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Abstract

Heterogeneity of treatment e�ects due to heterogeneous patient characteristics o�en

arises in clinical trials. Subgroup analysis and the analysis of interactions are the most

common approaches for evaluating such heterogeneous e�ects but do not explicitly address

multiplicity issues. Another common challenge of analyzing treatment e�ect heterogene-

ity is the large number of possible covariates which inevitably causes problems related to

multiplicity and lack of power. In this article, we develop a Bayesian credible subgroups

method using continuous shrinkage priors to assess heterogeneity in treatment e�ects and

multiplicity–adjusted bene�ting subgroup identi�cation for zero–in�ated count data, which

are o�en encountered in medical and public health studies. Our proposed method provides
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two bounding subgroups for the true bene�ting subgroup: one that is probably contained by

the true bene�ting subgroup and one that probably contains the true bene�ting subgroup. A

simulation study has been conducted to compare the performance of the proposed method

with other methods through frequentist properties. We apply our method to a clinical blad-

der tumor trial studying the e�ect of thiotepa treatment on the reduction of the recurrence

of bladder tumor.

Keywords: Bayesian credible subgroups, continuous shrinkage, conditional average treatment
e�ect, zero–in�ated regression.
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1 Introduction

Randomized clinical trials are primarily designed to draw inferences about a potential causal

relationship between patient outcomes and a particular treatment. �e e�ectiveness of a treat-

ment has typically been measured by the average treatment e�ect (ATE) as the di�erence in av-

erage outcomes between two treatment groups. �e ATE in the study population is assumed to

be adequately re�ective of the e�ect in any subject within this population, so the ATEmay over-

simplify the heterogeneity of each patient or similar subgroups of patients, which is known as

heterogeneous treatment e�ect (HTE). �e HTE o�en arises in clinical trials and observational

studies when a treatment, that has a positive e�ect on a majority of patients, may have no e�ect

on a subset of patients with certain characteristics due to variation in patient characteristics.

For example in a study of antiretroviral therapy (ART), timing of ART varies in individuals with

tuberculosis and newly infected with human immunode�ciency virus type 1 (Havlir et al. 2011).

Among individuals with CD4+ T–cell counts less than 50 per cubic millimeter, those with earlier

ART have a lower rate of new AIDS–de�ning illnesses and deaths than those with later ART,

while patients with higher CD4+ T–cell counts did not signi�cantly bene�t from earlier ART.

�erefore, the success of precision medicine depends on the correct identi�cation of subgroups

of patients who bene�t from a treatment.

One research direction in precision medicine is subgroup analysis, where the patients are

grouped based on the estimated individual–level treatment di�erences (Cai et al. 2011, Foster

et al. 2011). Alternatively, Qian et al. (Qian & Murphy 2011) proposed a regression model for

the response, and recommended the treatment achieving the best prediction. Ballarini et al.

(Ballarini et al. 2018) introduced pointwise con�dence intervals around predicted individual

treatment e�ects for continuous, survival and binary endpoints. Machine learning techniques,

such as the tree–based methods built on the idea of counterfactuals, have been used to identify

subgroups with di�erential treatment responses (Su et al. 2009, 2011, Foster et al. 2011). In

Bayesian framework, Schnell et al. (Schnell et al. 2016, Schnell 2017) developed simultaneous

credible bands for conditional average treatment e�ects for continuous endpoints, and Ngo et al.

extended their approach to survival endpoints (Ngo et al. 2020). However, a method to identify

bene�ting subgroups in the credible subgroups framework for count endpoints is desirable, but

not yet available.
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In many clinical trial applications, the outcome of interest is counting the occurrence of

an event, such as the number of hospitalizations, doctor visits (Wagner et al. 2007) or adverse

events related to a vaccine (Rose et al. 2006). Such count data are typically very skewed and

exhibit overdispersion. A classical approach is to use Poisson regression with an overdisper-

sion parameter or the negative binomial distribution (Hilbe 2011). When the overdispersion is

a result of a bimodal distribution, such as the observed number of zeros exceeds the expected

number of zeros from the corresponding Poisson regression, zero–in�ated Poisson (ZIP) (Lam-

bert 1992) or zero–in�ated negative binomial models are common choices. In the ZIP model, a

binary process will determine whether the observations are always zero or realizations from a

Poisson distribution, so zeros can either arise from the binary process or from a Poisson distri-

bution. In contrast to the ZIP model, the zeros in hurdle models (Mullahy 1986) are disjointed

from the non-zeros modelling with a truncated Poisson distribution and are commonly used in

econometrics (Cameron & Trivedi 2013). �e choice between hurdle and ZIP models depend on

the type of data, goals of study and statistical grounds (see Neelon et al. (2016) for more details).

For a particular choice of zero–in�ated model, researchers measure the ATE by the simple

di�erence–in–means estimator for the full sample, but ATE cannot explain how a treatment

varies across the patient population. �e conditional average treatment e�ect (CATE) of a bi-

nary treatment within the potential outcomes framework (Rubin 2005), is an alternative method

to the ATE for identifying a target subgroup of subjects who are expected to gain substantial

bene�t from a given treatment. �e CATEs are o�en estimated at each predictive covariate

point, that is, a set of baseline characteristics that predicts the patient’s response to a particular

treatment. �en researchers can perform a null hypothesis signi�cance testing for CATE at each

covariate point. �e drawback to this approach is that there are too many potential character-

istics that can in�uence treatment e�ect, and this leads to low power and false positive �ndings

due to multiple testings (Berry 1990, Cui et al. 2002, Lagakos et al. 2006).

To overcome these limitations, we develop a Bayesian credible subgroups approach for zero–

in�ated count data. Our proposed method is an extension of subgroup identi�cation method-

ology proposed by Schnell et al. (Schnell et al. 2016, Schnell 2017) for count endpoints. Partic-

ularly, to estimate a true bene�ting subgroup for count data with excess zeros, our approach is

based on a two–stage process: (1) �t a ZIP regression in a Bayesian model se�ing for computing
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CATE; (2) construct bounding subgroups based on the posterior distribution of CATE, resulting

in a pair of credible subgroups: one that is probably contained by the true bene�ting subgroup

and one that probably contains the true bene�ting subgroup. �is means that patients within

the former subgroup bene�t from a particular treatment; while those are outside the later sub-

group, they cannot bene�t from a particular treatment, irrespective of their characteristics. �e

key feature of the proposed approach is that it enables controlling for multiplicity and provid-

ing simultaneous inference, which means that all covariate points corresponding to a speci�c

subgroup simultaneously have a treatment e�ect exceeding a speci�ed threshold.

Moreover, current advances in technology allow researchers to collect information from

many biomarkers in a form of multidimensinal data, but many of the collected biomarkers may

not have signi�cant impacts on an experimental treatment. To improve the estimation and inter-

pretation of CATE in the case where many potential covariates are observed, we have developed

zero–in�ated regression model by incorporating a Bayesian variable selection approach. �ere

are numerous traditional variable selection methods, such as stepwise procedures in linear re-

gression models, but they are unstable because the selection and estimation steps are performed

separately (Breiman 1996). In the non–Bayesian approaches, penalization procedures such as

the least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996) and its extensions

have been used in many applications since the variable selection and parameter estimation can

be handled simultaneously. In a Bayesian framework, variable selection can be performed by

assuming shrinkage priors, such as spike–and–slab priors, on the model coe�cients (Mitchell

& Beauchamp 1988, George & McCulloch 1993, Geweke 1996). �ese types of priors are char-

acterized by density functions that are concentrated at zero and have a large probability mass

in a wide range of non–zero values. �is structure tends to shrink the posterior mean of truly

zero coe�cients towards zero, but it less a�ects the posterior mean of non–zero coe�cients.

In this work, we extend the spike–and–slab priors (George & McCulloch 1993) to the context

of zero–in�ated data, and investigate the frequentist coverage properties of these priors on our

proposed Bayesian credible subgroups.

�is article proposes two major contributions that are not being addressed in the current

literature: (1) our proposed method is an extension of the Bayesian credible subgroups (Schnell

et al. 2016) method to identify bene�ting subgroups for count data with excess zeros. �is is
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important in many areas of bene�t and risk analysis and in the �eld of personalized medicine.

Moreover, our method is amenable to the con�rmatory se�ing in a post hoc manner because

it can address the multiplicity issues in late–stage clinical trials with multiple subgroups of

patients, and it aims to evaluate treatment e�ect heterogeneity across subgroups of patients de-

�ned by the baseline or demographic covariates; (2) our Bayesian shrinkage approach improves

interpretability of credible subgroups when there is a large collection of potential covariates.

Finally, we provide the R codes and data which are available on GITHUB repository for repro-

ducibility.

�e remainder of this article is structured as follows. In Section 2, we present an overview

of the ZIP model for count data with excess zeros. We introduce the CATE in Section 3, and use

those to present the methodological approaches to construct Bayesian credible subgroups in

Section 4. We examine the performance of our proposed approaches from extensive simulation

studies in Section 5. In Section 6, we use a randomized controlled trial in patients with tumor

bladder (Baetschmann & Winkelmann 2013) to illustrate our proposed methods. We conclude

with a brief discussion in Section 7.

2 Zero–in�ated count data regression

As discussed above, the �rst stage of our two–stage approach is to �t a ZIP regression in a

Bayesian model se�ing. For zero–in�ated count data, ZIP regression provides a convenient

framework to model two subpopulations: a not–at–risk group for which the outcome is always

zero and an at–risk group for which the outcome is realized from a count data distribution, such

as Poisson or negative binomial distribution (Winkelmann 2008). A negative binomial model is

o�en chosen over Poisson model when the at–risk group distribution exhibits overdispersion.

Although the focus of this paper is to develop Bayesian credible subgroups for ZIP models, the

zero–in�ated negative binomial or other methods can be extended in the samemanner. We now

present an overview of ZIP regression in Bayesian model se�ing.

For subjects i = 1, . . . , n, let yi be the response variable taking on only non–negative inte-

gers. �e response yi is assumed to be independent, with the density de�ned as

f(yi) = ¹i10(yi) + (1− ¹i)g(yi), (1)
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where 0 ≤ ¹i ≤ 1 is the mixture proportion, and 10(yi) is an indicator function equaling 1 when

yi = 0 and 0 otherwise. Equation 1 directly represents the responses yi as a product of two

independent processes ui and vi, i.e. yi = (1 − ui)vi. �e Bernoulli process ui ∼ Bernoulli(¹i)

determines whether the observed yi is zero or not. If the observed outcome is nonzero, vi is

drawn from a count data model g. When g is a Poisson distribution, the ZIP model can be

expressed as

f(yi) =











¹i + (1− ¹i)e
−µi yi = 0

(1− ¹i)
e−µiµ

yi
i

yi!
yi > 0,

(2)

where µi = E(vi). From Equation 2, the response yi takes zero value either for vi = 0 or ui = 1.

�erefore, the ZIP model can handle the extra zeros compared to the traditional generalized

linearmodels, and the amount of extra zeros from the Poisson component vi is determined by the

mixture proportion ¹i. �e mean and variance of the ZIP model are given byE (yi) = (1−¹i)µi

and V ar (yi) = (1− ¹i)(1 + µi¹i)µi. Moreover, the parameters ¹i and µi are modelled through

canonical link generalized linear models (Lambert 1992), i.e.

log

(

¹i

1− ¹i

)

= ZZZ
⊺

iÄÄÄ + ÈiSSS
⊺

iϕϕϕ,

log(µi) =XXX
⊺

i ´́́ + ÈiWWW
⊺

iµµµ. (3)

where ZZZi and SSSi are q and m dimensional vectors of prognostic and predictive covariates for

the i–th subject in the zero component, respectively, and ⊺ denotes the transpose operator. �e

covariates ZZZi is regarded as prognostic (also known as main e�ects) as they directly in�uence

the outcome yi, whereas the covariates SSSi is considered as predictive (also known as modera-

tion e�ects) as they in�uence the outcome yi only through an interaction with the treatment

variable Èi. �erefore, the predictive covariates are useful to identify the characteristics of pa-

tients that bene�t from a treatment, and the prognostic covariates improve the precision of the

estimates of treatment bene�ts. Similarly, XXX i andWWW i denote p and k dimensional vectors of

prognostic and predictive covariates in the Poisson component, respectively. In Equation 3, it is

generally applicable to other link functions (probit, complementary log-log, cauchit or log link)

for modeling the zero component, but will not be considered here. Note that the terms predic-

tive and prognostic are o�en used in clinical trials literature for precision medicine (Beckman

et al. 2011, Ziegler et al. 2012, Zhao et al. 2022), andZZZi,SSSi,XXX i andWWW i may have some common
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terms or be distinct. A practical aspect of our model is distinguishing prognostic and predictive

e�ects, which might result in reducing the bias in the predictive e�ect. Moreover, identifying a

covariate having both predictive and prognostic functions provides practical insights for subject

ma�er experts.

In this article, our focus is on two treatment arms, such as Èi = 1 if the subject i is assigned

to treatment andÈi = 0 otherwise. �e parameters {ÄÄÄ ,ϕϕϕ} and {´́́ , µµµ} are corresponding vectors

of regression coe�cients, which provide separate inference for the zero component and Poisson

component respectively. �e interpretation of {ÄÄÄ ,ϕϕϕ} are the covariate e�ects on the probability

of the treatment being fully e�ective (not–at–risk subpopulation), whereas {´́́ , µµµ} are the e�ect

on the average count when the treatment is less than fully e�ective (at–risk subpopulation).

A common approach to assess the treatment e�ect is performing a likelihood ratio test for

testing the signi�cance of the unknown regression parameters in a ZIP model, but it is di�cult

to evaluate the overall treatment e�ect from separate treatment e�ect estimates of the two com-

ponents. An average predicted value approach (Albert et al. 2014) and marginalized ZIP model

(Todem et al. 2016) were proposed to do inference on the overall mean count while adjusting

for covariates, in particular, to compare the means between treatment groups. However, these

approaches provide inference for the overall treatment e�ect on the entire study population,

which cannot be used to identify which patient bene�ts from a treatment. �e CATE was intro-

duced to determine the subgroups of subjects for which the treatment is the most bene�cial (or

most harmful) within the context of experimental data. In the following section, we precisely

de�ne the CATE based on the ZIP model as a device to account for extra zeros in the data.

3 �e Conditional Average Treatment E�ect (CATE)

We frame CATE for a ZIP model described in Equation 3 using the Neymann–Rubin poten-

tial outcomes framework (Rubin 2005), as follows. Under the stable unit treatment value as-

sumption, let yi(0), yi(1) denote the potential outcome for subject i receiving treatment as-

signment Èi = 0 and Èi = 1, respectively, and we cannot simultaneously observe a sub-

ject in both treatment arms. Under randomized experiments, we assume that these outcomes

yi(0), yi(1) are independent of the treatment assignment Èi. �e observed data consist of

DDD = {yi, Èi,Xi = (XXX i,WWW i,ZZZi,SSSi)}, for i = 1, . . . , n, which are assumed to be independent
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and identically distributed draws from a superpopulation, which is the data generating pro-

cess for a �nite target population (Imbens & Rubin 2015, Ding et al. 2017). �e average of the

treatment e�ect is de�ned as

∆ATE = E [yi(1)− yi(0)] = E [yi|Èi = 1]− E [yi|Èi = 0] , (4)

which is constant for all subjects, so this one-size-�ts-all phenomenon cannot address the het-

erogeneity of the treatment e�ect. �e expectations in Equation 4 refer to the distribution of the

target population induced by the random sampling or by the (conditional) random assignment

of the treatment.

�e CATE, as opposed to the ATE, for the i–th subject is de�ned as the conditional average

treatment di�erence in potential outcomes, i.e.

∆CATE(Xi) = E [yi(1)|Xi]− E [yi(0)|Xi] . (5)

Since the characteristics of subjects are o�en de�ned by genetic or biomarker di�erences,

we focus on biomarkers that are potential e�ect modi�ers measured prior to the intervention

to reduce the risk of confounding bias. �erefore, under the unconfoundeness assumption, i.e.

{yi(1), yi(0)} ⊥ Èi|Xi, we have

∆(Xi) = ∆CATE(Xi) = E [yi|Xi, Èi = 1]− E [yi|Xi, Èi = 0] , (6)

which measures the causal treatment e�ect for subjects with baseline covariates Xi. Consis-

tency and positivity are two other identi�ability principles that receive less a�ention than the

unconfoundeness assumption but are equally important in causal inference. �e consistency

assumption states that the treatment is su�ciently well-de�ned and does not have multiple ver-

sions with di�erent e�ects on outcomes (Hernán 2016, VanderWeele 2009, Shiba & Kawahara

2021). While the positivity assumption states that all subpopulations have positive probability

of being assigned to either of the treatments (Westreich & Cole 2010, Shiba & Kawahara 2021).

In the context of ZIP regression, the expected outcome of subject i given Xi and Èi is

E(yi|Xi, Èi) = (1− ¹i)µi =
exp(XXX⊺

i ´́́ + ÈiWWW
⊺

iµµµ)

1 + exp(ZZZ⊺

iÄÄÄ + ÈiSSS
⊺

iϕϕϕ)
. (7)
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Consequently, the CATE for each subject i can be expressed as:

∆(Xi) = E(yi|Xi,Zi, Èi = 1)− E(yi|XiZi, Èi = 0),

=
exp(XXX⊺

i ´́́ +WWW
⊺

iµµµ)

1 + exp(ZZZ⊺

iÄÄÄ +SSS
⊺

iϕϕϕ)
−

exp(XXX⊺

i ´́́)

1 + exp(ZZZ⊺

iÄÄÄ)
,

=
(1 + exp(ZZZ⊺

iÄÄÄ)(exp(XXX
⊺

i ´́́ +WWW
⊺

iµµµ))− (exp(XXX⊺

i ´́́))(1 + exp(ZZZ⊺

iÄÄÄ +SSS
⊺

iϕϕϕ))

(1 + exp(ZZZ⊺

iÄÄÄ))(1 + exp(ZZZ⊺

iÄÄÄ +SSS
⊺

iϕϕϕ))
, (8)

which is a function of all covariates and parameters from both components of the ZIP model,

thus making it possible to estimate ∆(Xi). �e interpretation of ∆(Xi) is the di�erence in

conditional expected counts between treatment and control for a patient with covariates Xi.

Following the literature (Qian & Murphy 2011, Zhao et al. 2012), we de�ne a treatment rule

f(XXX ) as a deterministic map from the covariate space XXX to the binary treatment assignment,

f(XXX ) : XXX → {0, 1}. For each subject, we observe the outcome yi and the corresponding

covariates Xi ∈ XXX , and an optimal treatment rule of such subject is the one that maximizes

the population average value E [yi (f (Xi))]. Let I(A) be the indicator function for the event

A. Since argmaxf E [yi (f (Xi))] = 1 when I (∆(Xi) > 0), and 0 otherwise, ∆(Xi) > 0 is

a straightforward solution to obtain the optimal treatment rule for a subject with covariates

Xi. Note that when the alternative treatments have unequal cost, the decision rule can simply

be replaced by ∆(Xi) > ¶ for some constant threshold ¶. In other words, we can identify

the bene�ting subgroups of the population for which their CATEs exceed a pre–determined

threshold ¶ representing the level at which the treatment is deemed e�ective.

4 Bayesian credible subgroups for zero–in�ated count data

In the second stage, we focus on identifying subgroups in which every covariate point for a sub-

ject has an expected bene�t from a treatment via CATE measurement∆(Xi). In recent years, a

number of novel methods for subgroup identi�cation have been developed in the arena of CATE

assessment. (Berger et al. 2014) proposed a Bayesian model selection approach using tree–based

priors for subgroup e�ects, in which the subgroups were considered as terminal nodes of the

trees used to construct models for treatment e�ects and baseline covariates. (Zhang & Zhang

2022) introduced personalizedmodeling providing an optimal treatment regime. However, these

approaches do not provide simultaneous inferences. �e simultaneous inferences mean that the
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treatment e�ect of all covariate points in a speci�c region will exceed a speci�ed threshold si-

multaneously. Under a counterfactual framework, (Weisberg & Pontes 2015) and (Lamont et al.

2018) discussed predicted individual treatment e�ect (PITE) for heterogeneous treatment e�ects.

(Ballarini et al. 2018) considered the maximum likelihood and LASSO approaches for estimating

PITE and constructing con�dence intervals for the individual e�ects, but these approaches are

susceptible to multiplicity issues. In the following sections, we adapt the Bayesian credible sub-

groups method (Schnell et al. 2016) for zero–in�ated count data which can handle multiplicity

and provide simultaneous inferences.

4.1 De�ning Bayesian credible subgroups (BCSs)

�e BCSs method (Schnell et al. 2016) was developed for simultaneous inference regarding who

bene�ts from treatment in the context of a hierarchical linear model in a Bayesian framework,

and its concept is to divide the samples according to cross-sectional subject characteristics by

using CATE. Speci�cally, �e BCSs method searches for the set of covariate points from a co-

variate spaceCCC such thatB = {Xi ∈ CCC : ∆(Xi) > ¶}. In a Bayesian framework, we can estimate

B by searching the covariate points Xi ∈ CCC in which the posterior probability of having∆(Xi)

greater than ¶ given the observed data is greater than (1−³), where 1−³ is a credible level, i.e.

B̂α = {Xi ∈ CCC : P (∆(Xi) > ¶ | DDD) > 1 − ³}. A natural approach to identify such covariate

points Xi is to perform hypothesis testing ∆(Xi) at every covariate point, so the corrections

for multiple testing should be used. However, as the number of tests for all possible covariate

points is frequently large, it is di�cult to �nd an appropriate multiple test adjustment.

To control for multiplicity issues, the BCSs approach constructs the credible subgroup pair

(D,S) such thatP (D ⊆ B ⊆ S | DDD) > 1−³. �us, the subgroupD (referred to as the exclusive

credible subgroup) consists of covariate points Xi for which the types of subjects bene�t from

the treatment with posterior probability 1 − ³, whereas the subgroup S (referred to as the

inclusive credible subgroup) consists of all types of subjects who bene�t and also contains many

non–bene�t subjects. Figure 1 illustrate the BCSs method which divides the covariates space CCC

into three regions. �e green regionD represents pro�le of patients who bene�t from treatment

while the blue region Sc represents pro�le of patients who do not bene�t from treatment. �e

orange region S\D represents an uncertainty in which we do not have enough information to
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Figure 1: An illustration of credible subgroups. Region B (enclosed by dashed line) contains

the true types of patients who bene�t. Region D (green) includes only types of patients who

bene�t while region S\D (orange) is an uncertainty region. Region Sc (blue) represents types

of patients who have no bene�t.

determine whether patients are bene�ting from treatment or not. Lastly, region B enclosed by

the dashed circle represents the true bene�ting group which we would want to estimate.

�e credible subgroups D and S can be constructed from the results of the two–stage pro-

cedure. Particularly, we �rst �t a ZIP regression model in a Bayesian framework (described in

Section 2) to get the posterior distribution of coe�cients corresponding to covariate points Xi.

We then compute the marginal posterior of the CATE, and then use them to obtain a pair of

credible subgroups (D,S) in the second stage (described in Section 4.4).

4.2 A Bayesian framework for estimating CATE

Under the ZIP regression model in Equation 3, the log likelihood of regression coe�cients

{ÄÄÄ ,ϕϕϕ, ´́́ , µµµ} based on all n subjects in the data is given by

ℓ(ÄÄÄ ,ϕϕϕ, ´́́ , µµµ|DDD) =
∑

yi=0

log [exp (ZZZ⊺

iÄÄÄ + ÈiSSS
⊺

iϕϕϕ) + exp (− exp (XXX⊺

i ´́́ + ÈiWWW
⊺

iµµµ))]

+
∑

yi>0

(yi (XXX
⊺

i ´́́ + ÈiWWW
⊺

iµµµ)− exp (XXX⊺

i ´́́ + ÈiWWW
⊺

iµµµ))

−
∑

yi>0

log (yi!)−
n

∑

i=1

log [1 + exp (ZZZ⊺

iÄÄÄ + ÈiSSS
⊺

iϕϕϕ)] , (9)
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which cannot be analytically maximized. �e maximum likelihood estimation of the regression

coe�cients can be performed through convenient methods such as Newton–Raphson algorithm

or the Expectation Maximization algorithm (Cohen 1963).

A Bayesian framework for the ZIP regression was introduced by (Ghosh et al. 2006). �ey

assumed that the parameters {ÄÄÄ ,ϕϕϕ, ´́́ , µµµ} are a priori independent, such as ÄÄÄ ∼ Nq(ÄÄÄ 0, Ã
2
τIIIq),

ϕϕϕ ∼ Nm(ϕϕϕ0, Ã
2
φIIIm), ´́́ ∼ Np(´́́0, Ã

2
βIIIp) and µµµ ∼ Nk(µµµ0, Ã

2
γIIIk) are independent, and IIIo is an

identity matrix of size o. For each normal prior distribution, they used large variances to ex-

press �at but proper priors, and the posterior distributions of the parameters were obtained

by using MCMC with data augmentation (Tanner & Wong 1987, Rodrigues 2003, Ghosh et al.

2006). In the presence of a large set of covariates, a large parameter space can severely a�ect the

generalizability of the model due to over��ing, and the interpretation of BCSs can be di�cult.

To facilitate variable selection in the ZIP regression model, we adopt spike-and-slab priors, for

the regression parameters in both parts of the model. �ese priors have been commonly used

in the context of Bayesian stochastic search variable selection (George &McCulloch 1993, 1997)

to select the relevant variables (i.e. those with non-zero e�ect).

4.3 Spike and slab prior

�e spike–and–slab priors are commonly used for high dimensional variable selection in the

Bayesian framework. George and McCulloch (George & McCulloch 1993) introduced a mixture

of two normal distributions with a Bernoulli latent variable ϑ. For example in the ZIP model,

the priors of the jth coe�cient regression ´j in ´́́ as follow

´j|ϑj
i.i.d
∼ ϑjN(0, Ã

2
1) + (1− ϑj)N(0, Ã

2
2), j = 1, . . . , p, (10)

where ϑj ∼ Bernoulli(Éj)with probability of success Éj , and the two normal distributions have

the same zero mean but di�erent variances, such as Ã2
1 is a large value while Ã

2
2 is suitably small.

We can interpret this model as if ϑj = 1, ´j follows the slab distribution represented by a normal

distribution with a large variance Ã2
1 , and the jth term in the model is assumed to have a large

e�ect size. When ϑj = 0, ´j follows the spike distribution represented by a narrow normal

distribution with a small variance Ã2
2 , and the jth term in the model is assumed to have a small

or zero e�ect size. �erefore, the spike–and–slab approach imposes two–group mixture priors
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on the e�ects and assumes the presence of small e�ects, which may re�ect that the treatment is

of low e�ectiveness for the subject compared to placebo. Such assumptions are relevant from a

clinical trial point of view. Note that the spike and slab prior would also be used for covariates

other than treatment.

�e prior hierarchy for ´j is completed by choosing a prior for a hyperparameter Éj , and a

common choice is the beta distribution, i.e. Éj ∼ Beta(a0, b0). In practice, it can be di�cult to

determine the values for Ã2
1, Ã

2
2, a0, b0. An alternative approach is to use a continuous bimodal

distribution (Ishwaran & Rao 2005) in place of the mixture of two normal distributions, and the

full prior speci�cation for ´j can be wri�en as

´j|ϑβj

i.i.d
∼ N(0, ϑβj

Ã2
βj
), j = 1, . . . , p. (11)

Ã2
βj
|aβj ,1, bβj ,1

i.i.d
∼ Inverse-Gamma(aβj ,1, bβj ,1),

ϑβj
|vβj ,0, Éβj

i.i.d
∼ Éβj

+ (1− Éβj
)vβj ,0,

Éβj
∼ Uniform[0, 1],

where vβj ,0 is a small positive value near zero, say vβj ,0 = 0.001, to create a spike. We set

aβj ,1 = bβj ,1 = 0.5 resulting in a vague prior on Ã2
βj
so that the variance of the slab is estimated

based on the data. �e marginal distribution of the slab component of the mixture becomes a

Cauchy distribution with heavy tails under vague prior assumption. �e mixing parameter Éβj

is uniformly distributed on [0, 1], so it allows prior information for each coe�cient to consist

of a mixture of the spike and slab, with each component weighted by the uniform probabilities

Éβj
. �erefore, it can handle the model complexity compared to manually assigned priors in the

mixture of two normal distributions. Furthermore, the posterior mean of Éβj
is used to estimate

the posterior inclusion probability (PIP), which provides nonnull evidence for coe�cients in the

model.

�e main advantage of the spike–and–slab priors is that they provide �exibility in control-

ling the degree of sparsity in our ZIP model by adjusting the weight Éβj
of the spike in the

mixture. We can carry out inference for the latent binary variables Éβj
to identify which corre-

sponding model coe�cients are actually di�erent from zero. Moreover, spike–and–slab priors

have a closed–form convolution with the Gaussian distribution compared to other continuous

shrinkage priors, such as Horseshoe (Carvalho et al. 2009). �is advantage allows us to use

approximate inference methods for BCSs based on Gaussian approximations in Section 4.4. For
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the other coe�cients {ÄÄÄ ,ϕϕϕ,µµµ}, we adapt a continuous bimodal prior distribution in Equation 11

which has similar prior speci�cations to ´́́ . Posterior distributions of all the unknown param-

eters can be obtained via Gibbs sampling along with data augmentation (more details in the

Supplementary material). Note that the brms R package (Bürkner 2017) can be used to �t the

ZIP model (even with horseshoe priors).

4.4 Credible subgroup estimation

Given the posterior mean of∆(Xi) (denoted as ∆̂(Xi) ), we construct credible subgroups (D,S),

which bound the true bene�ting subgroup B and handle multiplicity in testing ∆(Xi) at each

covariate point. Particularly, we determine the simultaneous credible bands for∆(Xi) over the

covariate space CCC by

∆(Xi) ∈ ∆̂(Xi)±
√

WαV ar(∆(Xi)), (12)

whereWα is the 1−³ quantile of the empirical distributionW = supXi,Zi∈CCC

(∆(Xi)−∆̂(Xi))
2

V ar(∆(Xi))
. �e

exclusive subgroup D is de�ned by the upper bound of the simultaneous credible band and is

expressed by

D = {Xi ∈ CCC : ∆̂(Xi)−
√

WαV ar(∆(Xi)) > ¶}, (13)

which shows that D contains only covariate points Xi for which the characteristics of subjects

bene�t from the treatment.

Moreover, the inclusive subgroup S is de�ned by the lower bound of the simultaneous cred-

ible band, i.e.

S = {(Xi) ∈ CCC : ∆̂(Xi) +
√

WαV ar(∆(Xi)) ≥ ¶}, (14)

which includes all types of subjects who bene�t. �e credible subgroups S and D in Equa-

tion 13 and Equation 14 are then obtained via Gaussian approximation because the posterior

distributions are approximately normally distributed in our application. In the non–Gaussian

case, one can use a quantile–based simultaneous credible band method (Schnell et al. 2018).

5 Simulation Study

In this section, we conduct simulation studies to investigate the performance of our method-

ology for zero–in�ated count data and to compare it with alternative approaches in di�erent
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simulation se�ings. Our simulations examined the e�ects of sample size, strengths of associa-

tions between outcome and covariates, and a large number of covariates.

5.1 Simulation setups and evaluation criteria

We generate 1,000 samplesDDD = {yi, Èi,Xi = (XXX i,WWW i,ZZZi,SSSi) ; i = 1, . . . , n}. For each sample,

the zero-in�ated count response yi is sampled from the model in Equation 2 with

yi ∼











0 with probability ¹i,

Poisson(µi) with probability 1− ¹i,

(15)

log(µi) = ´1 + ´2x1i + ´3x2i + µ1Èi + µ2Èiw1i + µ3Èiw2i, (16)

log

(

¹i

1− ¹i

)

= Ä1 + Ä2z1i + Ä3z2i + ϕ1Èi + ϕ2Èis1i + ϕ3Èis2i. (17)

For the zero component, the covariate z1i is drawn from the Bernoulli distribution with prob-

ability of success 0.5. We let z2i = x2i, i.e., the covariate is allowed to be the same in the two

components of a ZIP model. For simplicity, we assume thatWWW i = XXX i and SSSi = ZZZi. For the

Poisson component, the covariate x1i is drawn from the Bernoulli distribution with probability

of success 0.5, x2i is generated from a uniform distribution on the interval (−4, 4), and Èi is a

binary treatment and generated as 0 or 1 with equal probability at random. Moreover, the true

regression coe�cients are set to be ÄÄÄ = (−1, 0, 0.5)⊺, ϕϕϕ = (−0.5, 0,−0.1)⊺ to avoid a separa-

tion problem resulting in an in�nite estimate in logistic regression (Albert & Anderson 1984),

and ´́́ = (1, 0,−0.3, 0.1, 0, 0.5)⊺. �erefor, the covariates x1, z1 and s1 are not relevant in our

simulated data.

We examine the performance of our proposed method under various se�ings of the model

parameter µµµ as follows: (S1) null case by se�ing µµµ = ϕϕϕ = (0, 0, 0)⊺, i.e., there is no bene�t to the

treatment; (S2) small e�ect size µµµ = (0.1, 0, 0.5)⊺ ; (S3) moderate e�ect size µµµ = (0.5, 0, 0.5)⊺;

and (S4) larger e�ect size µµµ = (0.7, 0, 0.5)⊺. Figure 2 illustrates the true CATE as a function

over the covariate x2 ∈ (−4, 4). �e horizontal line represents no treatment e�ectiveness in

scenario S1, and the CATE values above (below) this line indicate that there is (not) a bene�t

to a treatment. For example, any subjects with x2 ∈ (0, 4) will have bene�t from treatment

in scenarios S2, S3 and S4. Moreover, we further examine the behavior of BCSs in a full case

(S5) in which all subjects are bene�cial to the treatment. In scenario S5, we assume a moderate
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e�ect size as in S3 and x2i followed a uniform distribution from 0 to 4. We vary the sample

Figure 2: Illustration of CATE for various values of x2 in simulation study. �e horizontal line

indicates that there is no treatment e�ect (S1). �e CATE values above (below) the horizontal

line show that there is (not) a bene�t to treatment.

size n = 50, 100 and 500, which we refer to as small–to–moderate sample size. Note that in

our simulation studies, the choice of sample sizes is relevant to the bladder tumor dataset with

n = 87, and similarly for the parameter values. With these simulation se�ings, the means of

Poisson component range from 0.86 to 11.33, and on average, 70% of the responses yi are zero

and 10% of the zeros are Poisson.

As competitors, we compare the proposed method using spike–and–slab prior (denoted as

BCS–SS) to the BCS without using spike–and–slab prior (denoted as BCS), a horseshoe prior

(denoted as BCS–HS) and pointwise method (denoted as PW). For BCS–HS approach, we use

the same ZIP model as BCS–SS for constructing credible subgroups, but the spike–and–slab

priors for regression coe�cients are replaced by a horseshoe prior. �e full prior speci�cation

is

´j | Ä, Zj ∼ N
(

0, Z2
j Ä

2
)

(18)

Ä, Zj ∼ Half–Cauchy(1),
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where the scale parameter of 1 for the Half–Cauchy distribution is the default choice given in

Carvalho et al. (Carvalho et al. 2009). In contrast to BCS–SS, the BCS-HS approach cannot pro-

vide explicit estimates for the inclusion probabilities. Moreover, the PW method also uses the

same posterior samples from BCS–SS for constructing credible subgroups, but without correct-

ing for multiplicity. Speci�cally, we formulate the credible subgroupD by identifying covariate

points Xi from a covariate space such that P (∆(Xi) > ¶ | DDD) > 1 − ³, and the credible sub-

group S is constructed by �nding the covariate points having P (∆(Xi) ≤ ¶ | DDD) ≤ ³. For

each simulated data, we run each MCMC chain for 10,000 iterations with the �rst half taken as

burn–in. In addition, we set a credible level ³ = 0.8 and a threshold ¶ = 0.

We assessed the performance of the BCSs approach by using the same criteria as in Schnell

et al. (2016) by calculating four quantities: (1) the total coverage which provides frequency

that the true bene�ting subgroup B is in (D,S); (2) the credible pair size which measures

the proportion of population in the uncertainty region S\D; (3) Speci�city and sensitivity ofD

providing diagnostic accuracy of subgroupDwith respect toB; and (4)Mean square error (MSE)

of CATEs comparing the estimated treatment e�ect with the true values. In our simulation

study, we address the multiplicity issues by using the total coverage. Since this coverage metric

is the frequency of the true bene�ting subgroup B belonging to both exclusive and inclusive

credible subgroups, an approach without encountering multiplicity would have a total coverage

below the nominal size, i.e., a coverage failure corresponds to a family–wise error.

5.2 Simulation results

Table 1 summarizes the average summary statistics for scenarios S2, S3 and S4 with sample

size n = 50, 100 and 500 at 80% credible level and ¶=0, and we report the results of scenario

S1 and S5 in Table S1 (provided in Supplemental Document). Note that when the bene�ting

subgroup is empty in scenario S1, the sensitivity ofD, which is the proportion of the exclusive

subgroup D that is also contained in the bene�ting subgroup B, is not calculable (denoted as

‘NaN’ in the Table S1). Similarly, the speci�city of D is not provided in scenario S5 in which

all subjects bene�t from the treatment. For the total coverage, since the bene�ting subgroup

B would be empty in scenario S1, it would only be covered if the exclusive subgroup D is

also empty. However, the bene�ting subgroup B would correspond to the whole population in
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Table 1: Average summary statistics for sample size n = 50, 100 and 500 at 80% credible level

and ¶=0 for scenarios: S2 (small e�ect size), S3 (moderate e�ect size) and S4 (large e�ect size).

Sample

size

Scenario Method Total

coverage

Credible

pair size

Speci�city

of D

Sensitivity

of D

MSE

50

S2
BCS 0.81 0.53 0.84 0.38 4.45

BCS-SS 0.84 0.48 0.87 0.47 3.63
BCS-HS 0.84 0.53 0.86 0.41 3.40
PW 0.41 0.33 0.79 0.63 3.63

S3
BCS 0.83 0.51 0.85 0.39 4.41

BCS-SS 0.88 0.52 0.89 0.47 3.32
BCS-HS 0.88 0.52 0.89 0.47 3.31
PW 0.43 0.31 0.82 0.66 3.32

S4
BCS 0.83 0.49 0.87 0.55 3.69

BCS-SS 0.90 0.44 0.93 0.60 2.32
BCS-HS 0.90 0.46 0.91 0.61 2.13
PW 0.46 0.23 0.85 0.75 2.32

100

S2
BCS 0.84 0.53 0.86 0.41 1.66

BCS-SS 0.86 0.44 0.89 0.67 1.56
BCS-HS 0.86 0.45 0.88 0.61 1.53
PW 0.46 0.31 0.82 0.73 1.56

S3
BCS 0.85 0.39 0.89 0.71 1.44

BCS-SS 0.89 0.38 0.92 0.80 1.25
BCS-HS 0.89 0.38 0.90 0.79 1.21
PW 0.55 0.17 0.85 0.88 1.25

S4
BCS 0.85 0.27 0.93 0.77 1.42

BCS-SS 0.89 0.22 0.95 0.88 1.29
BCS-HS 0.90 0.21 0.95 0.84 1.28
PW 0.69 0.12 0.87 0.94 1.29

500

S2
BCS 0.87 0.18 0.91 0.82 0.62

BCS-SS 0.90 0.14 0.92 0.86 0.59
BCS-HS 0.90 0.17 0.92 0.85 0.48
PW 0.69 0.03 0.88 0.92 0.59

S3
BCS 0.89 0.14 0.98 0.89 0.61

BCS-SS 0.91 0.13 0.98 0.92 0.57
BCS-HS 0.90 0.12 0.98 0.90 0.56
PW 0.71 0.05 0.97 0.94 0.57

S4
BCS 0.89 0.13 0.98 0.91 0.59

BCS-SS 0.93 0.07 0.99 0.96 0.44
BCS-HS 0.93 0.09 0.99 0.95 0.43
PW 0.72 0.04 0.97 0.98 0.44

scenario S5, and it would only be covered if the inclusive subgroup S would need to correspond

to the whole population.

19



In general, we observe that the total coverage, speci�city and sensitivity of D increase as

the sample size and e�ect size increase, and the decrease in credible pair size and MSE with the

increase of sample size and and e�ect size. It appears that the BCS–HS and BCS–SS approaches

have similar trends in all scenarios for all criteria, and these approaches outperform the BCS

approach without shrinkage priors across all scenarios as expected. Moreover, the BCS–HS and

BCS–SS approaches show more e�cient performance than the PW approach in terms of total

coverage, speci�city of D, especially in the small sample size n = 50. For example, the total

coverage is near or higher than the nominal level for all scenarios, whereas the total coverage

of PW ranges from 0.41 to 0.46.

Moreover, the BCS–HS and BCS–SS approaches generally yield high speci�city of D com-

pared to the PW approach because the PW approach has smaller credible pair size, i.e. tighter

uncertainty region S\D, resulting in smaller total coverage and speci�city of D. In contrast,

the PW approach obtains the speci�city of D larger than that of the BCS–HS and BCS–SS ap-

proaches. �is phenomenon re�ects the trade–o� between speci�city (one minus the type I

error rate) and sensitivity (statistical power) under the multiple hypothesis testing se�ing, i.e.,

increased speci�city reduces the sensitivity and vice-versa. Our proposed method can achieve

high speci�city of D in exchange for a reduced sensitivity of D, especially for small samples.

In a regulatory se�ing, clinicians and researchers, who prefer a greater speci�city but a slightly

lower sensitivity, might consider this trade–o�. �e simulation results show that, overall, the

proposed approach BCS with shrinkage priors has the advantage of controlling multiplicity is-

sues by providing a total coverage above nominal level 0.8, high speci�city (87%− 99%) of D

in di�erent scenarios and relatively high sensitivity (60%) ofD for small sample size with large

size e�ect.

In Supplemental material, we use di�erent link functions for the zero component (Equa-

tion 17) under scenario S3 to study to what extent our proposed models are sensitive to the

link function misspeci�cation. We found that the performance of the BCS is not sensitive to

the choice of the link function for the zero component. Furthermore, we expand the scenario

S3 to investigate the scalability of our proposed models in the presence of high–dimensional

covariates (detailed in Supplemental material). Brie�y, we set n = 200, and the total dimen-

sion ¸ = p + k + q +m = 300, 500 and 1, 000, where the number of non-zero coe�cients is
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Table 2: Average summary statistics for high–dimensional se�ing at sample size n = 200, 80%

credible level and ¶=0.

Total

dimension

¸

Method Total

coverage

Credible

pair size

Speci�city

of D

Sensitivity

of D

MSE

300
BCS-SS 0.81 0.52 0.78 0.69 1.33
BCS-HS 0.81 0.52 0.78 0.69 1.31
PW 0.54 0.36 0.55 0.79 1.33

500
BCS-SS 0.77 0.49 0.66 0.62 2.55
BCS-HS 0.76 0.49 0.66 0.62 2.57
PW 0.51 0.31 0.34 0.73 2.55

1,000
BCS-SS 0.74 0.44 0.61 0.54 3.24
BCS-HS 0.74 0.44 0.60 0.54 3.25
PW 0.48 0.26 0.22 0.62 3.24

constant. Under these se�ings, the number of parameters being estimated is greater than, or

equals to, the sample size. Table 2 shows that we yield similar results to those described in the

low–dimensional se�ing above. Moreover, increasing total dimension ¸, as expected, leads to

increase the MSE. For the BCS-SS and BCS-HS approaches, the total coverage rates lay between

0.74 and 0.81, and these approaches achieve both moderate speci�city (60%− 78%) and sensi-

tivity (54%− 69%) ofD. Hence, the simulation study con�rms the advantage of our proposed

methodology in high–dimensional se�ings.

6 Analysis of the bladder tumor dataset

�e proposed BCSs method was originally motivated by the clinical bladder tumor study con-

ducted by the VeteransAdministrationCooperative Urological ResearchGroup (VACURG) (Byar

et al. 1977). �e data collection is described in Byar (1980). All patients at the beginning of the

trial had experienced super�cial bladder tumors, which were removed through a transurethral

resection. Following surgery, participants were randomly assigned to receive either pyridoxine

pills along with periodic instillation of a chemotherapeutic agent thiotepa into the bladder or a

placebo. Several statistical methodologies were proposed in various literature (Wellner & Zhang

2000, Baetschmann &Winkelmann 2013, Sun &Wei 2000). �ey found that periodic instillation
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of thiotepa signi�cantly reduced the recurrence of bladder tumors compared to placebo.

Figure 3: A light gray histogram represents the observed number of new tumors in the bladder

tumor study, and a dark gray histogram refers to a Poisson distribution with mean 4.73, based

on the the empirical mean of the data.

As an illustration of our proposed method, our goal is to identify characteristics of patients

who bene�t from thiotepa treatment. �e endpoints of interest were the number of new tumors

recorded over the entire observed patient record time. We have a total of 38 patients receiving

the thiotepa treatment and 47 patients receiving the placebo. Following Baetschuman et al

(Baetschmann & Winkelmann 2013), we include the following covariates in our analysis: the

number of initial tumors (INITNR) which ranges from 1 to 8, the treatment indicator (trt) and

the tumor size (Size). �e natural log of duration of exposure measured in months, log(time), is

considered as an o�set variable.

Figure 3 shows the distribution of the total number of tumors, and it is highly peaked at

zero. �erefore, the excessive zeros provide evidence of zero in�ation, which support our use

of the ZIP regression model for count data with excess zeros. We then consider two di�erent

link functions for the zero component in the ZIP model, including the common logit link, i.e.

log

(

¹i

1− ¹i

)

= Ä0 + Ä1INITNRi + Ä2Sizei + ϕ1trti + ϕ2INITNRi × trti + ϕ3Sizei × trti, (19)
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and the complementary log–log link, i.e.

¹i = exp (− exp(Ä0 + Ä1INITNRi + Ä2Sizei + ϕ1trti + ϕ2INITNRi × trti + ϕ3Sizei × trti)) .

(20)

Moreover , the model for the Poisson component is given by

log(µi) = log(timei)+´0+´1INITNRi+´2Sizei+µ1trti+µ2INITNRi×trti+µ3Sizei×trti. (21)

To identify characteristics of patients who bene�t from the thiotepa treatment, we only as-

sign spike and slab priors (described in Section 4.3) on regression coe�cients corresponding to

INITNR and Size for both components. We then assign N(0, 1000) prior on other coe�cients

in the model, e.g., Ä0, ´0, ϕ1, and µ1. We run the MCMC algorithm for 10, 000 draws discard-

ing a burn–in of 5, 000, and the convergence of the MCMC sampler was satisfactory based on

examination of trace plots (provided in Supplemental material). We then report the posterior

summary statistics of the regression coe�cients for both models in Table 3. It appears that both

approaches provide similar estimates of coe�cient in Poisson component, and the signi�cant

treatment e�ect indicates that the thiotepa treatment suppresses the number of bladder tumors

compared to placebo at a 90% credible level. �e PIP were roughly equal for all covariates under

logit and cloglog links. For the zero component, INITNR has higher inclusion probability than

that of SIZE, and similar results are found for interaction terms. For the Poisson component,

INITNR, identi�ed as a prognostic covariate, has substantially smaller e�ect size and PIP than

those of a predictive covariate (identi�ed as interacting with the treatment). On the other hand,

SIZE has larger e�ect size and PIP than those of a predictive covariate. �e results suggest

that the prognostic e�ect of covariate INITNR and the predictive e�ect of covariate SIZE may

be irrelevant for identifying the characteristics of patients for whom the thiotepa treatment is

bene�cial, and thus the sparsity in covariates would ease the interpretation of our proposed

BCSs.

Using the above MCMC sampling results, we construct BCSs by se�ing ¶ = 0 and credible

level of 80%. Figures 4A and 4B show the credible subgroups for the ZIP model using logit

and cloglog links, respectively. Overall, we obtain similar subgroups for both approaches. Each

point in each panel represents a particular type of patient with their tumor size and number of

initial tumors. �e interpretation of BCSs in Figure 4 is that the rectangles represent character-

istics of patients for whom the thiotepa treatment is bene�cial, whereas the triangles represent
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Table 3: Posterior summaries of covariates in Bladder Tumor dataset for ZIP model. Posterior

standard (SD) deviation are in parentheses, and (*) denotes signi�cance at 90% credible level.

Component Parameter
Posterior Mean (Posterior SD) PIP

logit cloglog logit cloglog

Zero component

Intercept -0.026 (0.701) -0.27 (0.382) 1 1

trt 0.81 (0.823) -0.542 (0.564) 1 1

INITNR -0.23 (0.251) 0.11 (0.127) 0.567 0.367

Size -0.089 (0.18) 0.034(0.084) 0.297 0.152

INITNR × trt -0.156 (0.282) 0.118 (0.165) 0.417 0.462

Size × trt 0.006 (0.141) -0.038 (0.128) 0.249 0.231

Poisson component

Intercept -1.105 (0.141)* 1.098 (0.122)* 1 1

trt -1.361 (0.284)* -1.418 (0.226)* 1 1

INITNR 0.010 (0.027) 0.007 (0.022) 0.064 0.066

Size -0.089 (0.045) -0.094 (0.041) 0.551 0.616

INITNR × trt 0.302 (0.048)* 0.298 (0.041)* 0.932 0.973

Size × trt -0.102 (0.124) -0.086 (0.109) 0.307 0.261

(A) ZIP model with logit link (B) ZIP model with cloglog link

Figure 4: �e Bayesian credible subgroups for bladder tumor dataset.
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types of patients who have no bene�t. �erefore, we have evidence to conclude that patients

with the number of initial bladder tumors lower than 5 and tumor size between 1–7 are ben-

e�ting from the thiotepa treatment. However, patients with 7 initial bladder and tumor sizes

between 1–2 are not bene�ting from the thiotepa treatment, and the results are similar to those

with 8 initial bladder tumors and tumor sizes between 1–3. We further investigate our model

choice of ZIP regression by comparing to zero–in�ated negative binomial (ZINB) regression,

which can accommodate excess zeros and overdispersion. As in the ZIP model, we yield similar

BCSs results for ZINB model (see Supplementary material).

7 Discussion

In this article, we have introduced the BCSs for count data with excess zeros which are com-

mon in medical and public health related studies. Our approach provides insight into the ap-

parent heterogeneity of treatment by identifying characteristics of patients who bene�t from

the treatment, while handling multiplicity issues. �e method studied here is widely applicable

as post–hoc analysis for con�rmatory clinical trials, which focus on assessment of bene�ts and

risks of new drugs compared to standard treatments.

As shown in the numerical studies, our method achieves desirable frequentist properties

such as the total coverage, sensitivity and speci�city of exclusive group D in low and high

dimensional covariates. �e advantage of BCSs is that it provides simultaneous inferences,

as opposed to non-simultaneous inferences available from tree-based methods, from a pair of

credible subgroups (D,S) where D is contained by the bene�ting subgroup and S contains

the bene�ting subgroup. In addition, our strategy includes shrinkage priors, which screen the

covariates to �nd a lower dimensional covariate space, resulting in improving the estimation

and interpretation of BCSs. �is renders the credible subgroups interpretable and useful in

practice.

We note that in the construction of Bayesian credible subgroups, we have assumed that the

threshold ¶ is zero for controlling the bene�ting subgroups. If the alternative treatments have

unequal cost, we need to �nd the covariates of the patients in which their CATEs exceed ¶.

Ideally, the choice of ¶ should be a clinically meaningful value determined by the subject ma�er

experts. When such a threshold is not available, based on the posterior distribution of CATE,
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one can compare the posterior mean or median with a range of threshold values and decide

the treatment strategy with the smallest threshold. Another possible approach is to conduct

sensitivity analysis to evaluate the changes in subgroups at di�erent thresholds.

�ere are several possible extensions of our approach. �e �rst extension is model choice

for zero-in�ated data. Our method consists of a two–step approach which includes building the

statistical model and constructing the Bayesian credible subgroups. �us it is straightforward to

implement our method with di�erent models for zero-in�ated data, such as compound Poisson

random e�ect (Ma et al. 2009) or marginal zero in�ated regression models (Martin & Hall 2017).

�e second extension is comparing di�erent metrics for the CATE. We note that our metric for

the CATE is the di�erence in expected counts, and the CATE can be measured by the relative

ratio. It is worth noting that the treatment e�ect heterogeneity is scale–dependent, i.e., the

treatment e�ects may be heterogenous on one scale (di�erence) but not on another (ratio). We

believe that the metric for CATE has an important impact on the estimation and interpretation

of the BCSs. Another future direction to consider are multiple endpoints for both e�cacy and

risk. For example, one can extend our method for bene�ting subgroup estimation for multiple

endpoints by using the concept of admissibility (Schnell 2017).

SUPPLEMENTARY MATERIAL

�e supplementary materials for Bayesian shrinkage estimation of credible subgroups for count

data with excess zeros includes: (1) sampling algorithm for posterior distribution using spike

and slab priors; (2) simulation results for the null case S1 and the full case S5; (3) simulation

se�ings for di�erent link functions; (4) simulation se�ings for high–dimensional covariates;

and (5) the MCMC diagnostics and ZINB for the bladder tumor data analysis.

8 Acknowledgment

�eauthors are very grateful to the associate editor and two reviewers for their useful comments

and suggestions, which we believe have improved our work. In addition, the authors would like

to thank Mr. Greg Ball (Biostatistics and Research Decision Sciences, Merck & Co., Inc.) for the

constructive suggestions and comments.

26



9 Disclosure statement

�e authors report there are no competing interests to declare.

References

Albert, A. & Anderson, J. A. (1984), ‘On the existence of maximum likelihood estimates in lo-

gistic regression models’, Biometrika 71(1), 1–10.

Albert, J. M., Wang, W. & Nelson, S. (2014), ‘Estimating overall exposure e�ects for zero-in�ated

regression models with application to dental caries’, Statistical methods in medical research

23(3), 257–278.

Baetschmann, G. & Winkelmann, R. (2013), ‘Modeling zero-in�ated count data when exposure

varies: With an application to tumor counts’, Biometrical Journal 55(5), 679–686.

Ballarini, N. M., Rosenkranz, G. K., Jaki, T., König, F. & Posch, M. (2018), ‘Subgroup identi�cation

in clinical trials via the predicted individual treatment e�ect’, PloS one 13(10), e0205971.

Beckman, R. A., Clark, J. & Chen, C. (2011), ‘Integrating predictive biomarkers and classi�ers

into oncology clinical development programmes’, Nature reviews Drug discovery 10(10), 735–

748.

Berger, J. O., Wang, X. & Shen, L. (2014), ‘A bayesian approach to subgroup identi�cation’,

Journal of biopharmaceutical statistics 24(1), 110–129.

Berry, D. A. (1990), ‘Subgroup analyses’.

Breiman, L. (1996), ‘Heuristics of instability and stabilization in model selection’, �e annals of

statistics 24(6), 2350–2383.

Byar, D. (1980), �e veterans administration study of chemoprophylaxis for recurrent stage i

bladder tumours: comparisons of placebo, pyridoxine and topical thiotepa, in ‘Bladder tumors

and other topics in urological oncology’, Springer, pp. 363–370.

27



Byar, D., Blackard, C., Group, V. A. C. U. R. et al. (1977), ‘Comparisons of placebo, pyridoxine, and

topical thiotepa in preventing recurrence of stage i bladder cancer’, Urology 10(6), 556–561.

Bürkner, P.-C. (2017), ‘brms: An R package for Bayesian multilevel models using Stan’, Journal

of Statistical So�ware 80(1), 1–28.

Cai, T., Tian, L., Wong, P. H. &Wei, L. (2011), ‘Analysis of randomized comparative clinical trial

data for personalized treatment selections’, Biostatistics 12(2), 270–282.

Cameron, A. C. & Trivedi, P. K. (2013), Regression analysis of count data, Vol. 53, Cambridge

university press.

Carvalho, C. M., Polson, N. G. & Sco�, J. G. (2009), Handling sparsity via the horseshoe, in

‘Arti�cial intelligence and statistics’, PMLR, pp. 73–80.

Cohen, A. C. (1963), Estimation in mixtures of discrete distributions, Statistical Pub. Society.

Cui, L., James Hung, H., Wang, S. J. & Tsong, Y. (2002), ‘Issues related to subgroup analysis in

clinical trials’, Journal of biopharmaceutical statistics 12(3), 347–358.

Ding, P., Li, X. & Miratrix, L. W. (2017), ‘Bridging �nite and super population causal inference’,

Journal of Causal Inference 5(2), 20160027.

Foster, J. C., Taylor, J. M. & Ruberg, S. J. (2011), ‘Subgroup identi�cation from randomized clinical

trial data’, Statistics in medicine 30(24), 2867–2880.

George, E. I. & McCulloch, R. E. (1993), ‘Variable selection via gibbs sampling’, Journal of the

American Statistical Association 88(423), 881–889.

George, E. I. & McCulloch, R. E. (1997), ‘Approaches for bayesian variable selection’, Statistica

sinica pp. 339–373.

Geweke, J. (1996), ‘Variable selection and model comparison in regression’, In Bayesian Statistics

5 .

Ghosh, S. K., Mukhopadhyay, P. & Lu, J.-C. J. (2006), ‘Bayesian analysis of zero-in�ated regres-

sion models’, Journal of Statistical planning and Inference 136(4), 1360–1375.

28



Havlir, D. V., Kendall, M. A., Ive, P., Kumwenda, J., Swindells, S., Qasba, S. S., Luetkemeyer,

A. F., Hogg, E., Rooney, J. F., Wu, X. et al. (2011), ‘Timing of antiretroviral therapy for hiv-1

infection and tuberculosis’, New England Journal of Medicine 365(16), 1482–1491.

Hernán, M. A. (2016), ‘Does water kill? a call for less casual causal inferences’, Annals of epi-

demiology 26(10), 674–680.

Hilbe, J. M. (2011), Negative binomial regression, Cambridge University Press.

Imbens, G. W. & Rubin, D. B. (2015), Causal inference in statistics, social, and biomedical sciences,

Cambridge University Press.

Ishwaran, H. & Rao, J. S. (2005), ‘Spike and slab variable selection: frequentist and bayesian

strategies’,�e Annals of Statistics 33(2), 730–773.

Lagakos, S. W. et al. (2006), ‘�e challenge of subgroup analyses-reporting without distorting’,

New England Journal of Medicine 354(16), 1667.

Lambert, D. (1992), ‘Zero-in�ated poisson regression, with an application to defects in manu-

facturing’, Technometrics 34(1), 1–14.

Lamont, A., Lyons, M. D., Jaki, T., Stuart, E., Feaster, D. J., �armaratnam, K., Oberski, D., Ish-

waran, H., Wilson, D. K. & VanHorn, M. L. (2018), ‘Identi�cation of predicted individual treat-

ment e�ects in randomized clinical trials’, Statistical methods in medical research 27(1), 142–

157.

Ma, R., Hasan, M. T. & Sneddon, G. (2009), ‘Modelling heterogeneity in clustered count data with

extra zeros using compound poisson random e�ect’, Statistics in medicine 28(18), 2356–2369.

Martin, J. & Hall, D. B. (2017), ‘Marginal zero-in�ated regression models for count data’, Journal

of Applied Statistics 44(10), 1807–1826.

Mitchell, T. J. & Beauchamp, J. J. (1988), ‘Bayesian variable selection in linear regression’, Journal

of the american statistical association 83(404), 1023–1032.

Mullahy, J. (1986), ‘Speci�cation and testing of some modi�ed count data models’, Journal of

econometrics 33(3), 341–365.

29



Neelon, B., O’Malley, A. J. & Smith, V. A. (2016), ‘Modeling zero-modi�ed count and semicontin-

uous data in health services research part 1: background and overview’, Statistics in Medicine

35(27), 5070–5093.

Ngo, D., Baumgartner, R., Mt-Isa, S., Feng, D., Chen, J. & Schnell, P. (2020), ‘Bayesian cred-

ible subgroup identi�cation for treatment e�ectiveness in time-to-event data’, PloS one

15(2), e0229336.

Qian, M. & Murphy, S. A. (2011), ‘Performance guarantees for individualized treatment rules’,

Annals of statistics 39(2), 1180.

Rodrigues, J. (2003), ‘Bayesian analysis of zero-in�ated distributions’, Communications in

Statistics-�eory and Methods 32(2), 281–289.

Rose, C. E., Martin, S. W., Wannemuehler, K. A. & Plikaytis, B. D. (2006), ‘On the use of zero-

in�ated and hurdle models for modeling vaccine adverse event count data’, Journal of bio-

pharmaceutical statistics 16(4), 463–481.

Rubin, D. B. (2005), ‘Causal inference using potential outcomes: Design, modeling, decisions’,

Journal of the American Statistical Association 100(469), 322–331.

Schnell, P. M. (2017), Credible subgroups: identifying the population that bene�ts from treat-

ment, PhD thesis, University of Minnesota.

Schnell, P. M., Müller, P., Tang, Q. & Carlin, B. P. (2018), ‘Multiplicity-adjusted semiparametric

bene�ting subgroup identi�cation in clinical trials’, Clinical Trials 15(1), 75–86.

Schnell, P. M., Tang, Q., O�en, W. W. & Carlin, B. P. (2016), ‘A bayesian credible sub-

groups approach to identifying patient subgroups with positive treatment e�ects’, Biometrics

72(4), 1026–1036.

Shiba, K. & Kawahara, T. (2021), ‘Using propensity scores for causal inference: pitfalls and tips’,

Journal of epidemiology p. JE20210145.

Su, X., Meneses, K., McNees, P. & Johnson, W. O. (2011), ‘Interaction trees: exploring the di�er-

ential e�ects of an intervention programme for breast cancer survivors’, Journal of the Royal

Statistical Society Series C: Applied Statistics 60(3), 457–474.

30



Su, X., Tsai, C.-L., Wang, H., Nickerson, D. M. & Li, B. (2009), ‘Subgroup analysis via recursive

partitioning.’, Journal of Machine Learning Research 10(2).

Sun, J. & Wei, L. (2000), ‘Regression analysis of panel count data with covariate-dependent

observation and censoring times’, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 62(2), 293–302.

Tanner, M. A. &Wong, W. H. (1987), ‘�e calculation of posterior distributions by data augmen-

tation’, Journal of the American statistical Association 82(398), 528–540.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal

Statistical Society: Series B (Methodological) 58(1), 267–288.

Todem, D., Kim, K. & Hsu, W.-W. (2016), ‘Marginal mean models for zero-in�ated count data’,

Biometrics 72(3), 986–994.

VanderWeele, T. J. (2009), ‘Concerning the consistency assumption in causal inference’, Epi-

demiology 20(6), 880–883.

Wagner, G. G., Frick, J. R. & Schupp, J. (2007), �e german socio-economic panel study (soep):

Scope, evolution and enhancements, Technical report, SOEPpapers on Multidisciplinary

Panel Data Research.

Weisberg, H. I. & Pontes, V. P. (2015), ‘Post hoc subgroups in clinical trials: Anathema or ana-

lytics?’, Clinical trials 12(4), 357–364.

Wellner, J. A. & Zhang, Y. (2000), ‘Two estimators of the mean of a counting process with panel

count data’, �e Annals of statistics 28(3), 779–814.

Westreich, D. & Cole, S. R. (2010), ‘Invited commentary: positivity in practice’, American journal

of epidemiology 171(6), 674–677.

Winkelmann, R. (2008), Econometric analysis of count data, Springer Science & Business Media.

Zhang, B. & Zhang, M. (2022), ‘Subgroup identi�cation and variable selection for treatment

decision making’,�e Annals of Applied Statistics 16(1), 40–59.

31



Zhao, W., Ma, W., Wang, F. & Hu, F. (2022), ‘Incorporating covariates information in adaptive

clinical trials for precision medicine’, Pharmaceutical Statistics 21(1), 176–195.

Zhao, Y., Zeng, D., Rush, A. J. & Kosorok, M. R. (2012), ‘Estimating individualized treat-

ment rules using outcome weighted learning’, Journal of the American Statistical Association

107(499), 1106–1118.

Ziegler, A., Koch, A., Krockenberger, K. & Großhennig, A. (2012), ‘Personalized medicine using

dna biomarkers: a review’, Human genetics 131, 1627–1638.

32


	Introduction
	Zero–inflated count data regression
	The Conditional Average Treatment Effect (CATE)
	Bayesian credible subgroups for zero–inflated count data
	Defining Bayesian credible subgroups (BCSs)
	A Bayesian framework for estimating CATE
	Spike and slab prior
	Credible subgroup estimation

	Simulation Study
	Simulation setups and evaluation criteria
	Simulation results

	Analysis of the bladder tumor dataset
	Discussion
	Acknowledgment
	Disclosure statement

