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2. Using two decades (2000-2020) of annual net primary productivity data from
early successional grassland communities, we evaluated the plant community
properties regulating primary productivity resistance and recovery to contrasting
precipitation events and invariability (i.e. long-term stability). We then explored
how resilience-modulating community properties responded to precipitation.

3. We found that community properties—specifically, evenness, dominant species
(Solidago altissima) relative abundance, and species richness—strongly regulate
productivity resistance to drought and predict productivity invariability and
tended to promote resistance to wet years. These community properties also
responded to both wet and dry precipitation extremes and exhibited lagged re-
sponses that lasted into the next growing season. We infer that these connections
between precipitation events, community properties, and resilience may lead to
feedbacks impacting a plant community's resilience to subsequent precipitation
events.

4. Synthesis. By exploring the impacts of both drought and wet extremes, our
work uncovers how precipitation events, which may not necessarily impact
productivity directly, could still cryptically influence resilience via shifts in
resilience-promoting properties of the plant community. We conclude that these
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1 | INTRODUCTION

Climate change is disrupting historic environmental regimes,
including increases in the frequency and severity of extreme
climatic events, such as droughts and intense rainfall periods
(IPCC, 2021; Smith, 2011). The impacts of droughts on plant com-
munities and their associated ecosystem functions are well appre-
ciated. For example, droughts can alter community composition
(Gao et al., 2022; Hoover et al., 2014; Xu et al., 2021) and drive
significant reductions in primary productivity (Gao et al., 2019;
Liu et al., 2023; Su et al., 2022), and these impacts often persist
post-drought (‘drought legacies’; Miiller & Bahn, 2022; Vilonen
et al.,, 2022). The consequences of highly wet periods, by con-
trast, have thus far received less attention, despite heavy rain-
fall events increasing over the past century throughout the
contiguous United States and in many other regions worldwide
(IPCC, 2021; Jay et al., 2018). Further, the impacts of extreme wet
and dry events are often evaluated independently (although see
Isbell et al., 2015; Sala et al., 2012; Wilcox et al., 2017), despite
both types of ‘precipitation events’ (see Box 1) increasing in many
regions. Therefore, to persist and maintain critical ecosystem
functions plant communities must be resilient to both of these

contrasting precipitation events.

BOX 1 Key terms and definitions

Precipitation event: Periods when water availability is outside
‘normal’; a drought (SPEI < -1) or wet event (SPEI> 1)

Standardized precipitation-evapotranspiration index (SPEI):
Measure of an ecosystem's water availability resulting from
the difference between inputs from precipitation and outputs
from potential evapotranspiration

Resilience: A multi-dimensional quality that describes an
ecosystem's capacity to absorb perturbations and persist in a
reference state

Resistance: The degree to which an ecosystem function
(e.g. productivity) changes in response to a perturbation

Recovery: The rate at which an ecosystem function
returns to pre-perturbation conditions in the year
after a perturbation; sometimes called ‘resilience’ (e.g.
Pimm, 1984)

Invariability: The degree to which an ecosystem function
varies through time. Often used synonymously with
‘stability’

precipitation event-driven community shifts may feedback to impact long-term

productivity resilience under climate change.

above-ground primary productivity, climate extremes, community composition, drought,
precipitation, resilience, stability

Resilience is a multi-dimensional quality that describes an eco-
system's capacity to absorb perturbations and persist in a reference
state (Box 1; Van Meerbeek et al., 2021). While key assumptions
of the resilience concept vary among disciplines (i.e. ‘ecological
resilience’ sensu Holling, 1973 vs. ‘engineering resilience’ sensu
Pimm, 1984), the framework broadly captures both a system's re-
sponses to perturbation events and long-term patterns. We can begin
to explain variation in resilience across communities and ecosystems
by quantifying aspects of resilience—resistance, recovery, and in-
variability—and linking them to community properties. Resistance
is the degree to which an ecosystem function (e.g. productivity)
changes in response to a perturbation. Recovery (termed ‘resilience’
by Pimm, 1984) is the rate at which an ecosystem function returns
to pre-perturbation conditions. Invariability (often called ‘stability’)
expresses how an ecosystem function varies through time. While
resilience is often assumed to be beneficial, resilience does not nec-
essarily confer increased ecosystem functioning. For example, wet
events can increase productivity (Wilcox et al., 2017), and therefore,
resilience in this context would diminish productivity benefits.

Plant community properties, including species richness, even-
ness, and dominance, can influence resilience to environmental
perturbations, including precipitation events. However, the prop-
erties that promote aspects of resilience to droughts may differ
from those promoting resilience to highly wet conditions. Species
richness is widely demonstrated to promote resilience through
functional diversity and redundancy (i.e. diversity-stability rela-
tionship; lves & Carpenter, 2007; Tilman et al., 1996). Given that
a speciose community should exhibit greater response diver-
sity—the range of species' responses to an environmental change
(Elmqvist et al., 2003)—diverse communities on average should
have a higher probability of maintaining critical functions under
stress (i.e. biological insurance theory; Yachi & Loreau, 1999). Prior
work leveraging data from 46 grassland diversity manipulation
experiments found species richness increased productivity resis-
tance to precipitation events (both wet and dry events), as well as
long-term productivity invariability, but not post-event recovery
(Isbell et al., 2015). Other aspects of diversity, such as evenness
and dominance can further modulate resilience by affecting func-
tional trait distributions (Hillebrand et al., 2008). Although often
thought of as being antithetical to one another, evenness and
dominance both likely contribute to determining trait distributions
in non-monodominant communities. First, evenness within a com-
munity can promote resilience by enhancing trait diversity, func-
tional redundancy, and temporal complementarity among species
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(Loreau et al., 2021). This is distinct from the effects of richness
because even when communities have the same richness, they can
differ in evenness. In a low-evenness community, low-abundance
species contribute minimally to functional diversity (i.e. low func-
tional evenness). Therefore, not only species counts, but also
abundances within the community may be an important determi-
nant of resilience. Second, as dominant species largely determine
community-weighted trait values, dominants that are resistant to
a given perturbation could confer community-level resilience to
that perturbation by sustaining key functions and interactions.
Because both species richness and evenness act by increasing
trait diversity and temporal complementarity and different spe-
cies are likely to be more resistant to dry versus wet extremes,
these properties might be expected to promote resilience to both
wet and dry extreme events. In contrast, whether dominance pro-
motes resilience to wet versus dry events likely depends on the
specific dominant species and whether it is resistant to drought,
inundation, or both.

The characteristics of constituent species and functional
groups additionally impact resilience through differences in phys-
iological tolerances, life history and demographic traits, and re-
sponses to environmental alterations (Lloret et al., 2012; McGill
et al., 2006; Paniw et al., 2021). For instance, a study across eight
European grasslands found graminoids are more drought sen-
sitive than forbs (Mackie et al., 2019), although a study compar-
ing drought responses between a single grass and forb species
found the opposite (Hoover et al., 2014). Similarly, under stress,
non-natives may be less adapted to resource reductions like
drought, resulting in reduced growth relative to native species
(Liu et al., 2017; Valliere et al., 2019), although the opposite has
also been observed (Meisner et al., 2013). Thus, the relative abun-
dances of certain species and functional groups within a commu-
nity may further regulate productivity resilience although existing
data are still too limited to yield general predictions.

While community properties modulate community resilience
to precipitation events, they also respond to precipitation events.
As a result, community responses to extreme wet and dry years
may impact a community's resilience to future events. Such shifts
in potentially relevant community properties, including richness,
functional diversity, and forb and grass abundances, have been
observed in grassland communities in response to drought (Gao
et al., 2022; Hoover et al., 2014; Xu et al., 2021) and elevated pre-
cipitation (Collins et al., 2012; Yang et al., 2011). Although precip-
itation legacies—shifts in community properties and processes
driven by drought and wet extremes—are increasingly appreciated
(Mdller & Bahn, 2022; Sala et al., 2012), their impacts on resilience
to subsequent events remain poorly characterized. Further, as wet
extremes tend to elevate productivity (Sala et al., 2012; Wilcox
et al., 2017), we might assume that we can disregard their impacts
on a system's resilience. However, wet events may indirectly impact
productivity resilience to future extreme events via their effects on
community properties, as described above. Consequently, as precip-
itation is predicted to become increasingly variable under climate
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change (IPCC, 2021; Smith, 2011), evaluating the interplay between
droughts and wet extremes is critical for accurately capturing the
current resilience of plant communities and their functions and for
predicting resilience to future precipitation events.

Leveraging a two-decadal (2000-2020) record of primary pro-
ductivity in a temperate grassland community, we evaluated the
community-level factors regulating the resistance and recovery
of productivity to contrasting precipitation events (Aim 1). We
considered how community properties influenced long-term pro-
ductivity invariability over the two decades (Aim 2). Finally, we
explored how the focal community properties associated with
resilience responded to precipitation and if precipitation legacies
occur within the community (Aim 3). Together, our research in-
vestigates feedbacks between precipitation events, community
properties, and resilience to explore if the oscillating precipitation
events predicted for the future will have consequences for plant
community resilience.

2 | METHODS

Above-ground net primary productivity (ANPP) and plant commu-
nity data were collected at the Kellogg Biological Station Long-Term
Ecological Research (KBS LTER) site in Hickory Corners, Ml (42°24’
N, -85°22" W). Prior to European settlement in the 1830s, the local
ecosystem was an oak savanna, maintained by periodic burning by
the indigenous community (Robertson & Hamilton, 2015). In the
mid-1800s, the site was converted to tilled agriculture, primarily for
cereal crops (Tomecek & Robertson, 2019). The study plots are six
1ha (87x105m) grasslands that were released from agriculture in
1989. To prevent tree colonization and maintain communities in an
early successional state, the plots have been burned annually since
1997. Additionally, herbicide is applied occasionally (every ~5years)
to manage clonal woody species in the plots. The plots are domi-
nated by Solidago altissima, while Elymus repens, Bromus inermis,
Phleum pratense, Aster sagittifolius, and Trifolium pratense are abun-
dant subdominant species. Average richness throughout the study
period for each 1 m? subplot was 11.6 (SD=23.4). As the composition
of these perennial-dominated communities stabilized a few years
after burning began (Gross & Emery, 2012), this study considers
community dynamics from 2000 through 2020. During the focal pe-
riod, the site's mean annual temperature was 9.4°C and mean annual

precipitation was 984 mm.

2.1 | Identifying precipitation events

We identified drought and wet events based on the standardized
precipitation-evapotranspiration index (SPEI; Box 1; Figure 1).
Using meteorological data from KBS LTER (Robertson, 2020),
we estimated evapotranspiration (using the Penman-Monteith
equation) to calculate SPEI (‘'SPEI' package; Begueria & Vicente-
Serrano, 2023) for a reference period of 1993-2022. We selected
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FIGURE 1 August SPEI at KBS LTER between 2000 and 2020 at three timescales (2-, 4-, and 12-month). Colours and shapes denote the
precipitation event type and intensity, respectively. Precipitation conditions are considered near normal when SPEl is -0.99-0.99 (Vicente-
Serrano et al., 2010). Moderate intensity events occur between |SPEI| 1.00-1.49, severe events between |SPEI| 1.50-1.99, and extreme
events when |SPEI| 22.00. The sign of SPEI denotes whether the event is wetter (+) or drier (=) than normal conditions.

this 30-year period to capture climatic conditions experienced by
the local plant community in recent decades. For example, as the
community may have become acclimated to the wetter growing
seasons observed in recent decades, it may be more sensitive to
drought. We used local meteorological data, rather than a grid-
ded product, because KBS LTER is located ~70km east of Lake
Michigan, resulting in precipitation patterns that are locally highly
variable due to ‘lake effects’.

To capture variation in event duration, which may influence an
event's impact on productivity, we calculated SPEI at three times-
cales: 2-month (equivalent to growing season droughts commonly
observed in the region, like the 2012 North American drought), 4-
month (equivalent to local growing season length), and 12-month
(the timescale for which previous studies have found the strongest
responses in temperate grassland productivity; Vicente-Serrano
et al., 2013). All SPEI values ended in August (2-month: July-August;
4-month: May-August; 12-month: prior-year September-current-
year August). We chose this end point because it corresponds to
the timing of peak biomass harvest, from which we approximated
community composition (see next section). Precipitation events oc-
curred on more than one timescale in 2000, 2004, 2005, 2012, and
2015. For these years, we only considered the event occurring at
the longest timescale because including such years as two or three
distinct events (i.e. at each timescale) would lead to pseudoreplica-
tion as they are not independent events. To calculate event intensity,
we took the absolute value of SPEI. While we detected several ‘se-
vere’ or ‘extreme’ 2- and 4-month events in our dataset, they were
ultimately excluded from our analyses because those years were
also categorized as precipitation events at the longer 12-month
timescale. However, for the 2-month timescale, we did not observe
‘severe’ or ‘extreme’ wet events (SPEI>1.50) likely due to regional
precipitation seasonality. Intense rainfall typically occurs in the late
winter and spring and therefore, did not contribute to the water bal-
ance calculations for 2-month (July-August) SPEI values.

2.2 | Above-ground net primary productivity

Peak biomass (late-July or August) was harvested annually in five
1m? (0.5x2m) subplots per 1ha plot (N=>5 subplotsx 6 plots=30
replicates) (Robertson & Snapp, 2020). We used subplot as the level
of replication rather than plot for our analyses for several reasons.
First, anecdotally the community is highly spatially variable at fine
scales. To confirm this statistically, we ran a PERMANOVA (‘adonis2’
in vegan package) to evaluate the spatial scale at which community
variation was predicted, using species' relative abundance data
(methods outlined below) for 1999-2020 with ‘subplot’ nested in
‘plot’. Both spatial scales significantly predicted community compo-
sition (p=0.001) and explained a comparable amount of variation
in composition (plot and subplot R?=0.14 and 0.13, respectively).
Second, in our models predicting ANPP resistance and recovery (see
Aim 1 methods below), we initially included plot as a random effect
to account for potential spatial autocorrelation among subplots. The
inclusion of this random effect term consistently reduced model fit
(evaluated via AIC).

We excluded surface litter, standing dead biomass, and trees and
clonal woody species as they are all managed in the plots via annual
burning and herbicide application. We sorted all biomass to species
(or in rare cases genus); all biomass not identified to the genus-level
was reclassified as ‘unknown’ (on average 2% of total subplot bio-
mass). We then calculated ANPP as the sum across all species of each
subplot's biomass. Productivity data from 2007 were excluded from
all analyses because plots were not burned that year. Additionally,
for all analyses, ANPP observations were excluded if woody species
and/or unidentified biomass accounted for >5% total ANPP (55 ob-
servations excluded, i.e. 8% of total observations). To estimate the
magnitude of precipitation events' impact on ANPP, we calculated
the log-response ratio between event year ANPP and long-term av-
erage ANPP for each subplot (excluding perturbation years), then
ran a linear regression to evaluate the effect of precipitation event
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type (drought vs. wet), event intensity (|SPEI|), duration, and their
interaction on ANPP.

2.3 | Quantifying ANPP resistance, recovery, and
long-term invariability

We estimated community resistance to precipitation events
as % where Y, is perturbation year ANPP and Y_,l is subplot
long-term average ANPP excluding perturbation years (Isbell
et al., 2015). As each SPEI timescale identified a different suite
of perturbation years, we calculated \7,, separately for each time-
scale. While some event years were not included in the resil-
ience analyses to avoid issues of non-independence (see section
‘Identifying precipitation events’), these years were still excluded
from \_/,,. Resistance quantifies the system's distance from mean
during an event year; if resistance=2, then productivity is re-
duced by 50% during an event year relative to mean productiv-

L Y, -Y,
ity in non-event years. We calculated recovery as T, where
e+l ™ 'n

Y,..1 is ANPP in the post-perturbation year (termed ‘resilience’ by

Isbell et al., 2015). Recovery quantifies the system's return rate to
mean following an event; if recovery=2, then in the next grow-
ing season, productivity returns to 50% of mean non-event year
productivity. When the denominator in the resistance and recov-
ery estimations are very small (i.e. little change in productivity in
response to a precipitation anomaly), then resilience measures ap-
proach infinity. To address this, for any values exceeding 100, we
set both resistance and recovery to a maximum of 100; for resist-
ance, for example, this assumes that the system moves at least 1%
away from normal conditions during an event. Several event years
were followed by an event in the next year; for these years (2003,
2004, 2011, and 2015-2020), we only calculated resistance, as re-
covery could not be evaluated because the system did not return
to non-perturbation conditions. We estimated long-term invari-
ability as f or the long-term mean subplot ANPP divided by the
long-term standard deviation of subplot ANPP.

2.4 | Predictors of ANPP resistance and recovery
(Aim 1)

We approximated annual subplot species richness and Simpson's
evenness from biomass data. We estimated species' relative abun-
dance in each subplot by dividing species' subplot ANPP by total
subplot ANPP. From these species relative abundances, we calcu-
lated the annual relative abundance of all non-native species and
of all forb species in each subplot based on qualitative trait data
(University of Michigan Herbarium, 2022; USDA & NRCS, 2022).
Grass species relative abundance was not included as a predictor
because most non-forb species in the community are graminoids,
and therefore, grass abundance was highly correlated with forb rela-
tive abundance (Pearson's correlation coefficient=-0.93). We also
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calculated the relative abundance of Solidago altissima (tall golden-
rod; previously identified on the KBS LTER as S. canadensis, Canada
goldenrod, prior to nomenclature updates to the Solidago genus) in
each subplot. Solidago altissima is the long-term average dominant
species in 87% of subplots, accounting on average for 40% of sub-
plot biomass.

We selected an a priori set of community and precipitation event
properties that we predicted may influence resilience in this system:
richness, evenness, dominant species relative abundance, non-native
species relative abundance, forb relative abundance, event intensity,
event duration, event type, richness x intensity, richness x duration,
event type x each community predictor. We included interactions
between richness and event duration/intensity because diversity's
stabilizing effects may depend on a perturbation's duration and
intensity (Isbell et al., 2015). We additionally included interactions
between event ‘type’ (i.e. drought vs. wet) and all community pre-
dictors to evaluate if predictors of resistance and recovery differed
between these precipitation events. Refer to Table S1 for additional
rationale on the included community and event properties. From this
global model, we used stepwise AIC analysis (‘stepAlIC’ in ‘MASS’
package) to select best-fit general linear models that predicted ANPP
resistance and recovery to all perturbation years. We used prior-
year community properties to predict resistance and recovery to
current-year precipitation events (e.g. 1999 community properties
for predicting responses in 2000). This is because end-of-growing
season biomass was used to estimate community properties and is
likely influenced by precipitation anomalies occurring in that year.
Although the plots are burned annually, there are essentially no an-
nual species and each growing season, the community returns from
below-ground stock; therefore, end-of-growing-season community
properties are informative of the community's ‘starting point’ for the
subsequent growing season. As mentioned above, to address poten-
tial spatial autocorrelation among subplots within plots, we evalu-
ated how the inclusion of random effects (‘plot’, and ‘subplot’ nested
in ‘plot’) affected model performance. We found that model perfor-
mance was reduced when random effects were included (evaluated
by AIC), and therefore, dropped them from our analysis.

Because we detected significant event type x community pre-
dictor interactions, we applied the same best-fit models (exclud-
ing the ‘event type’ term and its interactions) to drought and wet
events separately to further evaluate the extent to which predic-
tors differed between precipitation events. For all models, we log-
transformed resistance and recovery to meet the assumptions of
normality and homoscedasticity and confirmed that there was no
multicollinearity among predictor variables by assessing variance in-

flation factors (‘vif’ in ‘car’ package).

2.5 | Predictors of long-term ANPP invariability
(Aim 2)

To identify the community properties that promote long-term ANPP
invariability, for each subplot, we calculated long-term average
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richness, evenness, dominant species relative abundance, non-
native relative abundance, and forb relative abundance. As temporal
variability in these properties may also impact invariability, we also
calculated long-term variation of each factor. We then evaluated the
factors (long-term averages and variation) that predict long-term
ANPP invariability, again using stepwise AIC to select the best-fit

general linear model.

26 |
(Aim 3)

Community responses to precipitation events

We assessed the effect of precipitation and evapotranspiration
(quantified via the standardized precipitation-evapotranspira-
tion index, SPEI) on our five focal community properties (richness,
evenness, S. altissima relative abundance, forb relative abundance,
and non-native species relative abundance). We thereby evaluated
how precipitation impacts the community properties that may
modulate ANPP resistance, recovery, and long-term invariability.
We constructed separate models for each of the three SPEI time-
scales (2-, 4-, and 12-month) and for each community property. As
community properties may respond nonlinearly to environmen-
tal conditions, in each model, we included a quadratic term (i.e.
SPEI?), which was dropped from the model if it did not improve
model fit when assessed by AIC. Finally, to determine if legacies
of precipitation availability persisted within the community, we
performed the same analysis, but instead regressed SPEI on next-
growing-season community properties (e.g. richness; ,~SPEl;).
All statistical analyses were performed in R (version 4.3.2; R Core
Team, 2023).

3 | RESULTS

3.1 | Impact of precipitation events on ANPP

Droughts and wet events differed in their impacts on above-ground
primary productivity, and the magnitude of dry or wet event effects
on ANPP differed across event durations and intensities (p <0.01 for
all predictors and interactions; Table S2). Unsurprisingly, stronger
drought events yielded greater reductions in ANPP, as moderate
droughts (-1.49 <SPEI<-1.00) had no effect on ANPP (mean+95
Cl=-3%+4%), but severe (-1.99<SPEl<-1.50) and extreme
(SPEI<-2.00) droughts reduced ANPP on average by 35% (+8%)
and 43% (+7%), respectively (Figure 2a-c). In contrast, moderate
wet events (1.49>SPEI>1.00) reduced ANPP by 6% (+4%), while
severe wet events (1.99 > SPEI> 1.50) increased ANPP by 8% (+5%),
particularly for the shorter-term 2- and 4-month events, and ex-
treme wet events (SPEI>2.00) did not significantly affect ANPP
(8% +10%). When averaged across all event intensities and dura-
tions, droughts reduced ANPP by 22%, while wet events on average

did not significantly alter productivity (Figure 2d).

3.2 |
(Aim 1)

Predictors of ANPP resistance and recovery

The community and event properties that best predicted resilience
to extreme precipitation events differed between resistance and
recovery and between drought and wet events (Table 1; Figure 3).
For example, in the full resistance model, we detected interactions
between forb relative abundance (a community property) and event

(a) 2-month (b) 4-month () 12-month (d) All events
100% A 100% A 100% A 100% A
(0]
o
S 50% 50% 50% 50%
e
(&)
o a A Q':;:;,,;—::’/' 2 o E—— | —
% 0% — 0% T 0% : 0% —e——
< \ 4 - i N s
-50% - o -50% - 9 -50% - -50% -
1.00 1.25 150 1.75 2.00 15 18 21 24 12 14 16 18 Dro:Jght Wet
Intensity (|SPEI|) Intensity (|SPEI|) Intensity (|SPEI|)
Event type == Drought == Wet

FIGURE 2 The effect of precipitation events (i.e. drought or wet event) on above-ground net primary productivity (ANPP) depends on
event intensity (a-c). For droughts, event intensity reduced ANPP, while wet event intensity tended to increase ANPP. On average, droughts
significantly reduced ANPP, while wet events did not alter productivity (d). In (a-c), points indicate observed subplot ANPP change from
long-term non-event mean, and error bars indicate 95% confidence intervals around estimated ANPP change given event intensity. Sample
sizes vary because each timescale had a different number of precipitation events (refer to Figure 1). In (d), coloured points indicate observed
subplot ANPP change, and black points indicate event type-mean ANPP effect with 95% confidence intervals.
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TABLE 1 Predictors of resistance and recovery to all precipitation events, and drought and wet events separately. Bolded model results
indicate a significant predictor of resistance and recovery (***p=0-0.001; **p=0.001-0.01; *p=0.01-0.05); non-significant predictors
selected in the best-fit all-events models are also reported. The sign of the regression coefficient (f) indicates the direction of the

relationship.
All events
Resistance, adj. Recovery, adj.
Predictors R?*=0.11 R?*=0.03
Richness p=0.15, =+
Non-native %
Dominant % *p=+
Evenness =+
Forb % p=0.22, p=+
Intensity == p=0.09, p=-
Duration p=0.06, p=+
Event type (wet=+) p=0.63, =+ p=0.12, p=+
Richness x Intensity
Richness x Duration
Richness x Type
Non-native % x Type
Dominant % x Type
Evenness x Type
Forb % xType N B=-
Intensity x Type =+
Duration x Type p=0.10, f=-

Drought
Resistance, adj.
R?=0.23

“B=+

“pert
“pt
p=0.49, f=+
S
p=0.07, f=+
N/A

N/A
N/A
N/A

Wet

Resistance, adj.

R?=0.03

p=0.73, f=+

p=0.14, p=+
- pen
p=0.12, p=-
p=0.93, f=+
p=0.78, f=+
N/A

N/A
N/A
N/A

Recovery, mult.
R2=0.04

p=0.08, p=-

N/A

Note: All considered community and event properties and interactions are presented, and greyed-out cells indicate predictors that were not selected

in the best-fit all-events models.

FIGURE 3 The community and event

properties that best predicted resilience
to precipitation events differed between
resistance (left) and recovery (right) and

between drought (above in pink) and

Effect size
(std. B)

wet events (below in blue). Error bars

on standardized regression coefficients
indicate 95% confidence intervals around %
mean effect size (***p=0-0.001; **p =

0.001-0.01; *p=0.01-0.05; tp=0.05-0.1).

Effect size
(std. B)

S oo = o
g O O o O,

-1.01

%

type, such that increased forb abundance tended to increase resist-
ance to drought but decrease resistance to wet events (Table 1).
Overall, community and event properties explained more variance
for resistance than recovery (ad;. R?=0.11 and 0.03, respectively),
and explained considerably more variation for drought than wet
events (resistance adj. R2=0.23 and 0.03 for drought and wet events,
respectively). Unfortunately, because 2005 was the only drought
year not followed by another precipitation event, we could not evalu-
ate drought recovery.

Resistance Recovery
$
Dominant Duration Evenness Intensity Forb Richness
%
- 3 0.0 T
® ? = T ® +
- ] e L ] 03 [
-0.6 1
-0.9 1
. : : : & : 1.2 :
Dominant Duration Evenness Intensity Forb Richness Intensity

%

For droughts, dominant species relative abundance (p=0.02),
evenness (p=0.005), and species richness (p=0.05) were posi-
tively related to increased ANPP resistance (Figure 3). By contrast,
only evenness significantly predicted ANPP wet event resistance
(p=0.006), although effect sizes for most predictors were com-
parable to those for drought (Figure 3). All other variables, ex-
cept for event duration and event intensity (see Table 1), were
non-significant in the event type specific models. In contrast to
resistance, no community properties predicted recovery from
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0-0.001;

TABLE 2 Rela -year (top) and prior-year (bottom) SPEI and community properties; reported values are regression coefficients and if applicable, level of significance (***p

0.05-0.1).

0.001-0.01; *p=0.01-0.05; tp

**p:

Dom. Species Evenness Forbs

Non-native species

Richness

Predictors:

SPEI: 0.17

)
)
.

SPEI: -0.004
SPEI% -0.007t
SPEI: -0.001

SPEI% -0.0047

v
v
v
v
v
v

SPEI: 1.24
SPEIZ 6.56***
SPEI: -2.17*

A
e

SPEI?: —4.83***

SPEI: 0.53

)
)
)
)
AN
AN

Note: Plots show the form (linear or quadratic) and direction of the relationship between SPEI and the community property.

SPEI% -0.66***

SPEI: 0.09
SPEI: 0.31*

2-month SPEI

SPEI: 0.68

SPEI% 2.38***
SPEI: -1.661

SPEI: 2.51**
SPEI% 1.98*

SPEI% -0.32***
SPEI: -0.24*

4-month SPEI

Current year

SPEI: -0.16

SPEI: 0.01***

SPEI: 0.77

SPEI% -0.40***

12-month SPEI

SPEI: -0.97

SPEI: 4.073x 107

SPEI: 3.53***

SPEI: -0.06
SPEI?%: -0.40**

2-month SPEI

PEREZ €T AL.

SPEI: 0.13

l”
N

SPEI: 0.007t

SPEI: 2.63***

4-month SPEI SPEI: -0.22t

Prior year

SPEI: -0.50

SPEI: 0.007+
SPEI%: -0.0071

SPEI: -0.85
SPEI% 3.39***

SPEI: -0.31
SPEI% -2.15*

SPEI: -0.22t

12-month SPEI

precipitation events. The reduced predictive ability for recovery
relative to resistance may be due to lower sample sizes (n=96 and
388, respectively) because fewer events could be used to assess
recovery as many event years were followed by an event in the

next year.

3.3 | Predictors of long-term ANPP invariability
(Aim 2)

Communities that maintained greater richness (p <0.001) and even-
ness (p<0.001) through time (i.e. higher long-term averages) had
increased long-term ANPP invariability. Long-term average forb
relative abundance tended to reduce invariability (i.e. increased
variability), although not significantly (p=0.09). Unexpectedly, long-
term variation in evenness (p =0.05) and in dominant species relative
abundance (p<0.001) also increased invariability, while long-term
variation in non-native species relative abundance was related to
reduced invariability (p=0.05). While a long history of theory and
empirical work provides rationale for why mean richness and other
community properties would affect invariability, associations be-
tween variation in community properties and invariability are harder
to explain. However, we posit that the importance of temporal varia-
tion in community properties may be due to compensatory dynamics
among species in the community (see discussion section on temporal
variation for elaboration). Cumulatively these factors explained 65%

of variation in long-term ANPP invariability.

3.4 | Community responses to precipitation events
(Aim 3)

Most focal community properties responded significantly to pre-
cipitation, although the form (i.e. linear or quadratic) and direction
of these relationships often varied among timescales for a given
community property (Table 2). Across SPEI timescales, richness
was reduced in wetter and drier years (negative quadratic function);
conversely, dominant species relative abundances were lowest in
average precipitation years and highest in wetter or drier condi-
tions (positive quadratic function). The responses of evenness and
non-native species relative abundance varied across timescales. At
the 2- and 4-month timescales, both dry and wet extremes reduced
evenness, although not significantly, while at the annual scale, even-
ness was positivity correlated with wet conditions. For non-native
species, at the 2-month scale, precipitation events reduced their
relative abundance, while at the 4-month scale, their relative abun-
dances were higher under wet conditions. We did not find corre-
lations between forb species relative abundance and SPEI at any
timescale. Finally, we found that similar patterns (i.e. form and direc-
tion of relationship) in community properties (except forb relative
abundance) occurred with prior-year SPEI as with current-year SPEI
(Table 2), suggesting legacies of precipitation events persist within
the plant community.
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4 | DISCUSSION

We explored the impacts of precipitation events, which are
forecasted to increase in frequency and severity under climate
change (IPCC, 2021; Smith, 2011), on productivity in a grassland
community. As expected, naturally occurring droughts substan-
tially reduced primary productivity. Productivity resistance to
drought increased with relative abundance of the dominant spe-
cies (Solidago altissima), evenness, and species richness, while both
drought resistance and recovery decreased with drought intensity
(i.e. lower SPEI reduced both aspects of resilience). By contrast,
wet periods on average caused no deviation in productivity from
long-term averages (although extremely wet years typically in-
creased productivity and minor wet events tended to reduce pro-
ductivity), differing from the findings of a meta-analysis that ANPP
is typically more sensitive to simulated precipitation additions than
reductions (Wilcox et al., 2017). Our results may differ because
the meta-analysis evaluated responses across sites spanning a
wide range of climatic conditions (mean annual precipitation: 161-
1632 mm; mean annual temperature: -4.8-22.0°C), and therefore,
may be driven by arid systems' high sensitivity to elevated pre-
cipitation and/or because most simulated precipitation additions
are quite extreme (e.g. in this meta-analysis, on average precipita-
tion addition, plots received 43% more rainfall than control plots).

Despite wet events' minimal impact on ANPP, evenness positively

BRITISH 9
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predicted productivity resistance to extreme wet events. While re-
silience is often viewed as a desirable, resistance to extreme wet
events means that those communities with higher evenness are un-
able to take advantage of extremely wet years (although they may
also be less harmed by the slightly negative effects of minor wet
events). While other community properties did not significantly
predict resistance to wet events, the magnitude and direction of
effect sizes were comparable to those for drought resistance ex-
cept for forb abundance, which promoted drought resistance but
inhibited resistance to wet events. Thus, many properties promot-
ing resistance to dry events may also limit positive productivity
responses to high precipitation events, but forb abundance both
reduces productivity declines due to drought and tends to increase

a community's ability to take advantage of wet years.

4.1 | Precipitation legacies point to shifting
resilience dynamics

At first glance, our results would suggest that wet events are relatively
inconsequential for productivity in this system. However, our research
points to potential complex shifts in resilience under climate change via
precipitation-driven shifts in community properties. For example, we
found that wet years (i.e. high SPEI values at the 12-month timescale)

promoted evenness (Figure 4a; model-predicted relationships shown

(a)
0.324 *2 64
g 101 504
[}
g 0304 gg 94 - wﬁe"e,"ts - %‘5_ as
FIGURE 4 Precipitation-driven § 0.281 é; 81— proughts § a0
changes in community properties may u 0264 o g 7. / g, ‘
lead to complex resilience shifts. Wet S 6] N 3.5
periods promoted evenness in the Yo T T % awmwm [Ti
community (a), while both wet and dry SPEI Evenness Evenness Evenness
extremes were associated with increased (12-month) long-term avg.  long-term var.
dominant species relative abundance (b)
(b). (The saturating relationship between 70% 100 6
dominant species relative abundance and § |
drought resistance (centre panel of (b)) E § 60%1 §% 73 25
results from setting resistance to have gé 50% - \ 23 504 @
a maximum of 100. Refer to Section 2.3 8¢ ég 2 “1
of the methods for additional details.) § 40% 1 1 - 34
As both evenness and dominant species - 30% L, . . . . 0 . . . . . . . . .
abundance enhanced resistance and 2 R 0 1 2 0% 20% 40% 60% 80% 10 15 20 25 30
invariability, precipitation events may 2 4 gﬁg-lmonth) Dominant relative abundance Dominant long-term var.
counterintuitively lead to increased (©)
resilience to future drought. Conversely, 55
both wet and drought periods reduced 12 50
richness (c). Because richness is associated 0o o
with increased resistance and invariability, & i §§> z 4
increased precipitation variability may ‘53 2 L6 % 4.0
reduce resilience to future events. © 17 @2 € 35
Plotted lines show predicted relationships 94 34 30

(estimated marginal means) from best-fit . . .
models and error bars indicate 95% ’ SPEI
confidence intervals.

2 5 0 15 20 9 1 1 12 13
Richness Richness long-term avg.
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in main text but see Figure S1 for plots of observations). Evenness in-
creased ANPP resistance to both droughts and wet events, and sub-
plots with higher long-term average evenness had increased long-term
ANPP invariability. Therefore, wet events, via increasing evenness, may
indirectly increase the system's resilience to subsequent precipitation
events and stabilize productivity through time. Similarly, at all time-
scales, we found that both droughts and wet conditions increased S.
altissima relative abundance, and increased S. altissima abundance pro-
moted drought resistance (Figure 4b). Thus, the effects of increased
precipitation variability on ANPP may be buffered by community re-
sponses to extreme events. By contrast, at all timescales both dry and
wet extremes reduced richness within the community. Because rich-
ness increased drought resistance and long-term invariability, the ef-
fects of extreme events on species richness are likely to exacerbate the
direct effects of drought on ANPP and increase temporal variation in
ANPP (Figure 4c).

Taken together, these linkages between precipitation events,
community properties, and resilience may lead to feedbacks that
affect long-term productivity resilience. In other words, because of
their effects on community properties, precipitation events—even
wet extremes with minimal direct effects on ANPP—are likely to in-
fluence resilience to future precipitation events. While the potential
implications of drought legacies on resilience to subsequent events
is gaining appreciation (Mller & Bahn, 2022), our findings suggest
that legacies of wet events also can further affect future resilience.
As precipitation anomalies in both directions become increasingly
frequent and severe into the future (IPCC, 2021; Smith, 2011), con-
sideration of the lasting impacts of both wet and dry events is critical
for accurately predicting the future resilience of plant communities
and their associated ecosystem functions.

4.2 | Diversity via evenness and richness regulated
drought resilience

While the role of richness in promoting resilience to disturbance has
been particularly well-studied (Craven et al., 2016; Isbell et al., 2015;
Kreyling et al., 2017; Van Ruijven & Berendse, 2010) and was sup-
ported by our findings, we found that additional community prop-
erties (evenness and dominant species relative abundance) strongly
regulated productivity resistance to drought and long-term invari-
ability. Evenness likely contributes to these aspects of resilience via
enhancing functional diversity and complementarity among species
(Loreau et al., 2021). While functional richness explains the variety
of niche space occupied by the community, functional evenness
explains the extent to which niche space is utilized; if all available
niches are evenly utilized, we would expect increased productivity
invariability (Mason et al., 2005). Thus, studies only considering di-
versity via species richness may fail to capture an important aspect
of diversity, evenness, in contributing to productivity resilience. In
our system, dominance likely contributes to resilience because the
dominant species was previously found to be more temporally stable
than subordinate community members (Grman et al., 2010).

We were able to study these other community properties be-
cause of our long-term data from a natural and highly variable
community (as opposed to biodiversity experiments that largely
manipulate only richness). However, while leveraging long-term
datasets is a powerful approach for exploring complex ecological
processes, such as the resilience feedbacks we outlined above, there
are limitations intrinsic to observational methods. Namely, from
our study we cannot conclusively determine if resilience to precip-
itation events is driven by diversity (richness and evenness) or an

unaccounted-for correlated variable(s).

4.3 | Temporal variation in community properties
promoted long-term invariability

We found that subplots with higher long-term variation in evenness
and S. altissima relative abundance had increased long-term ANPP in-
variability (last panels of Figure 4a,b). While initially counterintuitive
that more temporally variable communities would have more stable
functioning, these findings point to the potential role of compen-
satory dynamics in this system, wherein asynchronous responses
among species to environmental fluctuations scale to stabilize com-
munity productivity through time (Gonzalez & Loreau, 2009). Here,
we suggest that fluctuations in S. altissima abundance may be offset
by asynchronous responses in the subdominant community mem-
bers (Hector et al., 2010).

5 | CONCLUSIONS

We explored the role of plant community properties in regulating
primary productivity resilience to precipitation events in a temperate
grassland. We found that drought has much stronger effects on ANPP
than wet events, but both wet and dry events alter community prop-
erties—in particular, evenness, dominant species relative abundance,
and richness. These same community properties strongly regulate
productivity resistance to drought and are associated with long-term
invariability. As a result, even though extreme wet events had mini-
mal effects on ANPP, they may nonetheless affect resilience to future
extreme droughts. More generally, we infer that these connections
between precipitation events, community properties, and resilience
may lead to feedbacks with implications for long-term productivity
resilience. As precipitation events increase in frequency and severity
under climate change, future work may explore the generalizability of
such feedbacks in plant communities, as well as evaluate these feed-

backs in relation to the resilience of other ecosystem functions.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1: Rationale for inclusion of community and event type
predictor variables and interaction terms in the resistance and
recovery global models.

Table S2: Predictors of the magnitude of precipitation events' impact
on aboveground primary productivity.

Figure S1: Observed values of response variables, indicated by

points, underlying the predicted relationships from best-fit models
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shown in Figure 4.
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