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Abstract—In this paper, we propose a new algorithm for the
problem of string reconstruction from its substring composition
multiset. Motivated by applications in polymer-based data stor-
age for recovering strings from tandem mass-spectrometry se-
quencing, the proposed algorithm leverages the equivalent poly-
nomial formulation of the problem which facilitates efficient par-
allel implementation. The computational complexity of the pro-
posed reconstruction algorithm is upper bounded by 6.5n2 finite
field operations, where the field size is upper bounded by 10n,
implying that the computational complexity is upper bounded
by 6.5n2

p3.22` lognq binary operations. Furthermore, it allows
parallelization leading to Opn lognq reconstruction latency. We
characterize sufficient conditions for a length n binary string
that guarantee the string’s reconstruction time complexity to be
bounded polynomially. Moreover, the sufficient conditions on bi-
nary strings that guarantee reconstruction in polynomial time are
more general than the conditions for the algorithm by Acharya
et al. This is used to construct new codebooks of reconstruction
codes that have efficient encoding procedures, and are larger, by
at least a linear factor in size, compared to the previously best
known construction by Pattabiraman et al.

I. INTRODUCTION

Recent years have seen an explosion in the amount of
data created globally [1]. The volume of data generated, con-
sumed, copied, and stored is projected to reach more than
180 zettabytes by 2025. In 2020, the total amount of data
generated and consumed was 64.2 zettabytes [2]. However,
traditional digital data storage technologies such as SSDs,
hard drives, and magnetic tapes are approaching their fun-
damental density limits and would not be able to keep up
with the increasing memory needs [3]. Several molecular
paradigms with significantly higher storage densities have
been proposed recently [4]–[15]. Molecules with a structure
consisting of different smaller molecules (monomers) joined
together in sequences are called polymers. If different types
of molecules denote different letters from an alphabet, then a
polymer with a linear arrangement of these molecules, i.e., a
polymer string, can be treated as a sequence of letters. DNA
is one promising data storage medium which has stimulated
significant interest in the data storage research community.
However, DNA has several scalability constraints including
an expensive synthesis and sequencing process which prevent
large-scale commercialization. Furthermore, DNA is prone
to diverse types of errors such as mutations within strands,
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or loss of strands due to breakage or degradation that could
lead to potential decoding errors or even complete loss of
information [8].

This has led researchers to search for alternatives in other
synthetic polymers. For example, synthetic proteins (which are
polymers of amino acids) are emerging as a potential alterna-
tive with data being stored using peptide sequences for the first
time in 2021 [4]. Compared to DNA and other types of poly-
mers, proteins offer several advantages for data storage, in-
cluding higher stability of some proteins than DNA [16], and
availability of a larger set of possible monomers (20 amino
acids are observed in natural proteins). In synthetic polymer
strings, monomer units of different masses, which represent
the two bits 0 and 1, are assembled into user-determined read-
able sequences. A common family of technological methods
for reading amino-acid sequences (and other bio-polymers) is
mass spectrometry [17]. Mass spectrometers take a large num-
ber of identical polymer strings, randomly break the polymer
into substrings, and analyze the resulting mixture. The mass
sequencing spectrum obtained gives us the mass/charge ra-
tio and the abundance of different ions when the polymer is
broken. This information is then modeled into the mass and
frequency of each contiguous molecular substring. The pro-
cess of recovering a molecular string from its mass sequenc-
ing spectrum is modeled into the problem of reconstructing a
string from the multiset of the compositions of its contiguous
substrings.

The class of problems of reconstructing a string from sub-
string information falls under the general framework of string
reconstruction problems. Due to their relevance in designing
codebooks for molecular storage frameworks, the list of recent
work in string reconstruction has grown rapidly [18]–[27]. In
particular, a composition multiset of a binary string refers to
the multiset of tuples of number of 0s and 1s in each con-
tiguous substring of the given string. The problem of string
reconstruction from its substring compositions was first intro-
duced in [28] and [26]. The main results from [26] assert that
binary strings of length ď 7, one less than a prime, and one
less than twice a prime are uniquely reconstructable, from their
substring composition multiset, up to reversal. The authors of
[26] also introduced a backtracking algorithm for reconstruct-
ing a binary string from its substring composition multiset, and
provide sufficient conditions for reconstructability of a binary
string using the proposed algorithm in [26] without the need
for backtracking (Lemma 5). In the case of no backtracking,
this algorithm has a time complexity of Opn2 log nq. Also,
given the nature of the algorithm in [26], parallelization is not
possible and, hence, the latency is also Opn2 log nq. Note that
in the case of backtracking, there is no guarantee that the time
complexity will remain bounded polynomially with n. Relying



on this reconstruction algorithm, the works of [29], [30] and
[31] viewed the problem from a coding theoretic perspective.
They proposed coding schemes that are capable of correcting
a single mass error and multiple mass errors, respectively, and
can be reconstructed by the reconstruction algorithm without
backtracking. The problem formulation in [26], and subse-
quently in [29], relies on the two following assumptions: a)
One can uniquely infer the composition (number of monomers
of each type) of a polymer from its mass; and b) The masses
of all the substrings of a polymer are observed with identical
frequencies. In this work, we also rely on these assumptions.
In the context of combinatorics, the problem is closely re-
lated to the turnpike problem, also known as the partial digest
problem, where the locations of n highway exits need to be
recovered from the multiset of their

`

n
2

˘

interexit distances.
In [26], the authors showed that the problem of string recon-
struction from its composition multiset can be reduced to an
instance of the turnpike problem.

In this paper, we propose a new algorithm to reconstruct the
set of binary strings with a given multiset of substring com-
positions. The proposed algorithm relies on on the algebraic
properties of the equivalent bivariate polynomial formulation
[26] of the problem. The algorithm finds the coefficients of
the corresponding polynomial in a manner that reconstructs
the binary string from both ends progressing towards the cen-
ter. However, in general, a drawback of such algorithms is that
they may need backtracking which can lead to reconstruction
complexity that grows exponentially with the length n, in a
worst case scenario. Therefore, we provide algebraic condi-
tions on binary strings that are sufficient to guarantee unique
reconstruction by the proposed algorithm without backtrack-
ing, that requires at most 6.5n2 finite field operations. The
size of the underlying finite field is upper bounded by 10n.
As a result, the reconstruction computational complexity is up-
per bounded by 6.5n2p3.22` log nq binary operations. More-
over, the algorithm naturally allows parallel implementation
and has an Opn log nq reconstruction latency. Latency, in this
context, is defined as the total elapsed time from the start
of the algorithm’s execution to the completion of its output,
taking into account the parallelization of computational tasks.
Furthermore, the no backtracking condition of our algorithm
is more general than that of the algorithm in [26]. This in
particular implies that the reconstruction code introduced in
[29] is reconstructable by our reconstruction algorithm with-
out backtracking. In Section IV, properties of one-dimensional
random walks are leveraged to explicitly characterize the set
of binary strings that can be reconstructed by the algorithm in
[26] without backtracking. In particular, we define this recon-
struction code to be Spnq and show a bijection between Spnq

and 1-dimensional positive n-step walks starting from the ori-
gin. Using this bijection we propose efficient encoding and
decoding procedures for Spnq, and show an equivalence be-
tween Spnq and the reconstruction code SRpnq introduced in
[29]. We further extend this codebook to propose a new recon-
struction code T pnq by expanding codebooks of different sizes
in certain specified ways followed by taking a union of them.
The size of T pnq is shown to be linearly larger than Spnq,
and equivalently SRpnq. Furthermore, it is shown that both,

Fig. 1: Inclusion relation between different proposed codes
and the the previous known code SRpnq.

the codebook Spnq (and equivalently SRpnq), and the code-
book T pnq are reconstructable by the proposed reconstruction
algorithm with the exact number of required operations char-
acterized. Finally, exploiting the more general sufficient condi-
tions, we slightly modify the proposed algorithm, to introduce
larger codebooks T1pnq, and T2pnq. The inclusion relation be-
tween these different codebooks is presented in Figure 1. A
comparison of the rates and redundancies of the different cod-
ing schemes is presented in Figure 3 and 4. The rest of this
paper is organized as follows. We describe the problem setting,
preliminaries, and relevant previous work in Section II. Then,
we describe the new reconstruction algorithm in Section III. In
Section IV, we present the new reconstruction code. Finally,
we discuss concluding remarks and future research directions
in Section V.

II. PRELIMINARIES

In this section, we begin by introducing some notations and
definitions, and then formally describe the problem of string
reconstruction from substring compositions. Subsequently, we
discuss the equivalent polynomial characterization of the prob-
lem, introduced by Acharya et al. [26]. The relevant results of
[26] and [29] are then summarized with certain observations
which will be used in the Reconstruction Algorithm. We then
recall certain well known results from the theory of random
walks which we use to design the proposed Reconstruction
Code.

A. Problem Formulation

Let s “ s1s2 . . . sn be a binary string of length n ě 2 and
let sji denote the contiguous substring sisi`1 . . . sj of s, where
1 ď i ď j ď n. We will say that a substring sji has the com-
position 1w0z where w and z denote the number of 1s and
0s in the substring respectively. The weight of a sequence s
refers to the number of 1s in s and is denoted by wtpsq. The
composition multiset Cpsq of a sequence s is the multiset of
compositions of all contiguous substrings of s.

Example 1. If s “ 1001, then Cpsq “ t01, 01, 11, 11, 0111, 0111

, 02, 0211, 0211, 0212u.
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Definition 1. For a binary string s of length n and weight d,
let ai be the number of zeros between the ith and pi` 1qth 1.
Define Apsq as the integer string a0a1 . . . ad.

Lemma 1. s Ñ Apsq is a bijection between binary strings of
length n, weight d and non-negative integer strings of length
d ` 1, weight (sum of values) n ´ d.

Proof: Consider the mapping that maps the non-negative
integer strings of length d ` 1 and weight n ´ d to binary
strings of length n by constructing the corresponding binary
string from an Apsq as evident in Definition 1.That is

s “ 00 . . . 0
loomoon

a0

1 00 . . . 0
loomoon

a1

1 00 . . . 0
loomoon

a2

1 . . . 1 00 . . . 0
loomoon

ad

.

Now consider two such distinct non-negative integer strings
a “ a0 . . . ad and b “ b0 . . . bd. If the first position they dif-
fer in is i, that is ai ‰ bi and aj “ bj for 0 ď j ď i ´ 1,
then the corresponding binary strings differ in the positions of
their ith 1s. Therefore, each such non-negative integer string
corresponds to a unique binary string; implying that the map-
ping is injective. It is easy to see that both sets have the same
size

`

n
d

˘

, therefore implying the bijection.
We will also use the following notations in our subse-

quent proofs: for a string s and the corresponding integer
string Apsq “ a0a1 . . . ad, we use Aj

i psq to denote the sub-
string aiai`1 . . . aj of Apsq and gji psq to denote the sum
ai ` ai`1 . . . ` aj , where 0 ď i ď j ď d. Whenever clear
from the context, we omit the argument s. Observe that for
any string s with weight d, gd0 “ n ´ d.

Example 2. If s “ 10011010, then Apsq “ 02011 and g31 “

3.

Definition 2 ( [29]). A set of binary strings of fixed length
is called a reconstruction code if the composition multisets
corresponding to the strings are distinct.

Note that a string s, and its reverse string (s˚ “ sn . . . s1)
share the same composition multiset and therefore cannot si-
multaneously belong to a reconstruction code.

Remark 1. We restrict the analysis of reconstruction codes to
the subsets of strings of length n beginning with 1 and end-
ing at 0. This restriction only adds a constant redundancy to
the code while ensuring that a string and its reversal are not
simultaneously part of the code.

In this paper, the following two problems are addressed (1)
Does there exist an efficient algorithm to reconstruct a binary
string given its composition multiset?, and (2) Do there exist
reconstruction codes of small redundancy and consequently,
large rate that can be efficiently encoded and decoded, and can
be reconstructed from their composition multiset efficiently?
In Section III, we propose a new backtracking algorithm that
reconstructs a string s by recovering the integer string Apsq

from the corresponding composition multiset Cpsq. We will
use the bijection in Lemma 1 to design our reconstruction
algorithm, and subsequently in Section IV give different fam-
ilies of reconstruction codes that satisfy the aforementioned
properties.

B. Prior Work

In this section, we first review the results of [26] that de-
scribe the equivalent polynomial formulation of binary strings
and their composition multisets. This formulation is central to
the design of our Reconstruction Algorithm which we present
in the next section. Thereafter, to construct our reconstruction
code, we review some elementary results from random walks,
and revisit the design of the reconstruction code introduced in
[29].

Definition 3. For a binary string s “ s1s2 . . . sn, a bivari-
ate polynomial Pspx, yq of degree n is defined such that
Pspx, yq “

řn
i“0 pPspx, yqqi, where pPspx, yqq0 “ 1 and

pPspx, yqqi is defined recursively as

pPspx, yqqi “

#

y pPspx, yqqi´1 if si “ 0,

x pPspx, yqqi´1 if si “ 1.
(1)

Pspx, yq contains exactly one term of total degree j where
0 ď j ď n and the coefficient of each term is 1. The term
of the polynomial with degree j is of the form xwyz where
the substring sj1 of s has composition 1w0z . Similar to the bi-
variate polynomial for a binary string, we describe a bivariate
polynomial Sspx, yq corresponding to every composition mul-
tiset. We associate each element 1l0m of the multiset with the
monomial xlym. This is equivalent to saying that an x corre-
sponds to a 1 and a y corresponds to a 0 in every monomial
of Sspx, yq.

Example 3. If s “ 1001, then, Cpsq “ t01, 01, 11, 11, 0111, 0111

, 02, 0211, 0211, 0212u, Pspx, yq “ 1 ` x ` xy ` xy2 ` x2y2,
and Sspx, yq “ 2x ` 2y ` 2xy ` y2 ` 2x2y ` x2y2.

We use the following identity from [26]:

Ps px, yqPs

ˆ

1

x
,
1

y

̇

“ pn ` 1q ` Sspx, yq ` Ss

ˆ

1

x
,
1

y

̇

. (2)

Definition 4. For a polynomial fpx, yq, let f˚px, yq be the
polynomial (also known as reciprocal polynomial) defined as:

f˚px, yq
def
“ xdegxpfqydegypfqf

ˆ

1

x
,
1

y

̇

. (3)

It is easy to see that f˚px, yq is indeed a polynomial.

Remark 2. If Pspx, yq is the bivariate polynomial for the
string s, then P˚

s px, yq “ Ps˚ px, yq; that is P˚
s px, yq is the

bivariate polynomial corresponding to the reverse string s˚ “

snsn´1 . . . s1.

Definition 5. For a binary string s of length n, and the
corresponding polynomial Pspx, yq, we define a polynomial
Fspx, yq as:

Fspx, yq
def
“ Pspx, yqP˚

s px, yq. (4)

Rewriting (2), and using the definition in (4),

Fspx, yq “ xdegxpPsqydegypPsq pn ` 1 ` Sspx, yqq ` S˚
s px, yq.

(5)

Corollary 2. The polynomial Fspx, yq can be evaluated di-
rectly from the composition multiset.

3



Lemma 3 ( [26], Lemma 8). For a binary string s, the poly-
nomial Fspx, yq uniquely determines the composition multiset.

Corollary 4. There is a bijection between the composition
multiset Cpsq and the polynomial Fspx, yq.

Now, we discuss the preliminaries required for the design of
reconstruction code introduced in Section IV. Lemma 5 gives
sufficient conditions for a binary string to be uniquely recon-
structed in polynomial time complexity by the reconstruction
algorithm in [26]. Recall from Remark 1, that we restrict the
analysis of reconstruction codes to the subsets of strings of
length n beginning with 1 and ending at 0.

Definition 6. If a binary string s of length n, is such that for
all prefix-suffix pairs of length 1 ď j ď n, one has wtpsj1q ‰

wtpsnn`1´jq, then s will be called an imbalanced string.

Remark 3. For an imbalanced string s, note that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
wtpsj`1

1 q ´ wtpsnn´jq

ˇ

ˇ

ˇ
´

ˇ

ˇ

ˇ
wtpsj1q ´ wtpsnn`1´jq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď 1.

Since
ˇ

ˇ

ˇ
wtpsj1q ´ wtpsnn`1´jq

ˇ

ˇ

ˇ
‰ 0 for any 1 ď j ď rn{2s, the

sign of wtpsj1q ´ wtpsnn`1´jq does not change with j. There-
fore, for imbalanced strings of length n that begin with 1 and
end with 0, wtpsj1q ą wtpsnn`1´jq for all 1 ď j ă n.

Lemma 5 ( [26], Lemma 37). An imbalanced string s of
length n is uniquely reconstructable in Opn2 log nq time by
the reconstruction algorithm of [26].

In Section IV, we show a bijection between imbalanced
strings of length n that begin with 1 and end with 0, and pos-
itive n-step walks. Using this bijection, we explicitly charac-
terize the set of binary strings reconstructable by the algorithm
in [26].

Definition 7. A 1-dimensional positive n-step walk is defined
as an assignment of n variables Xi P t´1, 1u for 1 ď i ď n,
such that Sk “

řk
i“1 Xi is positive for 1 ď k ď n.

Lemma 6 ( [32], Lemma 3.1). The number of 1-dimensional
positive n-step walks is

` n´1
t
n´1
2 u

˘

.

The reconstruction code in [29] uses Catalan-Bertrand
strings to construct a codebook. This codebook consists of
strings with the property that any of their prefixes contains
strictly more 0s than 1s, referred to as Catalan-Bertrand
strings. The codebook is designed in such a way that for any
given codeword and any same-length prefix-suffix substring
pair of that codeword, the two substrings have distinct weights
i.e. all strings belonging to the codebook are imbalanced, as
defined in Definition 6.

Definition 8 ( [29]). For reconstruction code SRpnq of even
length (n even):

SRpnq
def
“ ts P t0, 1un such that s1 “ 0, sn “ 1,

D I Ď t2, 3, . . . , n ´ 1u such that

for all i P I, si ‰ sn`1´i,

for all i R I, si “ sn`1´i,

srn{2sXI is a Catalan-Bertrand Stringu.

For reconstruction code SRpnq of odd length (n odd):

SRpnq
def
“ ts

pn´1q{2
1 0sn´1

pn`1q{2, spn´1q{2
1 1sn´1

pn`1q{2,

where s P SRpn ´ 1qu.

The authors in [29] extend this coding scheme to correct
single and multiple mass errors. These code extensions relied
only upon the fact that all strings in SRpnq are imbalanced
strings. In [19], the authors show an equivalence between the
set of imbalanced strings beginning with 0, and ending with 1,
and the codebook SRpnq. In Section IV, we show a bijection
mapping between all imbalanced strings beginning with 1 and
ending with 0 and positive n-step walks, thereby explicitly
characterizing the size of the code SRpnq, and describing an
efficient encoding and decoding procedure for this codebook.

Lemma 7 ( [19], Lemma IV.2). SRpnq is the set of all imbal-
anced binary strings of length n beginning with 0, and ending
in 1.

Finally, we give well known bounds on the central bino-
mial coefficient which we will use to show the rate of our
reconstruction code.

Proposition 8 ( [33]). The central binomial coefficient may
be bounded as:

4n
a

πpn ` 1{2q
ď

ˆ

2n

n

̇

ď
4n

?
πn

, @ n ě 1. (6)

III. RECONSTRUCTION ALGORITHM

As discussed in Section II-A, we only work with binary
strings beginning with 1 and ending with 0. In other words,
only strings s “ s1 . . . sn with s1 “ 1, sn “ 0 are considered.
In this section, we introduce a new reconstruction algorithm to
recover such strings from a given composition multiset. Given
a composition multiset, our reconstruction algorithm succes-
sively reconstructs Apsq “ a0 . . . ad, starting from both ends
and progressing towards the center. In other words, a0 and ad
are recovered first, followed by a1 and ad´1, etc.; and the al-
gorithm backtracks when there is an error in recovering a pair.
The algorithm takes as input the polynomial F px, yq (Defini-
tion 5). Note that the polynomial F px, yq can be derived from
Spx, yq (Corollary 2) which in turn is equivalent to the corre-
sponding composition multiset. The algorithm will return the
set of strings which have the given composition multiset. We
will use the fact that for a string s with the given composition
multiset, we must have Fspx, yq “ F px, yq. Then Lemma 3
guarantees that strings recovered in this way indeed have the
desired composition multiset. In Proposition 10, we outline the
conditions in the strings that result in no backtracking through-
out the reconstruction process using the proposed algorithm.
Before the algorithm is discussed, we first show how certain
parameters of a string s with the given composition multiset
can be readily recovered from the polynomial F px, yq. These
parameters are shared by all the strings that share this com-
position multiset, and will be subsequently used as inputs to
the algorithm.

For a string s “ s1 . . . sn with s1 “ 1, sn “ 0, the cor-
responding non-negative integer string Apsq (Definition 1) is

4



such that a0 “ 0 and ad ě 1. Using definitions 3 and 4,

Pspx, 1q “ 1 ` pa1 ` 1qx ` ¨ ¨ ¨ ` pad ` 1qxd, (7)

P˚
s px, 1q “ pad ` 1q ` ¨ ¨ ¨ ` pa1 ` 1qxd´1 ` xd. (8)

Since a string s with the given composition multi-
set must have Fspx, yq “ F px, yq, from Definition 5:
F px, 1q “ Fspx, 1q “ Pspx, 1qP˚

s px, 1q. Therefore, us-
ing (7) and (8), the weight of the string s and ad (where
Apsq “ a0 . . . ad) can be recovered from F px, yq as follows:

wtpsq “ d “
degF px, 1q

2
, and ad “ F p0, 1q ´ 1. (9)

The algorithm will utilize the polynomial formulation of the
problem by mapping binary strings to elements of a polyno-
mial ring by considering the coefficients of the polynomials
Pspx, yq and Fspx, yq as elements of a sufficiently large finite
field, i.e., Fq with q being a prime number greater than 5n`1
(By Bertrand’s postulate, there is a prime q with 5n ` 1 ă

q ă 10n). We will discuss several properties of the polyno-
mials Pspx, yq and P˚

s px, yq (which lie in the ring Fqrx, ys)
which we use in the algorithm. Recall that for strings begin-
ning with 1 and ending at 0, we have a0 “ 0.

Definition 9. Given integers a0, . . . , aj and ad, . . . , ad´j in
N Y t0u; define the polynomials αjpyq and βjpyq as follows:

αjpyq “ yg
j´1
0 ` y1`gj´1

0 ` ¨ ¨ ¨ ` yg
j
0 , (10)

βjpyq “ yg
d
d´j`1 ` y1`gd

d´j`1 ` ¨ ¨ ¨ ` yg
d
d´j , (11)

where glk denotes the sum ak ` ak`1 . . . ` al (defined in Sec-
tion II-A).

Note that the equations (10) and (11) can be rewritten as

py ´ 1q ¨ αjpyq “ y1`gj
0 ´ yg

j´1
0 , (12)

py ´ 1q ¨ βjpyq “ y1`gd
d´j ´ yg

d
d´j`1 , (13)

where g´1
0 “ 0 “ gdd`1. For a string s of length n, and weight

d, let the corresponding integer string be Apsq “ a0 . . . ad
(Definition 1). Then, using Definitions 3 and 4, for 0 ď j ď d,
αjpyq and βjpyq are the coefficients of xj in Pspx, yq and
P˚
s px, yq, respectively. In particular,

Pspx, yq “

d
ÿ

j“0

αjpyqxj , and P˚
s px, yq “

d
ÿ

j“0

βjpyqxj . (14)

Remark 4. αjpγq and βjpγq correspond to the coefficients of
xj in Pspx, γq and P˚

s px, γq, respectively, for all γ P Fq . For
instance, putting γ “ 1 gives αjp1q “ aj ` 1 and βjp1q “

ad´j ` 1 which are the coefficients of xj in the polynomials
Pspx, 1q ((7)) and P˚

s px, 1q ((8)), respectively.

Remark 5. For a string s of length n, and weight d, let the
corresponding integer string be Apsq “ a0a1 . . . ad (Defini-
tion 1). Let rs,jpyq denotes the coefficient of xj in the poly-
nomial Fspx, yq. Then using Fspx, yq “ Pspx, yqP˚

s px, yq,

rs,jpyq “

j
ÿ

k“0

αj´kpyqβkpyq. (15)

Using (12) and (13), this equation can be re-written as

py ´ 1q2 ¨ rs,jpyq “ ´

j´1
ÿ

k“1

´

y2`gj´k
0 `gd

d´k ` yg
j´k´1
0 `gd

d´k`1

´ y1`gj´k
0 `gd

d´k`1 ´ y1`gj´k´1
0 `gd

d´k

¯

. (16)

where glk denotes the sum ak ` ak`1 . . . ` al (defined in
Section II-A) and g´1

0 “ 0 “ gdd`1.

The reconstruction algorithm will find aj and ad´j together
at step j. Note that in (10), αipyq is defined using gi0 and
gi´1
0 , and therefore, can be obtained by knowing the elements
a1, . . . , ai. Similarly, βipyq can be obtained from ad, . . . , ad´i.
Hence, for a string s, if by the end of step j´1, the algorithm
recovers the pairs pa1, ad´1q, pa2, ad´2q, . . . , paj´1, ad´j`1q;
the polynomials α0pyq, . . . , αj´1pyq and β0pyq, . . . , βj´1pyq

are well defined.

Definition 10. Let rjpyq denote the coefficient of xj in
F px, yq. Then rjpyq can be treated as a polynomial in y. At
the end of step j´1, for polynomials α0pyq, . . . , αj´1pyq and
β0pyq, . . . , βj´1pyq, define the polynomial fjpyq as follows:

fjpyq
def
“ rjpyq ´

j´1
ÿ

k“1

αkpyqβj´kpyq. (17)

By the end of step j ´ 1, since we know the polynomials
α0pyq, . . . , αj´1pyq and β0pyq, . . . , βj´1pyq, we can com-
pute fjpyq. At step j, the algorithm wants to find the pair
paj , ad´jq. If the pairs pa1, ad´1q, . . . , paj´1, ad´j`1q are
identified correctly, then for the correct pair paj , ad´jq, the co-
efficient of xj in Fspx, yq P Fqrx, ys is rs,j“

řj
i“0 αipyqβj´ipyq

(Remark 5). Since we aim to identify strings s for which
Fspx, yq “ F px, yq, we need to find paj , ad´jq such that
řj

i“0 αipyqβj´ipyq “ rjpyq. As discussed before, by the
end of step j ´ 1, we already know α0pyq, . . . , αj´1pyq and
β0pyq, . . . , βj´1pyq; therefore, a correct pair paj , ad´jq must
satisfy

fjpyq “ α0pyqβjpyq ` αjpyqβ0pyq

“ βjpyq ` αjpyqβ0pyq.
(18)

By noting that the degrees of both sides should be equal, we
have

degpfjq “ maxtdegpβjq, degpαjβ0qu

“ maxtgdd´j , g
j
0 ` adu.

(19)

Furthermore, observe that αip1q “ βd´ip1q “ 1 ` ai and
hence, fjp1q “ βjp1q ` pad ` 1qαjp1q. From this we obtain:

fjp1q “ p1 ` ad´jq ` pad ` 1q paj ` 1q . (20)

We will use these equations to compute the possible val-
ues for the pairs paj , ad´jq. Since 1 ď pad ` 1q ď n ă q, we
know that q ∤ pad ` 1q; equations (19) and (20) give us two
possible values for the pair paj , ad´jq at step j. This proce-
dure is captured in the Reconstruction Algorithm. At the end
of rd{2s steps, we find strings s for which rs,jpyq “ rjpyq for
all 0 ď j ď rd{2s. Since, F px, yq “ F˚px, yq and Fspx, yq “

F˚
s px, yq, we have rs,jpyq “ rjpyq for all 0 ď j ď d. There-
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fore,

Fspx, yq “

d
ÿ

k“0

rs,jpyqxk “

d
ÿ

k“0

rjpyqxk “ F px, yq.

The correctness of the algorithm is guaranteed by the Lemma 3
which shows that the strings which share the same Fspx, yq “

F px, yq indeed share the same composition multiset.

Algorithm 1 Reconstruction Algorithm

Input : Polynomial F px, yq, array A of size d initialized with
Ards “ ad and Aris “ 0 for all 0 ď i ď d ´ 1,

Output: Set S of codestrings s P t0, 1un

Function Reconstruction(j “ 1, F , A):

S “ H

if j “ rd{2s then
if d mod 2 “ 0 then

aj “ n ´ d ´
ř

i‰j ai
if A corresponds to some binary string s then

S “ s
else

S “ H

end
return S

end

Compute fj , degpfjq, and fjp1q

flag = 0

aj “ degpfjq ´ pgj´1
0 ` adq

ad´j “ fjp1q ´ 1 ´ pad ` 1q paj ` 1q

if aj ě 0, ad´j ě 0, and fjpyq “ βjpyq ` αjpyqβ0pyq

then
Arjs “ aj , Ard ´ js “ ad´j

S “ Reconstruction(j ` 1, F , A)
flag = 1

end

ad´j “ degpfjq ´ gdd´j`1

aj “ ´1 ` pfjp1q ´ 1 ´ ad´jq{pad ` 1q

if aj P NYt0u, ad´j ě 0, and fjpyq “ βjpyq`αjpyqβ0pyq

then
Arjs “ aj , Ard ´ js “ ad´j

S “ S Y Reconstruction(j ` 1, F , A)
flag = 1

end

if flag = 0 then
S “ H

end
return S

The reconstruction algorithm has at most two valid choices
for the pair paj , ad´jq at step j, and therefore can have at most
two branches at any step. If both the conditions are satisfied
i.e. both choices are valid according to the algorithm; then our
algorithm must choose one direction to proceed. If an error is
encountered later, the algorithm comes back to the last branch
(not taken yet) where both conditions were satisfied and takes

the alternate path. If exactly one condition is satisfied, then our
algorithm takes the corresponding path. If neither of the two
conditions are satisfied, then assuming the input composition
multiset to be valid, our algorithm must have taken the wrong
branch in the past (when it had a choice). In such a scenario,
our algorithm goes back to the last valid branch where both
conditions were satisfied, and takes the alternate branch and
proceeds as described. In Theorem 9 stated below, we establish
the time and space complexity of the proposed reconstruction
algorithm (Algorithm 1). The proof of the theorem demon-
strates how these complexities can be achieved by pre-storing
certain information.

Theorem 9. Given the input F px, yq, the proposed Recon-
struction Algorithm (Algorithm 1), in the case of no backtrack-
ing, outputs the unique string s with Fspx, yq “ F px, yq with
maximum 6.5n2 finite field operations, translated to maximum
6.5n2p3.22`log nq binary operations, latency Opn log nq, and
space complexity Opn2q.

Proof: Note that at step j of the algorithm, instead
of computing fjpyq directly to find degpfjq, and verify-
ing if fjpyq “ βjpyq ` αjpyqβ0pyq, we can instead do
the following. First, we compute f 1

jpyq “ py ´ 1q2 ¨ fjpyq.
Then degpfjq “ degpf 1

jq ´ 2, and we will verify if
f 1
jpyq “ py´1q2 ¨ pβjpyq ` αjpyqβ0pyqq. Using (12) and (13),

this is equivalent to verifying whether the following holds:

f 1
jpyq “ y2`gd

d´j ` yg
d
d´j`1 ´ y1`gd

d´j`1 ´ y1`gd
d´j

` y2`ad`gj
0 ` yg

j´1
0 ´ y1`ad`gj´1

0 ´ y1`gj
0 . (21)

The expression in (21) is summation of at most 8 distinct
powers of y, i.e., a polynomial with at most 8 non-zero coeffi-
cients. This implies that, for 1 ď i ď pj´1q, if pai, ad´iq have
been correctly identified, f 1

jpyq can have at most 8 non-zero
coefficients. Using (12) and (13) again, f 1

jpyq can be computed
using

f 1
jpyq “ py ´ 1q2 ¨ rjpyq

´

j´1
ÿ

k“1

´

y2`gj´k
0 `gd

d´k ` yg
j´k´1
0 `gd

d´k`1

´ y1`gj´k
0 `gd

d´k`1 ´ y1`gj´k´1
0 `gd

d´k

¯

. (22)

To perform field operations more efficiently, and to effec-
tively use the structure of the polynomials used in the algo-
rithm ((10), (11), and (17)), we will pre-store certain informa-
tion in arrays, to be specified next. Let λ P Fq be a primitive
element of the field. Then define the following arrays:

‚ field_storers of length q ´ 1,
where for 0 ď i ď q ´ 2, field_storeris “ λi.

‚ element_storers of length pq ´ 1q,
where for 1 ď i ď q´ 1, element_storeri´ 1s “ c such
that i “ λc.

‚ r_coef r, s of size pd ` 1q ˆ pn ´ d ` 1q,
where r_coef rk, ls “ ak,l, where, ak,l denotes the coef-
ficient of yl in rkpyq (Definition 10).

‚ r_coef_multr, s of size pd ` 1q ˆ pn ´ d ` 3q,
where r_coef_multrk, ls “ a1

k,l, where, a1
k,l denotes the
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coefficient of yl in py ´ 1q2 ¨ rkpyq.
‚ r_one_evalrs of length pd ` 1q,

where for 0 ď i ď d, r_one_evalris “ rip1q.
‚ g_beginrs of length pd ` 1q,

Initialized with g_beginr0s “ g00 “ a0 “ 0 and the re-
maining values all set to ´1. At step j, we will update
g_beginrjs “ g_beginrj ´ 1s ` aj .

‚ g_endrs of length pd ` 1q,
Initialized with g_endr0s “ gdd “ ad, and the remaining
values all set to ´1. At step j, we will update g_endrjs “

g_endrj ´ 1s ` ad´j .

At step j, we will first compute and store the coefficients of
f 1
j in an array f_dashrs of size pn ` 3q, initialized with the

coefficients of py ´ 1q2 ¨ rjpyq, that is, for 0 ď i ď pn ` 2q,
f_dashris “ r_coef_multrj, is. In (22), the powers of y only
involve gk0 , and gdd´k, for 1 ď k ď pj´1q. At the beginning of
step j, we readily have access to these elements in the arrays
g_beginrs and g_endrs. Therefore, to compute f 1

j , we perform
the following operations for 1 ď k ď pj ´ 1q,

f_dashr2 ` gj´k
0 ` gdd´ks Ð f_dashr2 ` gj´k

0 ` gdd´ks ´ 1,

f_dashrgj´k´1
0 ` gdd´k`1s Ð f_dashrgj´k´1

0 ` gdd´k`1s ´ 1,

f_dashr1 ` gj´k
0 ` gdd´k`1s Ð f_dashr1 ` gj´k

0 ` gdd´k`1s ` 1,

f_dashr1 ` gj´k´1
0 ` gdd´ks Ð f_dashr1 ` gj´k´1

0 ` gdd´ks ` 1.

That is, we do Opdq field operations to update the array
f_dashrs with 2pj ´1q operations adding 1, and 2pj ´1q op-
erations subtracting 1. Note that this process takes 11pj ´ 1q

field operations, and can be parallelized to Op1q latency.
Thus, the coefficients of the polynomial f 1

jpyq are computed
and stored in the matrix f_dashrs in 11pj ´ 1q field addition
operations, and Op1q latency.
To compute the degree of the polynomial f 1

j , a naive ap-
proach is to find the largest index with a non-zero array
entry. This can be done in n field comparisons in a worst
case sense. However, since we know that f 1

j can only have at
most 8 non-zero coefficients, finding the degree of the poly-
nomial can be efficiently parallelized to Op1q time. This can
be done by asking if array entries at each index are non-zero,
in parallel. Recording these non-zero indexes (along with the
corresponding array entry) as a list of size at most 8, the
largest member of index value can be computed in Op1q time.
Note that if the list size exceeds 8, the polynomial f 1

j has
been inferred incorrectly; we declare an error and backtrack.
Therefore, degpfjq can be computed with n field comparison
operations and Op1q latency.
To compute fjp1q, recall from (17),

fjp1q “ rjp1q ´

j´1
ÿ

k“1

αj´kp1qβkp1q

“ rjp1q ´

j´1
ÿ

k“1

p1 ` aj´kqp1 ` ad´kq. (23)

This can be computed using the r_one_evalrs, field_storers

and element_storers arrays. This is done to avoid multipli-
cation in the finite field, which is an asymptotically costly
operation.

fjp1q “ r_one_evalrjs ´

j´1
ÿ

k“1

field_store
”

element_storeraj´ks

` element_storerad´ks

ı

. (24)

Since addition can be parallelized, fjp1q can be computed
in j field additions and Oplog nq latency.
For each branch of the algorithm induced by the if statements,
we obtain the values of the pair paj , ad´jq, which we first use
to update g_beginrjs “ gj0 and g_endrjs “ gdd´j . Note that
the coefficients of the polynomial f 1

j were already computed
and stored in the array f_dashrs. Also, recall that the poly-
nomial f 1

j can have at most 8 non-zero coefficients, whose
indices are saved in a list while computing degpfjq. Using
the computed value of the pair paj , ad´jq, the polynomial f 1

j

can be verified using (21) in 8 field additions. Now we update
the arrays g_beginrs and g_endrs using 2 field addition oper-
ations.
Therefore, for each value of j, the algorithm requires n `

12j ´ 3 ă 13n field operations. Therefore, over rd{2s values
of j, in the case of no backtracking, the algorithm will out-
put the required string s in less than pd ` 1qp6.5nq ă 6.5n2

field operations, and Opd log nq “ Opn log nq latency. Since
the size of the field Fq is q ă 10n, each addition and com-
parison operation can be done with at most log2 p10nq binary
operations, which means that our algorithm requires at most
6.5n2p3.22 ` log nq binary operations in its implementation.
This complexity is achieved by storing p2q´1q`pd`1qp2n`7q

field elements in advance. Hence, the required space complex-
ity is Opn2q.

Remark 6. In the case of no backtracking, the time complexity
of the reconstruction algorithm proposed by Acharya et. al. in
[26] is Opn2 log nq, which is same as the reconstruction com-
plexity of our algorithm order-wise (i.e., asymptotically). Note
that the algebraic nature of our reconstruction algorithm has
enabled us to exactly upper bound the total number of binary
operations needed, as outlined in Theorem 9. However, such
an analysis is not available for the algorithm in [26].

Remark 7. For a binary string s of length n, the composi-
tion multiset Cpsq has npn ` 1q{2 elements, which requires
Opn2q space to be stored. Therefore, it is natural for recon-
struction algorithms, including our algorithm as well as the
reconstruction algorithm proposed by Acharya et. al. in [26],
to require Opn2q space complexity.

Example 4. We demonstrate how to reconstruct the strings
s1 “ 10010110 and s2 “ 10110010 via the process de-
tailed above with the pseudocode provided in Reconstruction
Algorithm. The strings s1 and s2 share the same composi-
tion multiset, and therefore Fs1px, yq “ Fs2px, yq. For these
strings, the corresponding integer strings are Aps1q “ 02101
and Aps2q “ 01021.
We will be given the composition multiset, or equivalently,
F px, yq “ p1 ` yq ` xp1 ` 3y ` 2y2 ` y3q ` ¨ ¨ ¨ . The
reconstruction algorithm should output the set of strings
S “ ts1 “ 10010110, s2 “ 10110010u. From (9), we readily
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obtain that d “ 4, and ad “ a4 “ 1. The algorithm begins by
finding the tuple pa1, a3q corresponding to j “ 1. To find the
tuple, the algorithm will need to compute certain attributes
of the polynomial fj“1pyq (Definition 10) which is simply
the coefficient of x in Fspx, yq i.e., p1 ` 3y ` 3y2 ` y3q. In
particular, using the procedure described in Theorem 9, the
algorithm first computes fjpyq, and obtains degpfjq “ 3, and
fjp1q “ 7.
To check for the first branch, the algorithm, with j “ 1, sets
a1 “ degpf1q´pg00`a4q “ 3´p0`1q “ 2, and, with d´j “ 3,
a3 “ f1p1q´1´pa4`1q pa1 ` 1q “ 7´1´p1`1qp2`1q “ 0.
The algorithm now verifies if the computed fjpyq and the
polynomial βjpyq ` αjpyqβ0pyq obtained using the com-
puted values of the pair pa1, a3q coincide. The process of
doing this efficiently is explained in the proof of Theorem 9.
This indeed is the required tuple corresponding to the string
s1 (recall that Aps1q “ 02101), and therefore must satisfy
the required relationship. The algorithm therefore concludes
pa1, a3q “ p2, 0q. The sequence element a2 can now be
trivially calculated as a2 “ d ´ pa0 ` a4q ´ pa1 ` a3q “

p4 ´ p0 ` 1q ´ p2 ` 0q “ 1. Therefore, at the end of the first
branch, we have S “ t10010110u.
Similarly, to check for the second branch, the algorithm,
with d ´ j “ 3, sets a3 “ degpf1q ´ g44 “ 3 ´ 1 “ 2,
and a1 “ ´1 ` pf1p1q ´ 1 ´ a3q{pa4 ` 1q “ 1 P N.
The algorithm now verifies if the computed fjpyq and the
polynomial βjpyq ` αjpyqβ0pyq obtained using the com-
puted values of the pair pa1, a3q coincide. Since this tuple
is also a valid tuple corresponding to the string s2 (re-
call that Aps2q “ 01021), after verification, must satisfy
the required relationship. The algorithm now concludes that
pa1, a3q “ p1, 2q. The value of a2 can now be calculated as
a2 “ d´ pa0 ` a4q ´ pa1 ` a3q “ p4´ p0` 1q ´ p2` 0q “ 0.
Therefore, at the end of the second branch, we have
S “ t10010110, 10110010u.

We say that a string s stops at step j if the algorithm fails to
uniquely determine paj , ad´jq at step j. As explained above,
this is possible if either both or neither of the two if conditions
are satisfied. In both cases, the algorithm had a step j1 ď j
where both of the two conditions were satisfied. Therefore, we
will say a string s pauses at step j if there are two accept-
able branches for the tuple paj , ad´jq. Note that in Example 4,
while reconstructing the strings, both of the two possible solu-
tions were satisfied for the tuple paj , ad´jq corresponding to
j “ 1. Therefore, we can say that the reconstruction algorithm
in Example 4 paused at step j “ 1. In the following lemma,
we give algebraic conditions (25) and (26), characterizing the
strings that pause at some step j.

Proposition 10. Let the bi-variate polynomial correspond-
ing to a string s be Fspx, yq. If the reconstruction algorithm
pauses at step j, then string s satisfies either of the following
two relations:

gj0 ´ gdd´j “ a0 ` 1 “ 1, and aj ě 1; (25)

gdd´j ´ gj0 “ ad ` 1, and ad´j ě ad ` 1. (26)

Proof: Since the reconstruction algorithm pauses at step
j, both if statements corresponding to the two branches in-

duced by the reconstruction algorithm must be satisfied. There-
fore, there must exist a pair of tuples, which we call paj , ad´jq

and pa1
j , a

1
d´jq, such that both of them satisfy (18) for all

y P Fq . Call the polynomials corresponding to these pairs
pαjpyq, βjpyqq and pα1

jpyq, β1
jpyqq respectively. Let hjpyq “

βjpyq ` αjpyqβ0pyq, and h1
jpyq “ β1

jpyq ` α1
jpyqβ1

0pyq. Then
these polynomials must satisfy

fjpyq “ βjpyq ` αjpyqβ0pyq “ hjpyq

“ β1
jpyq ` α1

jpyqβ1
0pyq “ h1

jpyq. (27)

Let λ P Fq be a primitive element of the field. In particular,
the following relations must be satisfied:

fjpλq “ βjpλq ` αjpλqβ0pλq “ hjpλq

“ β1
jpλq ` α1

jpλqβ1
0pλq “ h1

jpλq, (28)

and

fjpλ´1q “ βjpλ´1q ` αjpλ´1qβ0pλ´1q “ hjpλ´1q

“ β1
jpλ´1q ` α1

jpλ´1qβ1
0pλ´1q “ h1

jpλ´1q. (29)

By the step j ´ 1, we know gj´1
0 and gdd´j`1. Using (19),

gdd´j`1 ` a1
d´j “ degpfjq “ gj´1

0 ` aj ` ad. (30)

Using (20),

paj ´ a1
jqpad ` 1q “ pa1

d´j ´ ad´jq. (31)

From (28),

fjpλq “ λgd
d´j`1

˜

ad´j
ÿ

i“0

λi

¸

` λgj´1
0

˜

aj
ÿ

i“0

λi

¸ ˜

ad
ÿ

i“0

λi

¸

,

and

fjpλq “ λgd
d´j`1

¨

˝

a1
d´j
ÿ

i“0

λi

˛

‚` λgj´1
0

¨

˝

a1
j

ÿ

i“0

λi

˛

‚

˜

ad
ÿ

i“0

λi

¸

.

Since λ ‰ 1, i.e., λ ´ 1 is invertible, equating the two ex-
pressions and multiplying by pλ ´ 1q2,

λgd
d´j`1pλ ´ 1qpλad´j`1 ´ λa1

d´j`1q

“ λgj´1
0 pλad`1 ´ 1qpλa1

j`1 ´ λaj`1q.
(32)

Similarly using (29), and equating the expressions after mul-
tiplying by pλ´1 ´ 1q2;

λ´gd
d´j`1pλ´1 ´ 1qpλ´ad´j´1 ´ λ´a1

d´j´1q

“ λ´gj´1
0 pλ´ad´1 ´ 1qpλ´a1

j´1 ´ λ´aj´1q.

Simplifying, we get

λ´gd
d´j`1´ad´j´a1

d´j´3pλ ´ 1qpλad´j`1 ´ λa1
d´j`1q

“ λ´gj´1
0 ´aj´a1

j´ad´3pλad`1 ´ 1qpλa1
j`1 ´ λaj`1q.

Now using relation (32) and equating power of λ (which can
be done since λ is primitive root in a field of size q ą 5n`1),

2gdd´j`1 ` ad´j ` a1
d´j “ 2gj´1

0 ` aj ` a1
j ` ad. (33)
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Solving the four equations obtained from (30), (31), and (33);

paj , ad´jq “ pt ` gdd´j`1 ` 1, t ` gj´1
0 q, (34)

pa1
j , a

1
d´jq “ pt ` gdd´j`1, t ` gj´1

0 ` ad ` 1q, (35)

where t “ ad´j ´gj´1
0 “ degpfjq´p1`ad `gj´1

0 `gdd´j`1q.
The tuple paj , ad´jq in (34) corresponds to the condition (25),
and the tuple pa1

j , a
1
d´jq in (35) corresponds to the condi-

tion (26).

Definition 11. We will call the strings which satisfy condi-
tion (25) for some 0 ă j ă d{2 as type-1 strings, and the
strings which satisfy condition (26) for some 0 ă j ă d{2 as
type-2 strings.

Remark 8. A string can be a type-1 string, a type-2 string,
both a type-1 and a type-2 string, or be of neither type. Since
our algorithm can only confuse a type-1 string with a type-2
string, if our algorithm knows the type of string, it can know
which branch to choose thereby avoiding backtracking. In Sec-
tion IV, we will use this fact to design reconstruction codes
by avoiding all strings of a single type.

Remark 9. In Example 4, while reconstructing the strings
s1 “ 10010110 and s2 “ 10110010 (which share the same
composition multiset), the algorithm pauses at step j “ 1. For
these strings, the corresponding integer strings are Aps1q “

02101 and Aps2q “ 01021. Note that, for string s1, g10 ´g43 “

p0` 2q ´ p0` 1q “ 1, satisfying (25). Similarly, for string s2,
g43 ´ g10 “ p2 ` 1q ´ p0 ` 1q “ 2 “ a4 ` 1, satisfying (26).
Therefore, string s1 is a type-1 string and string s2 is a type-2
string.

Corollary 11. If an imbalanced string s (Definition 6) of
length n is such that it begins in 1 and ends at 0, then s
can be uniquely reconstructed with the complexity outlined in
Theorem 9.

Proof: We will show that an imbalanced string cannot be
a type-1 string. As discussed in the previous remark, telling our
algorithm to always choose condition (26) in case of a pause,
any such string can be reconstructed without backtracking and
hence according to the process in Theorem 9.
Let if possible, s also be a type-1 string. Let step j be the first
time the string s pauses and satisfies condition (25). If condi-
tion (25) is satisfied, then the pj ` 1qth one in s is at position
pgj0 ` j ` 1q, and the pj ` 1qth last one in s is at position
gj0 ` j from the end of the string. Therefore,

wt
´

s
gj
0`j

1

¯

´ wt
´

sdn´gd
d´j´j

¯

“ j ´ pj ` 1q “ ´1. (36)

But note that wtps11q ´ wtpsnnq “ 1. Consider the function
fpiq “ wtpsi1q ´wtpsnn´i`1q. This function is such that fpi`

1q “ fpiq ˘ 1. Therefore, the function must have been zero at
some point, contradicting the fact that s is imbalanced.

Remark 10. Corollary 11 implies that our algorithm uniquely
reconstructs the codewords of the codebook SRpnq described
in [29] (revisited in Section II-B) without backtracking.

IV. RECONSTRUCTION CODE

In this section, we explicitly describe the reconstruction
code Spnq (Definition 12) which will consist of all imbal-
anced strings (Definition 6) of length n, beginning with 1,
and ending at 0. The design of our reconstruction code is
such that we avoid all strings satisfying condition (25) in our
codebook. This will ensure that in case of a pause, the re-
construction algorithm will know which branch to take. For
a string to not be uniquely reconstructable, it must pause at
some step; therefore, avoiding pauses ensures that the string
is uniquely reconstructed from its composition multiset. Note
that Lemma 7 implies that the reconstruction code SRpnq

(Definition 8) is the reverse of the reconstruction code Spnq.
We show a bijection between Spnq and positive n-step walks
(Definition 7) thereby explicitly describing the code size and
propose efficient procedures for mapping information mes-
sage into this code and then retrieving them. The bounds on
the redundancy are provided in Corollary 13. Corollary 11 en-
sures that the elements of Spnq are uniquely reconstructable
by our Reconstruction Algorithm with Opn2 log nq com-
plexity and Opn log nq latency (Theorem 9). Recall that the
elements of this codebook Spnq are also reconstructable by
the algorithm in [26] without backtracking (Lemma 5). The
relevant background for this section is discussed in Sec-
tion II-B.
Later, we extend Spnq by expanding codebooks of different
sizes in certain specified ways followed by taking a union
of them, in order to arrive at a new codebook T pnq (Defi-
nition 14). This codebook T pnq contains Spnq, but also has
strings that are not imbalanced. The more general sufficient
conditions for reconstruction in polynomial time of our algo-
rithm (Proposition 10) ensure that elements of the codebook
T pnq can be reconstructed with the same complexity, i.e.,
in at most 6.5n2 field operations (according to Theorem 9).
Finally, using the ideas discussed in Remark 8, we propose
codebooks T1pnq (Definition 15), and T2pnq (Definition 17),
through which we give computational bounds on the size
of reconstruction codebooks uniquely reconstructable by the
reconstruction algorithm with the same complexity as Spnq.

Definition 12. Define Spnq to be the set of all imbalanced
binary strings of length n beginning with 1, and ending at 0;
that is for all prefix-suffix pairs of length 1 ď j ă n, one has
wtpsj1q ą wtpsnn`1´jq.

The result from [19], discussed in Section II-B as Lemma 7,
shows that the codebook SRpnq (Definition 8) is the reverse
of the codebook Spnq, i.e. for all s P Spnq, the reverse string
s˚ P SRpnq and vice-versa. Recall that s and s˚ share their
composition multisets and cannot belong to the same recon-
struction code; therefore Spnq and SRpnq are disjoint. In [19],
the authors show that the elements of the codebook SRpnq,
and therefore similarly Spnq, are also uniquely reconstructable
from the multiset of their prefix-suffix compositions. Theo-
rem 12 gives the ingredients to explicitly encode messages in
the codewords of Spnq which we detail in Figure 2.

Theorem 12. There is a bijection between Spnq and positive
n-step walks (Definition 7).

9



Fig. 2: The procedure of encoding and decoding messages from the codebook Spnq.

Proof: Given a binary string s “ s1 . . . sn, assign Xi’s
in the following way:

X2i´1 “

#

1, if si “ 1,

´1, if si “ 0;
and

X2i “

#

´1, if sn`1´i “ 1,

1, if sn`1´i “ 0.

This assignment is uniquely invertible. That is, for each such
s, there is a unique assignment of variables Xj’s and vice
versa. This ensures that this assignment is injective i.e., differ-
ent strings are mapped to different random walks. Now note
that S2k “

ř2k
i“1 Xi “ 2pwtpsk1q ´ wtpsnn´k`1qq. As men-

tioned in Remark 3, if s is an imbalanced string beginning
with 1 and ending at 0, then wtpsk1q ´wtpsnn´k`1q ě 1 for all
1 ď k ď rn{2s. Therefore, S2k ě 2 for all 1 ď k ď rn{2s, and
S2k`1 ě S2k ´ 1 ě 1 for all 1 ď k ď tn{2u. Note that, for a
positive n-step walk, since the k-th step is either ´1 or `1,
the parity of Sk changes after each step. This shows that the
assignment of Xj’s is surjective, and therefore, also bijective.

The above result along with Lemma 6 and Proposition 8 gives
us the following corollary.

Corollary 13. The size of Spnq is given by
` n´1

r
n´1
2 s

˘

ě 2n´ 1
2

?
πn

.
Therefore, redundancy of the reconstruction code Spnq is at
most r1{2 log n ` 1{2 ` 1{2 log2 πs.

Corollary 13 characterizes the size of the codebook
Spnq, but we still need to design efficient encoding and
decoding procedures for mapping and retrieving informa-
tion messages from the codebook elements. To construct
an encoder E :

”

0,
` n´1

r
n´1
2 s

˘

´ 1
ı

Ñ Spnq and a decoder

D : Spnq Ñ

”

0,
` n´1

r
n´1
2 s

˘

´ 1
ı

, we will begin by mapping

r0,
`

N
r
n´1
2 s

˘

´ 1s to the set of binary strings with length
pn ´ 1q and weight rn´1

2 s. This is equivalent to lexi-
cographically ordering binary strings of length pn ´ 1q

with weight rn´1
2 s. In [34], Kabal uses a coding trellis to

give an efficient way of mapping a selection of k items
from a given set of N items i.e. mapping binary strings
of length N and weight k to r0,

`

N
k

˘

´ 1s. We will call
lexic_stringpN, k, iq the procedure that outputs the ith string
in the lexicographic ordering of binary strings of length
N and weight k; and lexic_indexpN, k, sq the procedure

that outputs the index i of the string s in the lexico-
graphic ordering of binary strings of length N and weight
k. Treating these binary strings as 1-dimensional random
walks with 1 Ñ 1, and 0 Ñ ´1, we have a lexicographic
ordering of random walks of length pn ´ 1q ending at
Sn´1pXq “

řn´1
k“1 Xk “

`

rn´1
2 s ´ tn´1

2 u
˘

. In [32, Chapter
3], Feller explicitly describes a bijection between pn´1q-step
random walks with Sn´1pXq “

`

rn´1
2 s ´ tn´1

2 u
˘

, and
1-dimensional positive n-step random walks (Definition 7).
Given an pn´1q-step random walk X “ pX1, X2, . . . , Xn´1q

with Sn´1pXq “
`

rn´1
2 s ´ tn´1

2 u
˘

, let m P t1, . . . , n´ 1u be
the smallest index such that SmpXq “

řm
k“1 Xk ď SjpXq “

řj
k“1 Xk for all j P t1, . . . , n ´ 1u and j ‰ m. Then

W “ pW1, . . . ,Wnq

“ p1, Xm`1, . . . , Xn´1,´Xm, . . . ,´X1q (37)

is a positive n-step random walk. We call this proce-
dure of mapping X Ñ W as RW_transform(X). In fact,
this mapping is a bijection (see proof of problem 7,
[32, Chapter 3]). Note that the n-step random walk W
ends at

`

1 ´ 2SmpXq ` rn´1
2 s ´ tn´1

2 u
˘

which lets us
recover SmpXq from this walk. Since m is the small-
est index with the minimum SmpXq, the largest index j
of this n-step random walk with SjpWq “

řj
k“1 Wj “

`

1 ´ SmpXq ` rn´1
2 s ´ tn´1

2 u
˘

“ 1 `
řn´1

k“m`1 Xk, is such
that j “ n ´ m. This lets us retrieve the pn ´ 1q-step random
walk as

X “ pX1, . . . , Xn´1q

“ p´Wn, . . . ,´Wn´m`1,W2, . . . ,Wn´mq (38)

We call this procedure of mapping W Ñ X as RW_reco–
ver(W). This mapping when merged with the assignment of
variables in the proof of Theorem 12 can be adapted to give
us a procedure to explicitly map, via a bijection, imbalanced
strings beginning with 1 and ending at 0 to the selection of
some tn´1

2 u objects from pn ´ 1q objects. Therefore, a com-
bination of the procedures described in [32], and [34] can be
used to describe an invertible map from r0,

` n´1
t
n´1
2 u

˘

´1s to the
set of imbalanced strings beginning with 1, and ending at 0
i.e. Spnq. This is demonstrated in Figure 2.

Now, we finally extend our reconstruction code Spnq by ex-
panding codebooks of different sizes in certain specified ways
followed by taking a union of them, in order to arrive at a

10



Fig. 3: Comparison of code rates Fig. 4: Comparison of code redundancies

new codebook T pnq. We define the following kinds of sets
whose construction uses this Spnq. The reconstruction code
T pnq will be defined as the union of these sets.

Definition 13. Given a positive integer n, and 2 ď k ď tn{2u,
define Pn,k as the set of binary strings of length n which begin
at 1, end at 0, as follows:

Pn,k “ ts P t0, 1un, t P t0, 1uk´2, such that

sk1 “ 1t0, snn´k`1 “ 1t˚0,

and , sn´k
k`1 P Spn ´ 2kqu, (39)

where t˚ denotes the reverse of the string t.

Proposition 14. Given a binary string s P Pn,k of length n,
with 2 ď k ď tn{2u; s is uniquely reconstructable by our
algorithm.

Proof: We will show that any s P Pn,k is not a type-1
string, and therefore the result will follow from Remark 8.
This proof will be similar to the proof of Corollary 11. Con-
sider the function fpiq “ wtpsi1q ´ wtpsnn´i`1q. Note that,

fpiq

$

’

&

’

%

“ 1, for 1 ď i ď k ´ 1;

“ 0, for i “ k;

ą 0, otherwise.

The first two results follow from the construction of Pn,k in
Definition 13, and the last inequality follows from Remark 3.
As seen in the (36), in the proof of Corollary 11; for every
type-1 string, there exists a j1, such that fpj1q “ ´1, implying
that s P Pn,k cannot be a type-1 string.

Definition 14. Define T pnq “ Spnq
Ť

´

Ťtn{2u

k“1 Pn,k

¯

.

Remark 11. The extended codebook presented in the ISIT
2022 version of this paper [35] avoided type-2 strings and
was shown to be larger than Spnq by a linear factor 41{40.
The codebook defined here avoids type-1 strings and is shown
to be larger than Spnq by a linear factor of 9{8.

Theorem 15. Given ϵ ą 0, there exists an N P N such that

for all integers n ą N we have

|T pnq| ě p1.125 ´ ϵq |Spnq|. (40)

Proof: Let s P Pn,k1
X Pn,k2

, with k1 ‰ k2. Then

wtpsk1
1 q ´ wtpsnn`1´k1

q “ 0 ‰ wtpsk2
1 q ´ wtpsnn`1´k2

q.

This means that Pn,k1 X Pn,k2 “ H. Now note that,

|T pnq|

|Spnq|
“ 1 `

tn{2u
ÿ

k“2

|Pn,k|

|Spnq|
“ 1 `

tn{2u
ÿ

k“2

2k´2

`n´1´2k
t
n´1
2 u´k

˘

` n´1
t
n´1
2 u

˘ .

Setting n “ 2n1 ` 1, we see that,

|T pnq|

|Spnq|
“ 1 `

n1
ÿ

k“2

2k´2

`

2n1
´2k

n1´k

˘

`

2n1

n1

˘

“ 1 `

n1
ÿ

k“2

2k´2

ˆ

4´k `
k ¨ 4´k

2n1
` Op

1

n12
q

̇

“ 1 `
2n1p2n

1

´ 3q ` 3 ¨ 2n
1

n1 ¨ 2n1`4
` Op

1

n
q

ě
9

8
` Op

1

n
q.

As we discuss in Remark 8, our algorithm can only con-
fuse a type-1 string with a type-2 string. We exploit the alge-
braic conditions in Proposition 10 to find codebooks of larger
sizes that can be reconstructed by slightly modifying the pro-
posed Reconstruction Algorithm (without changing the time
complexity). In Figure 3 and 4, we compare the rates and re-
dundancies of the reconstruction codes: Spnq (Definition 12),
T pnq (Definition 14), T1pnq which is the codebook formed
by excluding all strings of type-1 (Definition 15), and T2pnq

which is the codebook formed by excluding all strings that
are both type-1 and type-2 and adding an indicator bit to re-
maining strings to denote their type (Definition 17). Given a
positive integer n ą 3, we define T1pnq to be the set of all
binary strings of length n beginning with 1, and ending with
0 with no type-1 strings; that is all strings satisfying condi-
tion (25) for any 1 ď j ď d are removed from the set of

11



strings being considered.

Definition 15. Given a positive integer n ą 3, define T1pnq

as a set of binary strings of length n which begin at 1, end at
0, as follows,

T1pnq
def
“ t s P t0, 1un | s1 “ 1, sn “ 0, and

E j P t1, 2, . . . , twtpsq{2uu such that

aj ě 1 and gj0psq ´ g
wtpsq

wtpsq´jpsq “ 1 u.

The set T1pnq contains strings which are either only type-2,
or neither of the types. Therefore for each element in T1pnq,
our algorithm even in case of a pause knows exactly which
branch to take (the branch satisfying condition (26)). There-
fore, it uniquely reconstructs the string without backtracking.
In the proof of Proposition 14, it is shown that all codewords
of the codebook T pnq are such that they are not type-1 strings.
This means that T pnq Ď T1pnq. Extending this argument fur-
ther, we define S12pnq to be the set of all binary strings of
length n beginning with 1, and ending with 0 with no strings
that are both type-1 and type-2.

Definition 16. Given a positive integer n ą 3, define S12pnq

as a set of binary strings of length n which begin at 1, end at
0, as follows,

S12pnq
def
“ t s P t0, 1un, s1 “ 1, sn “ 0,

E j P t1, 2, . . . , twtpsq{2uu such that

aj ě 1 and gj0psq ´ g
wtpsq

wtpsq´jpsq “ 1,

E k P t1, 2, . . . , twtpsq{2uu such that

ad´k ě ad ` 1 and g
wtpsq

wtpsq´k ´ gk0 “ ad ` 1 u.

This means that the set S12pnq contains strings which are
either only type-1, only type-2, or neither of the types. Note
that, for our algorithm to know which branch to take, we will
need to add an extra bit of redundancy, an indicator bit, to the
elements of S12pnq. This bit will indicate if the string being
considered is type-2 or not. If the added bit is 1, in case of a
pause, our algorithm will know that the string is type-2, and
take the branch corresponding to condition (26). If the added
bit is 0, in case of a pause, our algorithm will know that the
string is type-1, and take the branch corresponding to con-
dition (25), or continue without backtracking in the case of
no pauses. We define T2pn` 1q to be the codebook of length
pn`1q where the codebook is formed by adding this indicator
bit to the elements of S12pnq.

Definition 17. Given a positive integer n ą 3, The code
T2pn` 1q is defined as the codebook of length pn` 1q where
the codebook is formed by adding an indicator bit to the
elements of S12pnq.

The set S12pnq by definition contains strings which are ei-
ther only type-1, type-2, or neither of the types. But this means
that the codebook T1pnq is a subset of the set S12pnq which
implies |T1pnq| ă |S12pnq| “ |T2pn`1q|. Therefore, we have
the following relationship between the sizes of the proposed

codebooks, also represented in Figure 1:

|Spnq| ă |T pnq| ă |T1pnq| ă |T2pn ` 1q|. (41)

Remark 12. In Figure 3 and 4, we present the code rates
and code redundancies of the reconstruction codebooks Spnq

(Definition 12), T(n) (Definition 14), and the codebooks T1pnq

(Definition 15), and T2pnq (Definition 17) as described above.
The time complexity for constructing T1pnq and T2pnq is Opn¨

2nq, and therefore the results are presented only for n ď 25.

V. CONCLUSION.
Motivated by the problem of recovering polymer strings

from their fragmented ions during mass spectrometry, we
introduce a new algorithm to reconstruct a binary string
from the multiset of its substring compositions. We further
characterize algebraic properties of binary strings that guar-
antee reconstruction without backtracking thereby enlarging
the space of binary strings uniquely reconstructable without
backtracking compared with previously known algorithms.
Additionally, we modify and extend the reconstruction code
proposed in [30] to produce a new reconstruction code which
is linearly larger in size, and is uniquely reconstructable by
our algorithm without backtracking.

There are several combinatorial and coding-theoretic prob-
lems related to string reconstruction from substring composi-
tion that remain open. The problems of bounding the size of
reconstruction codes as well as constructing explicit schemes
with minimum redundancy remain open. Our algorithm ex-
pands the conditions for strings to be uniquely reconstructed
without backtracking, and therefore characterizing the set of
strings uniquely reconstructable by the algorithm in this pa-
per is a possible step in that direction. As seen from results in
Figure 4, we believe that there exist reconstruction codes with
constant redundancy that can be reconstructed efficiently. Fur-
thermore, deriving bounds on time complexity of algorithms
for reconstructing strings from their substring multiset is an-
other problem of interest.
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