A New Algebraic Approach for String
Reconstruction from Substring Compositions

Utkarsh Gupta, Student Member, IEEE, and Hessam Mahdavifar, Member, IEEE

Abstract—In this paper, we propose a new algorithm for the
problem of string reconstruction from its substring composition
multiset. Motivated by applications in polymer-based data stor-
age for recovering strings from tandem mass-spectrometry se-
quencing, the proposed algorithm leverages the equivalent poly-
nomial formulation of the problem which facilitates efficient par-
allel implementation. The computational complexity of the pro-
posed reconstruction algorithm is upper bounded by 6.5n2 finite
field operations, where the field size is upper bounded by 10n,
implying that the computational complexity is upper bounded
by 6.5n7(3.22 4+ log n) binary operations. Furthermore, it allows
parallelization leading to O(nlogn) reconstruction latency. We
characterize sufficient conditions for a length n binary string
that guarantee the string’s reconstruction time complexity to be
bounded polynomially. Moreover, the sufficient conditions on bi-
nary strings that guarantee reconstruction in polynomial time are
more general than the conditions for the algorithm by Acharya
et al. This is used to construct new codebooks of reconstruction
codes that have efficient encoding procedures, and are larger, by
at least a linear factor in size, compared to the previously best
known construction by Pattabiraman ef al.

I. INTRODUCTION

Recent years have seen an explosion in the amount of
data created globally [1]]. The volume of data generated, con-
sumed, copied, and stored is projected to reach more than
180 zettabytes by 2025. In 2020, the total amount of data
generated and consumed was 64.2 zettabytes [2]. However,
traditional digital data storage technologies such as SSDs,
hard drives, and magnetic tapes are approaching their fun-
damental density limits and would not be able to keep up
with the increasing memory needs [3]. Several molecular
paradigms with significantly higher storage densities have
been proposed recently [4]—[15]. Molecules with a structure
consisting of different smaller molecules (monomers) joined
together in sequences are called polymers. If different types
of molecules denote different letters from an alphabet, then a
polymer with a linear arrangement of these molecules, i.e., a
polymer string, can be treated as a sequence of letters. DNA
is one promising data storage medium which has stimulated
significant interest in the data storage research community.
However, DNA has several scalability constraints including
an expensive synthesis and sequencing process which prevent
large-scale commercialization. Furthermore, DNA is prone
to diverse types of errors such as mutations within strands,

This paper was presented in part at the 2022 IEEE International Sympo-
sium on Information Theory [DOI: 10.1109/ISIT50566.2022.9834531]. This
work was supported in part by the National Science Foundation under grant
CCF-2415440, and by the Center for Ubiquitous Connectivity (CUbiC), spon-
sored by Semiconductor Research Corporation (SRC) and Defense Advanced
Research Projects Agency (DARPA) under the JUMP 2.0 program.

U. Gupta and H. Mahdavifar are with the Department of Electrical and
Computer Engineering, Northeastern University, Boston, MA 02115 (email:
gupta.utk @northeastern.edu and h.mahdavifar@northeastern.edu).

or loss of strands due to breakage or degradation that could
lead to potential decoding errors or even complete loss of
information [8]].

This has led researchers to search for alternatives in other
synthetic polymers. For example, synthetic proteins (which are
polymers of amino acids) are emerging as a potential alterna-
tive with data being stored using peptide sequences for the first
time in 2021 [4]. Compared to DNA and other types of poly-
mers, proteins offer several advantages for data storage, in-
cluding higher stability of some proteins than DNA [16]], and
availability of a larger set of possible monomers (20 amino
acids are observed in natural proteins). In synthetic polymer
strings, monomer units of different masses, which represent
the two bits 0 and 1, are assembled into user-determined read-
able sequences. A common family of technological methods
for reading amino-acid sequences (and other bio-polymers) is
mass spectrometry [17]. Mass spectrometers take a large num-
ber of identical polymer strings, randomly break the polymer
into substrings, and analyze the resulting mixture. The mass
sequencing spectrum obtained gives us the mass/charge ra-
tio and the abundance of different ions when the polymer is
broken. This information is then modeled into the mass and
frequency of each contiguous molecular substring. The pro-
cess of recovering a molecular string from its mass sequenc-
ing spectrum is modeled into the problem of reconstructing a
string from the multiset of the compositions of its contiguous
substrings.

The class of problems of reconstructing a string from sub-
string information falls under the general framework of string
reconstruction problems. Due to their relevance in designing
codebooks for molecular storage frameworks, the list of recent
work in string reconstruction has grown rapidly [18]-[27]. In
particular, a composition multiset of a binary string refers to
the multiset of tuples of number of Os and 1s in each con-
tiguous substring of the given string. The problem of string
reconstruction from its substring compositions was first intro-
duced in [28]] and [26]. The main results from [26]] assert that
binary strings of length < 7, one less than a prime, and one
less than twice a prime are uniquely reconstructable, from their
substring composition multiset, up to reversal. The authors of
[26] also introduced a backtracking algorithm for reconstruct-
ing a binary string from its substring composition multiset, and
provide sufficient conditions for reconstructability of a binary
string using the proposed algorithm in [26] without the need
for backtracking (Lemma [3)). In the case of no backtracking,
this algorithm has a time complexity of O(n?logn). Also,
given the nature of the algorithm in [26], parallelization is not
possible and, hence, the latency is also O(n? logn). Note that
in the case of backtracking, there is no guarantee that the time
complexity will remain bounded polynomially with n. Relying

on this reconstruction algorithm, the works of [29], [30] and
[31] viewed the problem from a coding theoretic perspective.
They proposed coding schemes that are capable of correcting
a single mass error and multiple mass errors, respectively, and
can be reconstructed by the reconstruction algorithm without
backtracking. The problem formulation in [26], and subse-
quently in [29], relies on the two following assumptions: a)
One can uniquely infer the composition (number of monomers
of each type) of a polymer from its mass; and b) The masses
of all the substrings of a polymer are observed with identical
frequencies. In this work, we also rely on these assumptions.
In the context of combinatorics, the problem is closely re-
lated to the turnpike problem, also known as the partial digest
problem, where the locations of n highway exits need to be
recovered from the multiset of their (’2’) interexit distances.
In [26]], the authors showed that the problem of string recon-
struction from its composition multiset can be reduced to an
instance of the turnpike problem.

In this paper, we propose a new algorithm to reconstruct the
set of binary strings with a given multiset of substring com-
positions. The proposed algorithm relies on on the algebraic
properties of the equivalent bivariate polynomial formulation
[26] of the problem. The algorithm finds the coefficients of
the corresponding polynomial in a manner that reconstructs
the binary string from both ends progressing towards the cen-
ter. However, in general, a drawback of such algorithms is that
they may need backtracking which can lead to reconstruction
complexity that grows exponentially with the length n, in a
worst case scenario. Therefore, we provide algebraic condi-
tions on binary strings that are sufficient to guarantee unique
reconstruction by the proposed algorithm without backtrack-
ing, that requires at most 6.5n2 finite field operations. The
size of the underlying finite field is upper bounded by 10n.
As a result, the reconstruction computational complexity is up-
per bounded by 6.5n2(3.22 + log n) binary operations. More-
over, the algorithm naturally allows parallel implementation
and has an O(nlogn) reconstruction latency. Latency, in this
context, is defined as the total elapsed time from the start
of the algorithm’s execution to the completion of its output,
taking into account the parallelization of computational tasks.
Furthermore, the no backtracking condition of our algorithm
is more general than that of the algorithm in [26]. This in
particular implies that the reconstruction code introduced in
[29] is reconstructable by our reconstruction algorithm with-
out backtracking. In Section [[V] properties of one-dimensional
random walks are leveraged to explicitly characterize the set
of binary strings that can be reconstructed by the algorithm in
[26] without backtracking. In particular, we define this recon-
struction code to be S(n) and show a bijection between S(n)
and 1-dimensional positive n-step walks starting from the ori-
gin. Using this bijection we propose efficient encoding and
decoding procedures for S(n), and show an equivalence be-
tween S(n) and the reconstruction code Sgr(n) introduced in
[29]. We further extend this codebook to propose a new recon-
struction code T'(n) by expanding codebooks of different sizes
in certain specified ways followed by taking a union of them.
The size of T'(n) is shown to be linearly larger than S(n),
and equivalently Sg(n). Furthermore, it is shown that both,

| 5(n) = Sp(n) T(n) Ti(n) | Taln+1) :|

Fig. 1: Inclusion relation between different proposed codes
and the the previous known code Sr(n).

the codebook S(n) (and equivalently Sr(n)), and the code-
book T'(n) are reconstructable by the proposed reconstruction
algorithm with the exact number of required operations char-
acterized. Finally, exploiting the more general sufficient condi-
tions, we slightly modify the proposed algorithm, to introduce
larger codebooks T3 (n), and T5(n). The inclusion relation be-
tween these different codebooks is presented in Figure [I] A
comparison of the rates and redundancies of the different cod-
ing schemes is presented in Figure [3] and @] The rest of this
paper is organized as follows. We describe the problem setting,
preliminaries, and relevant previous work in Section [[Il Then,
we describe the new reconstruction algorithm in Section[ITI} In
Section we present the new reconstruction code. Finally,
we discuss concluding remarks and future research directions
in Section [Vl

II. PRELIMINARIES

In this section, we begin by introducing some notations and
definitions, and then formally describe the problem of string
reconstruction from substring compositions. Subsequently, we
discuss the equivalent polynomial characterization of the prob-
lem, introduced by Acharya et al. [26]]. The relevant results of
[26] and [29]] are then summarized with certain observations
which will be used in the [Reconstruction Algorithm| We then
recall certain well known results from the theory of random

walks which we use to design the proposed
[Codé

A. Problem Formulation

Let s = s152...5, be a binary string of length n > 2 and
let s7 denote the contiguous substring s;8;41 - - .s; of s, where
1 <i < j < n. We will say that a substring s/ has the com-
position 1Y0* where w and z denote the number of 1s and
0Os in the substring respectively. The weight of a sequence s
refers to the number of 1s in s and is denoted by wt(s). The
composition multiset C'(s) of a sequence s is the multiset of
compositions of all contiguous substrings of s.

Example 1. Ifs = 1001, then C(s) = {0',0!, 11,1 0*1! 01!
,02,0%11,0%11, 0212}

Definition 1. For a binary string s of length n and weight d,
let a; be the number of zeros between the it" and (i + 1)t" 1.
Define A(s) as the integer string apay . .. agq.

Lemma 1. s — A(s) is a bijection between binary strings of
length n, weight d and non-negative integer strings of length
d + 1, weight (sum of values) n — d.

Proof: Consider the mapping that maps the non-negative
integer strings of length d + 1 and weight n — d to binary
strings of length n by constructing the corresponding binary
string from an A(s) as evident in Definition [I|That is

s=00...0100...0100...01...100...0.
Y~ Y~~~ Y~ S~——

ag a az aq

Now consider two such distinct non-negative integer strings
a=ag...aq and b = by ...by. If the first position they dif-
fer in is 4, that is a; # b; and a; = b; for 0 < j <i—1,
then the corresponding binary strings differ in the positions of
their 7" 1s. Therefore, each such non-negative integer string
corresponds to a unique binary string; implying that the map-
ping is injective. It is easy to see that both sets have the same
size (Z), therefore implying the bijection. |

We will also use the following notations in our subse-
quent proofs: for a string s and the corresponding integer
string A(s) = apay . ..aq, we use A’(s) to denote the sub-
string a;a;41...a; of A(s) and g/(s) to denote the sum
a; + a;q1... + a;, where 0 < i < j < d. Whenever clear
from the context, we omit the argument s. Observe that for
any string s with weight d, g¢ = n — d.

Example 2. [f s = 10011010, then A(s) = 02011 and g3 =
3.

Definition 2 ([29]). A set of binary strings of fixed length
is called a reconstruction code if the composition multisets
corresponding to the strings are distinct.

Note that a string s, and its reverse string (s* = s,,...51)
share the same composition multiset and therefore cannot si-
multaneously belong to a reconstruction code.

Remark 1. We restrict the analysis of reconstruction codes to
the subsets of strings of length n beginning with 1 and end-
ing at 0. This restriction only adds a constant redundancy to
the code while ensuring that a string and its reversal are not
simultaneously part of the code.

In this paper, the following two problems are addressed (1)
Does there exist an efficient algorithm to reconstruct a binary
string given its composition multiset?, and (2) Do there exist
reconstruction codes of small redundancy and consequently,
large rate that can be efficiently encoded and decoded, and can
be reconstructed from their composition multiset efficiently?
In Section we propose a new backtracking algorithm that
reconstructs a string s by recovering the integer string A(s)
from the corresponding composition multiset C(s). We will
use the bijection in Lemma [I] to design our reconstruction
algorithm, and subsequently in Section [[V] give different fam-
ilies of reconstruction codes that satisfy the aforementioned
properties.

B. Prior Work

In this section, we first review the results of [26] that de-
scribe the equivalent polynomial formulation of binary strings
and their composition multisets. This formulation is central to
the design of our [Reconstruction Algorithm| which we present
in the next section. Thereafter, to construct our reconstruction
code, we review some elementary results from random walks,
and revisit the design of the reconstruction code introduced in
[29].

Definition 3. For a binary string s = $153...Sn, a bivari-
ate polynomial Ps(x,y) of degree n is defined such that
Py(z,y) = Z;L:o (Ps(z,y));, where (Ps(z,y)), = 1 and
(Ps(x,y)), is defined recursively as

T - y(Ps(z,9));_y ifsi=0,
(Ps(7y))z {m(Ps(x’y>)i1 lfSl =1.

Ps(z,y) contains exactly one term of total degree j where
0 < j < n and the coefficient of each term is 1. The term
of the polynomial with degree j is of the form x*y* where
the substring s? of s has composition 1“’0*. Similar to the bi-
variate polynomial for a binary string, we describe a bivariate
polynomial Ss(z,y) corresponding to every composition mul-
tiset. We associate each element 1'0™ of the multiset with the
monomial z'yy™. This is equivalent to saying that an x corre-
sponds to a 1 and a y corresponds to a 0 in every monomial
of Ss(z,y).

Example 3. If's = 1001, then, C(s) = {0',0",1!,1%,0'1%,0'1
,02,0211,0211,0%12}, Ps(x,y) = 1 + = + zy + 2y + 222,
and Ss(z,y) = 2x + 2y + 2wy + y? + 22y + 229>

)

We use the following identity from [26]:
11

PS (I7y)PS <7) =
Ty

Definition 4. For a polynomial f(x,y), let f*(x,y) be the
polynomial (also known as reciprocal polynomial) defined as:

F*(a,y) L ates(Dydeann) g (1, 1) :
z'y

It is easy to see that f*(x,y) is indeed a polynomial.

11
(n+1)+ Ss(z,y) + Ss (:c’ y> . (2)

3)

Remark 2. If Ps(x,y) is the bivariate polynomial for the
string s, then PF(x,y) = Psx(x,y); that is P¥(x,y) is the
bivariate polynomial corresponding to the reverse string s* =
SnSn—1---951.

Definition 5. For a binary string s of length n, and the
corresponding polynomial Ps(x,y), we define a polynomial
Fs(z,y) as:

Fy(z,y) % Py(a,y)PF (2,). @)

Rewriting (2, and using the definition in (@),

Fy(z,y) = ades=(F)yde,(Po) (n 4 1 4 S (2, y)) + S¥(x,y).
(5)

Corollary 2. The polynomial Fg(x,y) can be evaluated di-
rectly from the composition multiset.

Lemma 3 ([26], Lemma 8). For a binary string s, the poly-
nomial Fs(x,y) uniquely determines the composition multiset.

Corollary 4. There is a bijection between the composition
multiset C(s) and the polynomial Fs(z,y).

Now, we discuss the preliminaries required for the design of
reconstruction code introduced in Section Lemma [3] gives
sufficient conditions for a binary string to be uniquely recon-
structed in polynomial time complexity by the reconstruction
algorithm in [26]]. Recall from Remark E], that we restrict the
analysis of reconstruction codes to the subsets of strings of
length n beginning with 1 and ending at 0.

Definition 6. If a binary string s of length n, is such that for
all prefix-suffix pairs of length 1 < j < n, one has wt(s]) #
wt(sy 1 ;) then s will be called an imbalanced string.

Remark 3. For an imbalanced string s, note that

[wr(s]™) — wi(sii_))

- ‘wt(s{) - wt(s:ﬁﬂ_j)H <L

Since ‘wt(s]l) - wt(sz+17j)‘ # 0 for any 1 < j < [n/2], the
sign of wit(s]) — wt(sy ;) does not change with j. There-
fore, for imbalanced strings of length n that begin with 1 and
end with 0, wt(s]) > wt(sp,,_;) forall 1 < j <n.

Lemma 5 ([26], Lemma 37). An imbalanced string s of
length n is uniquely reconstructable in O(n?logn) time by
the reconstruction algorithm of [26|].

In Section [[V] we show a bijection between imbalanced
strings of length n that begin with 1 and end with 0, and pos-
itive n-step walks. Using this bijection, we explicitly charac-
terize the set of binary strings reconstructable by the algorithm
in [26].

Definition 7. A 1-dimensional positive n-step walk is defined
as an assignment of n variables X; € {—1,1} for 1 <i < n,
such that Sy = 2?;1 X; is positive for 1 < k < n.

Lemma 6 ([32], Lemma 3.1). The number of 1-dimensional
positive n-step walks is (LE J)'
2

The reconstruction code in [29] uses Catalan-Bertrand
strings to construct a codebook. This codebook consists of
strings with the property that any of their prefixes contains
strictly more Os than 1s, referred to as Catalan-Bertrand
strings. The codebook is designed in such a way that for any
given codeword and any same-length prefix-suffix substring
pair of that codeword, the two substrings have distinct weights
i.e. all strings belonging to the codebook are imbalanced, as
defined in Definition[6l

Definition 8 ([29])). For reconstruction code Sr(n) of even
length (n even):

Sr(n) def {s € {0,1}" such that s; =0, s, = 1,

31 <{2,3,...,n — 1} such that
foralliel, s; # Spi1—i,
for all i ¢ I7 Si = Sn+1—i,

S[n/2]~1 s @ Catalan-Bertrand String}.

For reconstruction code Sr(n) of odd length (n odd):

def (n=1)/2 n—1 (n—=1)/2; n—1
= s 0(n11)/2 S1 1811y

where s € Sgr(n — 1)}.

Sr(n)

The authors in [29] extend this coding scheme to correct
single and multiple mass errors. These code extensions relied
only upon the fact that all strings in Sg(n) are imbalanced
strings. In [[19]], the authors show an equivalence between the
set of imbalanced strings beginning with 0, and ending with 1,
and the codebook Sg(n). In Section we show a bijection
mapping between all imbalanced strings beginning with 1 and
ending with 0 and positive n-step walks, thereby explicitly
characterizing the size of the code Sr(n), and describing an
efficient encoding and decoding procedure for this codebook.

Lemma 7 ([19]], Lemma IV.2). Sg(n) is the set of all imbal-
anced binary strings of length n beginning with 0, and ending
in 1.

Finally, we give well known bounds on the central bino-
mial coefficient which we will use to show the rate of our
reconstruction code.

Proposition 8 ([33|]). The central binomial coefficient may
be bounded as:

Vn=l1.

4" 2n 4n
NCOESO (n) S V! ©

III. RECONSTRUCTION ALGORITHM

As discussed in Section we only work with binary
strings beginning with 1 and ending with 0. In other words,
only strings s = $1 ..., with s7 = 1,s,, = 0 are considered.
In this section, we introduce a new reconstruction algorithm to
recover such strings from a given composition multiset. Given
a composition multiset, our reconstruction algorithm succes-
sively reconstructs A(s) = ag . ..aq, starting from both ends
and progressing towards the center. In other words, a¢ and ag
are recovered first, followed by a; and a4_1, etc.; and the al-
gorithm backtracks when there is an error in recovering a pair.
The algorithm takes as input the polynomial F'(x,y) (Defini-
tion . Note that the polynomial F'(x,y) can be derived from
S(z,y) (Corollary [2) which in turn is equivalent to the corre-
sponding composition multiset. The algorithm will return the
set of strings which have the given composition multiset. We
will use the fact that for a string s with the given composition
multiset, we must have Fg(z,y) = F(z,y). Then Lemma
guarantees that strings recovered in this way indeed have the
desired composition multiset. In Proposition[I0} we outline the
conditions in the strings that result in no backtracking through-
out the reconstruction process using the proposed algorithm.
Before the algorithm is discussed, we first show how certain
parameters of a string s with the given composition multiset
can be readily recovered from the polynomial F'(x,y). These
parameters are shared by all the strings that share this com-
position multiset, and will be subsequently used as inputs to
the algorithm.

For a string s = s1...s, with sy = 1,5, = 0, the cor-
responding non-negative integer string A(s) (Definition (1)) is

such that ap = 0 and aq > 1. Using definitions [3] and [4]
Pi(z,1) =1+ (a1 + 1) x +---+ (ag + 1) 2% @)
Pz, 1) = (ag+ 1) +---+ (a1 + Dzt + 2. (8)

Since a string s with the given composition multi-
set must have Fy(x,y) = F(z,y), from Definition
F(z,1) = Fg(x,1) = Ps(x,1)PF(x,1). Therefore, us-
ing (7) and (8), the weight of the string s and a, (where
A(s) = ag . ..aq) can be recovered from F'(z,y) as follows:

deg F'(z,1)
2

wt(s) =d = ,and ag = F(0,1) —)

The algorithm will utilize the polynomial formulation of the
problem by mapping binary strings to elements of a polyno-
mial ring by considering the coefficients of the polynomials
Ps(x,y) and Fs(z,y) as elements of a sufficiently large finite
field, i.e., F, with ¢ being a prime number greater than 5n + 1
(By Bertrand’s postulate, there is a prime ¢ with 5n + 1 <
g < 10n). We will discuss several properties of the polyno-
mials Ps(z,y) and PJ(z,y) (which lie in the ring F,[z,y])
which we use in the algorithm. Recall that for strings begin-
ning with 1 and ending at 0, we have ag = 0.

Definition 9. Given integers ao,...,a; and aq,...,aq—; in
N U {0}, define the polynomials o;(y) and B;(y) as follows:

ajly) =% +yttR T gy, (10)
Biy) = yoises 4y T 4 (1n

+ a; (defined in Sec-

+y%is,

where gé denotes the sum ap + Gg41 - ..

tion [IT-A)).

Note that the equations (I0) and (TI) can be rewritten as
(=1 aily) =y
(y—1) Bily) =

where g, l—0= gd 41 For a string s of length n, and weight
d, let the corresponding integer string be A(s) = agp...aq
(Definition [T). Then, using Definitions [3]and] for 0 < j < d,

1+g3 (12)

13)

j—1
g
-y,

d
1+9d i — ygd—j+17

a;(y) and B;(y) are the coefficients of 27 in Ps(z,y) and
P*(x,y), respectively. In particular,
P(x,y)zZoz y)x?, and PX(Z /. (14)

Remark 4. «; () and ;(7y) correspond to the coefficients of
27 in Ps(x,7) and P} (x,~), respectively, for all y € F,. For
instance, putting v = 1 gives o;j(1) = a; + 1 and B;(1) =
aq—j; + 1 which are the coefficients of 27 in the polynomials
Ps(z,1) ((7)) and P¥(x,1) ((8)), respectively.

Remark 5. For a string s of length n, and weight d, let the
corresponding integer string be A(s) = agay ...aq (Defini-
tion . Let rs ;(y) denotes the coefficient of ? in the poly-
nomial Fs(x,y). Then using Fy(x,y) = Ps(x,y)P*(x,y),

rs,i(y) = 2 ok (Y) Bk ()
k=0

5)

Using (12) and (13), this equation can be re-written as
j—1

e |
(=1 ray () == 3 (28 Hobn g8
k=1

—k—1, d
t9a—k+1

1+g5 F+ga_, T+gl P lygd
— gy 90 Ja—k+1 — g0 9a-k |, (16)

where g denotes the sum ap + ags1 ...+ a; (defined in
Section and gg' =0 = 941

The reconstruction algorithm will find a; and a4—; together
at step j. Note that in (T0), o;(y) is defined using g} and
g("fl, and therefore, can be obtained by knowing the elements
ai,...,a;. Similarly, 3;(y) can be obtained from ag, . .., ag—;.
Hence, for a string s, if by the end of step j — 1, the algorithm
recovers the pairs (a1, aq—1), (a2, @g—2), ..., (@j-1,d—;+1);

the polynomials a(y),...,a;—1(y) and So(y),...,B5-1(y)
are well defined.

Definition 10. Letr 7;(y) denote the coefficient of 7 in
F(x,y). Then r;(y) can be treated as a polynomial in y. At
the end of step j— 1, for polynomials co(y), ..., a;-1(y) and
Bo(y),- .., Bj—1(y), define the polynomial f;(y) as follows:

fj(y 2

By the end of step j — 1, since we know the polynomials
ao(y),...,a;—1(y) and Bo(y),...,Bj—1(y), we can com-
pute f;(y). At step j, the algorithm wants to find the pair
(aj, CLd_j). If the pairs (al, ad_l), ceey (a,j_l, ad_j+1) are
identified correctly, then for the correct pair (aj_, Ag— j), the co-
efficient of 27 in Fy(z,y) € Fylz,y]isrs = D11 _o i(y)Bj—i(y)
(Remark [5). Since we aim to identify strings s for which
Fs(x,y) = F(x,y), we need to find (a;,aq—;) such that
> _oi(y)Bi—i(y) = rj(y). As discussed before, by the
end of step j — 1, we already know o (y),...,a;j—1(y) and
Bo(y), ..., Bj—1(y); therefore, a correct pair (a;j,aq—;) must

satisfy
fi(y) = ao(y)B;(y) + a;j(y)Bo(y)
= B (y) + a;(y)Bo(y).

By noting that the degrees of both sides should be equal, we

have
deg(f;) = max{deg(B;), deg(c;5o)}

= max{gg_j,gg +ag}.

(1)Bj—k(a7

(18)

19)

Furthermore, observe that «;(1) = SB4—;(1) = 1 + a; and
hence, f;(1) = 3;(1) + (aq + 1) oj(1). From this we obtain:

fi(D) = (L+ ag—;) + (ea + 1) (a5 +1). (20)

We will use these equations to compute the possible val-
ues for the pairs (a;,aq—;). Since 1 < (ag+ 1) < n < g, we
know that ¢ 1 (aq + 1); equations (19) and @20) give us two
possible values for the pair (aj,aq—;) at step j. This proce-
dure is captured in the [Reconstruction Algorithm| At the end
of [d/2] steps, we find strings s for which rg ;(y) = r;(y) for
all 0 < j < [d/2]. Since, F(z,y) = F*(x,y) and Fy(z,y) =
F¥(z,y), we have rg ;(y) = r;(y) for all 0 < j < d. There-

fore,
d

d
Fs(xvy) = Z Ts,j(y)xk = Z Tj(y)xk = F(xvy)
k=0 k=0
The correctness of the algorithm is guaranteed by the Lemma[3]
which shows that the strings which share the same Fs(z,y) =

F(z,y) indeed share the same composition multiset.

Algorithm 1 Reconstruction Algorithm

Input : Polynomial F'(x,y), array A of size d initialized with
Ald] = ag and A[i]=0forall 0 <i<d—1,
Output: Set S of codestrings s € {0,1}"

Function Reconstruction(j =1, F, A):

S=0
if j = [d/2] then

if d mod 2 = 0 then
| aj=n—d—3,;a
if A corresponds to some binary string s then
| S=s
else
| §=¢
end
return S
end
Compute f;, deg(f;), and f;(1)
flag =0

a; = deg(f;) — (g + aq)

aq4—j = fj(l) —1- (ad + 1) (aj + 1)

if a; >0, aq—; =0, and f;(y) = B;(y) + a;(y)Bo(y)
then

Alj] = aj, Ald — j] = aq—;

S = Reconstruction(j+ 1, F, A)

flag=1

end

ad—j = deQ(fj) - gfllfjﬂ

a; = =1+ (f;(1) =1 —aq—;)/(aa +1)

if a; € NU{0}, ag—; = 0, and f;(y) = B;(y)+;(y)Bo(y)
then

Alj] = a;, Ald — j] = aq—;

S =8 U Reconstruction(j+1, F, A)

flag=1

end

if flag = O then
| S=0

end

return S

The reconstruction algorithm has at most two valid choices
for the pair (a;, aq—;) at step j, and therefore can have at most
two branches at any step. If both the conditions are satisfied
i.e. both choices are valid according to the algorithm; then our
algorithm must choose one direction to proceed. If an error is
encountered later, the algorithm comes back to the last branch
(not taken yet) where both conditions were satisfied and takes

the alternate path. If exactly one condition is satisfied, then our
algorithm takes the corresponding path. If neither of the two
conditions are satisfied, then assuming the input composition
multiset to be valid, our algorithm must have taken the wrong
branch in the past (when it had a choice). In such a scenario,
our algorithm goes back to the last valid branch where both
conditions were satisfied, and takes the alternate branch and
proceeds as described. In Theorem 9] stated below, we establish
the time and space complexity of the proposed reconstruction
algorithm (Algorithm [I)). The proof of the theorem demon-
strates how these complexities can be achieved by pre-storing
certain information.

Theorem 9. Given the input F(x,y), the proposed
[struction Algorithm|(Algorithm[I), in the case of no backtrack-

ing, outputs the unique string s with Fy(x,y) = F(x,y) with
maximum 6.5n2 finite field operations, translated to maximum
6.5n%(3.22+log n) binary operations, latency O(nlogn), and
space complexity O(n?).

Proof: Note that at step j of the algorithm, instead
of computing f;(y) directly to find deg(f;), and verify-
ing if f;(y) = Bj(y) + o;(y)Bo(y), we can instead do
the following. First, we compute fi(y) = (y — 1% fi(y).
Then deg(f;) = deg(f;) — 2, and we will verify if
F19) = (=12 (B(y) + a; (1) Boly)). Using (12 and (T3),
this is equivalent to verifying whether the following holds:

_ y1+93—j+1 — y1+gg—j

Fjy) = y? i+ yiin

+ y2+ad+gg + yg{fl _ y1+ad+g(’fl _ y1+gé. 21)

The expression in () is summation of at most 8 distinct
powers of y, i.e., a polynomial with at most 8 non-zero coeffi-
cients. This implies that, for 1 < i < (j—1), if (a;, aq—;) have
been correctly identified, f;(y) can have at most 8 non-zero
coefficients. Using (12) and (I3) again, f}(y) can be computed
using

fily) = (y =1 r5(y)
Jj—1

k=1

_ y1+967k+937k+1 _ y1+ggik71+ggfk).

j—k—1

24gl P 4gd_ 90 +g4_
(y 0 d—k + y 0 d—k+1

(22)

To perform field operations more efficiently, and to effec-
tively use the structure of the polynomials used in the algo-
rithm ((T0), (TI), and (7)), we will pre-store certain informa-
tion in arrays, to be specified next. Let A € IF, be a primitive
element of the field. Then define the following arrays:

o field_store[] of length ¢ — 1,
where for 0 < i < ¢ — 2, field_store[i] = \'.

« element_store[] of length (¢ — 1),
where for 1 <1i < g— 1, element_store[i — 1] = ¢ such
that ¢ = \°.

o r_coef[,] of size (d+1) x (n—d+ 1),
where r_coef|k,l] = ax,, where, a,; denotes the coef-
ficient of ! in ry(y) (Definition .

o 7_coef_mult[,] of size (d+ 1) x (n —d + 3),
where r_coef_mult[k,l] = a;)l, where, aj,; denotes the

coefficient of ' in (y — 1) - 74 (y).
« r_one_eval[] of length (d + 1),
where for 0 < i < d, r_one_eval[i] =
o g_begin[] of length (d + 1),
Initialized with g_begin[0] = g§ = ag = 0 and the re-
maining values all set to —1. At step j, we will update
g_begin|j] = g_begin[j — 1] + a;.
e g_end[] of length (d + 1),
Initialized with g_end[0] = g4 = a4, and the remaining
values all set to —1. At step j, we will update g_end[j] =
g_end[j — 1] + aq—;.

’/‘i(l).

At step j, we will first compute and store the coefficients of
[} in an array f_ dash[] of size (n + 3), initialized with the
coefﬁcwnts of (y—1)%-r; (y), that is, for 0 <7 < (n +2),
f_dashl[i] =r coef mult(j,4]. In @]) the powers ofy only
involve gf, and g¢_,, for 1 < k (j—1). At the beginning of

step j, we readily have access to these elements in the arrays
g_begin[] and g_end]]. Therefore, to compute f;, we perform

the following operations for 1 < k < (5 — 1),

d
Frgdk] -1,
d
+ 9d—k+1] — 1,

f_dash[2 + g} ™" + g4_i] — f_dash[2 + gO
f_dash[g) ™" " + g§_x41] < f_dash[g}”
f_dash[1+ g} % + g4_i 1] — f_dash[1 + g}~

f_dash[1 + g} F ™ 4 g4, — f_dash[1 + g}~ F~*

That is, we do O(d) field operations to update the array
f_dash[] with 2(j — 1) operations adding 1, and 2(j — 1) op-
erations subtracting 1. Note that this process takes 11(j — 1)
field operations, and can be parallelized to O(1) latency.
Thus, the coefficients of the polynomial f;(y) are computed
and stored in the matrix f_dash[] in 11(j — 1) field addition
operations, and O(1) latency.

To compute the degree of the polynomial f]’-, a naive ap-
proach is to find the largest index with a non-zero array
entry. This can be done in n field comparisons in a worst
case sense. However, since we know that f]’ can only have at
most 8 non-zero coefficients, finding the degree of the poly-
nomial can be efficiently parallelized to O(1) time. This can
be done by asking if array entries at each index are non-zero,
in parallel. Recording these non-zero indexes (along with the
corresponding array entry) as a list of size at most 8, the
largest member of index value can be computed in O(1) time.
Note that if the list size exceeds 8, the polynomial f]’, has
been inferred incorrectly; we declare an error and backtrack.
Therefore, deg(f;) can be computed with n field comparison
operations and O(1) latency.

To compute f;(1), recall from (I7),

=Yy ()BD)
k=1
j—1

- Z 1+ aj_k)(l +ag_g)-
k=1

fi(1) = r;(1)

Il
-
.

(23)

This can be computed using the r_one_eval[], field_store]
and element_store[] arrays. This is done to avoid multipli-
cation in the finite field, which is an asymptotically costly
operation.

d

= 9d—k+1] + 1,
d

+ gd_k] + 1.

j—1
Z field_ store[element store[a;_p]
k=1

fj(1) = r_one_eval[j

+ element_store[ad_k]]. 24)
Since addition can be parallelized, f;(1) can be computed
in j field additions and O(logn) latency.
For each branch of the algorithm induced by the if statements,
we obtain the values of the pair (a;,aq—;), which we first use
to update g_begin[j] = g} and g_end[j] = gfil_j. Note that
the coefficients of the polynomial fj’- were already computed
and stored in the array f_dash[]. Also, recall that the poly-
nomial fj’- can have at most 8 non-zero coefficients, whose
indices are saved in a list while computing deg(f;). Using
the computed value of the pair (a;,aq—;), the polynomial f;
can be verified using (ZI) in 8 field additions. Now we update
the arrays g_begin[] and g_end[] using 2 field addition oper-
ations.
Therefore, for each value of j, the algorithm requires n +
12j — 3 < 13n field operations. Therefore, over [d/2] values
of 7, in the case of no backtracking, the algorithm will out-
put the required string s in less than (d + 1)(6.5n) < 6.5n>
field operations, and O(dlogn) = O(nlogn) latency. Since
the size of the field F,; is ¢ < 10n, each addition and com-
parison operation can be done with at most log, (10n) binary
operations, which means that our algorithm requires at most
6.5n2(3.22 + logn) binary operations in its implementation.
This complexity is achieved by storing (2¢—1)+(d+1)(2n+7)
field elements in advance. Hence, the required space complex-
ity is O(n?). [

Remark 6. In the case of no backtracking, the time complexity
of the reconstruction algorithm proposed by Acharya et. al. in
[26]] is O(n?logn), which is same as the reconstruction com-
plexity of our algorithm order-wise (i.e., asymptotically). Note
that the algebraic nature of our reconstruction algorithm has
enabled us to exactly upper bound the total number of binary
operations needed, as outlined in Theorem [?] However, such
an analysis is not available for the algorithm in [26|].

Remark 7. For a binary string s of length n, the composi-
tion multiset C(s) has n(n + 1)/2 elements, which requires
O(n?) space to be stored. Therefore, it is natural for recon-
struction algorithms, including our algorithm as well as the
reconstruction algorithm proposed by Acharya et. al. in [20]],
to require O(n?) space complexity.

Example 4. We demonstrate how to reconstruct the strings
s1 = 10010110 and sp = 10110010 via the process de-
tailed above with the pseudocode provided in
The strings si and sy share the same composi-
tion multiset, and therefore Fy, (v,y) = Fs,(x,y). For these
strings, the corresponding integer strings are A(s1) = 02101
and A(s) = 01021.

We will be given the composition multiset, or equivalently,
Flz,y) = 1+ y) +z(1 + 3y +2y* +y3) + . The
reconstruction algorithm should output the set of strings
S = {s1 = 10010110, s = 10110010}. From @), we readily

obtain that d = 4, and aq = a4 = 1. The algorithm begins by
finding the tuple (a1, a3) corresponding to j = 1. To find the
tuple, the algorithm will need to compute certain attributes
of the polynomial f;_1(y) (Definition which is simply
the coefficient of x in Fs(x,y) ie., (1+ 3y + 3y*> +v%). In
particular, using the procedure described in Theorem [9] the
algorithm first computes f;(y), and obtains deg(f;) = 3, and
i) =1

To check for the first branch, the algorithm, with j = 1, sets
a1 = deg(f1)—(g95+as) = 3—(0+1) = 2, and, withd—j = 3,
as = fi(l)=1—(as+1) (a1 +1) = 7-1—-(1+1)(2+1) = 0.
The algorithm now verifies if the computed f;(y) and the
polynomial B;(y) + «;(y)Bo(y) obtained using the com-
puted values of the pair (ai,a3) coincide. The process of
doing this efficiently is explained in the proof of Theorem
This indeed is the required tuple corresponding to the string
s1 (recall that A(s1) = 02101), and therefore must satisfy
the required relationship. The algorithm therefore concludes
(a1,a3) = (2,0). The sequence element ay can now be
trivially calculated as ay = d — (ag + a4) — (a1 + a3) =
(4—=(0+1)— (24 0) = 1. Therefore, at the end of the first
branch, we have S = {10010110}.

Similarly, to check for the second branch, the algorithm,
with d — j = 3, sets a3 = deg(f1) —g; = 3—1 = 2,
and a1 = =1+ (f1(1) =1 —ag)/(as +1) = 1 € N.
The algorithm now verifies if the computed f;(y) and the
polynomial B;(y) + «;(y)Po(y) obtained using the com-
puted values of the pair (a1,a3) coincide. Since this tuple
is also a valid tuple corresponding to the string so (re-
call that A(sy) = 01021), after verification, must satisfy
the required relationship. The algorithm now concludes that
(a1,a3) = (1,2). The value of as can now be calculated as
ao = d—(a0+a4)—(a1 +a3) = (4—(0+1)—(2+0) = 0.
Therefore, at the end of the second branch, we have
S = {10010110,10110010}.

We say that a string s stops at step j if the algorithm fails to
uniquely determine (a;,aq—;) at step j. As explained above,
this is possible if either both or neither of the two if conditions
are satisfied. In both cases, the algorithm had a step ;' < j
where both of the two conditions were satisfied. Therefore, we
will say a string s pauses at step j if there are two accept-
able branches for the tuple (a;, a4—;). Note that in Example 4]
while reconstructing the strings, both of the two possible solu-
tions were satisfied for the tuple (a;,aq—;) corresponding to
7 = 1. Therefore, we can say that the reconstruction algorithm
in Example [] paused at step j = 1. In the following lemma,
we give algebraic conditions (23) and (26), characterizing the
strings that pause at some step j.

Proposition 10. Letr the bi-variate polynomial correspond-
ing to a string s be Fg(x,y). If the reconstruction algorithm
pauses at step j, then string s satisfies either of the following
two relations:

(25)
d J —
9a—j — 9o = aa +1, (26)

Proof: Since the reconstruction algorithm pauses at step
7, both if statements corresponding to the two branches in-

gg—ggﬂ-:ao—kl:l, and aj = 1;

and aqg—; = aq + 1.

duced by the reconstruction algorithm must be satisfied. There-
fore, there must exist a pair of tuples, which we call (a;, aq—;)
and (aj,ay_;), such that both of them satisfy for all
y € F,. Call the polynomials corresponding to these pairs

(a;(y), B;i(y)) and (c(y), B (y)) respectively. Let h;(y) =

Bi(y) + a;(y)Bo(y), and R} (y) = Bi(y) + o’ (y)By(y). Then
these polynomials must satisfy

fi(y) = Bi(y) + a;(y)Bo(y) = h;(y)
= B3(y) + (y)Bo(y) = hj(y).

Let A € [F, be a primitive element of the field. In particular,
the following relations must be satisfied:

Fi(A) = Bi(A) + a;(N)Bo(A) = hi(N)

27

= B5(A) + o5 (N)BH(A) = R(N), (28)
and
ST =B,(AY) + (A BT = hy (AT
= B(ATH) + os(ATHB AT = (AT, (29)

1

By the step j — 1, we know ¢} " and 94_;11- Using (09,

94 sy +ay_; =deg(f;) = g0 +a;+as. (30)
Using (20),
(a; — a})(aa + 1) = (ag_; — aa—j).

From (28),

Fi(A) = A (Z x’) + A% (Z x’) (Ai> :
i=0 i=0 i=0

and

3D

’
ay_;

£ = At [37| 4 ae
i=0

aj ' aq
DN (Z)J) .
i=0 =0
Since A # 1, i.e., A — 1 is invertible, equating the two ex-
pressions and multiplying by (A — 1)2,
)\937]41()\ _ 1)(>\ad—j+1 _)\a,d*fJFI)
_)\glg)'—l()\ad-k—l _ 1)(}\(1;-&-1 _)\aj+1>.

Similarly using 29), and equating the expressions after mul-
tiplying by (A\=1 —1)2;

(32)

);géijﬂ()\fl T TSR B S A
— AT (e Z (At - Ay,
Simplifying, we get
)_ggfji»l_ad—j_a/dfj—?)()\ . 1)(}\ad,j+1 B)\“/dfﬁl)
—)\—gé’l—aj—a;—ad—s(AadH C) — pastly,

Now using relation (32) and equating power of A (which can
be done since A is primitive root in a field of size ¢ > 5n+1),

209 ;41 +aaj +ay_; =20 +a;+d;+aq (33)

Solving the four equations obtained from (30), (31), and (33));
(34
(35

,‘_1
(aj’a’d*j) = (t+ggfj+l + 1,t+gé)7
(a;,aii_j) = (t+ gg_jH,t + géfl +aq + 1),

where t = aq_; — g " = deg(f;) — (1 +aq+g) ™" +95 541)-
The tuple (a;,aq—;) in (34) corresponds to the condition 23)),
and the tuple (aj,ay ;) in (35) corresponds to the condi-

tion (26). |

Definition 11. We will call the strings which satisfy condi-
tion Sor some 0 < j < d/2 as type-1 strings, and the
strings which satisfy condition (26) for some 0 < j < d/2 as
type-2 strings.

Remark 8. A string can be a type-1 string, a type-2 string,
both a type-1 and a type-2 string, or be of neither type. Since
our algorithm can only confuse a type-1 string with a type-2
string, if our algorithm knows the type of string, it can know
which branch to choose thereby avoiding backtracking. In Sec-
tion [I[V} we will use this fact to design reconstruction codes
by avoiding all strings of a single type.

Remark 9. In Example 4| while reconstructing the strings
s1 = 10010110 and s5 = 10110010 (which share the same
composition multiset), the algorithm pauses at step j = 1. For
these strings, the corresponding integer strings are A(s1) =
02101 and A(s2) = 01021. Note that, for string s1, gt — g3 =
(0+2)— (0+1) =1, satisfying @23). Similarly, for string sa,
g3 —gs=02+1)—(0+1) =2 = a4+ 1, satisfying 26).
Therefore, string s1 is a type-1 string and string sz is a type-2
string.

Corollary 11. If an imbalanced string s (Definition [6) of
length n is such that it begins in 1 and ends at 0, then s

can be uniquely reconstructed with the complexity outlined in
Theorem[9

Proof: We will show that an imbalanced string cannot be
a type-1 string. As discussed in the previous remark, telling our
algorithm to always choose condition (26) in case of a pause,
any such string can be reconstructed without backtracking and
hence according to the process in Theorem[9}
Let if possible, s also be a type-1 string. Let step j be the first
time the string s pauses and satisfies condition (23)). If condi-
tion (23) is satisfied, then the (j + 1) one in s is at position
(g3 +j + 1), and the (j + 1)" last one in s is at position
g + j from the end of the string. Therefore,
wt (s“féﬂ) —wt (sd

"—gg,j _]

)=i-G+1)=-1 06

But note that wt(s}) — wt(s?) = 1. Consider the function
f(i) = wt(s}) —wt(s?_,; ;). This function is such that f(i +
1) = f(i) = 1. Therefore, the function must have been zero at
some point, contradicting the fact that s is imbalanced.]

Remark 10. Corollary[[1|implies that our algorithm uniquely
reconstructs the codewords of the codebook Sg(n) described
in [29] (revisited in Section without backtracking.

IV. RECONSTRUCTION CODE

In this section, we explicitly describe the reconstruction
code S(n) (Definition which will consist of all imbal-
anced strings (Definition [6) of length n, beginning with 1,
and ending at 0. The design of our reconstruction code is
such that we avoid all strings satisfying condition (23)) in our
codebook. This will ensure that in case of a pause, the re-
construction algorithm will know which branch to take. For
a string to not be uniquely reconstructable, it must pause at
some step; therefore, avoiding pauses ensures that the string
is uniquely reconstructed from its composition multiset. Note
that Lemma [/| implies that the reconstruction code Sg(n)
(Definition [8) is the reverse of the reconstruction code S(n).
We show a bijection between S(n) and positive n-step walks
(Definition [/) thereby explicitly describing the code size and
propose efficient procedures for mapping information mes-
sage into this code and then retrieving them. The bounds on
the redundancy are provided in Corollary [T3] Corollary [TT]en-
sures that the elements of S(n) are uniquely reconstructable
by our [Reconstruction Algorithm| with O(n?logn) com-
plexity and O(nlogn) latency (Theorem [9). Recall that the
elements of this codebook S(n) are also reconstructable by
the algorithm in [26] without backtracking (Lemma [3). The
relevant background for this section is discussed in Sec-
tion
Later, we extend S(n) by expanding codebooks of different
sizes in certain specified ways followed by taking a union
of them, in order to arrive at a new codebook T'(n) (Defi-
nition [I4). This codebook 7'(n) contains S(n), but also has
strings that are not imbalanced. The more general sufficient
conditions for reconstruction in polynomial time of our algo-
rithm (Proposition [I0) ensure that elements of the codebook
T(n) can be reconstructed with the same complexity, i.e.,
in at most 6.5n2 field operations (according to Theorem@).
Finally, using the ideas discussed in Remark [8] we propose
codebooks T (n) (Definition [15)), and T5(n) (Definition [17)),
through which we give computational bounds on the size
of reconstruction codebooks uniquely reconstructable by the
reconstruction algorithm with the same complexity as S(n).

Definition 12. Define S(n) to be the set of all imbalanced
binary strings of length n beginning with 1, and ending at 0;
that is for all prefix-suffix pairs of length 1 < j <n, one has
wt(s)) > wt(s) ;)

The result from [19]), discussed in Section [[[-B]as Lemmal[7]
shows that the codebook Sgr(n) (Definition [8) is the reverse
of the codebook S(n), i.e. for all s € S(n), the reverse string
s* € Sgr(n) and vice-versa. Recall that s and s* share their
composition multisets and cannot belong to the same recon-
struction code; therefore S(n) and Sg(n) are disjoint. In [[19],
the authors show that the elements of the codebook Sgr(n),
and therefore similarly S(n), are also uniquely reconstructable
from the multiset of their prefix-suffix compositions. Theo-
rem (12| gives the ingredients to explicitly encode messages in
the codewords of S(n) which we detail in Figure

Theorem 12. There is a bijection between S(n) and positive
n-step walks (Definition [7).

\ ENCODING MESSAGES

Message m €

i)

[

- - Random walks
lexic_string

ending at
21177

I

lexic_index|

of length (n — 1) RW_transform

RW _recover

<

Codebook s(n)

Assignment
in proof of
Theorem 12

Cmmm

Positive n-step

random walks

DECODING MESSAGES

<

Fig. 2: The procedure of encoding and decoding messages from the codebook S(n).

Proof: Given a binary string s = s1 ... 5y, assign X;’s
in the following way:

1, ifs; =1
Xoi—1 = ’ 1 T and
-1, if s; =0;
X2i _ _17 lf Sn+l1—i = 17
]., if Sn+1—i = 0.

This assignment is uniquely invertible. That is, for each such
s, there is a unique assignment of variables X;’s and vice
versa. This ensures that this assignment is injective i.e., differ-
ent strings are mapped to different random walks. Now note
that Sy = Zfﬁl X; = 2(wt(s}) — wt(s?_,,,)). As men-
tioned in Remark [3] if s is an imbalanced string beginning
with 1 and ending at 0, then wi(s}) — wt(s”_, ;) =1 for all
1 < k < [n/2]. Therefore, So;, > 2 for all 1 < k < [n/2], and
Sok+1 = Sop —1 =1 for all 1 < k < |n/2|. Note that, for a
positive n-step walk, since the k-th step is either —1 or +1,
the parity of Sj changes after each step. This shows that the
assignment of X;’s is surjective, and therefore, also bijective.

|
The above result along with Lemma [6] and Proposition [§] gives
us the following corollary.

[V

n o

—1
L*l]) =
Therefore, redundancy of the reconstruction code S (n) is at
most [1/2logn + 1/2 + 1/21og, 7].

Corollary 13. The size of S(n) is given by ([

Corollary [I3] characterizes the size of the codebook
S(n), but we still need to design efficient encoding and
decoding procedures for mapping and retrieving informa-
tion messages from the codebook elements. To construct

n—1

0. () —1]

D: Shn) — [0, ([ﬁ%ll]) - 1], we will begin by mapping

an encoder & : — S(n) and a decoder

[0, ([nTJyl]) — 1] to the set of binary strings with length
(n — 1) and weight [251]. This is equivalent to lexi-
cographically ordering binary strings of length (n — 1)
with weight [251]. In [34], Kabal uses a coding trellis to
give an efficient way of mapping a selection of k items
from a given set of N items i.e. mapping binary strings
of length N and weight & to [0, () — 1]. We will call
lexic_string(N, k, i) the procedure that outputs the i*" string
in the lexicographic ordering of binary strings of length
N and weight k; and lexic_index(N,k,s) the procedure

10

that outputs the index ¢ of the string s in the lexico-
graphic ordering of binary strings of length N and weight
k. Treating these binary strings as 1-dimensional random
walks with 1 — 1, and 0 — —1, we have a lexicographic
ordering of random walks of length (n — 1) ending at
Sp1(X) P Xk = (1252 — [252]). In 32 Chapter
3], Feller explicitly describes a bijection between (n — 1)-step
random walks with S,_1(X) (12521 = [25]), and
1-dimensional positive n-step random walks (Definition [7).
Given an (n—1)-step random walk X = (X, Xo,..., X,,_1)
with S,,_1(X) = (["7’1] — ["T’lj), leeme{l,...,n—1} be
the smallest index such that S,,(X) = ;" | X; < S;(X) =

Zilek forall je{1,...,n—1} and j # m. Then

W = (Wi,...,W,)
= (]-vaJrla .. ~7Xn717

_Xma'“?_Xl) (37)

is a positive n-step random walk. We call this proce-
dure of mapping X — W as RW_transform(X). In fact,
this mapping is a bijection (see proof of problem 7,
(32, Chapter 3]). Note that the n-step random walk W
ends at (1—2S,(X)+[%2]—[252]) which lets us
recover S,,(X) from this walk. Since m is the small-

est index with the minimum S,,(X), the largest index j

of this n-step random walk with S;(W) = Y7 | W; =
(1= 8m(X) +[25H] = ["5H]) = 1+ Zz;lnﬂ X, is such

that j = n — m. This lets us retrieve the (n — 1)-step random
walk as

X = (X1,..
:(_

We call this procedure of mapping W — X as RW_reco—
ver(W). This mapping when merged with the assignment of
variables in the proof of Theorem |12| can be adapted to give
us a procedure to explicitly map, via a bijection, imbalanced
strings beginning with 1 and ending at O to the selection of
some | 25| objects from (n — 1) objects. Therefore, a com-
bination of the procedures described in [32], and [34] can be
used to describe an invertible map from [0, ([E J) —1] to the
set of imbalanced strings beginning with 1, and ending at 0
i.e. S(n). This is demonstrated in Figure

. aanl)

Wn:~~~7_Wn7m+17W27'~~anfm) (38)

Now, we finally extend our reconstruction code S(n) by ex-
panding codebooks of different sizes in certain specified ways
followed by taking a union of them, in order to arrive at a

051 ~4-s(n) an-n-u-®
- - -A
~®-T(n - +x
— o Rt £ £ o g
== Ti(n) SRS = = 5
R R LR
- o
/‘) :‘,
@ 07 LA /
i’
-
° F4 ‘e’
8 0.6 :)I/
iy
’,‘/
¢/
0.5 f
1
1
1
1
04 4

15 20 25

Length of code (n)

10
Fig. 3: Comparison of code rates

new codebook T'(n). We define the following kinds of sets
whose construction uses this S(n). The reconstruction code
T'(n) will be defined as the union of these sets.

Definition 13. Given a positive integer n, and 2 < k < |n/2|,
define P, j, as the set of binary strings of length n which begin
at 1, end at 0, as follows:
Poy = {s€ {0,1}", t € {0,1}*72 such that
st = 10, s”_, ., = 1t*0,

and .8} ¥ € S(n —2k)}, 39)

where t* denotes the reverse of the string t.

Proposition 14. Given a binary string s € P, j, of length n,
with 2 < k < |n/2|; s is uniquely reconstructable by our
algorithm.

Proof: We will show that any s € P, j, is not a type-1
string, and therefore the result will follow from Remark @
This proof will be similar to the proof of Corollary [TT} Con-
sider the function f(i) = wt(s}) — wit(s”_,,). Note that,

=1, forl <i<k-—1;
=0, fori=Fk;

> 0, otherwise.

f(@)

The first two results follow from the construction of P, j in
Definition [T3] and the last inequality follows from Remark [3]
As seen in the (36), in the proof of Corollary [TT} for every
type-1 string, there exists a j', such that f(j’) = —1, implying
that s € P, ;, cannot be a type-1 string.]

Remark 11. The extended codebook presented in the ISIT
2022 version of this paper [35|]] avoided type-2 strings and
was shown to be larger than S(n) by a linear factor 41/40.
The codebook defined here avoids type-1 strings and is shown
to be larger than S(n) by a linear factor of 9/8.

In/2] p

Definition 14. Define T(n) = S(n) | (2l p

Theorem 15. Given ¢ > 0, there exists an N € N such that

3.6 ¢ S(n) ,0_.""’
~o-T(n) et
341 -m-Ty(n) e
-»-T,(n) Y ; Ve
3.2 ’
At - > >
, p
> 3.0 1 »-»—»-»—»;ﬁ—-‘—»—»—»-”-"’"”""’*V
v
5 -4 o
B 2.8 /
2 °-¢
€56 /
/
¢ -
41 B -~
2.4 A - .\'/.\., - []
u. -
224 o
-y’ -
.,u—n’
201 m-m~

T T T
15 20 25

Length of code (n)

T
10

Fig. 4: Comparison of code redundancies

for all integers n > N we have

11

IT(n)| = (1125 — €) |S(n). (40)

Proof: Letse P, , N Py k,, with ki # ka. Then
wi(sY") — wi(s) 1 _y,,) = 0 # wi(s)?) — wi(s) 1 _y,)-

This means that P, ;, N P, ;, = . Now note that,

[n/2] [n/2] n—1-2k
T P, 1)~
Ty Y Pl S gea ()
1S (n)] = 1S(n)] = (lnT_lJ)
Setting n = 2n’ + 1, we see that,
n' 2n' —2k
|T(n)| — 14 Z 21@72(n' —k)
1S(n)| P)
”' koak 1
k—2 —k
=1+)2 (4 + +O(n,2)>
k=2
o' (2% —3) +3-2" 1
=1+ T Towd +O(5)
9 1
> -+ 0(—).
g T (n)

As we discuss in Remark [8] our algorithm can only con-
fuse a type-1 string with a type-2 string. We exploit the alge-
braic conditions in Proposition [T0] to find codebooks of larger
sizes that can be reconstructed by slightly modifying the pro-
posed |Reconstruction Algorithm| (without changing the time
complexity). In Figure [3]and @] we compare the rates and re-
dundancies of the reconstruction codes: S(n) (Definition ,
T(n) (Definition [T4), T3 (n) which is the codebook formed
by excluding all strings of fype-1 (Definition [13)), and T5(n)
which is the codebook formed by excluding all strings that
are both fype-1 and fype-2 and adding an indicator bit to re-
maining strings to denote their type (Definition [T7). Given a
positive integer n > 3, we define T (n) to be the set of all
binary strings of length n beginning with 1, and ending with
0 with no type-1 strings; that is all strings satisfying condi-
tion (23) for any 1 < j < d are removed from the set of

strings being considered.

Definition 15. Given a positive integer n. > 3, define Ty (n)
as a set of binary strings of length n which begin at 1, end at
0, as follows,

dgf

Ty (n) {se{0,1}" |s1 =1, s, =0, and

1ief{1,2,... |wt(s)/2|} such that
a; =1 and gh(s) — gwt(s) (s)=1}

wt(s)—j

The set T} (n) contains strings which are either only fype-2,
or neither of the types. Therefore for each element in T} (n),
our algorithm even in case of a pause knows exactly which
branch to take (the branch satisfying condition (26))). There-
fore, it uniquely reconstructs the string without backtracking.
In the proof of Proposition [T4] it is shown that all codewords
of the codebook T'(n) are such that they are not type-1 strings.
This means that T'(n) < T3 (n). Extending this argument fur-
ther, we define S12(n) to be the set of all binary strings of
length n beginning with 1, and ending with 0 with no strings
that are both fype-1 and type-2.

Definition 16. Given a positive integer n > 3, define S12(n)
as a set of binary strings of length n which begin at 1, end at
0, as follows,

Sis(n) B s € (0,1}, 51 =1, s, =0,
1ief{1,2,... |wt(s)/2|} such that
a; =1 and gi(s) — gt (s) =1,

wt(s)—j
1ke{1,2,...,|wt(s)/2]} such that

ag—i = aqg + 1 and gzzézgik —gk=ag+1}.

This means that the set S12(n) contains strings which are
either only fype-1, only type-2, or neither of the types. Note
that, for our algorithm to know which branch to take, we will
need to add an extra bit of redundancy, an indicator bit, to the
elements of Syo(n). This bit will indicate if the string being
considered is fype-2 or not. If the added bit is 1, in case of a
pause, our algorithm will know that the string is fype-2, and
take the branch corresponding to condition (26). If the added
bit is 0, in case of a pause, our algorithm will know that the
string is fype-1, and take the branch corresponding to con-
dition (23), or continue without backtracking in the case of
no pauses. We define To(n + 1) to be the codebook of length
(n+1) where the codebook is formed by adding this indicator

bit to the elements of Sy2(n).

Definition 17. Given a positive integer n > 3, The code
Ta(n+ 1) is defined as the codebook of length (n + 1) where
the codebook is formed by adding an indicator bit to the
elements of S12(n).

The set S12(n) by definition contains strings which are ei-
ther only type-1, type-2, or neither of the types. But this means
that the codebook T7(n) is a subset of the set Sy3(n) which
implies |T1(n)| < |S12(n)| = |Ta(n + 1)|. Therefore, we have
the following relationship between the sizes of the proposed

12

codebooks, also represented in Figure [T}

[S()| < |T(n)] < [Ti(n)] < [Ta(n+ 1. 41

Remark 12. In Figure [3| and we present the code rates
and code redundancies of the reconstruction codebooks S(n)
(Definition , T(n) (Definition , and the codebooks Ty (n)
(Definition , and Ty(n) (Definition as described above.
The time complexity for constructing Ty (n) and Ts(n) is O(n-
2™), and therefore the results are presented only for n < 25.

V. CONCLUSION.

Motivated by the problem of recovering polymer strings
from their fragmented ions during mass spectrometry, we
introduce a new algorithm to reconstruct a binary string
from the multiset of its substring compositions. We further
characterize algebraic properties of binary strings that guar-
antee reconstruction without backtracking thereby enlarging
the space of binary strings uniquely reconstructable without
backtracking compared with previously known algorithms.
Additionally, we modify and extend the reconstruction code
proposed in [30] to produce a new reconstruction code which
is linearly larger in size, and is uniquely reconstructable by
our algorithm without backtracking.

There are several combinatorial and coding-theoretic prob-
lems related to string reconstruction from substring composi-
tion that remain open. The problems of bounding the size of
reconstruction codes as well as constructing explicit schemes
with minimum redundancy remain open. Our algorithm ex-
pands the conditions for strings to be uniquely reconstructed
without backtracking, and therefore characterizing the set of
strings uniquely reconstructable by the algorithm in this pa-
per is a possible step in that direction. As seen from results in
Figure 4] we believe that there exist reconstruction codes with
constant redundancy that can be reconstructed efficiently. Fur-
thermore, deriving bounds on time complexity of algorithms
for reconstructing strings from their substring multiset is an-
other problem of interest.

REFERENCES

[1] D. R.-J. G.-J. Rydning, “The digitization of the world from edge to
core,” Framingham: International Data Corporation, p. 16, 2018.
Statista, “Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2020, with forecasts from 2021 to
2025, 2022. [Online]. Available: https://www.https://www.statista.com/
statistics/871513/worldwide-data-created/

M. Hilbert and P. Lépez, “The world’s technological capacity to store,
communicate, and compute information,” science, vol. 332, no. 6025,
pp. 60-65, 2011.

C. C. A. Ng, W. M. Tam, H. Yin, Q. Wu, P-K. So, M. Y.-M. Wong,
F. Lau, and Z.-P. Yao, “Data storage using peptide sequences,” Nature
Communications, vol. 12, no. 1, pp. 1-10, 2021.

K. Launay, J.-A. Amalian, E. Laurent, L. Oswald, A. Al Ouahabi, A. Bu-
rel, F. Dufour, C. Carapito, J.-L. Clément, J.-F. Lutz et al., “Precise
alkoxyamine design to enable automated tandem mass spectrometry se-
quencing of digital poly (phosphodiester) s,” Angewandte Chemie, vol.
133, no. 2, pp. 930-939, 2021.

G. D. Dickinson, G. M. Mortuza, W. Clay, L. Piantanida, C. M. Green,
C. Watson, E. J. Hayden, T. Andersen, W. Kuang, E. Graugnard et al.,
“An alternative approach to nucleic acid memory,” Nature communica-
tions, vol. 12, no. 1, p. 2371, 2021.

S. D. Dahlhauser, S. R. Moor, M. S. Vera, J. T. York, P. Ngo, A. J.
Boley, J. N. Coronado, Z. B. Simpson, and E. V. Anslyn, “Efficient
molecular encoding in multifunctional self-immolative urethanes,” Cell
Reports Physical Science, vol. 2, no. 4, p. 100393, 2021.

[2]

[3]

[4]

[5]

[6]

[7]

https://www.https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.https://www.statista.com/statistics/871513/worldwide-data-created/

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

K. Matange, J. M. Tuck, and A. J. Keung, “DNA stability: a central
design consideration for DNA data storage systems,” Nature communi-
cations, vol. 12, no. 1, pp. 1-9, 2021.

M. G. Rutten, F. W. Vaandrager, J. A. Elemans, and R. J. Nolte, “En-
coding information into polymers,” Nature Reviews Chemistry, vol. 2,
no. 11, pp. 365-381, 2018.

A. Al Ouahabi, J.-A. Amalian, L. Charles, and J.-F. Lutz, “Mass spec-
trometry sequencing of long digital polymers facilitated by programmed
inter-byte fragmentation,” Nature communications, vol. 8, no. 1, pp. 1-8,
2017.

Y. Erlich and D. Zielinski, “Dna fountain enables a robust and efficient
storage architecture,” science, vol. 355, no. 6328, pp. 950-954, 2017.
V. Zhirnov, R. M. Zadegan, G. S. Sandhu, G. M. Church, and W. L.
Hughes, “Nucleic acid memory,” Nature materials, vol. 15, no. 4, pp.
366-370, 2016.

R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552-2555, 2015.

S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific re-
ports, vol. 5, no. 1, pp. 1-10, 2015.

N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77-80, 2013.

M. Warren, “Move over, dna: ancient proteins are starting to reveal hu-
manity’s history,” Nature, vol. 570, no. 7762, pp. 433-437, 2019.

T. E. Creighton, Proteins: structures and molecular properties. Macmil-
lan, 1993.

R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstruction of sets
of strings from prefix/suffix compositions,” IEEE Transactions on Com-
munications, vol. 71, no. 1, pp. 3-12, 2023.

Z. Ye and O. Elishco, “Reconstruction of a single string from a part
of its composition multiset,” IEEE Transactions on Information Theory,
vol. 70, no. 6, pp. 3922-3940, 2024.

S. Marcovich and E. Yaakobi, “Reconstruction of strings from their sub-
strings spectrum,” IEEE Transactions on Information Theory, vol. 67,
no. 7, pp. 4369-4384, 2021.

R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Reconstructing mix-
tures of coded strings from prefix and suffix compositions,” in 2020
IEEE Information Theory Workshop (ITW). 1EEE, 2021, pp. 1-5.

M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded
trace reconstruction,” IEEE Transactions on Information Theory, vol. 66,
no. 10, pp. 6084-6103, 2020.

M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. i Fabregas,
“Coding for deletion channels with multiple traces,” in 2019 IEEE In-
ternational Symposium on Information Theory (ISIT). 1EEE, 2019, pp.
1372-1376.

R. Gabrys and O. Milenkovic, “Unique reconstruction of coded se-
quences from multiset substring spectra,” in 2018 IEEE International
Symposium on Information Theory (ISIT). 1EEE, 2018, pp. 2540-2544.
H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for dna sequence
profiles,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp.
3125-3146, 2016.

J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” STAM Journal on Discrete
Mathematics, vol. 29, no. 3, pp. 1340-1371, 2015.

A. S. Motahari, G. Bresler, and N. David, “Information theory of dna
shotgun sequencing,” IEEE Transactions on Information Theory, vol. 59,
no. 10, pp. 6273-6289, 2013.

J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “On re-
constructing a string from its substring compositions,” in 2010 IEEE
International Symposium on Information Theory, 2010, pp. 1238-1242.
S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Coding for polymer-
based data storage,” IEEE Transactions on Information Theory, vol. 69,
no. 8, pp. 4812-4836, 2023.

——, “Reconstruction and error-correction codes for polymer-based data
storage,” in 2019 IEEE Information Theory Workshop (ITW). IEEE,
2019, pp. 1-5.

R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction
codes for polymer-based data storage,” in 2020 IEEE International Sym-
posium on Information Theory (ISIT). IEEE, 2020, pp. 25-30.

W. Feller, “An introduction to probability theory and its applications,”
1, 2nd, 1967.

13

[33]1 £ P

limit on the

(https://mathoverflow.net/users/4312/fedor

petrov), “Upper

central binomial coefficient,” MathOverflow,

uRL:https://mathoverflow.net/q/380124 (version: 2021-01-02). [Online].
Available: https://mathoverflow.net/q/380124

[34]
(35]

P. Kabal, “Combinatorial coding and lexicographic ordering,” 2018.
U. Gupta and H. Mahdavifar, “A new algebraic approach for string re-

construction from substring compositions,” in 2022 IEEE International

Symposium on Information Theory (ISIT).

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

IEEE, 2022, pp. 354-359.

Utkarsh Gupta (Student Member, IEEE) received
the B.Tech degree in Mathematics and Computing
from Indian Institute of Technology Delhi, New
Delhi, India and the M.Sc. degree in Electrical
and Computer Engineering from the University of
Michigan, Ann Arbor, in 2021 and 2022, respec-
tively. He is currently pursuing the Ph.D. degree in
Electrical & Computer Engineering at Northeastern
University. His research interests include coding
theory, security, and privacy.

Hessam Mahdavifar (Member, IEEE) is an Asso-
ciate Professor in the Department of Electrical and
Computer Engineering at Northeastern University
and an Adjunct Associate Professor in the De-
partment of Electrical Engineering and Computer
Science at the University of Michigan, Ann Arbor.
He received the B.Sc. degree from the Sharif Uni-
versity of Technology, Tehran, Iran, in 2007, and
the M.Sc. and the Ph.D. degrees from the Univer-
sity of California San Diego (UCSD), La Jolla, in
2009, and 2012, respectively, all in electrical en-

gineering. He was with the University of Michigan, first as an Assistant
Professor and later as an Associate Professor, between 2017 and 2023. Be-
fore that, he was with the Samsung US R&D between 2012 and 2016, in
San Diego, US, as a staff research engineer.

He received the NSF career award in 2020. He also received Best Pa-
per Award in 2015 IEEE International Conference on RFID, and the 2013
Samsung Best Paper Award. He also received two Silver Medals at the In-
ternational Mathematical Olympiad in 2002 and 2003, and two Gold Medals
at Iran National Mathematical Olympiad in 2001 and 2002. His main area
of research is coding and information theory with applications to wireless
communications, storage systems, security, and privacy.

https://mathoverflow.net/q/380124

	Introduction
	Preliminaries
	Problem Formulation
	Prior Work

	Reconstruction Algorithm
	Reconstruction Code
	Conclusion.
	References
	Biographies
	Utkarsh Gupta
	Hessam Mahdavifar

