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Abstract

Heterogeneity of treatment effects due to heterogeneous patient characteristics often
arises in clinical trials. Subgroup analysis and the analysis of interactions are the most
common approaches for evaluating such heterogeneous effects but do not explicitly address
multiplicity issues. Another common challenge of analyzing treatment effect heterogene-
ity is the large number of possible covariates which inevitably causes problems related to
multiplicity and lack of power. In this article, we develop a Bayesian credible subgroups
method using continuous shrinkage priors to assess heterogeneity in treatment effects and
multiplicity—adjusted benefiting subgroup identification for zero—inflated count data, which
are often encountered in medical and public health studies. Our proposed method provides



two bounding subgroups for the true benefiting subgroup: one that is probably contained by
the true benefiting subgroup and one that probably contains the true benefiting subgroup. A
simulation study has been conducted to compare the performance of the proposed method
with other methods through frequentist properties. We apply our method to a clinical blad-
der tumor trial studying the effect of thiotepa treatment on the reduction of the recurrence
of bladder tumor.

Keywords: Bayesian credible subgroups, continuous shrinkage, conditional average treatment
effect, zero—inflated regression.



1 Introduction

Randomized clinical trials are primarily designed to draw inferences about a potential causal
relationship between patient outcomes and a particular treatment. The effectiveness of a treat-
ment has typically been measured by the average treatment effect (ATE) as the difference in av-
erage outcomes between two treatment groups. The ATE in the study population is assumed to
be adequately reflective of the effect in any subject within this population, so the ATE may over-
simplify the heterogeneity of each patient or similar subgroups of patients, which is known as
heterogeneous treatment effect (HTE). The HTE often arises in clinical trials and observational
studies when a treatment, that has a positive effect on a majority of patients, may have no effect
on a subset of patients with certain characteristics due to variation in patient characteristics.
For example in a study of antiretroviral therapy (ART), timing of ART varies in individuals with
tuberculosis and newly infected with human immunodeficiency virus type 1 (Havlir et al. 2011).
Among individuals with CD4+ T—cell counts less than 50 per cubic millimeter, those with earlier
ART have a lower rate of new AIDS-defining illnesses and deaths than those with later ART,
while patients with higher CD4+ T-cell counts did not significantly benefit from earlier ART.
Therefore, the success of precision medicine depends on the correct identification of subgroups
of patients who benefit from a treatment.

One research direction in precision medicine is subgroup analysis, where the patients are
grouped based on the estimated individual-level treatment differences (Cai et al. 2011, Foster
et al. 2011). Alternatively, Qian et al. (Qian & Murphy 2011) proposed a regression model for
the response, and recommended the treatment achieving the best prediction. Ballarini et al.
(Ballarini et al. 2018) introduced pointwise confidence intervals around predicted individual
treatment effects for continuous, survival and binary endpoints. Machine learning techniques,
such as the tree-based methods built on the idea of counterfactuals, have been used to identify
subgroups with differential treatment responses (Su et al. 2009, 2011, Foster et al. 2011). In
Bayesian framework, Schnell et al. (Schnell et al. 2016, Schnell 2017) developed simultaneous
credible bands for conditional average treatment effects for continuous endpoints, and Ngo et al.
extended their approach to survival endpoints (Ngo et al. 2020). However, a method to identify
benefiting subgroups in the credible subgroups framework for count endpoints is desirable, but

not yet available.



In many clinical trial applications, the outcome of interest is counting the occurrence of
an event, such as the number of hospitalizations, doctor visits (Wagner et al. 2007) or adverse
events related to a vaccine (Rose et al. 2006). Such count data are typically very skewed and
exhibit overdispersion. A classical approach is to use Poisson regression with an overdisper-
sion parameter or the negative binomial distribution (Hilbe 2011). When the overdispersion is
a result of a bimodal distribution, such as the observed number of zeros exceeds the expected
number of zeros from the corresponding Poisson regression, zero—inflated Poisson (ZIP) (Lam-
bert 1992) or zero-inflated negative binomial models are common choices. In the ZIP model, a
binary process will determine whether the observations are always zero or realizations from a
Poisson distribution, so zeros can either arise from the binary process or from a Poisson distri-
bution. In contrast to the ZIP model, the zeros in hurdle models (Mullahy 1986) are disjointed
from the non-zeros modelling with a truncated Poisson distribution and are commonly used in
econometrics (Cameron & Trivedi 2013). The choice between hurdle and ZIP models depend on
the type of data, goals of study and statistical grounds (see Neelon et al. (2016) for more details).

For a particular choice of zero—-inflated model, researchers measure the ATE by the simple
difference-in—means estimator for the full sample, but ATE cannot explain how a treatment
varies across the patient population. The conditional average treatment effect (CATE) of a bi-
nary treatment within the potential outcomes framework (Rubin 2005), is an alternative method
to the ATE for identifying a target subgroup of subjects who are expected to gain substantial
benefit from a given treatment. The CATEs are often estimated at each predictive covariate
point, that is, a set of baseline characteristics that predicts the patient’s response to a particular
treatment. Then researchers can perform a null hypothesis significance testing for CATE at each
covariate point. The drawback to this approach is that there are too many potential character-
istics that can influence treatment effect, and this leads to low power and false positive findings
due to multiple testings (Berry 1990, Cui et al. 2002, Lagakos et al. 2006).

To overcome these limitations, we develop a Bayesian credible subgroups approach for zero-
inflated count data. Our proposed method is an extension of subgroup identification method-
ology proposed by Schnell et al. (Schnell et al. 2016, Schnell 2017) for count endpoints. Partic-
ularly, to estimate a true benefiting subgroup for count data with excess zeros, our approach is

based on a two-stage process: (1) fit a ZIP regression in a Bayesian model setting for computing



CATE; (2) construct bounding subgroups based on the posterior distribution of CATE, resulting
in a pair of credible subgroups: one that is probably contained by the true benefiting subgroup
and one that probably contains the true benefiting subgroup. This means that patients within
the former subgroup benefit from a particular treatment; while those are outside the later sub-
group, they cannot benefit from a particular treatment, irrespective of their characteristics. The
key feature of the proposed approach is that it enables controlling for multiplicity and provid-
ing simultaneous inference, which means that all covariate points corresponding to a specific
subgroup simultaneously have a treatment effect exceeding a specified threshold.

Moreover, current advances in technology allow researchers to collect information from
many biomarkers in a form of multidimensinal data, but many of the collected biomarkers may
not have significant impacts on an experimental treatment. To improve the estimation and inter-
pretation of CATE in the case where many potential covariates are observed, we have developed
zero—inflated regression model by incorporating a Bayesian variable selection approach. There
are numerous traditional variable selection methods, such as stepwise procedures in linear re-
gression models, but they are unstable because the selection and estimation steps are performed
separately (Breiman 1996). In the non-Bayesian approaches, penalization procedures such as
the least absolute shrinkage and selection operator (LASSO) (Tibshirani 1996) and its extensions
have been used in many applications since the variable selection and parameter estimation can
be handled simultaneously. In a Bayesian framework, variable selection can be performed by
assuming shrinkage priors, such as spike—and-slab priors, on the model coefficients (Mitchell
& Beauchamp 1988, George & McCulloch 1993, Geweke 1996). These types of priors are char-
acterized by density functions that are concentrated at zero and have a large probability mass
in a wide range of non-zero values. This structure tends to shrink the posterior mean of truly
zero coeflicients towards zero, but it less affects the posterior mean of non-zero coefficients.
In this work, we extend the spike—and-slab priors (George & McCulloch 1993) to the context
of zero-inflated data, and investigate the frequentist coverage properties of these priors on our
proposed Bayesian credible subgroups.

This article proposes two major contributions that are not being addressed in the current
literature: (1) our proposed method is an extension of the Bayesian credible subgroups (Schnell

et al. 2016) method to identify benefiting subgroups for count data with excess zeros. This is



important in many areas of benefit and risk analysis and in the field of personalized medicine.
Moreover, our method is amenable to the confirmatory setting in a post hoc manner because
it can address the multiplicity issues in late—stage clinical trials with multiple subgroups of
patients, and it aims to evaluate treatment effect heterogeneity across subgroups of patients de-
fined by the baseline or demographic covariates; (2) our Bayesian shrinkage approach improves
interpretability of credible subgroups when there is a large collection of potential covariates.
Finally, we provide the R codes and data which are available on GITHUB repository for repro-
ducibility.

The remainder of this article is structured as follows. In Section 2, we present an overview
of the ZIP model for count data with excess zeros. We introduce the CATE in Section 3, and use
those to present the methodological approaches to construct Bayesian credible subgroups in
Section 4. We examine the performance of our proposed approaches from extensive simulation
studies in Section 5. In Section 6, we use a randomized controlled trial in patients with tumor
bladder (Baetschmann & Winkelmann 2013) to illustrate our proposed methods. We conclude

with a brief discussion in Section 7.

2 Zero-inflated count data regression

As discussed above, the first stage of our two-stage approach is to fit a ZIP regression in a
Bayesian model setting. For zero—inflated count data, ZIP regression provides a convenient
framework to model two subpopulations: a not—at-risk group for which the outcome is always
zero and an at-risk group for which the outcome is realized from a count data distribution, such
as Poisson or negative binomial distribution (Winkelmann 2008). A negative binomial model is
often chosen over Poisson model when the at-risk group distribution exhibits overdispersion.
Although the focus of this paper is to develop Bayesian credible subgroups for ZIP models, the
zero—inflated negative binomial or other methods can be extended in the same manner. We now
present an overview of ZIP regression in Bayesian model setting.

For subjects ¢ = 1,...,n, let y; be the response variable taking on only non-negative inte-

gers. The response y; is assumed to be independent, with the density defined as

fyi) = 0:lo(yi) + (1 = 0:)g(yi), (1)



where 0 < 6; < 11is the mixture proportion, and 1,(y;) is an indicator function equaling 1 when
y; = 0 and 0 otherwise. Equation 1 directly represents the responses y; as a product of two
independent processes u; and v;, i.e. y; = (1 — u;)v;. The Bernoulli process u; ~ Bernoulli(6;)
determines whether the observed y; is zero or not. If the observed outcome is nonzero, v; is
drawn from a count data model g. When ¢ is a Poisson distribution, the ZIP model can be
expressed as

O;+(1—0)e ™ y;=0

fyi) = e (2)
(1 — ei)e My Y; > 0,

yi!

where y; = E(v;). From Equation 2, the response y; takes zero value either for v; = 0 or u; = 1.
Therefore, the ZIP model can handle the extra zeros compared to the traditional generalized
linear models, and the amount of extra zeros from the Poisson component v; is determined by the
mixture proportion ;. The mean and variance of the ZIP model are given by E (y;) = (1 —0;)
and Var (y;) = (1 — 0;)(1 + u;0;) ;- Moreover, the parameters 6; and p; are modelled through

canonical link generalized linear models (Lambert 1992), i.e.

log (1 %0) =Z]T + iS¢,

log(pi) = X B+ viW . (3)

where Z; and S; are ¢ and m dimensional vectors of prognostic and predictive covariates for
the i-th subject in the zero component, respectively, and T denotes the transpose operator. The
covariates Z; is regarded as prognostic (also known as main effects) as they directly influence
the outcome y;, whereas the covariates S; is considered as predictive (also known as modera-
tion effects) as they influence the outcome y; only through an interaction with the treatment
variable 1;. Therefore, the predictive covariates are useful to identify the characteristics of pa-
tients that benefit from a treatment, and the prognostic covariates improve the precision of the
estimates of treatment benefits. Similarly, X; and W, denote p and %k dimensional vectors of
prognostic and predictive covariates in the Poisson component, respectively. In Equation 3, it is
generally applicable to other link functions (probit, complementary log-log, cauchit or log link)
for modeling the zero component, but will not be considered here. Note that the terms predic-
tive and prognostic are often used in clinical trials literature for precision medicine (Beckman

et al. 2011, Ziegler et al. 2012, Zhao et al. 2022), and Z;, S;, X; and W; may have some common



terms or be distinct. A practical aspect of our model is distinguishing prognostic and predictive
effects, which might result in reducing the bias in the predictive effect. Moreover, identifying a
covariate having both predictive and prognostic functions provides practical insights for subject
matter experts.

In this article, our focus is on two treatment arms, such as ¢); = 1 if the subject ¢ is assigned
to treatment and ¢); = 0 otherwise. The parameters {7, ¢} and {3, v} are corresponding vectors
of regression coeflicients, which provide separate inference for the zero component and Poisson
component respectively. The interpretation of {7, ¢} are the covariate effects on the probability
of the treatment being fully effective (not-at-risk subpopulation), whereas {3, } are the effect
on the average count when the treatment is less than fully effective (at-risk subpopulation).

A common approach to assess the treatment effect is performing a likelihood ratio test for
testing the significance of the unknown regression parameters in a ZIP model, but it is difficult
to evaluate the overall treatment effect from separate treatment effect estimates of the two com-
ponents. An average predicted value approach (Albert et al. 2014) and marginalized ZIP model
(Todem et al. 2016) were proposed to do inference on the overall mean count while adjusting
for covariates, in particular, to compare the means between treatment groups. However, these
approaches provide inference for the overall treatment effect on the entire study population,
which cannot be used to identify which patient benefits from a treatment. The CATE was intro-
duced to determine the subgroups of subjects for which the treatment is the most beneficial (or
most harmful) within the context of experimental data. In the following section, we precisely

define the CATE based on the ZIP model as a device to account for extra zeros in the data.

3 The Conditional Average Treatment Effect (CATE)

We frame CATE for a ZIP model described in Equation 3 using the Neymann-Rubin poten-
tial outcomes framework (Rubin 2005), as follows. Under the stable unit treatment value as-
sumption, let y;(0),y;(1) denote the potential outcome for subject i receiving treatment as-
signment ¢); = 0 and v¢; = 1, respectively, and we cannot simultaneously observe a sub-
ject in both treatment arms. Under randomized experiments, we assume that these outcomes
¥:(0),v:(1) are independent of the treatment assignment 1);. The observed data consist of

D = {y;, i, Xy = (X;,W;,Z;,8,)}, for i = 1,...,n, which are assumed to be independent



and identically distributed draws from a superpopulation, which is the data generating pro-
cess for a finite target population (Imbens & Rubin 2015, Ding et al. 2017). The average of the

treatment effect is defined as
Aarg =FE [yz(l) - y,-(O)] =F [?Jiwz‘ = 1] ) [%Wi = 0] ) (4)

which is constant for all subjects, so this one-size-fits-all phenomenon cannot address the het-
erogeneity of the treatment effect. The expectations in Equation 4 refer to the distribution of the
target population induced by the random sampling or by the (conditional) random assignment
of the treatment.

The CATE, as opposed to the ATE, for the i—th subject is defined as the conditional average

treatment difference in potential outcomes, i.e.
Acarp(X;) = Ey:(1)|X] — E{y:(0)| 3] . ()

Since the characteristics of subjects are often defined by genetic or biomarker differences,
we focus on biomarkers that are potential effect modifiers measured prior to the intervention

to reduce the risk of confounding bias. Therefore, under the unconfoundeness assumption, i.e.

{yi(1),4:(0)} L ;| X;, we have
AX) = Acars() = B [yl X, s = 1] = B [y X, v = 0], (©)

which measures the causal treatment effect for subjects with baseline covariates &;. Consis-
tency and positivity are two other identifiability principles that receive less attention than the
unconfoundeness assumption but are equally important in causal inference. The consistency
assumption states that the treatment is sufficiently well-defined and does not have multiple ver-
sions with different effects on outcomes (Hernan 2016, VanderWeele 2009, Shiba & Kawahara
2021). While the positivity assumption states that all subpopulations have positive probability
of being assigned to either of the treatments (Westreich & Cole 2010, Shiba & Kawahara 2021).
In the context of ZIP regression, the expected outcome of subject ¢ given &; and v; is

E(?/i’)fu%) = (1 - 91‘)/% = 1fj—(pe(xp(ZTfr :ﬁ_ %S’%)

(7)



Consequently, the CATE for each subject ¢ can be expressed as:

A(X:) = E(yil X, Zi, ¢ = 1) — E(yil X 23,4 = 0),
exp(X[B +Wiv) exp(XTB)

1+ exp(ZIT +8STp) 1+ exp(Z]T)’

_ (It exp(Z]7)(exp(X7B + Wiv)) — (exp(X]B))(1 + exp(Z[T + 5]¢)) ®)
(14 exp(ZI7))(1 + exp(Z]T + S]9)) ’

which is a function of all covariates and parameters from both components of the ZIP model,
thus making it possible to estimate A(X;). The interpretation of A(X;) is the difference in
conditional expected counts between treatment and control for a patient with covariates ;.
Following the literature (Qian & Murphy 2011, Zhao et al. 2012), we define a treatment rule
f(&) as a deterministic map from the covariate space X to the binary treatment assignment,
f(X) : X — {0,1}. For each subject, we observe the outcome y; and the corresponding
covariates X; € X, and an optimal treatment rule of such subject is the one that maximizes
the population average value F [y; (f (X;))]. Let Z(A) be the indicator function for the event
A. Since argmaxy F [y; (f (X;))] = 1 when Z (A(X;) > 0), and 0 otherwise, A(X;) > 0 is
a straightforward solution to obtain the optimal treatment rule for a subject with covariates
AX;. Note that when the alternative treatments have unequal cost, the decision rule can simply
be replaced by A(X;) > ¢ for some constant threshold §. In other words, we can identify
the benefiting subgroups of the population for which their CATEs exceed a pre-determined

threshold 0 representing the level at which the treatment is deemed effective.

4 Bayesian credible subgroups for zero—inflated count data

In the second stage, we focus on identifying subgroups in which every covariate point for a sub-
ject has an expected benefit from a treatment via CATE measurement A(X;). In recent years, a
number of novel methods for subgroup identification have been developed in the arena of CATE
assessment. (Berger et al. 2014) proposed a Bayesian model selection approach using tree—based
priors for subgroup effects, in which the subgroups were considered as terminal nodes of the
trees used to construct models for treatment effects and baseline covariates. (Zhang & Zhang
2022) introduced personalized modeling providing an optimal treatment regime. However, these

approaches do not provide simultaneous inferences. The simultaneous inferences mean that the
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treatment effect of all covariate points in a specific region will exceed a specified threshold si-
multaneously. Under a counterfactual framework, (Weisberg & Pontes 2015) and (Lamont et al.
2018) discussed predicted individual treatment effect (PITE) for heterogeneous treatment effects.
(Ballarini et al. 2018) considered the maximum likelihood and LASSO approaches for estimating
PITE and constructing confidence intervals for the individual effects, but these approaches are
susceptible to multiplicity issues. In the following sections, we adapt the Bayesian credible sub-
groups method (Schnell et al. 2016) for zero—inflated count data which can handle multiplicity

and provide simultaneous inferences.

4.1 Defining Bayesian credible subgroups (BCSs)

The BCSs method (Schnell et al. 2016) was developed for simultaneous inference regarding who
benefits from treatment in the context of a hierarchical linear model in a Bayesian framework,
and its concept is to divide the samples according to cross-sectional subject characteristics by
using CATE. Specifically, The BCSs method searches for the set of covariate points from a co-
variate space C such that B = {X; € C : A(&;) > J}. In aBayesian framework, we can estimate
B by searching the covariate points X; € C in which the posterior probability of having A(X;)
greater than 0 given the observed data is greater than (1 — «), where 1 — a is a credible level, i.e.
B, ={X, €C: P(A(X)) >6|D) > 1— a}. Anatural approach to identify such covariate
points &; is to perform hypothesis testing A(X;) at every covariate point, so the corrections
for multiple testing should be used. However, as the number of tests for all possible covariate
points is frequently large, it is difficult to find an appropriate multiple test adjustment.

To control for multiplicity issues, the BCSs approach constructs the credible subgroup pair
(D, S)suchthat P(D C B C S | D) > 1—a. Thus, the subgroup D (referred to as the exclusive
credible subgroup) consists of covariate points &; for which the types of subjects benefit from
the treatment with posterior probability 1 — «, whereas the subgroup S (referred to as the
inclusive credible subgroup) consists of all types of subjects who benefit and also contains many
non-benefit subjects. Figure 1 illustrate the BCSs method which divides the covariates space C
into three regions. The green region D represents profile of patients who benefit from treatment
while the blue region S represents profile of patients who do not benefit from treatment. The

orange region S\ D represents an uncertainty in which we do not have enough information to
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Figure 1: An illustration of credible subgroups. Region B (enclosed by dashed line) contains
the true types of patients who benefit. Region D (green) includes only types of patients who
benefit while region S\ D (orange) is an uncertainty region. Region S¢ (blue) represents types

of patients who have no benefit.

determine whether patients are benefiting from treatment or not. Lastly, region B enclosed by
the dashed circle represents the true benefiting group which we would want to estimate.

The credible subgroups D and S can be constructed from the results of the two—stage pro-
cedure. Particularly, we first fit a ZIP regression model in a Bayesian framework (described in
Section 2) to get the posterior distribution of coefficients corresponding to covariate points &;.
We then compute the marginal posterior of the CATE, and then use them to obtain a pair of

credible subgroups (D, S) in the second stage (described in Section 4.4).

4.2 A Bayesian framework for estimating CATE

Under the ZIP regression model in Equation 3, the log likelihood of regression coefficients

{T,¢,B,7} based on all n subjects in the data is given by

Ur,¢,8,7D) = ) log lexp (Z]7 + 1:8[$) + exp (— exp (X]B + bW 7))

¥:=0

+ ) (i (XTB+ W ]y) —exp (XTB + ¢ W]y))
y;i >0

= log (w!) = > _log[1+exp (Z]T + 1:8T9)], 9)
y; >0 i=1
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which cannot be analytically maximized. The maximum likelihood estimation of the regression
coefficients can be performed through convenient methods such as Newton-Raphson algorithm
or the Expectation Maximization algorithm (Cohen 1963).

A Bayesian framework for the ZIP regression was introduced by (Ghosh et al. 2006). They
assumed that the parameters {7, ¢, 3,7} are a priori independent, such as 7 ~ N (7o, 02[,),
¢ ~ Nulbo,051), B ~ Np(Bo,031,) and v ~ Ni(y0,021;) are independent, and I, is an
identity matrix of size 0. For each normal prior distribution, they used large variances to ex-
press flat but proper priors, and the posterior distributions of the parameters were obtained
by using MCMC with data augmentation (Tanner & Wong 1987, Rodrigues 2003, Ghosh et al.
2006). In the presence of a large set of covariates, a large parameter space can severely affect the
generalizability of the model due to overfitting, and the interpretation of BCSs can be difficult.
To facilitate variable selection in the ZIP regression model, we adopt spike-and-slab priors, for
the regression parameters in both parts of the model. These priors have been commonly used
in the context of Bayesian stochastic search variable selection (George & McCulloch 1993, 1997)

to select the relevant variables (i.e. those with non-zero effect).

4.3 Spike and slab prior

The spike—and-slab priors are commonly used for high dimensional variable selection in the
Bayesian framework. George and McCulloch (George & McCulloch 1993) introduced a mixture
of two normal distributions with a Bernoulli latent variable ©). For example in the ZIP model,

the priors of the jth coefficient regression (3, in 8 as follow

i.0.d

Bjl0; '~ 0;N(0,07) + (1 = 9;)N(0,03), j=1,...,p, (10)

where ¥; ~ Bernoulli(w;) with probability of success w;, and the two normal distributions have
the same zero mean but different variances, such as o7 is a large value while o3 is suitably small.
We can interpret this model as if J; = 1, 3, follows the slab distribution represented by a normal
distribution with a large variance o7, and the jth term in the model is assumed to have a large
effect size. When 9; = 0, 3; follows the spike distribution represented by a narrow normal
distribution with a small variance ag, and the jth term in the model is assumed to have a small

or zero effect size. Therefore, the spike—and-slab approach imposes two—group mixture priors
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on the effects and assumes the presence of small effects, which may reflect that the treatment is
of low effectiveness for the subject compared to placebo. Such assumptions are relevant from a
clinical trial point of view. Note that the spike and slab prior would also be used for covariates
other than treatment.

The prior hierarchy for /3; is completed by choosing a prior for a hyperparameter w;, and a
common choice is the beta distribution, i.e. w; ~ Beta(ay, by). In practice, it can be difficult to
determine the values for 07, 03, ag, by. An alternative approach is to use a continuous bimodal
distribution (Ishwaran & Rao 2005) in place of the mixture of two normal distributions, and the
full prior specification for ; can be written as

iid .
Bildg, ~ N(O,ﬁﬁjagj), j=1,...,p. (11)

agj lag, 1,08;.1 oy Inverse-Gamma(ag, 1, bg, 1),

Vs, V5,0, w5, = wg, + (1= wg,)vg, o,
wg, ~ Uniform|0, 1],
where vg, o is a small positive value near zero, say vg, o = 0.001, to create a spike. We set
ap;1 = bg; 1 = 0.5 resulting in a vague prior on U,%j so that the variance of the slab is estimated
based on the data. The marginal distribution of the slab component of the mixture becomes a
Cauchy distribution with heavy tails under vague prior assumption. The mixing parameter wg;
is uniformly distributed on [0, 1], so it allows prior information for each coefficient to consist
of a mixture of the spike and slab, with each component weighted by the uniform probabilities
wg;. Therefore, it can handle the model complexity compared to manually assigned priors in the
mixture of two normal distributions. Furthermore, the posterior mean of wg; is used to estimate
the posterior inclusion probability (PIP), which provides nonnull evidence for coefficients in the
model.

The main advantage of the spike—and-slab priors is that they provide flexibility in control-
ling the degree of sparsity in our ZIP model by adjusting the weight wg, of the spike in the
mixture. We can carry out inference for the latent binary variables wpg, to identify which corre-
sponding model coefficients are actually different from zero. Moreover, spike—and-slab priors
have a closed—form convolution with the Gaussian distribution compared to other continuous
shrinkage priors, such as Horseshoe (Carvalho et al. 2009). This advantage allows us to use

approximate inference methods for BCSs based on Gaussian approximations in Section 4.4. For
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the other coefficients {7, @, 7}, we adapt a continuous bimodal prior distribution in Equation 11
which has similar prior specifications to 8. Posterior distributions of all the unknown param-
eters can be obtained via Gibbs sampling along with data augmentation (more details in the
Supplementary material). Note that the brms R package (Biirkner 2017) can be used to fit the

ZIP model (even with horseshoe priors).

4.4 Credible subgroup estimation

Given the posterior mean of A(X;) (denoted as A(X;) ), we construct credible subgroups (D, S),
which bound the true benefiting subgroup B and handle multiplicity in testing A(X;) at each
covariate point. Particularly, we determine the simultaneous credible bands for A(X;) over the

covariate space C by

A(X) € A(X) £ VW Var(A(X), (12)

(A(Xi)*A(Xi))Q' The

where W, is the 1 — « quantile of the empirical distribution W' = supy, z ¢ “=7.~ ENED)

exclusive subgroup D is defined by the upper bound of the simultaneous credible band and is

expressed by

D ={X, eC:A(X) — VW Var(A(X)) > 6}, (13)

which shows that D contains only covariate points X; for which the characteristics of subjects
benefit from the treatment.

Moreover, the inclusive subgroup S is defined by the lower bound of the simultaneous cred-

ible band, i.e.

S ={(X) € C: A(X) + VWoVar(A(X) = 6}, (14)

which includes all types of subjects who benefit. The credible subgroups S and D in Equa-
tion 13 and Equation 14 are then obtained via Gaussian approximation because the posterior
distributions are approximately normally distributed in our application. In the non-Gaussian

case, one can use a quantile-based simultaneous credible band method (Schnell et al. 2018).

5 Simulation Study

In this section, we conduct simulation studies to investigate the performance of our method-

ology for zero-inflated count data and to compare it with alternative approaches in different
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simulation settings. Our simulations examined the effects of sample size, strengths of associa-

tions between outcome and covariates, and a large number of covariates.

5.1 Simulation setups and evaluation criteria

We generate 1,000 samples D = {y;, ¥, X; = (X;,W;,Z;,8;);i =1,...,n}. For each sample,

the zero-inflated count response y; is sampled from the model in Equation 2 with

0 with probability 6;,
Yi ~ (15)
Poisson(y;) with probability 1 — 6;,
log(1t;) = P1 + Baxri + Baxa; + 11bi + Yatiwn; + 3w, (16)
0;
log (1 — 6-) =T + To21; + T322i + P10i + P210iS1; + P31);S9;. (17)

For the zero component, the covariate 2y, is drawn from the Bernoulli distribution with prob-
ability of success 0.5. We let z5; = x4, i.e., the covariate is allowed to be the same in the two
components of a ZIP model. For simplicity, we assume that W; = X, and S; = Z,. For the
Poisson component, the covariate x; is drawn from the Bernoulli distribution with probability
of success 0.5, xo; is generated from a uniform distribution on the interval (—4,4), and ¢ is a
binary treatment and generated as 0 or 1 with equal probability at random. Moreover, the true
regression coefficients are set to be 7 = (—1,0,0.5)7, ¢ = (—0.5,0,—0.1)T to avoid a separa-
tion problem resulting in an infinite estimate in logistic regression (Albert & Anderson 1984),
and 8 = (1,0,—0.3,0.1,0,0.5)7. Therefor, the covariates 1, z; and s; are not relevant in our
simulated data.

We examine the performance of our proposed method under various settings of the model
parameter v as follows: (S1) null case by settingy = ¢ = (0,0, 0)T, i.e., there is no benefit to the
treatment; (S2) small effect size y = (0.1,0,0.5)7 ; (S3) moderate effect size y = (0.5,0,0.5)T;
and (S4) larger effect size y = (0.7,0,0.5)7. Figure 2 illustrates the true CATE as a function
over the covariate zo € (—4,4). The horizontal line represents no treatment effectiveness in
scenario S1, and the CATE values above (below) this line indicate that there is (not) a benefit
to a treatment. For example, any subjects with 25 € (0,4) will have benefit from treatment
in scenarios S2, S3 and S4. Moreover, we further examine the behavior of BCSs in a full case

(S5) in which all subjects are beneficial to the treatment. In scenario S5, we assume a moderate
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effect size as in S3 and x9; followed a uniform distribution from 0 to 4. We vary the sample
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Figure 2: Illustration of CATE for various values of x5 in simulation study. The horizontal line
indicates that there is no treatment effect (§1). The CATE values above (below) the horizontal

line show that there is (not) a benefit to treatment.

size n. = 50,100 and 500, which we refer to as small-to-moderate sample size. Note that in
our simulation studies, the choice of sample sizes is relevant to the bladder tumor dataset with
n = 87, and similarly for the parameter values. With these simulation settings, the means of
Poisson component range from 0.86 to 11.33, and on average, 70% of the responses y; are zero
and 10% of the zeros are Poisson.

As competitors, we compare the proposed method using spike—and-slab prior (denoted as
BCS-SS) to the BCS without using spike—and-slab prior (denoted as BCS), a horseshoe prior
(denoted as BCS-HS) and pointwise method (denoted as PW). For BCS-HS approach, we use
the same ZIP model as BCS-SS for constructing credible subgroups, but the spike-and-slab
priors for regression coefficients are replaced by a horseshoe prior. The full prior specification

is

Bj‘T,ZjNN(O,ZJZ’iJ) (18)

7, Z; ~ Half-Cauchy(1),
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where the scale parameter of 1 for the Half-Cauchy distribution is the default choice given in
Carvalho et al. (Carvalho et al. 2009). In contrast to BCS-SS, the BCS-HS approach cannot pro-
vide explicit estimates for the inclusion probabilities. Moreover, the PW method also uses the
same posterior samples from BCS-SS for constructing credible subgroups, but without correct-
ing for multiplicity. Specifically, we formulate the credible subgroup D by identifying covariate
points X; from a covariate space such that P (A(X;) > 0 | D) > 1 — «, and the credible sub-
group S is constructed by finding the covariate points having P (A(&;) <6 | D) < «. For
each simulated data, we run each MCMC chain for 10,000 iterations with the first half taken as
burn-in. In addition, we set a credible level & = 0.8 and a threshold § = 0.

We assessed the performance of the BCSs approach by using the same criteria as in Schnell
et al. (2016) by calculating four quantities: (1) the total coverage which provides frequency
that the true benefiting subgroup B is in (D, S); (2) the credible pair size which measures
the proportion of population in the uncertainty region S\ D; (3) Specificity and sensitivity of D
providing diagnostic accuracy of subgroup D with respect to B; and (4) Mean square error (MSE)
of CATEs comparing the estimated treatment effect with the true values. In our simulation
study, we address the multiplicity issues by using the total coverage. Since this coverage metric
is the frequency of the true benefiting subgroup B belonging to both exclusive and inclusive
credible subgroups, an approach without encountering multiplicity would have a total coverage

below the nominal size, i.e., a coverage failure corresponds to a family-wise error.

5.2 Simulation results

Table 1 summarizes the average summary statistics for scenarios S2, S3 and S4 with sample
size n. = 50, 100 and 500 at 80% credible level and §=0, and we report the results of scenario
S1 and S5 in Table S1 (provided in Supplemental Document). Note that when the benefiting
subgroup is empty in scenario S1, the sensitivity of D, which is the proportion of the exclusive
subgroup D that is also contained in the benefiting subgroup B, is not calculable (denoted as
‘NaN’ in the Table S1). Similarly, the specificity of D is not provided in scenario S5 in which
all subjects benefit from the treatment. For the total coverage, since the benefiting subgroup
B would be empty in scenario S1, it would only be covered if the exclusive subgroup D is

also empty. However, the benefiting subgroup B would correspond to the whole population in
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Table 1: Average summary statistics for sample size n = 50, 100 and 500 at 80% credible level

and 0=0 for scenarios: S2 (small effect size), S3 (moderate effect size) and S4 (large effect size).

Sample | Scenario | Method | Total Credible | Specificity| Sensitivity| MSE
size coverage | pair size of D of D

BCS 0.81 0.53 0.84 0.38 4.45

S2 BCS-SS 0.84 0.48 0.87 0.47 3.63

BCS-HS 0.84 0.53 0.86 0.41 3.40

PW 0.41 0.33 0.79 0.63 3.63

50 BCS 0.83 0.51 0.85 0.39 4.41

S3 BCS-SS 0.88 0.52 0.89 0.47 3.32

BCS-HS 0.88 0.52 0.89 0.47 3.31

Pw 0.43 0.31 0.82 0.66 3.32

BCS 0.83 0.49 0.87 0.55 3.69

S4 BCS-SS 0.90 0.44 0.93 0.60 2.32

BCS-HS 0.90 0.46 0.91 0.61 2.13

PW 0.46 0.23 0.85 0.75 2.32

BCS 0.84 0.53 0.86 0.41 1.66

S2 BCS-SS 0.86 0.44 0.89 0.67 1.56

BCS-HS 0.86 0.45 0.88 0.61 1.53

PW 0.46 0.31 0.82 0.73 1.56

100 BCS 0.85 0.39 0.89 0.71 1.44

S3 BCS-SS 0.89 0.38 0.92 0.80 1.25

BCS-HS 0.89 0.38 0.90 0.79 1.21

1% 0.55 0.17 0.85 0.88 1.25

BCS 0.85 0.27 0.93 0.77 1.42

S4 BCS-SS 0.89 0.22 0.95 0.88 1.29

BCS-HS 0.90 0.21 0.95 0.84 1.28

PW 0.69 0.12 0.87 0.94 1.29

BCS 0.87 0.18 0.91 0.82 0.62

S2 BCS-SS 0.90 0.14 0.92 0.86 0.59

BCS-HS 0.90 0.17 0.92 0.85 0.48

PW 0.69 0.03 0.88 0.92 0.59

500 BCS 0.89 0.14 0.98 0.89 0.61

S3 BCS-SS 0.91 0.13 0.98 0.92 0.57

BCS-HS 0.90 0.12 0.98 0.90 0.56

1% 0.71 0.05 0.97 0.94 0.57

BCS 0.89 0.13 0.98 0.91 0.59

S4 BCS-SS 0.93 0.07 0.99 0.96 0.44

BCS-HS 0.93 0.09 0.99 0.95 0.43

PW 0.72 0.04 0.97 0.98 0.44

scenario S5, and it would only be covered if the inclusive subgroup S would need to correspond

to the whole population.
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In general, we observe that the total coverage, specificity and sensitivity of D increase as
the sample size and effect size increase, and the decrease in credible pair size and MSE with the
increase of sample size and and effect size. It appears that the BCS-HS and BCS-SS approaches
have similar trends in all scenarios for all criteria, and these approaches outperform the BCS
approach without shrinkage priors across all scenarios as expected. Moreover, the BCS-HS and
BCS-SS approaches show more efficient performance than the PW approach in terms of total
coverage, specificity of D, especially in the small sample size n = 50. For example, the total
coverage is near or higher than the nominal level for all scenarios, whereas the total coverage
of PW ranges from 0.41 to 0.46.

Moreover, the BCS-HS and BCS-SS approaches generally yield high specificity of D com-
pared to the PW approach because the PW approach has smaller credible pair size, i.e. tighter
uncertainty region S\ D, resulting in smaller total coverage and specificity of D. In contrast,
the PW approach obtains the specificity of D larger than that of the BCS-HS and BCS-SS ap-
proaches. This phenomenon reflects the trade-off between specificity (one minus the type I
error rate) and sensitivity (statistical power) under the multiple hypothesis testing setting, i.e.,
increased specificity reduces the sensitivity and vice-versa. Our proposed method can achieve
high specificity of D in exchange for a reduced sensitivity of D, especially for small samples.
In a regulatory setting, clinicians and researchers, who prefer a greater specificity but a slightly
lower sensitivity, might consider this trade-off. The simulation results show that, overall, the
proposed approach BCS with shrinkage priors has the advantage of controlling multiplicity is-
sues by providing a total coverage above nominal level 0.8, high specificity (87% — 99%) of D
in different scenarios and relatively high sensitivity (60%) of D for small sample size with large
size effect.

In Supplemental material, we use different link functions for the zero component (Equa-
tion 17) under scenario S3 to study to what extent our proposed models are sensitive to the
link function misspecification. We found that the performance of the BCS is not sensitive to
the choice of the link function for the zero component. Furthermore, we expand the scenario
S3 to investigate the scalability of our proposed models in the presence of high—dimensional
covariates (detailed in Supplemental material). Briefly, we set n = 200, and the total dimen-

sionn = p+ k + ¢+ m = 300, 500 and 1, 000, where the number of non-zero coefficients is

20



Table 2: Average summary statistics for high—dimensional setting at sample size n = 200, 80%

credible level and §=0.

Total Method | Total Credible | Specificity| Sensitivity| MSE

dimension coverage | pair size of D of D
n

BCS-SS 0.81 0.52 0.78 0.69 1.33

300 BCS-HS 0.81 0.52 0.78 0.69 1.31

PW 0.54 0.36 0.55 0.79 1.33

BCS-SS 0.77 0.49 0.66 0.62 2.55

500 BCS-HS 0.76 0.49 0.66 0.62 2.57

PW 0.51 0.31 0.34 0.73 2.55

BCS-SS 0.74 0.44 0.61 0.54 3.24

1,000 BCS-HS 0.74 0.44 0.60 0.54 3.25

PW 0.48 0.26 0.22 0.62 3.24

constant. Under these settings, the number of parameters being estimated is greater than, or
equals to, the sample size. Table 2 shows that we yield similar results to those described in the
low—-dimensional setting above. Moreover, increasing total dimension 7, as expected, leads to
increase the MSE. For the BCS-SS and BCS-HS approaches, the total coverage rates lay between
0.74 and 0.81, and these approaches achieve both moderate specificity (60% — 78%) and sensi-
tivity (54% — 69%) of D. Hence, the simulation study confirms the advantage of our proposed

methodology in high—dimensional settings.

6 Analysis of the bladder tumor dataset

The proposed BCSs method was originally motivated by the clinical bladder tumor study con-
ducted by the Veterans Administration Cooperative Urological Research Group (VACURG) (Byar
et al. 1977). The data collection is described in Byar (1980). All patients at the beginning of the
trial had experienced superficial bladder tumors, which were removed through a transurethral
resection. Following surgery, participants were randomly assigned to receive either pyridoxine
pills along with periodic instillation of a chemotherapeutic agent thiotepa into the bladder or a
placebo. Several statistical methodologies were proposed in various literature (Wellner & Zhang

2000, Baetschmann & Winkelmann 2013, Sun & Wei 2000). They found that periodic instillation
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of thiotepa significantly reduced the recurrence of bladder tumors compared to placebo.
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Figure 3: A light gray histogram represents the observed number of new tumors in the bladder
tumor study, and a dark gray histogram refers to a Poisson distribution with mean 4.73, based

on the the empirical mean of the data.

As an illustration of our proposed method, our goal is to identify characteristics of patients
who benefit from thiotepa treatment. The endpoints of interest were the number of new tumors
recorded over the entire observed patient record time. We have a total of 38 patients receiving
the thiotepa treatment and 47 patients receiving the placebo. Following Baetschuman et al
(Baetschmann & Winkelmann 2013), we include the following covariates in our analysis: the
number of initial tumors (INITNR) which ranges from 1 to 8, the treatment indicator (trt) and
the tumor size (Size). The natural log of duration of exposure measured in months, log(time), is
considered as an offset variable.

Figure 3 shows the distribution of the total number of tumors, and it is highly peaked at
zero. Therefore, the excessive zeros provide evidence of zero inflation, which support our use
of the ZIP regression model for count data with excess zeros. We then consider two different

link functions for the zero component in the ZIP model, including the common logit link, i.e.

0;
IOg (1 ) > =179+ T INITNR; + mSize; + letrti + QbQINITNRZ X trt; + ¢3Sizei X trt;, (19)
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and the complementary log-log link, i.e.

0; = exp (— exp(7o + T INITNR; + 75Size; + ¢;trt; + @oINITNR; X trt; + ¢3Size; X trt;)) .
(20)

Moreover , the model for the Poisson component is given by
log(uz) = log(timei) +ﬁ0 + 611NITNR1 + /BQSiZei +’)/1trtl' —|-’}/QINITNRZ X trt; +”ygSizeZ- X trt;. (2 1)

To identify characteristics of patients who benefit from the thiotepa treatment, we only as-
sign spike and slab priors (described in Section 4.3) on regression coefficients corresponding to
INITNR and Size for both components. We then assign N(0, 1000) prior on other coefficients
in the model, e.g., 79, 5o, ¢1, and ;. We run the MCMC algorithm for 10, 000 draws discard-
ing a burn-in of 5, 000, and the convergence of the MCMC sampler was satisfactory based on
examination of trace plots (provided in Supplemental material). We then report the posterior
summary statistics of the regression coefficients for both models in Table 3. It appears that both
approaches provide similar estimates of coeflicient in Poisson component, and the significant
treatment effect indicates that the thiotepa treatment suppresses the number of bladder tumors
compared to placebo at a 90% credible level. The PIP were roughly equal for all covariates under
logit and cloglog links. For the zero component, INITNR has higher inclusion probability than
that of SIZE, and similar results are found for interaction terms. For the Poisson component,
INITNR, identified as a prognostic covariate, has substantially smaller effect size and PIP than
those of a predictive covariate (identified as interacting with the treatment). On the other hand,
SIZE has larger effect size and PIP than those of a predictive covariate. The results suggest
that the prognostic effect of covariate INITNR and the predictive effect of covariate SIZE may
be irrelevant for identifying the characteristics of patients for whom the thiotepa treatment is
beneficial, and thus the sparsity in covariates would ease the interpretation of our proposed
BCSs.

Using the above MCMC sampling results, we construct BCSs by setting ¢ = 0 and credible
level of 80%. Figures 4A and 4B show the credible subgroups for the ZIP model using logit
and cloglog links, respectively. Overall, we obtain similar subgroups for both approaches. Each
point in each panel represents a particular type of patient with their tumor size and number of
initial tumors. The interpretation of BCSs in Figure 4 is that the rectangles represent character-

istics of patients for whom the thiotepa treatment is beneficial, whereas the triangles represent
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Table 3: Posterior summaries of covariates in Bladder Tumor dataset for ZIP model. Posterior

standard (SD) deviation are in parentheses, and (*) denotes significance at 90% credible level.

Posterior Mean (Posterior SD) PIP
Component Parameter
logit cloglog logit | cloglog
Intercept | -0.026 (0.701) | -0.27 (0.382) 1 1
Zero component trt 0.81 (0.823) -0.542 (0.564) 1 1
INITNR -0.23(0.251) | 0.11(0.127) | 0.567 | 0.367
Size -0.089 (0.18) | 0.034(0.084) | 0.297 | 0.152

INITNR X trt | -0.156 (0.282) | 0.118 (0.165) | 0.417 | 0.462

Size x trt 0.006 (0.141) | -0.038 (0.128) | 0.249 | 0.231

Intercept | -1.105 (0.141)* | 1.098 (0.122)* | 1 1

trt -1.361 (0.284)* | -1.418 (0.226)* | 1 1
Poisson component INITNR 0.010 (0.027) 0.007 (0.022) | 0.064 | 0.066
Size -0.089 (0.045) | -0.094 (0.041) | 0.551 | 0.616

INITNR x trt | 0.302 (0.048)* | 0.298 (0.041)* | 0.932 | 0.973

Size X trt | -0.102 (0.124) | -0.086 (0.109) | 0.307 | 0.261
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Figure 4: The Bayesian credible subgroups for bladder tumor dataset.
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types of patients who have no benefit. Therefore, we have evidence to conclude that patients
with the number of initial bladder tumors lower than 5 and tumor size between 1-7 are ben-
efiting from the thiotepa treatment. However, patients with 7 initial bladder and tumor sizes
between 1-2 are not benefiting from the thiotepa treatment, and the results are similar to those
with 8 initial bladder tumors and tumor sizes between 1-3. We further investigate our model
choice of ZIP regression by comparing to zero—inflated negative binomial (ZINB) regression,
which can accommodate excess zeros and overdispersion. As in the ZIP model, we yield similar

BCSs results for ZINB model (see Supplementary material).

7 Discussion

In this article, we have introduced the BCSs for count data with excess zeros which are com-
mon in medical and public health related studies. Our approach provides insight into the ap-
parent heterogeneity of treatment by identifying characteristics of patients who benefit from
the treatment, while handling multiplicity issues. The method studied here is widely applicable
as post—hoc analysis for confirmatory clinical trials, which focus on assessment of benefits and
risks of new drugs compared to standard treatments.

As shown in the numerical studies, our method achieves desirable frequentist properties
such as the total coverage, sensitivity and specificity of exclusive group D in low and high
dimensional covariates. The advantage of BCSs is that it provides simultaneous inferences,
as opposed to non-simultaneous inferences available from tree-based methods, from a pair of
credible subgroups (D, .S) where D is contained by the benefiting subgroup and S contains
the benefiting subgroup. In addition, our strategy includes shrinkage priors, which screen the
covariates to find a lower dimensional covariate space, resulting in improving the estimation
and interpretation of BCSs. This renders the credible subgroups interpretable and useful in
practice.

We note that in the construction of Bayesian credible subgroups, we have assumed that the
threshold ¢ is zero for controlling the benefiting subgroups. If the alternative treatments have
unequal cost, we need to find the covariates of the patients in which their CATEs exceed 9.
Ideally, the choice of § should be a clinically meaningful value determined by the subject matter

experts. When such a threshold is not available, based on the posterior distribution of CATE,
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one can compare the posterior mean or median with a range of threshold values and decide
the treatment strategy with the smallest threshold. Another possible approach is to conduct
sensitivity analysis to evaluate the changes in subgroups at different thresholds.

There are several possible extensions of our approach. The first extension is model choice
for zero-inflated data. Our method consists of a two—-step approach which includes building the
statistical model and constructing the Bayesian credible subgroups. Thus it is straightforward to
implement our method with different models for zero-inflated data, such as compound Poisson
random effect (Ma et al. 2009) or marginal zero inflated regression models (Martin & Hall 2017).
The second extension is comparing different metrics for the CATE. We note that our metric for
the CATE is the difference in expected counts, and the CATE can be measured by the relative
ratio. It is worth noting that the treatment effect heterogeneity is scale-dependent, i.e., the
treatment effects may be heterogenous on one scale (difference) but not on another (ratio). We
believe that the metric for CATE has an important impact on the estimation and interpretation
of the BCSs. Another future direction to consider are multiple endpoints for both efficacy and
risk. For example, one can extend our method for benefiting subgroup estimation for multiple

endpoints by using the concept of admissibility (Schnell 2017).

SUPPLEMENTARY MATERIAL

The supplementary materials for Bayesian shrinkage estimation of credible subgroups for count
data with excess zeros includes: (1) sampling algorithm for posterior distribution using spike
and slab priors; (2) simulation results for the null case S1 and the full case S5; (3) simulation
settings for different link functions; (4) simulation settings for high—dimensional covariates;

and (5) the MCMC diagnostics and ZINB for the bladder tumor data analysis.
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