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ABSTRACT 
Resistance Spot Welding (RSW) is one of the largest 

automated manufacturing processes in industry, consequently 
making it also one of the most researched. While this ubiquity 
has led to advancements in the consistency of this process, RSW 
is innately uncertain due to the high degree of interplaying 
mechanics that occur during the process. Additionally, to 
ensure the quality of a completed weld empirically, expensive 
analysis tools are required to inspect the result. One solution to 
removing this monetary and temporal cost is in-line process 
monitoring. During the weld, various signals can be measured 
and evaluated to predict the weld quality in real-time. The most 
common signal to measure is the Dynamic Resistance (DR) due 
to its ease of sensor implementation and richness of 
information. Other common signals are the electrode force and 
displacement. These give a more inclusive look into the overall 
process, especially the mechanical aspects, but these are 
typically limited to lab settings due to the increased cost of 
deploying them at scale. One solution to realize the insight of 
these other process signals on the factory floor is to utilize 
Machine Learning techniques to create virtual sensors that 
convert extant sensing data to other domains. This would allow 
for more robust and interpretable signal processing without 
incurring additional costs or downtime. 

Keywords: Resistance Spot Welding, Virtual Sensing, 
Neural Networks   

1. INTRODUCTION
Resistance Spot Welding (RSW) is one of the most vital

processes of industrial assemblies. Widely used within 
aerospace and automotive sectors, this joining operation creates 
permanent bonds between sheet metal parts [1]. RSW employs 
an electrical current to melt a localized area of the components 
within a stack-up. This area cools and solidifies into a nugget, 
a continuous region of metal bridging the components [2]. The 
advantage of RSW over other joining operations is that it only 

takes a single step to form the bond. Conversely, fasteners 
require an additional pre-processing step in addition to needing 
additional components that can increase the overall weight of 
the assembly. 

These benefits are offset by the inherent inconsistency of 
the RSW process. This inconsistency is the result of the many 
mechanical phenomena that occur during the formation of the 
nugget. Electrical, thermal, fluid, and structural mechanics 
operate and influence one another through the process, adding 
many avenues of uncertainty. While universal manufacturing 
concerns, such as tool wear or fit-up conditions, are present, the 
multiple phase changes make material variations, such as grain 
structure or element composition, much more impactful [3]. 
This complexity and inconsistency have two detrimental 
effects: quality control and process planning. For quality 
control, confirming if a nugget has formed is trivial, but there 
are two primary defects that could have occurred during the 
process. The first is an underdeveloped nugget, which would 
lack the strength of a fully formed bond. The second defect is 
expulsion, which is a sudden ejection of molten metal from the 
forming nugget, again leading to a weaker bond. At present, 
determining if an adequate nugget has formed is primarily done 
with costly and time-consuming ultrasonic or x-ray testing [4]. 
With respect to process planning, most welding schedules are 
developed by trial-and-error to determine the input parameters 
required to maximize the likelihood of a successful weld [5]. 
This makes it costly and inefficient to develop new stack-ups, 
stymieing innovation. In order to improve quality control and 
streamline schedule development, inline process monitoring is 
needed on the shop floor. 

Process monitoring is one of the main pillars of “Industry 
4.0”. It allows for data-driven analytics and algorithms to 
improve defect detection, quality assurance, and schedule 
planning [6]. But gaining these benefits comes with a cost. 
While the price of sensors are obvious, there are other, more 
subtle, investments needed for producers to transition to this 



2 
 

new paradigm. Firstly, mature computational hardware and 
networks are needed to handle the data produced by the sensors 
and the algorithms deployed to analyze the process. Secondly, 
installation of sensors into extant production lines incur 
downtime, lowering productivity [7]. Luckily, many production 
RSW lines are already equipped with process sensors and 
appropriate IT infrastructure. This makes RSW a good starting 
point for manufacturers to explore the benefits of inline process 
monitoring with minimal investment.  

The most used signal in industry and research is the 
Dynamic Resistance (DR) due to its ability to reflect the 
thermal and electrical mechanics [8]. Classical process analysis 
techniques have been used in concert with the DR signal to 
detect improper sheet fit-up conditions [9], electrode 
misalignment [10], and weld nugget strength [11]. The signal 
has also shown promise with Machine Learning (ML) 
algorithms. Recurrent neural networks have been investigated 
to predict the Heat Affected Zone (HAZ) [12], a neuro-fuzzy 
interface model allowed the prediction of weld strength [13], 
random forest models were able to classify cold or expulsed 
welds [14], and Support Vector Regression (SVR) was used to 
predict overall quality [15]. 

While less used in industry, electrode displacement and 
expansion force are popular signals for research due to their 
reflection of the thermal strain and expansion that occur during 
welding [16]. These signals give a more rounded picture of the 
RSW process, providing a more thorough explanation to what 
is occurring as opposed to just observing the electrical signals. 
Like the DR, the force and displacement signals have been 
shown to be useful for inline fault monitoring. They have been 
used to detect expulsion occurrences [17 ,18], different sheet 
fit-up conditions [19], and shunting, a defect caused when the 
welding current partially flows through a previous nugget [20]. 
Additionally, they have been used to predict weld penetration 
[21] and electrode wear [22].  

Combining the information from all three discussed 
sensors allows for the observation and detection of individual 
phases of the RSW process [23]. Features derived from these 
phases, and the multiple process signals, can reveal important 
process information when paired with a simple ML model. The 
myriad of applications makes it clear that the best decision 
making can be made with the most signals. For lines with extant 
DR sensing capabilities, incorporating force and displacement 
signals is possible using physical sensors. Alternatively, we can 
also employ virtual sensors to generate the desired information 
from the existing DR signal, removing the temporal and 
financial cost of installation. 

The generation of a processing signal through indirect 
measurement can be done with a virtual sensor. This “sensor” 
is a model that converts one or more signals and inputs into 
another desired, but unmonitored, signal. For industrial 
purposes, this method was developed in chemical production 
plants to observe chemical concentrations [24]. For 
manufacturing, virtual sensing has been sparsely researched, 
but the technology shows promise.  For example, an empirical-
based virtual sensor was developed to correlate input pressures 

to nozzle pressure in injection molding [25]. Additionally, 
simple ML models, such as SVM or Particle Filters, have been 
used to estimate tool wear in cutting machines through the 
vibration and force signals [26, 27]. For welding, virtual 
sensing seems to be entirely unexplored, in spite of the vast 
amount of data and popularity for the process. In this, there is 
an opportunity to leverage advances in ML signal generation to 
improve the understanding and monitoring of RSW. 

With the rapid advancement of the ML field, there are a 
myriad of avenues that could be explored for the general 
structure of a virtual sensor. The obvious choice is the popular 
Generative Adversarial Network (GAN) [28]. This structure 
works by training a generator and discriminator. The 
discriminator is fed both real signals and signals made by the 
generator. The discriminator determines whether it was given a 
real or generated signal, making its objective function a 
maximization of classification accuracy. The generator is 
trained to “fool” the discriminator by creating signals 
indistinguishable from the real ones. This structure has been 
shown to be applicable for signal generation, but it is primarily 
kept for augmentation of training data as opposed to creating a 
virtual sensor conversion [29]. Since the purpose of this work 
is to generate a time series based on given information of the 
system, the use of forecasting algorithms was explored. 

Forecasting models are designed to predict the future given 
a precedent signal. For manufacturing, these models are 
typically used in concert with condition monitoring to predict 
when a machine or tool will fail. Typical models for this are 
SVR [30] and Long Short-Term Memory (LSTM) [31]. 
Recently, the development of the transformer model has shown 
that a feed-forward residual network is a powerful structure for 
forecasting [32]. Conversely, while transformers outperform 
earlier forecasting models, they are outclassed by more 
primitive linear networks [33]. For this reason, the virtual 
sensor structure takes inspiration from the recently developed 
Time-series Dense Encoder or TiDE [34]. TiDE combines the 
powerful skip connections used in LSTM and Transformer 
models with the forecasting capabilities of an MLP. 

This paper presents the development and applicability of a 
novel virtual sensor for use in RSW production lines. By taking 
the TiDE architecture as inspiration, we can develop a data-
driven virtual sensor model that is able to convert the available 
electrical based DR signal into the two mechanical based 
displacement and force signals. The result is the Resistance 
Inferred Process Time-series by Dense Encoder or RIPTiDE 
model. RIPTiDE will allow producers to understand and 
observe more facets of the RSW process while minimizing their 
investment for better decision making and process monitoring.  

 
2. DENSE ENCODER FOR VIRTUAL SENSING 

GENERATION 
This section presents information about residual blocks, the 

original TiDE network, and the development and final 
architecture of the RIPTiDE model. 
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2.1 Residual Blocks 
The main building blocks of dense encoder networks are 

Residual Blocks, shown on FIGURE 1. The defining aspect of 
these blocks is their inclusion of skip connections. Skip 
connections were developed when it was realized that deeper 
networks did not produce better training performance than 
shallower ones. This runs contrary to the theoretical 
performance of Neural Networks (NN). 

 

 
FIGURE 1: REPRESENTATION OF A RESIDUAL BLOCK. 
SIMPLIFIED DIAGRAM ON LEFT, DETAILED STRUCUTRE ON 
RIGHT 
 

Hypothetically, if a network reaches peak performance at a 
certain depth, any subsequent layers should “learn” to converge 
onto the identity function, in effect removing them from the 
chain. This behavior would cause the network to be 
mathematically equivalent to the more optimal, but shallower 
network. However, this is not the case. It was observed that 
overly developed models demonstrated clearly reduced 
performance than appropriately shallow ones. This is known as 
the degradation problem. The cause of this behavior is theorized 
to be caused by NN models being unable to properly converge 
to the identity function. To address this problem, Residual 
Networks (RESNets) were developed, along with their unique 
inclusion: skip connections [35] 

Though skip connections were used to develop the LSTM 
Recurrent Neural Network (RNN), RESNet was the first 
instance of using them in feed forward networks [36]. Skip 
connections effectively takes the inputs from one layer and add 
them to the outputs of a layer further along in the network. 
Typically, skip connections pass multiple layers before 
reincorporating the values. Traditionally, skip connections were 
simply the identity function, but more recent networks use a 
trainable linear layer instead. 

While not exclusive to linear encoders, dropout layers are 
another vital addition to deep networks. The purpose of these 
layers is to mitigate overfitting, an undesirable phenomenon 
where the network loses generalizability by “memorizing” the 
training data as opposed to learning correlations. During 
training, each input fed into a dropout layer has a predefined 
probability setting the value to zero and making it unusable by 
the rest of the network. This allows for more nuanced features 
to not be lost during the training process. 

 

2.2 TiDE Overview 
The original TiDE model is presented on the left of 

FIGURE 2. The network is comprised of residual blocks (blue 
mosaics) arranged to predict the future of the lookback signal 
from the present (L) up to a future time horizon(L+H). In 
addition to the lookback, the network takes two other inputs; 
attributes and dynamic covariates. The attributes are static 
constants within the system being predicted. The dynamic 
covariates are relevant information that changes over the course 
of the lookback and prediction. The dynamic covariates can be 
viewed as a signal of length L+H, and there can be multiple 
dynamic covariate signals depending on the system being 
forecasted. In order to keep the network inputs reasonable, the 
dynamic covariates channels are compressed using the Feature 
Projection block, reducing the total input channels. The inputs 
are then stacked and fed into the encoder-decoder, (yellow 
block and pink block respectively) comprised of 𝑛௘ and 𝑛ௗ 
residual blocks respectively. The dense encoder produces the 
salient features needed to predict the future of the lookback 
signal. These features are then stacked with the reduced 
dynamic covariates before being fed into the final temporal 
decoder to reduce the stacked inputs to a single channel. This 
resulting signal is then combined with the lookback signal that 
was mapped to the appropriate length using a linear skip 
connection (small blue rectangle). 

 

 
FIGURE 2: OVERVIEW OF TIDE (LEFT) AND RIPTIDE 
(RIGHT) STRUCTURE. BLUE MOSAICS REPRESENT 
RESIDUAL BLOCKS 
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2.3 The Proposed RIPTiDE  
The development of RIPTiDE was based around 

modifications of the extant TiDE structure to make it applicable 
to the virtual sensing task. An overview of these changes are 
shown on the right side of FIGURE 2. The largest change is the 
removal of the lookback, since this is no longer a forecasting 
model, necessitating the removal of the skip connection 
associated with it. Secondly, the dynamic covariates were 
replaced with the DR signal, as this correlates with the known 
parameters across the entire time range. Finally, the outputs are 
now predicted across the input signal range as opposed to the 
future time horizon. 

The first construction of RIPTiDE corresponded with the 
hyperparameters as proposed in the original TiDE work for 
power consumption prediction. The full details of this 
architecture are shown on FIGURE 3. The model used two 
encoders and decoders, all with a hidden layer size of 1024 and 
8 output channels. The temporal decoder had 64 hidden 
neurons, an overall dropout rate of 50% was used and 
LayerNorm was not used. Of note, the original TiDE model 
stated that the encoder and decoder blocks could have separate 
hyperparameters, but they were always constructed with the 
same structure. For this reason, we can present them as one 
repeated component, and display the structure in a Compressed 
Chart to simplify and streamline the model representation. 

  

 
FIGURE 4: COMPRESSED CHART THAT IS EQUIVALENT TO 
FIGURE 3 

 
The model was trained to use the DR signal along with the 

preprogrammed welding force and current to generate the 
electrode displacements and force signals. The initial results of 

the network showed promise and would accurately recreate the 
trends of the two target signals. It could even replicate 
expulsion well. The primary issue with this structure is the 
generated signal is much noisier than the true values. This is 
likely because the expulsion cases enact much more noise than 
normal welds, but the network has generalized to having some 
noise throughout the signal. In addition, the magnitude of the 
signal did not always match the true values. These results led to 
the modification and tuning of the initial model. 

During tuning, layer normalization was found to be 
detrimental, and was not used. Additionally different model 
structures (i.e., encoder amounts, encoder channels, hidden 
residual block neurons), dropout rates, and activation functions 
were explored. This resulted in three modified networks labeled 
Dense, Dropout 20%, and Sigmoid f.  

“Dense” doubled the number of hidden neurons in each 
residual block, increased the number of encoders to 6, and 
increased the number of encoder output channels to 16. 
“Dropout 20%” reduced the dropout rate from 50% to 20%. 
Finally, “Sigmoid f” replaced the ReLU activation function 
with the sigmoid activation function. 

While the sigmoid function produced worse results, the 
higher density and lower dropout rate proved to be welcome 
additions, both keeping closer to the true signal values, while 
being slightly smoother. In order to promote further 
smoothness, modifications to the loss function were attempted. 
Both Total Variation and L1 Losses were added to the MSE loss. 
Due to magnitude disparity, the Total Variation loss had to be 
scaled down to one ten thousandths of the original value.  

While the Total variation did produce smoother curves, it 
also produced less accurate signals. Conversely, the L1 term 
provided additional smoothness without the loss of accuracy. 
With these insights, the tuned RIPTiDE model (RIPTiDE 1.5) 
was made. It consisted of the “Dense” structure, a 20% dropout 
rate, and was trained with the MSE plus L1 loss function. The 
structure is shown on FIGURE 5. 

FIGURE 3: DETAILED RIPTIDE STRUCTURE WITH HYPERPARAMETERS 
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FIGURE 5: RIPTIDE 1.5 MODEL WITH MODIFIED 
HYPERPARAMETERS 
 

The generated signals cleaved much closer to the true 
values than the untuned model version, while also improving 
on smoothness. These results were overall promising, but the 
model still wasn’t producing signals as smooth as the true 
values. This led to modifications of the underlying structure of 
the model, as opposed to just hyperparameter adjustments. 

The resulting structure is the proposed virtual sensor model 
for RSW production, dubbed “RIPTiDE 2.0”, presented in  
FIGURE 6. The purpose of this version was to solve the 
smoothing problem, as the previously demonstrated accuracy 
was acceptable at this time. This structure took the previously 
discussed RIPTiDE 1.5 and added an additional input and 
network layer to achieve this. 

 
FIGURE 6: RIPTIDE 2.0 WITH MODIFIED 
HYPERPARAMETERS, ADDITIONAL INPUT, AND 
ADDITIONAL FILTER 
 

The first addition was the inclusion of the input called 
“Large Drops” This is a sparse signal that only has significant 
DR drops. Insignificant drops or rises are set to zero. The term 

“significant” was established as any drop with a magnitude 
larger than the greatest rise, shown on EQUATION 1. 

 
 𝑧௜ ൌ ൜𝑥∆௜ , 𝑥∆௜ ൏ െmax𝑥∆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (1) 

 
where 𝑧௜ is the ith entry of the large drop signal, 𝑥∆௜ is the ith 
entry of the finite difference of DR signal. The purpose of this 
was to emphasize expulsion events and times of large noise as 
opposed to it generalizing to them occurring constantly. The 
second addition was a convolution layer at the end of the 
network with a size of 5 and pad of 2. This acts as a trainable 
moving window filter that is unique to each signal to encourage 
smoothness. It again used the MSE plus L1 loss function and is 
the final iteration of the RIPTiDE virtual sensor. 
 
3. EXPERIMENTAL SETUP AND DATA COLLECTION 

In order to train and validate the proposed model, 
experimental RSW data was required. These experiments 
involved hundreds of RSW welds executed under different 
welding conditions. The resulting process measurement data, 
including DR, electrode force, and displacement, were 
recorded, and collected for analysis. 

Each weld was manually performed using a Milco RSW 
gun driven by a WTC medium frequency controller, which 
measured the secondary welding current. The electrodes were 
C15000 CuZr button caps with a face diameter of 6mm. A 
Kistler strain gauge with 2% error precision was mounted on 
the lower electrode arm to measure the electrode force. A 
Heidenhain linear encoder with an accuracy of ±5 microns was 
mounted on the lower electrode arm to measure the electrode 
displacement. The sheet metal used was Usibor® 1500, which 
had been coated with a 40-micron layer of Aluminum Silicone. 
The experiments were performed under 3 unique sets of sheet 
thickness, welding force, and time. The welding forces used 
were 585lbs, 899lbs, and 1124lbs with welding times of 170ms, 
200ms, and 240ms. The sheet thicknesses (t) used were 1,1.4, 
and 1.8 mm. These sheets were further differentiated by sorting 
them based on their measured IDL thickness. These sheets were 
then welded under varying currents, as detailed in TABLE 1. 

 
TABLE 1: DETAILS OF WELDING EXPERIMENTS 
Force (lbs) Time (ms) Thickness (mm) IDL (µm) Current (kA) 

585 170 1 

4 4.9, 5, 5.2(x3), 5.4(x4), 5.6, 6(x2), 6.2, 6.4, 6.6, 6.8, 7(x2), 7.2-8.8 (.2 inc), 9.1 
7 5-7.2 (.2 inc), 6.65, 7.5, 5.1, 5.4 

13 5, 5.2, 5.4(x2), 5.5, 5.6, 5.8(x2), 6(x4), 6.2, 6.3, 6.4, 6.6, 6.9 
31 5, 5.2, 5.4(x2), 5.5, 5.6(x3), 5.8(x3), 6(x4), 6.2, 6.5 

899 200 1.4 

0 5,6.2,6.4,6.6,6.7,6.8,7(x3), 7.2(x4), 7.4, 7.7 
10 6, 6.1, 6.2, 6.4(x3), 6.6(x4), 6.8, 7, 7.2, 7.4, 7.5, 7.6, 7.8, 8, 8.3 
13 5.7, 6(x2), 6.2(x4), 6.6, 6.65, 6.8(x2), 7, 7.3 
26 6, 6.2, 6.6, 6.7, 6.8(x2), 7(x4), 7.2(x4), 7.4, 7.7 

1124 240 1.8 

6 6-6.8(.2 inc), 6.9, 7(x2), 7.2(x2), 7.4(x4), 7.6, 7.7, 7.8, 8, 8.3 
8 6.6-7.4(.2 inc), 7.6(x2), 7.8, 7.9, 8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9 

13 6.5, 6.6, 6.8(x2), 7(x4), 7.2, 7.4, 7.6, 7.8, 8, 8.3 
27 6.6, 6.8, 7, 7.2, 7.4, 7.6(x2), 7.8(x3), 7.9, 8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9 
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The initial configuration involved aligning two sheets to 
create a stack-up. Subsequently, three spot welds were 
executed, starting from the center, and progressing to one on 
each side of the initial weld. Throughout the welding process, 
if any noticeable expulsion occurred and was observed, the 
respective weld was designated as having experienced 
expulsion. Electrodes were dressed between each trial. Due to 
the varying welding times, all three signal lengths were 0 
padded to 240 ms. 

 
4. RESULTS AND DISCUSSIONS 

Each iteration of the RIPTiDE network was trained using 
welding data described in SECTION 3. This data was split 
80%/20% for training and validation. The networks leveraged 
three inputs: the DR signal, the input current, and the input force 
to generate the displacement and force signals. Presented here 
are the results for the models described in SECTION 2.3. 
Unless otherwise stated, the models were trained for 5000 
epochs with the Adam optimizer with a learning rate of 0.0001.  

For RIPTiDE 1.0, the generated signals were compared to 
the true signals with the MSE loss function. Training was 
performed for only 1000 epochs, since the initial attempt was 
only exploratory. Example results are shown on FIGURE 7. As 
previously discussed, the trends were appropriate, but the noise 
and magnitude were areas for improvement.  

 

 
FIGURE 7: RESULTS FROM UNTUNED RIPTIDE MODEL, TOP 
ARE NORMAL WELDS, BOTTOM ARE EXPULSED 
 

FIGURE 8 shows how varying the loss function of the 
network affected RIPTiDE’s performance. The “Baseline” 
model is the original RIPTiDE model presented on FIGURE 3, 
whereas the other two correspond to the associated loss 
function. The inclusion of total variation does improve overall 
smoothness, but at the cost of accuracy. L1 produces a smoother 
signal than the baseline, but not as much as total variation. The 
greater accuracy, however, makes it a more desirable choice. 

 

 
FIGURE 8: RESULTS FROM LOSS FUNCTION CHANGES TO 
RIPTIDE MODEL, TOP IS A NORMAL, BOTTOM IS EXPULSED 
 

The results of exploratory changes to the model’s 
hyperparameters are shown on FIGURE 9. The baseline model 
is again presented, with all other columns corresponding to the 
associated changes to the model. 

 

 
 

 
FIGURE 9: RESULTS FROM DISCRETE CHANGES TO 
RIPTIDE MODEL, A AND B ARE NORMAL, C AND D ARE 
EXPULSED 
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While both the denser model and lowered dropout provided 
marginal improvements to accuracy and smoothness, the 
sigmoid function produced much more chaotic signals, and was 
removed from consideration. 

FIGURE 10. shows the results of RIPTiDE 1.5, and the 
overall improvement of the model when compared to the initial 
trial on FIGURE 7. We can see a marked improvement to 
accuracy and lowered noise, but it could still use some 
additional work to bring it more in line with the true signal. 

 

 
FIGURE 10: RESULTS FROM RIPTIDE 1.5, TOP IS NORMAL 
WELDS, BOTTOM IS EXPULSED 
 

Finally, the results of RIPTiDE 2.0 are shown on FIGURE 
11. We can clearly see the generated signals follow the true data 
closely both in magnitude and behavior. Additionally, each 
signal pair can be generated in less than 2 ms, making it 
appropriately efficient for production. While it is still not as 
smooth as a true signal, it is much less noisy than previous 
iterations of the model.  

 

 
FIGURE 11: RESULTS FROM RIPTIDE 2.0 , TOP ARE  
NORMAL WELDS, BOTTOM ARE EXPULSED 

 

While RIPTiDE produces visually impressive results, it 
must also be used in a quantitative matter. Our previous work 
demonstrated that the ability to algorithmically determine 
individual phases of the RSW process is possible through 
phenomena in the DR, force, and displacement signals. The 
transitions occurred at 4 key phases: Maximum Resistance, 
Force Drop, Force Stabilization, and Maximum Displacement. 
These features could be automatically extracted through an 
algorithm that required topographic signal processing and 
comprehensive selection logic. This information could then be 
leveraged to predict coated material’s InterDiffusion Layer 
(IDL). It was also shown that if the phases were known without 
the use of the two mechanical signals, a network of high 
accuracy could be produced with only information taken from 
the DR signal [23].  

RIPTiDE was deployed to generate the two mechanical 
signals needed for the feature extraction algorithm to determine 
if it would serve as an acceptable substitution for real sensors. 
Since the original extraction algorithm was tuned specifically 
for the trends and behavior of the real process signals, there 
needed to be some slight adjustments, primarily the addition of 
a smoothing average filter along the generated displacement 
curve since the noise spikes could drastically impact the value. 
These changes led to predicted phases that were relatively 
accurate, though the latter two phases were less accurate, as 
seen on FIGURE 12. 

 

 
FIGURE 12: EXAMPLE OF EXTRATED FEATURE TIMES 
FROM RIPTIDE (DASHED LINES) AND TRUE FEATURE TIMES 
(SOLID LINES). TOP ARE NORMAL WELDS AND BOTTOM ARE 
EXPULSED 
 

To evaluate the performance of the generated features, all 
663 unique DR signals were input into a fully trained RIPTiDE 
model. The generate displacement and force signals were then 
used as inputs to the previously discussed feature extractor. 
From here, two datasets were compiled. The first leveraged 
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only the values of the DR signal at the phase points detected 
(FIGURE 13.A.1). The second used values from the DR and the 
two generated signals for its process features (FIGURE 13.A.2). 
Each data set was used to train an MLP in the same manner as 
[23]. The results were compared with the network performance 
of the dataset leveraging only information gleanable from the 
DR signal (FIGURE 13.B.1), and the theoretical maximum 
performance of features taken from the DR signal if all key 
points were known (FIGURE 13.B.2). The results of the IDL 
prediction are shown on FIGURE 13. 

 

 
FIGURE 13: PREDICTED VS TRUE IDL THICKNESSES AND 
ASSOCIATED R2 VALUES. A FIGURES CORRESPOND TO THE 
PERFORMANCE OF RIPTIDE. B FIGURES CORRESPOND TO 
THE PERFORMANCE OF THE ORIGINAL WORK 

 
Both RIPTiDE networks produced similar results, with the 

more feature inclusive network being slightly more accurate. 
Both were significant improvements over the DR only model, 
and only slightly below the idealized performance. Examining 
the standard deviation of the networks shows that the RIPTiDE 
models were as consistent as the ones presented in the original 
work, as seen in FIGURE 14.  

 
FIGURE 14: R2 VALUES. WITH ASSOCIATED STANDARD 
DEVIATIONS. VALUES IN PARENTHESE CORRESPOND TO 
ASSOCIATED GRAPH ON FIGURE 13 

This demonstrates that the virtual sensors are clearly able 
to add information about the RSW process utilizing only DR 
signals. Though not as accurate as the true process signals, 
RIPTiDE has demonstrated the ability to reflect the underlying 
mechanical phenomena of the RSW process and provide a 
noted performance improvement to monitoring tasks with 
limited signals. 

 
5. CONCLUSSION 

 
The proposed RIPTiDE virtual sensor is able to generate 

accurate representations of the force and displacement signals 
of the RSW process solely with the DR signal as an input. This 
model will allow for a more robust observation of the RSW 
process without additional hardware.  
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