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1  |  INTRODUC TION

Climate change is disrupting historic environmental regimes, 
including increases in the frequency and severity of extreme 
climatic events, such as droughts and intense rainfall periods 
(IPCC, 2021; Smith, 2011). The impacts of droughts on plant com-

munities and their associated ecosystem functions are well appre-

ciated. For example, droughts can alter community composition 
(Gao et al., 2022; Hoover et al., 2014; Xu et al., 2021) and drive 
significant reductions in primary productivity (Gao et al., 2019; 

Liu et al., 2023; Su et al., 2022), and these impacts often persist 
post- drought (‘drought legacies’; Müller & Bahn, 2022; Vilonen 

et al., 2022). The consequences of highly wet periods, by con-

trast, have thus far received less attention, despite heavy rain-

fall events increasing over the past century throughout the 
contiguous United States and in many other regions worldwide 
(IPCC, 2021; Jay et al., 2018). Further, the impacts of extreme wet 
and dry events are often evaluated independently (although see 
Isbell et al., 2015; Sala et al., 2012; Wilcox et al., 2017), despite 
both types of ‘precipitation events’ (see Box 1) increasing in many 
regions. Therefore, to persist and maintain critical ecosystem 
functions plant communities must be resilient to both of these 
contrasting precipitation events.

Resilience is a multi- dimensional quality that describes an eco-

system's capacity to absorb perturbations and persist in a reference 
state (Box 1; Van Meerbeek et al., 2021). While key assumptions 
of the resilience concept vary among disciplines (i.e. ‘ecological 
resilience’ sensu Holling, 1973 vs. ‘engineering resilience’ sensu 
Pimm, 1984), the framework broadly captures both a system's re-

sponses to perturbation events and long- term patterns. We can begin 
to explain variation in resilience across communities and ecosystems 
by quantifying aspects of resilience—resistance, recovery, and in-

variability—and linking them to community properties. Resistance 
is the degree to which an ecosystem function (e.g. productivity) 
changes in response to a perturbation. Recovery (termed ‘resilience’ 
by Pimm, 1984) is the rate at which an ecosystem function returns 
to pre- perturbation conditions. Invariability (often called ‘stability’) 
expresses how an ecosystem function varies through time. While 
resilience is often assumed to be beneficial, resilience does not nec-

essarily confer increased ecosystem functioning. For example, wet 
events can increase productivity (Wilcox et al., 2017), and therefore, 
resilience in this context would diminish productivity benefits.

Plant community properties, including species richness, even-

ness, and dominance, can influence resilience to environmental 
perturbations, including precipitation events. However, the prop-

erties that promote aspects of resilience to droughts may differ 
from those promoting resilience to highly wet conditions. Species 
richness is widely demonstrated to promote resilience through 
functional diversity and redundancy (i.e. diversity- stability rela-

tionship; Ives & Carpenter, 2007; Tilman et al., 1996). Given that 
a speciose community should exhibit greater response diver-
sity—the range of species' responses to an environmental change 
(Elmqvist et al., 2003)—diverse communities on average should 
have a higher probability of maintaining critical functions under 
stress (i.e. biological insurance theory; Yachi & Loreau, 1999). Prior 
work leveraging data from 46 grassland diversity manipulation 
experiments found species richness increased productivity resis-

tance to precipitation events (both wet and dry events), as well as 
long- term productivity invariability, but not post- event recovery 
(Isbell et al., 2015). Other aspects of diversity, such as evenness 
and dominance can further modulate resilience by affecting func-

tional trait distributions (Hillebrand et al., 2008). Although often 
thought of as being antithetical to one another, evenness and 
dominance both likely contribute to determining trait distributions 
in non- monodominant communities. First, evenness within a com-

munity can promote resilience by enhancing trait diversity, func-

tional redundancy, and temporal complementarity among species 

precipitation event- driven community shifts may feedback to impact long- term 
productivity resilience under climate change.

K E Y W O R D S
above- ground primary productivity, climate extremes, community composition, drought, 
precipitation, resilience, stability

BOX 1 Key terms and definitions

Precipitation event: Periods when water availability is outside 
‘normal’; a drought (SPEI < −1) or wet event (SPEI > 1)

Standardized precipitation–evapotranspiration index (SPEI): 

Measure of an ecosystem's water availability resulting from 
the difference between inputs from precipitation and outputs 
from potential evapotranspiration

Resilience: A multi- dimensional quality that describes an 
ecosystem's capacity to absorb perturbations and persist in a 
reference state

Resistance: The degree to which an ecosystem function 
(e.g. productivity) changes in response to a perturbation

Recovery: The rate at which an ecosystem function 
returns to pre- perturbation conditions in the year 
after a perturbation; sometimes called ‘resilience’ (e.g. 
Pimm, 1984)

Invariability: The degree to which an ecosystem function 
varies through time. Often used synonymously with 
‘stability’
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(Loreau et al., 2021). This is distinct from the effects of richness 
because even when communities have the same richness, they can 
differ in evenness. In a low- evenness community, low- abundance 
species contribute minimally to functional diversity (i.e. low func-

tional evenness). Therefore, not only species counts, but also 
abundances within the community may be an important determi-
nant of resilience. Second, as dominant species largely determine 
community- weighted trait values, dominants that are resistant to 
a given perturbation could confer community- level resilience to 
that perturbation by sustaining key functions and interactions. 
Because both species richness and evenness act by increasing 
trait diversity and temporal complementarity and different spe-

cies are likely to be more resistant to dry versus wet extremes, 
these properties might be expected to promote resilience to both 

wet and dry extreme events. In contrast, whether dominance pro-

motes resilience to wet versus dry events likely depends on the 
specific dominant species and whether it is resistant to drought, 
inundation, or both.

The characteristics of constituent species and functional 
groups additionally impact resilience through differences in phys-

iological tolerances, life history and demographic traits, and re-

sponses to environmental alterations (Lloret et al., 2012; McGill 
et al., 2006; Paniw et al., 2021). For instance, a study across eight 
European grasslands found graminoids are more drought sen-

sitive than forbs (Mackie et al., 2019), although a study compar-
ing drought responses between a single grass and forb species 
found the opposite (Hoover et al., 2014). Similarly, under stress, 
non- natives may be less adapted to resource reductions like 
drought, resulting in reduced growth relative to native species 
(Liu et al., 2017; Valliere et al., 2019), although the opposite has 
also been observed (Meisner et al., 2013). Thus, the relative abun-

dances of certain species and functional groups within a commu-

nity may further regulate productivity resilience although existing 
data are still too limited to yield general predictions.

While community properties modulate community resilience 
to precipitation events, they also respond to precipitation events. 
As a result, community responses to extreme wet and dry years 
may impact a community's resilience to future events. Such shifts 
in potentially relevant community properties, including richness, 
functional diversity, and forb and grass abundances, have been 
observed in grassland communities in response to drought (Gao 
et al., 2022; Hoover et al., 2014; Xu et al., 2021) and elevated pre-

cipitation (Collins et al., 2012; Yang et al., 2011). Although precip-

itation legacies—shifts in community properties and processes 
driven by drought and wet extremes—are increasingly appreciated 
(Müller & Bahn, 2022; Sala et al., 2012), their impacts on resilience 
to subsequent events remain poorly characterized. Further, as wet 
extremes tend to elevate productivity (Sala et al., 2012; Wilcox 
et al., 2017), we might assume that we can disregard their impacts 
on a system's resilience. However, wet events may indirectly impact 
productivity resilience to future extreme events via their effects on 
community properties, as described above. Consequently, as precip-

itation is predicted to become increasingly variable under climate 

change (IPCC, 2021; Smith, 2011), evaluating the interplay between 
droughts and wet extremes is critical for accurately capturing the 
current resilience of plant communities and their functions and for 
predicting resilience to future precipitation events.

Leveraging a two- decadal (2000–2020) record of primary pro-

ductivity in a temperate grassland community, we evaluated the 
community- level factors regulating the resistance and recovery 
of productivity to contrasting precipitation events (Aim 1). We 
considered how community properties influenced long- term pro-

ductivity invariability over the two decades (Aim 2). Finally, we 
explored how the focal community properties associated with 
resilience responded to precipitation and if precipitation legacies 
occur within the community (Aim 3). Together, our research in-

vestigates feedbacks between precipitation events, community 
properties, and resilience to explore if the oscillating precipitation 
events predicted for the future will have consequences for plant 
community resilience.

2  |  METHODS

Above- ground net primary productivity (ANPP) and plant commu-

nity data were collected at the Kellogg Biological Station Long- Term 
Ecological Research (KBS LTER) site in Hickory Corners, MI (42°24′ 

N, −85°22′ W). Prior to European settlement in the 1830s, the local 
ecosystem was an oak savanna, maintained by periodic burning by 
the indigenous community (Robertson & Hamilton, 2015). In the 
mid- 1800s, the site was converted to tilled agriculture, primarily for 
cereal crops (Tomecek & Robertson, 2019). The study plots are six 
1 ha (87 × 105 m) grasslands that were released from agriculture in 
1989. To prevent tree colonization and maintain communities in an 
early successional state, the plots have been burned annually since 
1997. Additionally, herbicide is applied occasionally (every ~5 years) 
to manage clonal woody species in the plots. The plots are domi-
nated by Solidago altissima, while Elymus repens, Bromus inermis, 
Phleum pratense, Aster sagittifolius, and Trifolium pratense are abun-

dant subdominant species. Average richness throughout the study 
period for each 1 m2 subplot was 11.6 (SD = 3.4). As the composition 
of these perennial- dominated communities stabilized a few years 
after burning began (Gross & Emery, 2012), this study considers 
community dynamics from 2000 through 2020. During the focal pe-

riod, the site's mean annual temperature was 9.4°C and mean annual 
precipitation was 984 mm.

2.1  |  Identifying precipitation events

We identified drought and wet events based on the standardized 
precipitation–evapotranspiration index (SPEI; Box 1; Figure 1). 
Using meteorological data from KBS LTER (Robertson, 2020), 
we estimated evapotranspiration (using the Penman- Monteith 
equation) to calculate SPEI (‘SPEI’ package; Beguería & Vicente- 
Serrano, 2023) for a reference period of 1993–2022. We selected 
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this 30- year period to capture climatic conditions experienced by 
the local plant community in recent decades. For example, as the 
community may have become acclimated to the wetter growing 
seasons observed in recent decades, it may be more sensitive to 
drought. We used local meteorological data, rather than a grid-

ded product, because KBS LTER is located ~70 km east of Lake 
Michigan, resulting in precipitation patterns that are locally highly 
variable due to ‘lake effects’.

To capture variation in event duration, which may influence an 
event's impact on productivity, we calculated SPEI at three times-

cales: 2- month (equivalent to growing season droughts commonly 
observed in the region, like the 2012 North American drought), 4- 
month (equivalent to local growing season length), and 12- month 
(the timescale for which previous studies have found the strongest 
responses in temperate grassland productivity; Vicente- Serrano 
et al., 2013). All SPEI values ended in August (2- month: July–August; 
4- month: May–August; 12- month: prior- year September–current- 
year August). We chose this end point because it corresponds to 
the timing of peak biomass harvest, from which we approximated 
community composition (see next section). Precipitation events oc-

curred on more than one timescale in 2000, 2004, 2005, 2012, and 
2015. For these years, we only considered the event occurring at 
the longest timescale because including such years as two or three 
distinct events (i.e. at each timescale) would lead to pseudoreplica-

tion as they are not independent events. To calculate event intensity, 
we took the absolute value of SPEI. While we detected several ‘se-

vere’ or ‘extreme’ 2-  and 4- month events in our dataset, they were 
ultimately excluded from our analyses because those years were 
also categorized as precipitation events at the longer 12- month 
timescale. However, for the 2- month timescale, we did not observe 
‘severe’ or ‘extreme’ wet events (SPEI > 1.50) likely due to regional 
precipitation seasonality. Intense rainfall typically occurs in the late 
winter and spring and therefore, did not contribute to the water bal-
ance calculations for 2- month (July–August) SPEI values.

2.2  |  Above- ground net primary productivity

Peak biomass (late- July or August) was harvested annually in five 
1 m2 (0.5 × 2 m) subplots per 1 ha plot (N = 5 subplots × 6 plots = 30 
replicates) (Robertson & Snapp, 2020). We used subplot as the level 
of replication rather than plot for our analyses for several reasons. 
First, anecdotally the community is highly spatially variable at fine 
scales. To confirm this statistically, we ran a PERMANOVA (‘adonis2’ 
in vegan package) to evaluate the spatial scale at which community 
variation was predicted, using species' relative abundance data 
(methods outlined below) for 1999–2020 with ‘subplot’ nested in 
‘plot’. Both spatial scales significantly predicted community compo-

sition (p = 0.001) and explained a comparable amount of variation 
in composition (plot and subplot R2 = 0.14 and 0.13, respectively). 
Second, in our models predicting ANPP resistance and recovery (see 
Aim 1 methods below), we initially included plot as a random effect 
to account for potential spatial autocorrelation among subplots. The 
inclusion of this random effect term consistently reduced model fit 
(evaluated via AIC).

We excluded surface litter, standing dead biomass, and trees and 
clonal woody species as they are all managed in the plots via annual 
burning and herbicide application. We sorted all biomass to species 
(or in rare cases genus); all biomass not identified to the genus- level 
was reclassified as ‘unknown’ (on average 2% of total subplot bio-

mass). We then calculated ANPP as the sum across all species of each 
subplot's biomass. Productivity data from 2007 were excluded from 
all analyses because plots were not burned that year. Additionally, 
for all analyses, ANPP observations were excluded if woody species 
and/or unidentified biomass accounted for >5% total ANPP (55 ob-

servations excluded, i.e. 8% of total observations). To estimate the 
magnitude of precipitation events' impact on ANPP, we calculated 
the log- response ratio between event year ANPP and long- term av-

erage ANPP for each subplot (excluding perturbation years), then 
ran a linear regression to evaluate the effect of precipitation event 

F I G U R E  1  August SPEI at KBS LTER between 2000 and 2020 at three timescales (2- , 4- , and 12- month). Colours and shapes denote the 
precipitation event type and intensity, respectively. Precipitation conditions are considered near normal when SPEI is −0.99–0.99 (Vicente- 
Serrano et al., 2010). Moderate intensity events occur between |SPEI| 1.00–1.49, severe events between |SPEI| 1.50–1.99, and extreme 
events when |SPEI| ≥ 2.00. The sign of SPEI denotes whether the event is wetter (+) or drier (−) than normal conditions.
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type (drought vs. wet), event intensity (|SPEI|), duration, and their 
interaction on ANPP.

2.3  |  Quantifying ANPP resistance, recovery, and 
long- term invariability

We estimated community resistance to precipitation events 
as 

Yn

|Ye − Yn|
, where Ye is perturbation year ANPP and Yn  is subplot 

long- term average ANPP excluding perturbation years (Isbell 
et al., 2015). As each SPEI timescale identified a different suite 
of perturbation years, we calculated Yn separately for each time-

scale. While some event years were not included in the resil-
ience analyses to avoid issues of non- independence (see section 
‘Identifying precipitation events’), these years were still excluded 
from Yn. Resistance quantifies the system's distance from mean 
during an event year; if resistance = 2, then productivity is re-

duced by 50% during an event year relative to mean productiv-

ity in non- event years. We calculated recovery as 
|
|
|
|

Ye − Yn

Ye+1 − Yn

|
|
|
|

, where 
Ye+1 is ANPP in the post- perturbation year (termed ‘resilience’ by 
Isbell et al., 2015). Recovery quantifies the system's return rate to 
mean following an event; if recovery = 2, then in the next grow-

ing season, productivity returns to 50% of mean non- event year 
productivity. When the denominator in the resistance and recov-

ery estimations are very small (i.e. little change in productivity in 
response to a precipitation anomaly), then resilience measures ap-

proach infinity. To address this, for any values exceeding 100, we 
set both resistance and recovery to a maximum of 100; for resist-
ance, for example, this assumes that the system moves at least 1% 
away from normal conditions during an event. Several event years 
were followed by an event in the next year; for these years (2003, 
2004, 2011, and 2015–2020), we only calculated resistance, as re-

covery could not be evaluated because the system did not return 
to non- perturbation conditions. We estimated long- term invari-
ability as �

�
, or the long- term mean subplot ANPP divided by the 

long- term standard deviation of subplot ANPP.

2.4  |  Predictors of ANPP resistance and recovery 
(Aim 1)

We approximated annual subplot species richness and Simpson's 
evenness from biomass data. We estimated species' relative abun-

dance in each subplot by dividing species' subplot ANPP by total 
subplot ANPP. From these species relative abundances, we calcu-

lated the annual relative abundance of all non- native species and 
of all forb species in each subplot based on qualitative trait data 
(University of Michigan Herbarium, 2022; USDA & NRCS, 2022). 
Grass species relative abundance was not included as a predictor 
because most non- forb species in the community are graminoids, 
and therefore, grass abundance was highly correlated with forb rela-

tive abundance (Pearson's correlation coefficient = −0.93). We also 

calculated the relative abundance of Solidago altissima (tall golden-

rod; previously identified on the KBS LTER as S. canadensis, Canada 
goldenrod, prior to nomenclature updates to the Solidago genus) in 
each subplot. Solidago altissima is the long- term average dominant 
species in 87% of subplots, accounting on average for 40% of sub-

plot biomass.
We selected an a priori set of community and precipitation event 

properties that we predicted may influence resilience in this system: 
richness, evenness, dominant species relative abundance, non- native 
species relative abundance, forb relative abundance, event intensity, 
event duration, event type, richness × intensity, richness × duration, 
event type × each community predictor. We included interactions 
between richness and event duration/intensity because diversity's 
stabilizing effects may depend on a perturbation's duration and 
intensity (Isbell et al., 2015). We additionally included interactions 
between event ‘type’ (i.e. drought vs. wet) and all community pre-

dictors to evaluate if predictors of resistance and recovery differed 
between these precipitation events. Refer to Table S1 for additional 
rationale on the included community and event properties. From this 
global model, we used stepwise AIC analysis (‘stepAIC’ in ‘MASS’ 
package) to select best- fit general linear models that predicted ANPP 
resistance and recovery to all perturbation years. We used prior- 
year community properties to predict resistance and recovery to 
current- year precipitation events (e.g. 1999 community properties 
for predicting responses in 2000). This is because end- of- growing 
season biomass was used to estimate community properties and is 
likely influenced by precipitation anomalies occurring in that year. 
Although the plots are burned annually, there are essentially no an-

nual species and each growing season, the community returns from 
below- ground stock; therefore, end- of- growing- season community 
properties are informative of the community's ‘starting point’ for the 
subsequent growing season. As mentioned above, to address poten-

tial spatial autocorrelation among subplots within plots, we evalu-

ated how the inclusion of random effects (‘plot’, and ‘subplot’ nested 
in ‘plot’) affected model performance. We found that model perfor-
mance was reduced when random effects were included (evaluated 
by AIC), and therefore, dropped them from our analysis.

Because we detected significant event type × community pre-

dictor interactions, we applied the same best- fit models (exclud-

ing the ‘event type’ term and its interactions) to drought and wet 
events separately to further evaluate the extent to which predic-

tors differed between precipitation events. For all models, we log- 
transformed resistance and recovery to meet the assumptions of 
normality and homoscedasticity and confirmed that there was no 
multicollinearity among predictor variables by assessing variance in-

flation factors (‘vif’ in ‘car’ package).

2.5  |  Predictors of long- term ANPP invariability 
(Aim 2)

To identify the community properties that promote long- term ANPP 
invariability, for each subplot, we calculated long- term average 
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richness, evenness, dominant species relative abundance, non- 
native relative abundance, and forb relative abundance. As temporal 
variability in these properties may also impact invariability, we also 
calculated long- term variation of each factor. We then evaluated the 
factors (long- term averages and variation) that predict long- term 
ANPP invariability, again using stepwise AIC to select the best- fit 
general linear model.

2.6  |  Community responses to precipitation events 
(Aim 3)

We assessed the effect of precipitation and evapotranspiration 
(quantified via the standardized precipitation–evapotranspira-

tion index, SPEI) on our five focal community properties (richness, 
evenness, S. altissima relative abundance, forb relative abundance, 
and non- native species relative abundance). We thereby evaluated 
how precipitation impacts the community properties that may 
modulate ANPP resistance, recovery, and long- term invariability. 
We constructed separate models for each of the three SPEI time-

scales (2- , 4- , and 12- month) and for each community property. As 
community properties may respond nonlinearly to environmen-

tal conditions, in each model, we included a quadratic term (i.e. 
SPEI2), which was dropped from the model if it did not improve 
model fit when assessed by AIC. Finally, to determine if legacies 
of precipitation availability persisted within the community, we 
performed the same analysis, but instead regressed SPEI on next- 
growing- season community properties (e.g. richnessT+1

 ~ SPEIT). 
All statistical analyses were performed in R (version 4.3.2; R Core 
Team, 2023).

3  |  RESULTS

3.1  |  Impact of precipitation events on ANPP

Droughts and wet events differed in their impacts on above- ground 
primary productivity, and the magnitude of dry or wet event effects 
on ANPP differed across event durations and intensities (p ≤ 0.01 for 
all predictors and interactions; Table S2). Unsurprisingly, stronger 
drought events yielded greater reductions in ANPP, as moderate 
droughts (−1.49 < SPEI < −1.00) had no effect on ANPP (mean ± 95 
CI = −3% ± 4%), but severe (−1.99 < SPEI < −1.50) and extreme 
(SPEI < −2.00) droughts reduced ANPP on average by 35% (±8%) 
and 43% (±7%), respectively (Figure 2a–c). In contrast, moderate 
wet events (1.49 > SPEI > 1.00) reduced ANPP by 6% (±4%), while 
severe wet events (1.99 > SPEI > 1.50) increased ANPP by 8% (±5%), 
particularly for the shorter- term 2-  and 4- month events, and ex-

treme wet events (SPEI > 2.00) did not significantly affect ANPP 
(8% ± 10%). When averaged across all event intensities and dura-

tions, droughts reduced ANPP by 22%, while wet events on average 
did not significantly alter productivity (Figure 2d).

3.2  |  Predictors of ANPP resistance and recovery 
(Aim 1)

The community and event properties that best predicted resilience 
to extreme precipitation events differed between resistance and 
recovery and between drought and wet events (Table 1; Figure 3). 
For example, in the full resistance model, we detected interactions 
between forb relative abundance (a community property) and event 

F I G U R E  2  The effect of precipitation events (i.e. drought or wet event) on above- ground net primary productivity (ANPP) depends on 
event intensity (a–c). For droughts, event intensity reduced ANPP, while wet event intensity tended to increase ANPP. On average, droughts 
significantly reduced ANPP, while wet events did not alter productivity (d). In (a–c), points indicate observed subplot ANPP change from 
long- term non- event mean, and error bars indicate 95% confidence intervals around estimated ANPP change given event intensity. Sample 
sizes vary because each timescale had a different number of precipitation events (refer to Figure 1). In (d), coloured points indicate observed 
subplot ANPP change, and black points indicate event type- mean ANPP effect with 95% confidence intervals.
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type, such that increased forb abundance tended to increase resist-
ance to drought but decrease resistance to wet events (Table 1). 
Overall, community and event properties explained more variance 
for resistance than recovery (adj. R2 = 0.11 and 0.03, respectively), 
and explained considerably more variation for drought than wet 
events (resistance adj. R2 = 0.23 and 0.03 for drought and wet events, 
respectively). Unfortunately, because 2005 was the only drought 
year not followed by another precipitation event, we could not evalu-

ate drought recovery.

For droughts, dominant species relative abundance (p = 0.02), 
evenness (p = 0.005), and species richness (p = 0.05) were posi-
tively related to increased ANPP resistance (Figure 3). By contrast, 
only evenness significantly predicted ANPP wet event resistance 
(p = 0.006), although effect sizes for most predictors were com-

parable to those for drought (Figure 3). All other variables, ex-

cept for event duration and event intensity (see Table 1), were 
non- significant in the event type specific models. In contrast to 
resistance, no community properties predicted recovery from 

TA B L E  1  Predictors of resistance and recovery to all precipitation events, and drought and wet events separately. Bolded model results 
indicate a significant predictor of resistance and recovery (***p = 0–0.001; **p = 0.001–0.01; *p = 0.01–0.05); non- significant predictors 
selected in the best- fit all- events models are also reported. The sign of the regression coefficient (β) indicates the direction of the 
relationship.

Predictors

All events Drought Wet

Resistance, adj. 
R

2 = 0.11
Recovery, adj. 
R

2 = 0.03
Resistance, adj. 
R

2 = 0.23
Resistance, adj. 
R

2 = 0.03
Recovery, mult. 
R

2 = 0.04

Richness p = 0.15, β = + *, β = + p = 0.73, β = +

Non- native %

Dominant % **, β = + *, β = + p = 0.14, β = +

Evenness ***, β = + *, β = + **, β = +

Forb % p = 0.22, β = + p = 0.49, β = + p = 0.12, β = −

Intensity ***, β = − p = 0.09, β = − ***, β = − p = 0.93, β = + p = 0.08, β = −

Duration p = 0.06, β = + p = 0.07, β = + p = 0.78, β = +

Event type (wet = +) p = 0.63, β = + p = 0.12, β = + N/A N/A N/A

Richness × Intensity

Richness × Duration

Richness × Type

Non- native % × Type

Dominant % × Type

Evenness × Type

Forb % × Type *, β = − N/A N/A

Intensity × Type ***, β = + N/A N/A

Duration × Type p = 0.10, β = − N/A N/A

Note: All considered community and event properties and interactions are presented, and greyed- out cells indicate predictors that were not selected 
in the best- fit all- events models.

F I G U R E  3  The community and event 
properties that best predicted resilience 
to precipitation events differed between 
resistance (left) and recovery (right) and 
between drought (above in pink) and 
wet events (below in blue). Error bars 
on standardized regression coefficients 
indicate 95% confidence intervals around 
mean effect size (***p = 0–0.001; ** p = 

0.001- 0.01; *p = 0.01–0.05; †p = 0.05–0.1).
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precipitation events. The reduced predictive ability for recovery 
relative to resistance may be due to lower sample sizes (n = 96 and 
388, respectively) because fewer events could be used to assess 
recovery as many event years were followed by an event in the 
next year.

3.3  |  Predictors of long- term ANPP invariability 
(Aim 2)

Communities that maintained greater richness (p < 0.001) and even-

ness (p < 0.001) through time (i.e. higher long- term averages) had 
increased long- term ANPP invariability. Long- term average forb 
relative abundance tended to reduce invariability (i.e. increased 
variability), although not significantly (p = 0.09). Unexpectedly, long- 
term variation in evenness (p = 0.05) and in dominant species relative 
abundance (p < 0.001) also increased invariability, while long- term 
variation in non- native species relative abundance was related to 
reduced invariability (p = 0.05). While a long history of theory and 
empirical work provides rationale for why mean richness and other 
community properties would affect invariability, associations be-

tween variation in community properties and invariability are harder 
to explain. However, we posit that the importance of temporal varia-

tion in community properties may be due to compensatory dynamics 
among species in the community (see discussion section on temporal 
variation for elaboration). Cumulatively these factors explained 65% 
of variation in long- term ANPP invariability.

3.4  |  Community responses to precipitation events 
(Aim 3)

Most focal community properties responded significantly to pre-

cipitation, although the form (i.e. linear or quadratic) and direction 
of these relationships often varied among timescales for a given 
community property (Table 2). Across SPEI timescales, richness 
was reduced in wetter and drier years (negative quadratic function); 
conversely, dominant species relative abundances were lowest in 
average precipitation years and highest in wetter or drier condi-
tions (positive quadratic function). The responses of evenness and 
non- native species relative abundance varied across timescales. At 
the 2-  and 4- month timescales, both dry and wet extremes reduced 
evenness, although not significantly, while at the annual scale, even-

ness was positivity correlated with wet conditions. For non- native 
species, at the 2- month scale, precipitation events reduced their 
relative abundance, while at the 4- month scale, their relative abun-

dances were higher under wet conditions. We did not find corre-

lations between forb species relative abundance and SPEI at any 
timescale. Finally, we found that similar patterns (i.e. form and direc-

tion of relationship) in community properties (except forb relative 
abundance) occurred with prior- year SPEI as with current- year SPEI 
(Table 2), suggesting legacies of precipitation events persist within 
the plant community.T
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4  |  DISCUSSION

We explored the impacts of precipitation events, which are 
forecasted to increase in frequency and severity under climate 
change (IPCC, 2021; Smith, 2011), on productivity in a grassland 
community. As expected, naturally occurring droughts substan-

tially reduced primary productivity. Productivity resistance to 
drought increased with relative abundance of the dominant spe-

cies (Solidago altissima), evenness, and species richness, while both 
drought resistance and recovery decreased with drought intensity 
(i.e. lower SPEI reduced both aspects of resilience). By contrast, 
wet periods on average caused no deviation in productivity from 
long- term averages (although extremely wet years typically in-

creased productivity and minor wet events tended to reduce pro-

ductivity), differing from the findings of a meta- analysis that ANPP 
is typically more sensitive to simulated precipitation additions than 
reductions (Wilcox et al., 2017). Our results may differ because 
the meta- analysis evaluated responses across sites spanning a 
wide range of climatic conditions (mean annual precipitation: 161–
1632 mm; mean annual temperature: −4.8–22.0°C), and therefore, 
may be driven by arid systems' high sensitivity to elevated pre-

cipitation and/or because most simulated precipitation additions 
are quite extreme (e.g. in this meta- analysis, on average precipita-

tion addition, plots received 43% more rainfall than control plots). 
Despite wet events' minimal impact on ANPP, evenness positively 

predicted productivity resistance to extreme wet events. While re-

silience is often viewed as a desirable, resistance to extreme wet 
events means that those communities with higher evenness are un-

able to take advantage of extremely wet years (although they may 
also be less harmed by the slightly negative effects of minor wet 
events). While other community properties did not significantly 
predict resistance to wet events, the magnitude and direction of 
effect sizes were comparable to those for drought resistance ex-

cept for forb abundance, which promoted drought resistance but 
inhibited resistance to wet events. Thus, many properties promot-
ing resistance to dry events may also limit positive productivity 
responses to high precipitation events, but forb abundance both 
reduces productivity declines due to drought and tends to increase 
a community's ability to take advantage of wet years.

4.1  |  Precipitation legacies point to shifting 
resilience dynamics

At first glance, our results would suggest that wet events are relatively 
inconsequential for productivity in this system. However, our research 
points to potential complex shifts in resilience under climate change via 
precipitation- driven shifts in community properties. For example, we 
found that wet years (i.e. high SPEI values at the 12- month timescale) 
promoted evenness (Figure 4a; model- predicted relationships shown 

F I G U R E  4  Precipitation- driven 
changes in community properties may 
lead to complex resilience shifts. Wet 
periods promoted evenness in the 
community (a), while both wet and dry 
extremes were associated with increased 
dominant species relative abundance 
(b). (The saturating relationship between 
dominant species relative abundance and 
drought resistance (centre panel of (b)) 
results from setting resistance to have 
a maximum of 100. Refer to Section 2.3 

of the methods for additional details.) 
As both evenness and dominant species 
abundance enhanced resistance and 
invariability, precipitation events may 
counterintuitively lead to increased 
resilience to future drought. Conversely, 
both wet and drought periods reduced 
richness (c). Because richness is associated 
with increased resistance and invariability, 
increased precipitation variability may 
reduce resilience to future events. 
Plotted lines show predicted relationships 
(estimated marginal means) from best- fit 
models and error bars indicate 95% 
confidence intervals.
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in main text but see Figure S1 for plots of observations). Evenness in-

creased ANPP resistance to both droughts and wet events, and sub-

plots with higher long- term average evenness had increased long- term 
ANPP invariability. Therefore, wet events, via increasing evenness, may 
indirectly increase the system's resilience to subsequent precipitation 
events and stabilize productivity through time. Similarly, at all time-

scales, we found that both droughts and wet conditions increased S. 

altissima relative abundance, and increased S. altissima abundance pro-

moted drought resistance (Figure 4b). Thus, the effects of increased 
precipitation variability on ANPP may be buffered by community re-

sponses to extreme events. By contrast, at all timescales both dry and 
wet extremes reduced richness within the community. Because rich-

ness increased drought resistance and long- term invariability, the ef-
fects of extreme events on species richness are likely to exacerbate the 
direct effects of drought on ANPP and increase temporal variation in 
ANPP (Figure 4c).

Taken together, these linkages between precipitation events, 
community properties, and resilience may lead to feedbacks that 
affect long- term productivity resilience. In other words, because of 
their effects on community properties, precipitation events—even 
wet extremes with minimal direct effects on ANPP—are likely to in-

fluence resilience to future precipitation events. While the potential 
implications of drought legacies on resilience to subsequent events 
is gaining appreciation (Müller & Bahn, 2022), our findings suggest 
that legacies of wet events also can further affect future resilience. 
As precipitation anomalies in both directions become increasingly 
frequent and severe into the future (IPCC, 2021; Smith, 2011), con-

sideration of the lasting impacts of both wet and dry events is critical 
for accurately predicting the future resilience of plant communities 
and their associated ecosystem functions.

4.2  |  Diversity via evenness and richness regulated 
drought resilience

While the role of richness in promoting resilience to disturbance has 
been particularly well- studied (Craven et al., 2016; Isbell et al., 2015; 

Kreyling et al., 2017; Van Ruijven & Berendse, 2010) and was sup-

ported by our findings, we found that additional community prop-

erties (evenness and dominant species relative abundance) strongly 
regulated productivity resistance to drought and long- term invari-
ability. Evenness likely contributes to these aspects of resilience via 
enhancing functional diversity and complementarity among species 
(Loreau et al., 2021). While functional richness explains the variety 

of niche space occupied by the community, functional evenness 
explains the extent to which niche space is utilized; if all available 
niches are evenly utilized, we would expect increased productivity 
invariability (Mason et al., 2005). Thus, studies only considering di-
versity via species richness may fail to capture an important aspect 
of diversity, evenness, in contributing to productivity resilience. In 
our system, dominance likely contributes to resilience because the 
dominant species was previously found to be more temporally stable 
than subordinate community members (Grman et al., 2010).

We were able to study these other community properties be-

cause of our long- term data from a natural and highly variable 
community (as opposed to biodiversity experiments that largely 
manipulate only richness). However, while leveraging long- term 
datasets is a powerful approach for exploring complex ecological 
processes, such as the resilience feedbacks we outlined above, there 
are limitations intrinsic to observational methods. Namely, from 
our study we cannot conclusively determine if resilience to precip-

itation events is driven by diversity (richness and evenness) or an 
unaccounted- for correlated variable(s).

4.3  |  Temporal variation in community properties 
promoted long- term invariability

We found that subplots with higher long- term variation in evenness 
and S. altissima relative abundance had increased long- term ANPP in-

variability (last panels of Figure 4a,b). While initially counterintuitive 
that more temporally variable communities would have more stable 
functioning, these findings point to the potential role of compen-

satory dynamics in this system, wherein asynchronous responses 
among species to environmental fluctuations scale to stabilize com-

munity productivity through time (Gonzalez & Loreau, 2009). Here, 
we suggest that fluctuations in S. altissima abundance may be offset 
by asynchronous responses in the subdominant community mem-

bers (Hector et al., 2010).

5  |  CONCLUSIONS

We explored the role of plant community properties in regulating 
primary productivity resilience to precipitation events in a temperate 
grassland. We found that drought has much stronger effects on ANPP 
than wet events, but both wet and dry events alter community prop-

erties—in particular, evenness, dominant species relative abundance, 
and richness. These same community properties strongly regulate 
productivity resistance to drought and are associated with long- term 
invariability. As a result, even though extreme wet events had mini-
mal effects on ANPP, they may nonetheless affect resilience to future 
extreme droughts. More generally, we infer that these connections 
between precipitation events, community properties, and resilience 
may lead to feedbacks with implications for long- term productivity 
resilience. As precipitation events increase in frequency and severity 
under climate change, future work may explore the generalizability of 
such feedbacks in plant communities, as well as evaluate these feed-

backs in relation to the resilience of other ecosystem functions.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Table S1: Rationale for inclusion of community and event type 
predictor variables and interaction terms in the resistance and 
recovery global models.
Table S2: Predictors of the magnitude of precipitation events' impact 
on aboveground primary productivity.
Figure S1: Observed values of response variables, indicated by 
points, underlying the predicted relationships from best- fit models 

shown in Figure 4.
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