
An Analysis of Network Overhead in Distributed
TinyML

Ket Hollingsworth
Department of Computer Science

Harvey Mudd College
Claremont, CA

khollingsworth@g.hmc.edu

Sean Nian
Department of Computer Science

San Jose State University
San Jose, CA

seannians71@gmail.com

Alan Gutierrez
Department of Computer Science

Harvey Mudd College
Claremont, CA

alagutierrez@g.hmc.edu

Arthi Padmanabhan
Department of Computer Science

Harvey Mudd College
Claremont, CA

arpadmanabhan@g.hmc.edu

Abstract—This paper presents an implementation of a dis-

tributed TinyML system and an analysis of the network overhead

in communication between devices. We use a pipelined approach,

where each device computes a portion of the layers and sends

intermediates to the next device. Our results show that the com-

munication overhead strongly dominates, taking over five times

longer than computation time. We present possible solutions to

mitigate this overhead, including smart partitioning of models,

optimizing device placement and signal strength, and alternate

wireless protocols such as WiFi. These strategies aim to make

the deployment of several TinyML devices working together a

more practical scenario.

I. INTRODUCTION

In recent years, there has been increased interest in running
ML on edge devices rather than sending data to the cloud
for ML processing. Major advantages of this approach include
increased privacy [1], [2], reduced latency by avoiding sending
high-density data, e.g., video, over the network [3], [4], and
resilience to network disconnection [5]. As a result, much
work explores how to effectively run ML on edge devices,
which tend to be smaller and more resource-constrained [6],
[7]. The field of TinyML takes this challenge to the extreme,
exploring how to run ML on devices with extremely limited
memory and milliwatt range power [8], [9], [10].

Machine learning models have been consistently getting
larger to achieve higher accuracy, as seen by the increasing
number of parameters in common models [11]. This trend
makes the limitations of TinyML devices more apparent. A
single TinyML device does not have the memory to run a large
model; that is, it cannot fit the parameters of such models into
its limited memory. Further, such low power devices quickly
run out of energy trying to run complicated compute tasks
such as ML.

Several techniques, such as pruning and quantization, can
lower the size of the model such that it fits on a single TinyML
device. However, such techniques can lower the accuracy of
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the model [12]. This makes a single TinyML device infeasible
for many realistic applications, as deployments tend to have
accuracy targets [13], [4] that they must meet.

Rather than using a single device, we consider the idea of
using TinyML devices for swarm intelligence, where several
devices work together on a single ML inference. Deploying
several devices together is a common strategy, given the
modest price point and high rate of failure of low power
devices [14], [15]. Several devices working together offers a
promising solution to the accuracy problem by enabling larger
models to run.

We explore the technique of pipelining inference [16], [17].
That is, each device takes a portion of the model’s layers, as
seen in Figure 1. While each device cannot individually fit the
whole model, the two devices together can, as Device 1 runs
the first two layers, sends the intermediate values to Device 2,
and Device 2 completes the inference by running the last two
layers. This strategy eases the memory constraint on a single
device and allows the devices to share the computational load.
Additionally, this strategy offers the opportunity to increase
throughput by pipeline parallelization, where Device 1 could
start running inference on the subsequent data sample while
Device 2 is still finishing the first sample.

A major challenge in setting up a usable distributed ML
inference is the overhead associated with sending information
between devices. Several prior works on ML across resource-
constrained devices mention this overhead or simulate network
conditions [18], [19], [17], [20], [21]. However, current lit-
erature is missing a deep-dive into this overhead and what
comprises it.

This preliminary work presents a case study of running
MobileNet as a pipelined inference across 5 ESP32-S3 mi-
crocontrollers. We quantify the latency due to network in our
system and compare it with the latency due to inference. Then,
we analyze the factors that contribute to this overhead. Finally,
we propose promising directions to address the overhead and
take steps towards a realistic distributed TinyML deployment.
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Dog

(a) Workflow when the full model fits on
a device

DogIntermediates

Layers 1-2 Layers 3-4

(b) Workflow when model is split into
multiple devices

Fig. 1: Splitting a model onto two devices

II. SYSTEM SETUP

We describe the setup and design choices of our system,
which splits a model among several TinyML devices, sending
the intermediates between devices.

A. Devices
For our devices, we used the ESP32-S3, a common choice

in TinyML applications [22], [23], [24], [25]. The ESP32-S3
is a low power microcontroller developed by Espressif with
512KB SRAM, 4Mb flash, and a clock speed of 240MHz.
It also provides a partition table that allows users to specify
how the device’s flash memory is organized and allocated
(allowing us to fit more code and weights on each device),
native support for wireless communication protocols like WiFi
and Bluetooth, and low-power sleep modes that significantly
reduce power consumption. We chose the ESP32-S3 because
of its support for communication protocols as well as the
significant support from both Espressif and the ESP32 user
community for running ML models. The ESP-DL library,
developed by Espressif, provides instructions and examples
for running small ML models on the ESP32-S3.

B. Models
We started with a MobileNet classification model in Ten-

sorflow and modified it to enable it to run on an ESP32-S3,
as the ESP-DL library only supports a specific format and
certain layer types. We replaced ReLU6 layers, which are
unsupported, with ReLU layers. We then converted the model
to work for 10 classes, matching our intended training set,
Imagenette [26], which is a subset of Imagenet with only 10
classes. To do this, we added a Reshape layer to change the
tensor shape, a Conv2D layer to apply convolution with 10
classes, and a Flatten layer to convert the data into a one-
dimensional format before the dense layer. After modifying

and training the model, we used the tools provided in the ESP-
DL toolkit to convert the TensorFlow model into an ONNX
model, the only format supported to run on the ESP32-S3.
After conversion, we quantized the model into an int16 model
to make it compatible with the ESP-DL library and deployable
on the ESP32-S3. We note that while we aimed at running a
larger model as opposed to exclusively using quantization to
make it smaller, we did the minimum quantization possible to
be able to run the model on the ESP32. Our final model had
67 layers total (36 convolutional), an accuracy of 70%, and
was 8.9MB in memory.

C. Model Splitting
When splitting models, we considered all components that

have to fit on a model for it to receive intermediates, run
an inference, and send the next set of intermediates. This
includes 1) the parameters of all model layers assigned to
the device 2) the code for both running and sending using
Bluetooth Low Energy, discussed below, and 3) the maximum
of all intermediates for the set of layers on this device. The
memory related to intermediates includes the intermediates
received from the previous device (or the size of the input
if this is the first device in the pipeline) as well as the final
set of intermediates generated from this device (or the final
result if this is the last device in the pipeline). Note that we
consider the maximum of the intermediates because they do
not all need to be held in memory at the same time.

Based on the size of our model (8.9Mb), the memory on
each ESP32-S3 (⇠4Mb), the size of the code (⇠0.4Mb), and
the size of the intermediates, we used five devices. We initially
took a greedy approach, fitting as many layers as possible on
device 1, then repeating the process for device 2, etc. We
then manually edited the placement of certain layers, without
changing the number of devices, to lower the size of the
intermediates. The division of layers and memory can be seen
in Table I and the five devices can be seen in Figure 2.

Scribe 

Fig. 2: System setup with 5 ESP32-S3 devices running Mo-
bileNet and sending with BLE

D. Network Communication
Our system uses Bluetooth Low Energy (BLE) because it

is ideal for applications where energy efficiency is crucial,
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ESP32-S3 Device Layers Assigned Memory (MB)

Device 1 1-23 1.13
Device 2 24-37 1.37
Device 3 38-49 1.69
Device 4 50-59 2.73
Device 5 60-67 2.42

TABLE I: Distribution of model layers across ESP32-S3
devices

consuming about 100x less power than classic Bluetooth [27].
This is because instead of being always on, BLE stays in
sleep mode unless it has an active connection. BLE allows
for direct device-to-device communication with a range of 70-
100m and operates independently of major service providers.
On the ESP32-S3, BLE supports a maximum packet size of
517 bytes.

Since BLE uses its own protocol stack rather than the
traditional OSI, our code had to add functionality, such as
breaking data into chunks to fit in BLE packets. In our system,
each packet included a 3-byte overhead imposed by BLE,
an 8-byte timer ID for data measuring purposes, and the
intermediates of the inference in 252 16-bit integers.

Because of the lack of built-in TCP functionality, our code
also had to choose when to require an acknowledgment when
sending several packets. In some systems that use BLE, such
as Android, the device has a mechanism for flow control. Such
devices will automatically handle full buffers and only write to
the buffers when there is space. Others, like iOS and ESP32,
do not have such a mechanism and will instead silently drop
packets when buffers are full. Therefore, we had to effectively
choose a window size n, implemented by requiring a response
for every nth packet.

We determined the ideal window size by testing different
window sizes across our pipeline of devices and finding the
largest possible size that avoided dropped packets across 10
runs. The difference between devices is due to the different
sizes of intermediates sent between them. We can see from
Figure 3 that with higher window sizes, each device is more
likely to fail, increasing the probability that some device in the
pipeline fails. Devices 4 and 5 failures are not shown because
if packets were going to get dropped, they did so within the
first 3 of our 5 devices. We found that using a window size of
5 and 6 was similar, though 6 was marginally faster between
certain devices, as shown in Figure 4. Therefore, we chose a
window size of 6.

E. Measuring Sending Time
To measure the time to send intermediates from one device

to another, we used a separate ESP32-S3 as a scribe, as shown
in Figure 2. The scribe was connected to each device in the
pipeline using a separate wire. For each device, when it started
sending, it changed the voltage on the wire connecting it
to the scribe from high to low, prompting the scribe to be
interrupted and immediately record its current time. When a
device finished receiving data, it changed the voltage on its
wire connecting it to the scribe from low to high, similarly

Fig. 3: Failure rate of each device as window size is changed

Fig. 4: Cumulative Time to send across pipeline as window
size is changed

prompting the scribe to record the time. In this way, the scribe
kept a log of all times to send data through the pipeline.
Inference times were calculated by taking the time in between
when a device received from the previous device and when it
sent to the next device, and these times were validated against
each device’s own recording of its inference time.

III. NETWORK OVERHEAD QUANTIFICATION

Latency. Here, we quantify and assess the source of the
network overhead in terms of latency. We can see from Figure
5a that the latency from sending data between devices out-
weighs the latency from performing inference on the devices
by over five times. Figure 5b shows the proportions of time
for sending, receiving, and inference, broken up by device.
We compare the two main factors that contribute to this:
the number of packets sent and the signal strength between
devices.

Number of packets. We look at how the number of packets,
which determines the size of the intermediates, affects latency
of sending and receiving. It is intuitive that sending more
data would take more time, but the effect is amplified by the
memory constraints of tiny devices. This is because we must
set the window size such that packets are not dropped when
the device’s buffers are filled, as described in Section 2. With
the ESP32-S3’s memory constraints, its buffers fill up quickly,
forcing us to choose a small window size and therefore adding
delay for the sake of not dropping packets. Figure 6 shows the
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(a) Time to Send over the Network Compared with
Time to Run Inference

(b) Per Device Time to Send, Receive, and Run Infer-
ence

Fig. 5: Breakdown of Time Spend on Each Phase of Pipelined
Inference

number of bytes in the intermediates (corresponding to the
number of packets, as all packets were maximally filled) and
the time for all intermediates to be received. While we can see
a moderate correlation here (correlation coefficient = 0.56), we
can also look at signal strength to explain discrepancies.

Fig. 6: Time to Send Between Devices and Total Bytes Sent

Signal Strength. We expect that devices with a better
signal strength (affected by both distance and interference)
will be able to send data between each other faster. Here, we
analyze that effect. We measured the signal strength of the four
connections between the five devices in our pipeline, and these
are shown in Figure 7 along with the time for all intermediates

to be received. We can also observe correlations here, as
device pairs with a stronger signal (closer to 0) have lower
latencies. In fact, this correlation is stronger than that for the
number of packets (correlation coefficient = 0.99), indicating
that adjusting the position of devices to improve signal strength
is the most promising method to lowering network latency.

Fig. 7: Time to Send Between Devices and Signal Strength

IV. PROMISING DIRECTIONS

Using Signal Strength to Optimize for Pipelined Infer-

ence. Since we identified signal strength to be the biggest
contributing factor to latency, we explore how to use this
information to optimize pipeline inference. Recall from Sec-
tion 1 that in pipelined inference, a device can start running
inference on the next sample as soon as it sends its portion
of work to the next device. In pipelined inference, if there is
a large discrepancy between the times that each device takes
to receive, process, and send its portion, that device becomes
the bottleneck in the pipeline. To avoid this, we aim to make
the devices’ end-to-end times as even as possible.

We saw from Figure 5b that some devices take longer
to send their data than others. We validated that the signal
strength correlation we saw in our system generalizes by
varying the distance between two devices and measuring signal
strength and RTT, shown in Figure 8. We believe that the
system could be optimized by careful placement of devices
to offset the differences in intermediate size. An example
is shown in Figure 9 below. Since B sends a larger set of
intermediates to C than A does to B, B and C are positioned
closer together. This way, we can optimize for the A-B and
B-C communication times to be similar such that pipelined
inference can run without either link being a bottleneck.

Smart Partitioning. Since we have identified that the
number of packets in the intermediates is a contributing factor
to latency, this direction is aimed at lowering the size of the
intermediates. Smart partitioning involves dividing a model at
pooling layers to minimize the amount of data sent between
devices. Pooling layers, such as max pooling and average
pooling, are used to reduce the spatial dimensions of feature
maps in neural networks. They achieve this by summarizing
regions of the input, either by taking the maximum value
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Fig. 8: Latency vs RSSI values

A B C

Fig. 9: Sample Positioning of Devices

(max pooling) or the average value (average pooling), which
retains the most significant features and discards redundant
information [28]. Pooling layers make a model more efficient
and easier to process by reducing the amount of data the model
needs to handle at each subsequent layer. Therefore, strategi-
cally splitting models at pooling layers or any other layers
that reduce data minimizes that the amount of information
transferred between devices, leading to faster processing times
and lower communication costs [29].

In Figure 10, we can see the sizes of each set of inter-
mediates in our model, with the intermediates sent between
devices shown in red. As described in Section 2, we initially
used a greedy approach and then manually moved layers where
possible to lower the size of the intermediates sent between
devices. As this process was not trivial and did not guarantee
the lowest possible intermediates sent, we believe our system
could be optimized by automating the process of choosing
which layers belong to which device while minimizing both
the number of devices and the size of the intermediates sent
between them.

Smart Replication. We consider how we might scale this
system out if we had a swarm of devices, rather than just the 5
needed to run our system. For example, if we had 20 devices,
we could add redundancy by keeping 4 copies of each device’s
portion. However, since each device takes a different amount
of time to run and send, we could consider a smarter form of
replication, where we replicate the devices that are likely to be
bottlenecks. Similar to optimizing geographical position, this
could increase the throughput in pipelined inference. While
this work focuses more on latency, we could also see smart
replication being useful for balancing energy consumption. If
some devices consistently use more energy, they will die faster,
so we can increase the longevity of the system by replicating
those devices more.

Fig. 10: Sizes of intermediates in our model. Those shown in
red are sent across devices.

Consider Other Communication Protocols.

We chose to use Bluetooth Low Energy because ESP32-
S3s are extremely low power devices. BLE is known for
being energy efficient, but it is also recommended to be
used for sending small amounts of data. The high latency of
communication in our system, combined with our findings of
how the number of packets affects latency, makes us consider
whether other communication protocols, such as WiFi, might
be a better fit for distributed ML.

While WiFi is not particularly energy efficient, its high data
transfer speed offers an alternative to the low speeds of BLE,
as seen in Table II. In future work, we can consider whether
the higher energy cost of WiFi is worth the high speed it
provides. We would also consider, though, that WiFi must
always be on, as opposed to BLE which can sleep and use
wake-up signals, leading to energy consumption with WiFi
even when not actively sending and receiving.

BLE WiFi

Data Throughput 90Kb/s 2500Kb/s
Maximum Current 2.4mA - 130mA 130mA - 240mAh
Sleep Enabled Yes No

TABLE II: Comparison of BLE and WiFi

A promising direction is using WiFi for data transfers
in conjunction with BLE for wake-up signals, which could
provide a faster, energy-efficient system. However, we must
also consider that many TinyML use cases involve remote
scenarios without internet connection, and if WiFi were used
without connection to the internet, one device would have to
act as an access point, resulting in a single point of failure.

Device Specific Window Size Choice

Our system uses a fixed window size across all device pairs.
We chose this by finding the largest window size such that
across the pipeline, packets were not dropped due to filled

453

Authorized licensed use limited to: The Claremont Colleges Library. Downloaded on April 22,2025 at 16:13:55 UTC from IEEE Xplore.  Restrictions apply. 



buffers. However, while finding this window size, we noted
that the optimal window size appears different for different
device pairs, perhaps due to signal strength or slight chip
differences. We did not explore finding the optimal window
size per pair, but future work could consider automating the
process of dynamically choosing the window size.

V. RELATED WORK

Prior work has targeted several methods to effectively run
ML on low power devices. Federated learning has been ex-
plored by [20], which combines federated learning and transfer
learning to train models on IoT devices while preserving data
privacy collaboratively. They note that network discrepancies
between devices cause large differences in sending time and
they therefore develop an algorithm to allow faster nodes to
proceed without waiting for slower ones. [30] develops an
algorithm to collaboratively learn an NN initialization across
several tiny devices. They similarly note the latency differ-
ences between devices due to communication overheads and
address this using a serial communication schema. TinyFedTL
[21] presents an implementation of Federated Learning using
MobileNet on the Arduino Nano 33. TinyFedTL similarly
notes that sending time outweighed the time to perform the
ML.

Load Balancing and optimizations for edge devices are
active research topics [31][32][33]. Load balancing in [31]
studies deadline-aware task scheduling and dispatching with
bandwidth constraints using optimization of networking and
computing resources. [32] proposes a strategy called semi-
dynamic load balancing to address the issue of stragglers in
distributed ML workloads. [33] explores different caching al-
gorithms for edge devices aimed at solving cold start problems
by maximizing the cache hit rate and minimizing cold start
delays.

Frameworks for effective model partitioning have been ex-
plored in [17][34][35]. [34] explores dividing a CNN structure
into a set of partitions whose size is determined by the
constrained resources of the edge devices. Works like [17][35]
present an algorithm that partitions DNNs and distributes them
across a set of edge devices with the goal of minimizing
the bottleneck latency and, therefore, maximizing inference
throughput.

Finally, other approaches [36] use an alternative to a
pipelined approach, such as tiling, or finding portions of the
network that can be computed independently. This can be used
to run distributed inference [29] or to offload some portions
of the network [37].

VI. CONCLUSION

To make distributed TinyML systems more efficient for real-
world applications, we must understand and mitigate the large
overhead caused by communication between such low-power,
low-memory devices. With this workshop paper, we take a step
towards better understanding this overhead by implementing a
distributed scenario, pipelined inference. Based on our analysis

of the bottlenecks, we map future directions that can address
the core issues in attempting to deploy this scenario.
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