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Abstract—Joint communication and sensing (JCAS) is one of
the promising technologies envisioned for future generations of
wireless systems. Several attempts have been made to formulate
the problem from an information-theoretic perspective, assuming
underlying discrete memoryless channels and leveraging classi-
cal rate-distortion trade-offs. However, communication channels
often have memory and strategies to improve data rates with the
help of sensing in such scenarios is not yet well understood. In this
paper, we consider a generic system model for JCAS, and present
a novel and greedy-type strategy to achieve optimal average
rate, assuming a channel model with memory. In particular,
in the considered channel model, the channel state follows a
finite state Markov chain (FSMC). We also characterize how the
solutions to communication and sensing problems complement
each other in such scenarios. To the best of authors’ knowledge,
this is the first attempt towards understanding rate-optimized
strategies in JCAS systems involving channels with memory from
a communication-theoretic perspective.

I. INTRODUCTION

Joint communication and sensing systems are widely con-
sidered as one of the main enabling technologies for the next
generation, 6G and beyond, wireless networks [1], [2]. The
problem of designing JCAS systems and understanding their
fundamental limits has received significant attention recently
and has been investigated from various perspectives. Several
research directions are being actively pursued for complex
design of JCAS systems while addressing challenges from
the perspectives of distributed sensing, channel modeling, and
characterizing radio frequency (RF) parameters [1]. Further-
more, due to a major trend towards utilizing higher frequency
bands in wireless systems, the authors of [3] proposed a
framework for JCAS systems in THz frequency bands. The po-
tential applicability of multiple-input multiple-output antenna
systems in JCAS systems is analyzed in [4], with extensions
to the usage of re-configurable intelligent surfaces.

To fundamentally characterize the system performance, it
is essential to define a mathematical model that can capture
the essence of operations of the channel in JCAS systems.
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To this end, various efforts have been made in the literature.
For instance, a simplified channel model for JCAS systems
was provided and analyzed in [5], discussing the receiver
design from a radar communication perspective. In another
work, the capacity of additive white Gaussian noise (AWGN)
channels in the presence of radar interference was discussed
in [6]. Furthermore, once the channel model is established,
understanding what is fundamentally achievable, in terms of
the achievable rate of communication and some measure of
success for the sensing operation, can play a vital role in
the selection of various design parameters in the real system.
Next, we review some of the prior work aiming to tackle this
problem from an information-theoretic perspective.

A. Related prior work

In an earlier work, Zhang et al. [7] considered the problem
of joint communication and channel state estimation, and
presented the fundamental trade-off between the transmission
rate and state estimation distortion for various memoryless
channels. In [8], an iterative algorithm was presented to
optimize the input distribution at the transmitter to achieve
optimal trade-offs in joint state sensing and communication in
memoryless channels. Very recently, an information-theoretic
capacity-distortion trade-off in point-to-point and single trans-
mitter two receiver JCAS systems was presented in [9].
Furthermore, in [10], optimal trade-offs were characterized
when the transmitter does not utilize the state feedback. In
[11], the capacity-distortion trade-off were captured with sub-
spaces of channels of sensing and communication and various
degrees of freedom. In another work, similar trade-offs were
explored in the finite block length regime [12].

It is worth noting that in most of these prior works the
underlying channel is assumed to be memoryless. And the
trade-offs are characterized for a one-shot scenario, e.g., by
characterizing the optimal input distribution. In this paper, we
make the first attempt, to the best of our knowledge, to design
rate-optimizing strategies for a certain family of channels with
memory.
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Fig. 1. JCAS system model

B. Our contributions

In our work, we consider a generic system model for JCAS
systems with an emphasis on maximizing the communication
data rate in such systems when the channel has memory. In
particular, we study a scenario where the channel state follows
a FSMC. We develop a greedy strategy to maximize the rate
of communication at every round of communication given
the past observations of the channel output available at the
transmitter. We show that the greedy strategy also leads to the
maximum throughput over several rounds of communication.
It is demonstrated that maximizing the rate does not affect
the Maximum a posteriori (MAP) estimation of the channel
state at the transmitter, an observation that is primarily due to
the symmetry of the underlying channels. We also compare
and demonstrate the advantages of our optimized greedy-type
strategy with strategies that are solely based on utilization of
the MAP estimate of the channel state.

The rest of the paper is organized as follows. In Section II
we discuss the considered system model for the JCAS problem
and the FSMC modeling of the channel. In Section III we
propose a novel strategy to maximize the data rate and the
throughput of the communication system in the considered
JCAS scenario. In Section IV, we demonstrate a numerical
evaluation of the systems to test the performance compared
with other MAP-based strategies. The paper is concluded in
Section V.

II. SYSTEM MODEL

A. Notation

In our notation, bold letters represent vectors, capital letters
of the form X represent random variables, and lower-case
letters of the form x denote realizations of the random variable.
The quantity x

(i)
j denotes realization xj observed at a time

instant i. And calligraphic letters, e.g., X , represent sets.
The system model in Fig. 1. represents co-existence of

traditional communication between a transmitter and a receiver
along with the sensing information available at the transmitter.
The input X is a random variable where each realization x
represents binary data bits of length N from the transmitter.
It is assumed that the bits in X are uniform i.i.d., i.e.,

X ∼ U[0, 2N ]. (1)
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Fig. 2. Channel state S representation as multi-state Markov chain with
transition probabilities T

When the transmitter uses a specific codebook of dimension k,
one can note that X ∼ U[0, 2k]. The output Y at the receiver
is the result of input X undergoing transmission through
Channel-1. The quantity Z can be regarded as the reflected
signal available at the transmitter. Thus, Z is assumed to be
the output of Channel-2 with input Y. A pivotal assumption
to consider at this point is regarding the channel type offered
by Channel-1 and Channel-2.

B. Channel model

The channels are assumed to be binary-input symmetric
channels with varying states that follow a FSMC, see, e.g.,
Fig. 2, where sj’s represent channel states and rji’s represent
transition probabilities. Since the receiver is not aware of
individual states of the channel realization, the FSMC channel
model is not memoryless. In fact, it was shown in [13]
that if a genie were to disclose channel states to receiver,
then the channel decomposition would then be Markovian.
This model has practical relevance in fading scenarions, e.g.,
[14] utilized Kullback–Leibler (KL) divergence criterion to
fully characterize the Rayleigh and log-normal fading channel
profiles as a variable length Markov chain.

Another assumption in our work is that the channels are
reciprocal, see, e.g., [15], [16] for practical considerations of
such an assumption. Note that this assumption only helps us to
simplify the formulations, and the setup and the analysis can
be extended to the cases where the channels are not reciprocal
as well. More specifically, Channel-1 and Channel-2 in our
JCAS model are assumed to follow the same Markov state
realization at any time instant. For illustration purposes, in this
work, we use the FSMC model with the underlying channels
to be from the classes of binary symmetric channel (BSC),
AWGN, and fading channels.

In addition, the state realization remains unchanged for the
total duration of N bits of the input x making it a quasi-static
channel. Suppose the channel has finite number of K states
in total. The set S represents state space of possible K states
of a channel, i.e.,

S =
[︁
s1 s2 . . . sK

]︁
.



The finite states have a certain transition probabilities summa-
rized in the transition matrix T as

T =

⎡⎢⎣ r11 r12 . . . r1K
...

...
...

...
rK1 rK2 . . . rKK

⎤⎥⎦.
C. Data rate

The transmitter and the receiver are agreed upon a specific
codebook design before the rounds of transmission of X. In
this work, the strategies are oblivious to the codebook design.
Instead, we simply assume that there is a certain data rate
associated with each channel state at which the transmitter can
reliably communicate to the receiver in N uses of that channel
state. The communication rounds, each round consisting of
communication at a fixed state N times, are indexed by
positive integers from 1 to n. The transmitter attempts to
transmit N bits of the input X = x at a rate R(i) in the i-
th round. Suppose R denote the ordered set of data rates, in
a decreasing order, i.e.,

R = {R1, R2, . . . , RK},

S ∼= R.

In other words, Rj is the rate associate with state sj , and
we have R1 ≥ R2 ≥ · · · ≥ RK . Furthermore, we naturally
assume that if, at a given round, the rate of communication is
R ≤ Rj , where sj is the true state of the channel, then the
communication is successful. Otherwise, if R > Rj , then the
communication at that round fails.

III. THE RATE-MAXIMIZATION STRATEGY

In this section, we present a greedy strategy to achieve the
maximum rate in each round of communication and show that
it also leads to the maximum average rate/throughput across
several rounds of communication.

Let us first define various events of interest. At the beginning
of the communication, in the first round, all channel states
sj ∈ S are assumed to be equally likely. Let S(i) denote the
prior event of observing any state sj ∈ S at round i. Then we
have

P (S(1)) ∼ U[1,K]. (2)

Note that once the i-th round is concluded, the transmitter is
now equipped with Z and the receiver with Y. In terms of the
communication strategy, the goal of the JCAS framework is to
make an informed decision at the transmitter with available Z
in order to pick the optimal rate for communication at round
i + 1. Hence, it is critical that the transmitter computes the
posterior probabilities of the channel state in the i-th round
once it is concluded. This is discussed in the next subsection.

A. Maximum a posterior probaility (MAP) rule

The posterior probabilities of the channel state at the trans-
mitter are computed by comparing the reflected signal Z with
the already known input X. For instance, in the case of the
underlying channels being BSCs, this can be done as follows.
Let E(i) denote the random variable representing the number
of bit errors at the i-th round. Note that the number of bit errors
observed at the transmitter is simply the Hamming distance
between Z and X, i.e.,

e(i) = dH(x, z), (3)

where dH denotes the Hamming distance between two binary
vectors. Let ζj represents the conditional distribution of ob-
serving E(i) = e(i) errors given S(i) = sj . Then the MAP
estimate of the state s(i), denoted by ŝ(i), can be found as
follows:

ζj = P{E(i) = e(i)|S(i) = sj}, (4)

ŝ(i) = argmax
sj

(︂
ζj ∗ P{S(i) = sj}

)︂
. (5)

Let ŝ(i+1) = sj , where the MAP estimate is made at the
end of the i-th round. Then the MAP-rule strategy chooses Rj

as the rate of communication in the next round. This MAP-
rule strategy is straightforward, and yet intuitive, to make a
decision of picking the rate for the next round. However, it
fails at maximizing the overall rate, as we discuss next.

B. Transmitter preprocessing

Let q(i)j denote the posterior probability of state sj available
at the transmitter at the end of the i-th round. The quantities
q
(i)
j are critical in the design of the greedy strategy and

showing its optimality.
Before presenting the strategy, let us define and characterize

the throughput of the JCAS system under consideration. As in
the convention, the throughput is defined as the average rate
of successful communication across a given number of rounds
of communication.

Lemma 1. At the end of the i-th round, the expected value of
throughput in the next round is given by

Expected throughput =

⎡⎣ d∑︂
j=1

P (S(i+1) = sj)

⎤⎦Rd, (6)

where Rd is the designated rate of communication for the next
round.

Proof. Note that, as mentioned at the end of Section II, the
rates Rj’s are in decreasing order. This implies that if the
designated rate is Rd, then the communication is successful if
and only if the true state at the next round is sj for some
j ≤ d. Otherwise, the communication fails. Hence, taking
the expected value with respect to the random variable S(i+1)

representing the events for the random state in the next round
would yield (6).



Next, we describe how the transmitter computes the prior
distribution of S(i+1) using the available q

(i)
j ’s at the end of

the i-th round. This is done as follows:

P (S(i+1)) = T′Q(i) (7)

where T is the transition matrix of the FSMC, and Q(i) =[︂
q
(i)
1 q

(i)
2 . . . q

(i)
K

]︂
is the vector of the posterior probabili-

ties available from the previous round with

qj
(i) =

ζj ∗ P{S(i) = sj}∑︁K
g=1 ζg ∗ P{S(i) = sg}

, (8)

where ζj’s are defined in (4).
The following lemma sums up the discussion in this sub-

section.

Lemma 2. The posterior probabilities of states q(i)j at the end
of the i-th round together with the designated rate for the next
round uniquely determine the expected value of throughput in
the next round.

Proof. The proof is by noting (8) and (7) together with
Lemma 1.

What remains is to specify how to choose the designated
rate for the next round in order to maximize the expected
throughput. This is discussed in the next subsection.

C. The greedy strategy

Suppose that the communication is at the end of the i-
th round. Then the greedy strategy is essentially picking the
designated rate for the next round, i.e., round i + 1, by
picking the index d, i.e., the rate Rd, that maximizes the
average throughput for the next round, as given by (6). More
specifically, let

dmax = arg max
d∈{1,2,...,K}

⎡⎣ d∑︂
j=1

P (S(i+1) = sj)

⎤⎦Rd. (9)

Then the greedy strategy picks Rdmax
for the communication

rate at round i+ 1.

Theorem 3. The greedy strategy described in this section
achieves the maximum average throughput.

Proof. Note that by the definition of throughput and the
expression for the average throughput, given in Lemma 1, the
greedy strategy provides the maximum expected throughput
for the next immediate round of communication. The key
point to conclude the proof is that, the rate of communication
at round i does not affect the distribution of the states in
future rounds, i.e., P (S(i

′)), for i′ > i. The reason behind this
important observation is that the underlying communication
channels in our framework are symmetric and hence maximiz-
ing rate, and, more specifically, the realization of the binary
input sequence X to the channel does not affect the posterior
distribution of channel states. Thus, the greedy strategy for
maximizing rate at every round results in maximizing the

overall average throughput and data rate for any number of
rounds of communication.

In fact, a more general result can be shown for the greedy
strategy. In particular, even if one considers a randomized
strategy with either deterministic or probabilistic distribution
of picking the rates for subsequent rounds for communication,
we claim that it can not perform better than the greedy strategy.
The performance of the strategy is guaranteed in terms of both
the individual rates of communication across rounds as well
as the average rate over all rounds. This is discussed in the
next Corollary.

Corollary 3.1. The average rate achievable through greedy
strategy is the maximum across what is achievable by any
strategy including both deterministic and probabilistic strate-
gies.

Proof. The proof follows from the fact that the rate achievable
by any randomized strategy can be expressed as a convex
combination of rates achievable by a certain set of determin-
istic strategies. This together with Theorem 3 completes the
proof.

Besides maximizing the average rate, the other objective in
JCAS systems is to minimize the cost of errors in sensing, i.e.,
the estimation of the channel states in our framework. This is
discussed in the next subsection.

D. Estimation cost

The state estimation process has a certain cost of error
which is a function of the state estimate and the true state.
For instance, a general cost function is defined and considered
in [9]. However, since the setup is different in our case and
involves a finite number of states in an FSMC, we consider a
Hamming-type estimation cost function defined as follows:

c(i)[ŝ(i), s(i)] =

{︄
0 if ŝ(i) = s(i)

1 if ŝ(i) ̸= s(i)
,

where i refers to the index of the communication round. Thus,
the average cost can now be characterised as a function of
estimation process and the total number of transmission rounds
as,

C(n,S, Ŝ) =
∑︁n

i=1 c
(i)[ŝ(i), s(i)]

n
. (10)

IV. EXAMPLES AND NUMERICAL RESULTS

In this section, we present the conceptual idea of applying
the strategies for three different channels. Namely, a two state
BSC channel (2-BSC), AWGN and real fading channels.

1) BSC Channel: The 2-BSC channel of interest is assumed
to have two error probabilities representing good and bad
channels. The Fig. 3. represent Markov states and the transition
probabilities between the two states. Later in this section, we
provide a numerical evaluation for this example.
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Fig. 3. 2-BSC model representing good and bad channel state as seen by
transmitter

2) AWGN Channel: In this example, the wireless channel
is a noisy channel whose realization is random. The random
realization is a traditional white Gaussian noise which is
additive in nature. Consider the simplest observation model:

Z = [X+W1]⏞ ⏟⏟ ⏞
Y

+W2 (11)

Z = X+W∗ (12)

where W1 ∼ N
[︁
0, σ2

1

]︁
& W2 ∼ N

[︁
0, σ2

2

]︁
are real standard

Gaussian random variables. The two variables have indepen-
dent distributions. Thus for the transmitter working with Z,
W∗ ∼ N

[︁
0, σ2

1 + σ2
2

]︁
. The greedy strategy for maximizing

average rate can be used noting (9) and the corresponding
cost with (10). In a more general case, the channel state can
be seen as finite state realization of variances of AWGN, i.e.,

S = {σ2
1 , σ

2
2 , . . . , σ

2
K}

3) Fading Channel: The fading wireless channel assumed
for illustration has real co-coefficients along with AWGN in
both Channel-1 and Channel-2. At the transmitter, the received
information signal Z can be modeled as,

Z = h2 [h1X+W1]⏞ ⏟⏟ ⏞
Y

+W2 (13)

Z = h2h1X+W∗ (14)

Z = h2X+W∗ (15)

where the channel reciprocity assumption is used for h1 =
h2 = h and W∗ ∼ N

[︁
0, σ2(h2 + 1)

]︁
. The state space S, now

consists of real channel coefficients as FSMC states assuming
the noise realization W∗ being constant. The greedy strategy
for maximizing average rate can be used noting (9) and the
corresponding cost with (10).

A. Numerical results for 2-BSC FSMC

In this section, we demonstrate the performance of different
strategies for the 2-BSC example in JCAS system. Note that,
such an optimization of the strategy is parameterized with
values in TABLE I and remains the same with MAP rule for
comparison with a baseline. To better analyze the performance
of the greedy strategy, the MAP rule is also simulated with
updated priors of the greedy strategy, in a strategy referred to
as MAP_Q.

TABLE I
THE SIMULATION PARAMETERS FOR THE JCAS SYSTEM INVOLVING TWO

STATES FOR THE BSC CHANNEL MODEL. THE PARAMETERS ARE THE
SAME FOR ALL THE THREE DIFFERENT STRATEGIES.

Parameter Value
N 5
n 50
p1 0.09
p2 0.25
r 0.85

R1, R2 0.3, 0.1

The transmitter maintains the set R = {R1, R2} where the
two rates are respectively capacity achieving with respect to
channel-1 BSC. With the greedy strategy, transmitter adapts
R1 as it’s rate when the value of the updated priors are suitable
for the optimization as per (9).
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Fig. 4. Rate chosen by TX in each round by different strategies. The greedy
strategy performs better than MAP with updated priors and MAP with uniform
priors in several rounds.

From Fig. 4. it is evident that the greedy strategy outper-
forms MAP and MAP_Q where MAP_Q denotes the MAP
rule with updated priors of the channel states. The average
rates reported are 0.3, 0.268 and 0.18 for the greedy, MAP_Q
and MAP strategies. The greedy strategy resulted in using
R1 better than MAP strategy in 60% of total rounds of
communication. Similarly, the greedy strategy resulted in using
R1 better than MAP_Q strategy in 16% of total rounds of
communication. Whereas, the MAP_Q alone resulted in using
R1, 44% better than MAP. The simulation results guarantee the
theoretical analysis and hence proves that our novel strategy
outperforms the simple and updated MAP baselines. Note that
the estimation cost (10) for MAP and MAP_Q is observed at



0.64 and 0.38 respectively, where cost for the greedy strategy
remaining same as MAP_Q.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel greedy strategy that can
maximize the average communication data rate and throughput
of the communication in JCAS system with the help of sens-
ing information from the environment. The proposed greedy
strategy can guarantee the optimal average data rate among
the space of any deterministic and probabilistic strategies.
This approach is a stepping stone to establish guaranteed
maximization of rates and the throughput, even when the
communication system utilizes modern coding schemes.

REFERENCES

[1] T. Wild, V. Braun, and H. Viswanathan, “Joint design of communication
and sensing for beyond 5G and 6G systems,” IEEE Access, vol. 9, pp.
30 845–30 857, 2021.

[2] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen,
and J. Yuan, “Enabling joint communication and radar sensing in mo-
bile networks—a survey,” IEEE Communications Surveys & Tutorials,
vol. 24, no. 1, pp. 306–345, 2022.

[3] C. Chaccour, W. Saad, O. Semiari, M. Bennis, and P. Popovski, “Joint
sensing and communication for situational awareness in wireless thz
systems,” in ICC 2022 - IEEE International Conference on Communi-
cations, 2022, pp. 3772–3777.

[4] X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint communication
and sensing toward 6g: Models and potential of using mimo,” IEEE
Internet of Things Journal, vol. 10, no. 5, pp. 4093–4116, 2023.

[5] F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi,
“Integrated sensing and communications: Toward dual-functional wire-
less networks for 6g and beyond,” IEEE Journal on Selected Areas in
Communications, vol. 40, no. 6, pp. 1728–1767, 2022.

[6] S. Shahi, D. Tuninetti, and N. Devroye, “On the capacity of the
awgn channel with additive radar interference,” IEEE Transactions on
Communications, vol. 66, no. 2, pp. 629–643, 2018.

[7] W. Zhang, S. Vedantam, and U. Mitra, “Joint transmission and state
estimation: A constrained channel coding approach,” IEEE Transactions
on Information Theory, vol. 57, no. 10, pp. 7084–7095, 2011.

[8] M. Kobayashi, G. Caire, and G. Kramer, “Joint state sensing and
communication: Optimal tradeoff for a memoryless case,” in 2018 IEEE
International Symposium on Information Theory (ISIT), 2018, pp. 111–
115.

[9] M. Ahmadipour, M. Kobayashi, M. Wigger, and G. Caire, “An
information-theoretic approach to joint sensing and communication,”
IEEE Transactions on Information Theory, vol. 70, no. 2, pp. 1124–
1146, 2024.

[10] M.-C. Chang, S.-Y. Wang, T. Erdoğan, and M. R. Bloch, “Rate and
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