated using the Gompertz model (Sections “Gompertz model” and
“Model fitting”), and each panel shows how the estimated values of τ are distributed across
the individual organoids for each patient. The distribution of τ is skewed toward τ = 0 for
UK organoids and toward τ = 4 for UP organoids. For US organoids, the distribution of τ
more resembles a bimodal distribution, where both small and large values of τ are com-
mon.
(PDF)

S1 Table. The results of each data filtering step described in Section “Data filtering”.
(PDF)

S2 Table. Average BIC obtained by fitting each mathematical model to each individual
organoid in the US–GFP dataset. The best-fit model for each plate is indicated by bold.
(PDF)

S3 Table. Mean normalized error obtained by fitting the Gompertz, logistic and von Berta-
lanffy (vB) models to each individual organoid in the US–GFP dataset. The best-fit model
for each plate is indicated by bold.
(PDF)

S1 Video. Live imaging of US-GFP organoids. Condensed chromosomes and dividing cells
are shown in the movie.
(AVI)

S2 Video. NN processing and tracking of UK organoids from Day 0 to Day 5. Live orga-
noids were labeled with blue and green lines to show the tracking of organoids over time.
(AVI)

S3 Video. NN processing and tracking of UP organoids from Day 0 to Day 5. Live orga-
noids were labeled with blue and green lines to show the tracking of organoids over time.
(AVI)

S4 Video. NN processing and tracking of US organoids from Day 0 to Day 5. Live organoids
were labeled with blue and green lines to show the tracking of organoids over time.
(AVI)
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separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche. PLoS Biol.
2016; 14(6):e1002491. https://doi.org/10.1371/journal.pbio.1002491 PMID: 27348469

35. Kim S, Choung S, Sun RX, Ung N, Hashemi N, Fong EJ, et al. Comparison of cell and organoid-level
analysis of patient-derived 3D organoids to evaluate tumor cell growth dynamics and drug response.
SLAS Discov. 2020; 25(7):744–754. https://doi.org/10.1177/2472555220915827 PMID: 32349587

36. West GB, Brown JH, Enquist BJ. A general model for ontogenetic growth. Nature. 2001; 413
(6856):628–631. https://doi.org/10.1038/35098076 PMID: 11675785

37. Marusic M, Bajzer Z. Generalized two-parameter equation of growth. J Math Anal Appl. 1993; 179
(2):446–462. https://doi.org/10.1006/jmaa.1993.1361

38. Kühleitner M, Brunner N, Nowak WG, Renner-Martin K, Scheicher K. Best fitting tumor growth models
of the von Bertalanffy-PütterType. BMC Cancer. 2019; 19:1–11. https://doi.org/10.1186/s12885-019-
5911-y PMID: 31299926

39. Neath AA, Cavanaugh JE. The Bayesian information criterion: background, derivation, and applica-
tions. Wiley Interdiscip Rev Comput Stat. 2012; 4(2):199–203. https://doi.org/10.1002/wics.199

40. Vaghi C, Rodallec A, Fanciullino R, Ciccolini J, Mochel JP, Mastri M, et al. Population modeling of tumor
growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors.
PLoS Comput Biol. 2020; 16(2):e1007178. https://doi.org/10.1371/journal.pcbi.1007178 PMID: 32097421

41. Laird AK. Dynamics of tumour growth. Br J Cancer. 1964; 18(3):490. https://doi.org/10.1038/bjc.1964.55

42. Brunton G, Wheldon T. Characteristic species dependent growth patterns of mammalian neoplasms.
Cell Prolif. 1978; 11(2):161–175. https://doi.org/10.1111/j.1365-2184.1978.tb00884.x PMID: 630579

43. Demicheli R. Growth of testicular neoplasm lung metastases: Tumor-specific relation between two
Gompertzian parameters. Eur J Cancer. 1980; 16(12):1603–1608. https://doi.org/10.1016/0014-2964
(80)90034-1 PMID: 7227433

44. Burke J, Brown P, Quyn A, Lambie H, Tolan D, Sagar P. Tumour growth rate of carcinoma of the colon
and rectum: retrospective cohort study. BJS Open. 2020; 4(6):1200–1207. https://doi.org/10.1002/bjs5.
50355 PMID: 32996713

45. Gaddum JH. Lognormal distributions. Nature. 1945; 156(3964):463–466. https://doi.org/10.1038/156463a0

46. Spratt JS Jr. The lognormal frequency distribution and human cancer. J Surg Res. 1969; 9(3):151–157.
https://doi.org/10.1016/0022-4804(69)90046-8 PMID: 5813183

47. Lee YTN. The lognormal distribution of growth rates of soft tissue metastases of breast cancer. J Surg
Oncol. 1972; 4(2):81–88. https://doi.org/10.1002/jso.2930410206 PMID: 5033032

48. Norton L. A Gompertzian model of human breast cancer growth. Cancer Res. 1988; 48
(24_Part_1):7067–7071. PMID: 3191483

49. Johnson KE, Howard G, Mo W, Strasser MK, Lima EA, Huang S, et al. Cancer cell population growth
kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS
Biol. 2019; 17(8):e3000399. https://doi.org/10.1371/journal.pbio.3000399 PMID: 31381560

PLOS COMPUTATIONAL BIOLOGY Modeling patient-derived tumor organoid growth

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012256 August 2, 2024 26 / 26

https://doi.org/10.3390/molecules27134169
http://www.ncbi.nlm.nih.gov/pubmed/35807415
https://doi.org/10.1016/j.cell.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26590416
https://doi.org/10.1038/nrclinonc.2015.204
https://doi.org/10.1038/nrclinonc.2015.204
http://www.ncbi.nlm.nih.gov/pubmed/26598946
https://doi.org/10.1002/psp4.12450
http://www.ncbi.nlm.nih.gov/pubmed/31250989
https://doi.org/10.3389/fgene.2019.00873
http://www.ncbi.nlm.nih.gov/pubmed/31592020
https://doi.org/10.1007/s11538-017-0294-1
https://doi.org/10.1007/s11538-017-0294-1
http://www.ncbi.nlm.nih.gov/pubmed/28681151
https://doi.org/10.1371/journal.pcbi.1011386
https://doi.org/10.1371/journal.pcbi.1011386
http://www.ncbi.nlm.nih.gov/pubmed/37578984
https://doi.org/10.1371/journal.pbio.1002491
http://www.ncbi.nlm.nih.gov/pubmed/27348469
https://doi.org/10.1177/2472555220915827
http://www.ncbi.nlm.nih.gov/pubmed/32349587
https://doi.org/10.1038/35098076
http://www.ncbi.nlm.nih.gov/pubmed/11675785
https://doi.org/10.1006/jmaa.1993.1361
https://doi.org/10.1186/s12885-019-5911-y
https://doi.org/10.1186/s12885-019-5911-y
http://www.ncbi.nlm.nih.gov/pubmed/31299926
https://doi.org/10.1002/wics.199
https://doi.org/10.1371/journal.pcbi.1007178
http://www.ncbi.nlm.nih.gov/pubmed/32097421
https://doi.org/10.1038/bjc.1964.55
https://doi.org/10.1111/j.1365-2184.1978.tb00884.x
http://www.ncbi.nlm.nih.gov/pubmed/630579
https://doi.org/10.1016/0014-2964(80)90034-1
https://doi.org/10.1016/0014-2964(80)90034-1
http://www.ncbi.nlm.nih.gov/pubmed/7227433
https://doi.org/10.1002/bjs5.50355
https://doi.org/10.1002/bjs5.50355
http://www.ncbi.nlm.nih.gov/pubmed/32996713
https://doi.org/10.1038/156463a0
https://doi.org/10.1016/0022-4804(69)90046-8
http://www.ncbi.nlm.nih.gov/pubmed/5813183
https://doi.org/10.1002/jso.2930410206
http://www.ncbi.nlm.nih.gov/pubmed/5033032
http://www.ncbi.nlm.nih.gov/pubmed/3191483
https://doi.org/10.1371/journal.pbio.3000399
http://www.ncbi.nlm.nih.gov/pubmed/31381560
https://doi.org/10.1371/journal.pcbi.1012256

