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ABSTRACT

Higher speeds in work zones have been linked to an increased likelihood of crashes and more severe crash
outcomes. To enhance safety, speed limits are often reduced in work zones, aiming to create a steady flow of
traffic and safer traffic operations such as merging and flagging. However, this speed reduction can also lead to
abrupt speed changes, resulting from sudden braking or acceleration, increasing the risk of crashes. This
disruption in speed and flow results increases the likelihood of rear-end crashes. Ensuring driver compliance with
the reduced speed limits and traffic flow operations is challenging as work zones may cause frustration and lead
to more instances of speeding. Therefore, proactively predicting speeding events in work zones can be crucial for
the safety of both workers and road users, as it enables the implementation of speed enforcement measures to
maintain and improve driver compliance in advance. In this study, we employ the duration-based prediction
framework to forecast speeding occurrences in work zones. The model is used to identify significant predictors of
speeding including visibility, number of lanes, posted speed limit, segment length, coefficient of variation in
speed, and travel time index. Among these variables, the number of lanes, posted speed limit, and coefficient of
variation of speed are positively associated with speeding. On the other hand, visibility, segment length, and
travel time index are negatively associated with speeding. Results show the model’s predictive accuracy is higher
for speeding events with shorter durations between consecutive occurrences. The model predicted speeding
within 61% of the actual epoch when speeding events within 5 h of one another were considered for validation.
This indicates that the model is more effective for road segments and work zones where speeding occurs more
frequently. The prediction framework can be a great asset for agencies to improve work zone safety in real-time
by enabling them to proactively implement effective work zone enforcement measures to control speeding and to
stay prepared, preventing potential hazards.

1. Introduction

(Wang et al., 2018). Most of these fatalities and crashes can be attributed
to adverse driver behavior and non-compliance with work zone safety

Highway construction and maintenance play a crucial role in
enhancing and sustaining transportation infrastructure, which experi-
ences increasing use by travelers every year. During these operations,
work zones are established to ensure the safety of workers and road
users. These work zones can be noisy, distracting, and confusing due to
the presence of heavy equipment and machinery. Consequently, they
become more susceptible to safety mishaps, particularly from oncoming
traffic. In fact, highway construction work is categorized as one of the
most hazardous occupations. For instance, among all road construction
sites, work zones involving paving/surfacing equipment operators and
maintenance workers have the second and third highest fatality rates
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measures. Among several factors influencing work zone crashes,
speeding stands out as the most common. According to the Fatality
Analysis Reporting System (FARS) database, in 2021, 32% of work zone
fatalities were linked to speeding as a contributing factor, with 24% of
fatal crashes resulting from rear-end collisions (Federal Highway
Administration, 2023).

The Manual of Uniform Traffic Control Devices (MUTCD) classifies
work zones based on their location and duration (Federal Highway
Administration, 2009). It serves as a comprehensive guide for traffic
control and enforcement of safety measures in work zones. The main
objective of these safety measures is to ensure smooth traffic flow and
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consistent speeds throughout the work zone, thereby avoiding abrupt
changes that could lead to crashes. Most work zone crashes, especially
rear-end collisions, occur due to inconsistent traffic flow or sudden
speed variations. To address this issue, the MUTCD provides guidance on
implementing various technologies and strategies to maintain a steady
traffic flow and enforce safety measures in work zones. The guide fo-
cuses on increasing compliance among road users and eliminating
adverse driver behavior using regulatory strategies (such as speed photo
radar enforcement and police presence) and warning strategies
(including warning signs, dynamic message signs, speed feedback sys-
tems, etc.). Despite the implementation of existing safety strategies and
work zone enforcement measures, work zone crashes have been on the
rise in recent years. Between 2020 and 2021, work zone fatalities wit-
nessed a troubling increase of 10.8% (Federal Highway Administration,
2023). In 2020, 39% of all work zone crash fatalities in the US occurred
on interstates, with a slight rise to about 40% in 2021. The higher traffic
speed and lower work zone compliance on interstates contribute
significantly to the number of fatalities. Extensive evidence in the
literature suggests that higher speeds are associated with more severe
crashes (Osman, Mishra, et al., 2018; Osman, Paleti, et al., 2018; Shaer
et al., 2024).

In this context, the ability to predict speeding can bring significant
benefits from both traffic safety and operational perspectives. Having
prior knowledge of potential speeding events can assist transportation
planners and agencies in preparing in advance and taking necessary
steps to prevent such occurrences. Therefore, this study uses a dis-
cretized duration framework to model and predict speeding on highway
segments with existing work zones. The implemented duration-based
framework is specifically designed to incorporate time-varying cova-
riates into the multinomial logit model (MNL) through time-
discretization. This enables the calculation of the risk of speeding in
real-time, allowing forecasting road users’ speeding behavior. The
duration-based approach can be utilized to identify conditions related to
highway, weather, and traffic flow that elevate the likelihood of
speeding. Furthermore, it provides the capability to predict crash
probabilities in specific highway segments in real-time. This enables
agencies to proactively implement effective work zone enforcement
measures to control speeding and to stay prepared, preventing potential
hazards. Real-time predictions also empower agencies to strategically
allocate limited speed control and regulation resources, such as message
signs, barricades, etc., in critical segments such as work zones or those
that are prone to speeding.

2. Literature review

In the existing literature, driver behavior within work zones is pri-
marily characterized by compliance with two key factors: (i) the
enforced speed limit and (ii) merge behavior. Notably, these two aspects
are major contributors to work zone crashes, and as a result, work zone
safety measures focus on promoting safer driving behavior by regulating
the operating speed limit and merge behavior. Various studies have
highlighted the significance of speed compliance in reducing crash risks.
Higher speeds have been linked to an increased likelihood of crashes and
more severe outcomes (Osman et al., 2016; Osman, Paleti, et al., 2018;
Zhang & Hassan, 2019). Additionally, unsafe and aggressive merge
behavior, combined with adverse weather and lighting conditions, has
been identified as risky driving behavior (Debnath et al., 2015). Inter-
estingly, aggressive driving and merge behavior are also associated with
traffic speed. Drivers encountering slower speeds, congestion, and travel
delays tend to become frustrated, leading to more aggressive maneuvers
on the road. This highlights the interconnectedness between driving
behavior and traffic flow within work zones.

2.1. Work zone risk factors and driver behavior

Work zones can lead to sudden disruptions in traffic flow, resulting in
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slowdowns, queues, lane change maneuvers, traffic conflicts, and
speeding, all of which impact driving behavior (Flannagan and Selpi,
2019; Mishra and Zhu, 2015). Researchers have extensively studied the
factors that influence driver behavior in work zones. Nearly half of all
work zone crashes occur in the vicinity of the activity area (Dissanayake
& Akepati, 2009). Among these crashes, approximately 42% are rear-
end collisions. The main contributors to work zone crashes include
inattentive driving (19%), following too closely (9.7%), and failure to
yield right of way (7.5%). Driver behavior also varies based on different
work zone types and activity levels. For instance, when navigating
through longer work zone closures, drivers tend to travel at higher
speeds (Hamdar et al., 2016). The type of barriers used also influences
driver headway. Adverse weather, poor lighting conditions, and middle-
aged drivers have been associated with risky driving behavior. Workers
involved in work zone construction have highlighted the most hazard-
ous conditions they face, such as working in wet weather leading to
reduced visibility and skid resistance, driver frustration, aggression to-
wards traffic controllers, and distracted driving due to mobile phone use
(Debnath et al., 2015). Similarly, according to Debnath et al. (2015),
workers consider non-daylight hours (dawn, dusk, and night) as the
most hazardous times for work zone activities, which is attributed to a
higher number of drunk drivers and reduced visibility (Debnath et al.,
2015). Additionally, workers perceive working on freeways and hilly/
curved roads as risky. Regarding speed compliance, workers consider
police enforcement, the presence of police cars (even without an officer
present), installation of speed bumps, and work zone-oriented driver
education as the most effective countermeasures.

2.2. Predicting driving behavior and traffic flow

As previously mentioned, driving behavior and traffic flow are
mutually dependent. Many studies examining driver behavior under
various circumstances, such as the implementation of new work zone
enforcement measures, have employed three main approaches: i) Field
observation and analysis, ii) Traffic micro and macrosimulation, for
instance, studies conducted by (Berthaume, 2015; Gan et al., 2021; Hou
& Chen, 2019), and iii) Driving simulator experiments, as demonstrated
in research conducted by (Algomaiah & Li, 2022; Bashir & Zlatkovic,
2021). The first approach, field observation and analysis, is beneficial
when there is no prevalent risk or when adequate safety for road users
can be ensured, as seen in previous studies (Benekohal et al., 2010;
Mishra et al., 2021; Thapa & Mishra, 2021). On the other hand, the latter
two approaches, traffic micro and macrosimulation, and driving simu-
lator experiments, are preferred to avoid hazardous conditions and
provide controlled environments for studying driver behavior in work
zones.

Understanding the impact of work zones and driving behavior on
traffic flow is crucial from an Intelligent Transportation Systems (ITS)
perspective. Real-time and accurate traffic data play a vital role in
various ITS applications, including traffic planning and management,
incident detection and management, travel time estimation, traffic
predictions, and traffic planning. To achieve these objectives, re-
searchers have focused on accurately forecasting traffic flow, for missing
data and future conditions.

Numerous research approaches have been explored in this area,
including time series and regression analysis, Kalman filter, machine
learning techniques such as neural networks and support vector ma-
chines, as well as deep learning techniques like convolutional neural
networks, long short-term memory, and graphical convolutional net-
works. For a detailed description of these methods and relevant litera-
ture, readers are encouraged to refer to studies conducted by (Medina-
Salgado et al., 2022) and (Kashyap et al., 2022). In summary, the pri-
mary goal of these methods is to forecast traffic flow conditions rather
than focusing on driving behavior, contributing to the advancement of
ITS applications and traffic management.
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2.3. Predicting speeding behavior

Various approaches have been employed in the existing literature to
predict driving intention and behavior related to violating traffic laws.
The theory of planned behavior has been widely utilized in multiple
studies (e.g., (Dinh & Kubota, 2013; Elliott & Thomson, 2010; Forward,
2009; Jovanovic et al., 2017; Scott-Parker et al., 2013)). For instance,
Cestac et al. (2011) investigated young drivers and found that different
latent constructs influenced speeding behavior in different driver groups
(Cestac et al., 2011). Novice drivers were influenced by thrill-seeking,
beginners by subjective norms, and experienced drivers by the feeling
of being in control. In another study, researchers reported that as young
drivers are more likely to speed as they gain confidence in their driving
abilities (Simons-Morton et al., 2012). Risky peer influences were found
to be significant predictors of speeding among novice teenage drivers.

Several studies have utilized naturalistic driving data to understand
and predict speeding behavior. For instance, Yu et al. (2019) used
naturalistic driving data to develop a speeding prediction model (Yu
etal., 2019). The study emphasized the role of driver’s visual perception
as a major factor in speeding. The prediction model was built based on
visual road information, environmental variables, vehicle kinematics,
and driver characteristics, utilizing a Random Forest algorithm to ach-
ieve an accurate prediction rate of 85%. In a similar vein, Kong et al.
(2020) investigated hidden rules governing speeding duration and pat-
terns using naturalistic driving data to understand speeding behavior
(Kong et al., 2020). Through classification-based association, they found
that moderating speeding was associated with shorter trips, absence of
median, and lower functional classes. Conversely, longer trips and
higher functional classes were linked to longer speeding events. Perez
et al. (2021) employed naturalistic driving data to investigate factors
influencing speeding behavior (Perez et al., 2021). They summarized the
likelihood of speeding using a beta binomial regression and a driver
questionnaire. The authors reported that the odds of younger drivers,
aged 16-24 years, engaging in speeding were 1.5 times higher than that
of 80-year-old drivers. Additionally, the odds of speeding at lower speed
limits (10-20 mph) were 9.5 times higher compared to speeding when
speed limits were over 60 mph. Researchers utilized the Strategic
Highway Research Program 2 (SHRP 2) naturalistic driving data to study
the duration of speeding events, aiming to better understand driving
behavior. They reported that driving 10 mph over the speed limit was a
common occurrence, with 99.8% of drivers speeding at least once within
their trips. The average number of speeding events reported in the study
was 2.75 per trip (Richard et al., 2020).

Zhao et al., (2013) developed a mathematical model to predict
intentional and non-intentional speeding (Zhao et al., 2013). The model
utilized in-vehicle sensor data and driver characteristics to calculate
speeding probabilities. The experiments were conducted using a driving
simulator, and the authors reported an average prediction accuracy of
over 80%.

In another study, Cheng et al., (2019) adopted a two-step approach
to identify and predict speed violations (Cheng et al., 2019). They used a
binary logit model to identify variables contributing to speeding viola-
tions and then applied a decision tree method to predict specific types of
speeding violations, such as “foreign license plate” and “intersection”
among others. The study found that country roads had a higher inci-
dence of speeding violations compared to urban roads, primarily due to
the lower presence of traffic control infrastructure and lower traffic
flow. Higher and more intense rainfall was associated with increased
speeding violations, while local drivers were less likely to violate speed
limits.

3. Study contributions

This study contributes to the literature in three major ways:
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i. First, no studies have attempted to develop or implement an
econometric framework for proactively predicting speeding,
especially in work zones. Based on the literature review,
numerous studies have examined speeding behavior using the
theory of planned behavior. Additionally, a separate body of
literature focuses on predicting speeding at the individual driver
level, utilizing environmental and in-vehicle data. Furthermore,
another set of studies has applied machine learning, and deep
learning techniques to forecast traffic flow and speed, enabling
various actions such as crash and congestion prevention, emer-
gency messaging for traffic diversion, rerouting, and queue
management, particularly in situations with insufficient or
missing disaggregated data. Despite the wealth of research in
these areas, we are not aware of any previous study attempting to
forecast the likelihood of speeding in the future using historical
data and time-varying covariates through a parametric approach.
This study aims to fill this research gap by providing insights into
predicting speeding behavior using historical data, and time-
varying covariates with a parametric approach.

ii. While many prediction models rely on modern data-driven black-
box machine learning and artificial intelligence algorithms, our
approach is based on exponential models (survival model and
MNL). These parametric methods offer the advantage of
providing causal inferences through variable effects, including
coefficients and marginal/elasticity effects. The enables re-
searchers to gain deeper insights into the relationships between
the predictors and speeding.

iii. Besides Thapa et al. (2022), there have been no implementations
of the duration-based model) (Thapa et al., 2022). Notably, the
original study focused on investigating traffic crashes but over-
looked the presence of segment-specific mixed effects despite
repeated observations across segments. This research distin-
guishes itself from the original study as the first to implement the
framework for predicting speeding in a work zone. It showcases
the integration of real-time weather, traffic flow, and congestion
data alongside static covariates like highway characteristics. As
mentioned previously, to our knowledge, this is the only study
directed at understanding and predicting speeding in an active
work zone. Additionally, current research considers the presence
of unobserved heterogeneity resulting from multiple speeding
events occurring in the same highway segment through a mixed
model.

4. Methodology

The description of the duration-based framework here is taken
largely from Thapa, et al. (2022) (Thapa et al., 2022; Thapa et al., 2024).
Utilizing the duration-based framework, we can determine the likeli-
hood of speeding at a particular time-interval t, considering that no
speeding has been observed in previous time-intervals. This probability
is represented by the hazard function h(t), which can be formulated
using a constant hazard rate, h.

[ he "

T1-F@) =" W

h®) = (Fem

In the given equation, we represent the probability distribution
function and probability density function related to a continuous
random variable for time T as f(t) and F(t), respectively. The probability
density function, in this context, indicates the likelihood of observing
speeding by time t. This is expressed by equation 2 as follows.

F(t) = Pr(T <1) )

Assuming that the time duration between consecutive speeding
events is discretized into n time-intervals, each having a duration of dt,
we can express the probability of observing the next speeding event at a



D. Thapa et al.

specific interval n since the occurrence of the last speeding event as
follows:

Pr(T = ndt) = Pr(T < ndt) —Pr(T < (n—1)dt)

= F(ndt) —F((n — 1)dt)

= exp(—h(n — 1)dt) —exp(—hndt)

exp(—h(n — 1)dr)

~1/(1 — exp(—hdr)) 3

Using a Taylor series expansion, i.e., 7= = 1 +x+x% +x3 4---00 =1 <
x < 1 in the denominator produces equation 4.

_ _ exp(—h(n—1)dt)
Pr(T = ndt) = T hd s exp(—2hd0) +exp( 3R T

_ (Un) _
= &xp(ul)ﬂxpe(’lq]’z)ﬂxp(UgH“m,where U, = —h(n-1)dt
__exp(Uy)

orexp(Ue)

Simplifying equation 4 makes it evident that the probability of
speeding at the n™ interval can be represented as MNL model with
infinite alternatives for n. The utility equation for the alternatives can be
expressed as U, = —h(n—1)dt. As a result, the utility equation can be
modified to accommodate non-linear hazard profiles, as demonstrated
in equation 5. However, when disregarding all higher-order polynomial
terms, equation 5 reduces to a simple MNL model.

@

Uy = Bi(n=1)di+py[(n — V)i’ + B, [(n — 1)di] +--- (5)

For example, consider the time between consecutive speeding events
observed at a specific segment, denoted as s, is discretized into epochs e,
with C number of time-intervals, each lasting for dt duration. An illus-
trative example of this discretization is presented in Table 1, where two
speeding events are observed, 4 h apart, with e = 1 h and dt = 15 min.
Consequently, each epoch contains four distinct time-intervals, indexed
as i={1,2,3,4}, and each time-interval provides the corresponding time
elapsed since the previous speeding event. This relationship allows us to
pinpoint the exact time-interval when the subsequent speeding event
occurred. For example, consider Table 1, which denotes speeding was
observed at the fourth time-interval of the fourth epoch, denoted as 1,
otherwise 0. As a result, the time elapsed between the two speeding
events can be calculated as t,; = (e—1)Cdt+(i—1)dt= (4-1)*4
*0.25+(4 —1)*0.25 = 3.75hours. This relationship enables us to
construct the utility function considering the time-intervals as choice
alternatives in the MNL model. The utility function includes the duration
dynamics as the first element and a vector of time-varying covariates as
the last element. Notably, even static variables that do not change with
time, such as the number of lanes associated with the highway segment,
were transformed into dynamic covariates by multiplying them with the
corresponding value of t,; to account for the effect of time elapsed.

Usei = Pitei+ -+ 17X 0 (6)

Alongside the four time-intervals, there is a fifth alternative to
consider, signifying whether the next speeding event will be observed in
the current epoch (0) or the next epoch (1). This particular choice
alternative serves as the base with an intercept term and can be repre-
sented as follows.

Usec1 = Pey @)

Since speeding at any time-interval is conditional upon no prior
speeding, the conditional probability for any time-interval can be

Table 1
Example demonstrating the discretization of duration between speeding events.
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expressed as follows.

exp(Uses)
Zf: 1 ex[’( U.x.,e.f) + EXP( U.v.e,(;+l )
We can obtain it by multiplying the conditional probability with the

product of probabilities for the fifth alternative, as demonstrated in
equation 9.

Pr(T, = t,,|T, > (e — 1)Cdt) = (€))

Pr(T, =1.;)
exp(Us,c.i)
ZLCZI exp(UY.e,c) + exp(Uv,e.C+l)

e—1 exp(Ur.e*,CJrl)
. He*:l chzlexp(Ux,z”‘.c) + exp(Ux,z'".C+l )

©)

Estimating the model parameters, represented as the vector n = (4,
-1, Bc.1), involves maximizing the likelihood function associated with
the probabilities in equation 9 across all speeding events and segments.
It’s essential to note that the data, after time discretization, takes the
form of panel data with multiple speeding events observed at each
segment. Thus, it becomes necessary to consider unobserved heteroge-
neity at the segment level. To address this, the vector of parameters for
any segment is assumed to follow a multivariate normal distribution.
The resulting mixed logit model is then estimated by integrating the
vector of parameters over this distribution. The random parameters for
the mixed logit model are obtained as Cholesky parameters by esti-
mating the elements of the unconstrained lower triangular Cholesky
matrix, represented as I'. This estimation is performed in relation to their

variance-covariance matrix, denoted as T, such that [T = X.
5. Data
5.1. Speeding events

This research focused on speeding incidents observed in a work zone
set up on I-65 in Robertson County, Tennessee. The I-65 segments within
the county are currently undergoing lane expansion in both North and
Southbound lanes. The specific location of these interstate segments
within Robertson County can be seen in Fig. 1. Based on the data ob-
tained from Google Maps Street View, it was determined that the work
zone has been active since July 2022. Therefore, the study period
considered for this research spans from July 1, 2022, to May 31, 2023.
The work zone consists of 14 INRIX Traffic Management Center (TMC)
segments, in Table 2. To identify speeding events during the study
period, speed data at 15-minute intervals was collected for these 14
TMCs, along with the reference speed for the highway segments. In the
context of INRIX, the reference speed represents the average speed of
vehicles over the study period. For this study, speeding was identified
for any given time-interval whenever the average speed exceeded the
reference speed by 10 mph. Our rationale for this choice was to ensure a
high level of confidence in identifying speeding, as many vehicles tend
to drive at or above the posted speed limit. Therefore, we took into
account the average speed observed in the segment and added 10 mph as
a threshold to confidently identify instances of speeding. Employing this
method, a total of 2,444 speeding events were identified. It is essential to
note that each speeding event corresponds to a specific 15-minute time
interval during which the average vehicle speed exceeded the reference
speed by 10 mph.

Segment Time to next speeding (hours) Epoch First 15-min Second 15-min Third 15-min Fourth 15-min Next epoch
A 4 1 0 0 0 0 1
A 4 2 0 0 0 0 1
A 4 3 0 0 0 0 1
A 4 4 0 0 0 1 0
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' Legend
A Weather station
e = |-65
| S IMiles
0 15 30 60 90 120

Fig. 1. Location of TMC segments within Robertson County and weather station.

Table 2

TMC segments within the work zone.
Northbound Southbound
TMC Sequence Length TMC Sequence Length
segments (mi) segments (mi)
121 + 04668 1 3.49 121-04670 1 3.48
121P04668 2 0.59 121 N04670 2 0.55
121 + 04669 3 4.15 121-04669 3 4.48
121P04669 4 0.59 121 N04669 4 0.53
121 + 04670 5 4.42 121-04668 5 4.07
121P04670 6 0.56 121 N04668 6 0.63
121 + 04671 7 3.39 121-04667 7 3.46

Note: TMC segments with the character “P” or “N” represents segments with
ramps.

5.2. Data aggregation

As the INRIX TMC data only provides traffic flow information,
additional datasets were utilized to obtain covariates that could effec-
tively represent the highway and weather conditions in the segments
during the study period and at the time of each speeding event. The
following datasets were used for this purpose:

i. Traffic flow data: Traffic flow data was sourced from the TMC data
provided by INRIX, as mentioned earlier. This data contained
disaggregated traffic speed information, recorded at 5-minute
intervals along with respective date and time for the study
period. This data was aggregated to 15-minute intervals for the
purposes of model development and speeding identification.
Moreover, the Coefficient of Variation (COV) was calculated from
the 5-minute intervals for each 15-minute interval to factor in
variations in speed. Additionally, to address the presence of
congestion, values of the travel time index was obtained at 15-
minute intervals for the study period. Additionally, yearly aver-
ages for traffic composition were also collected for each segment.
All of this data represented the traffic characteristics and condi-
tions affecting speeding events during the study period.

ii. Highway characteristics: The necessary highway characteristics
were collected from the Enhanced Tennessee Roadway Informa-
tion Management System (ETRIMS), a query-based highway in-
formation system managed by the Tennessee Department of
Transportation. Among the variables obtained, terrain type,
lighting conditions, roadway conditions, and illumination were
found to be consistent across all segments and, therefore, were
not included in the analysis. The retained variables were the
number of lanes and the posted speed limit, as they varied across
the segments and were considered essential for the study. A
geospatial proximity approach was applied using road inventory
data to integrate these highway characteristics with the traffic
flow data. This ensured that the relevant highway characteristics
were properly aligned with each segment’s corresponding traffic
flow data.

iii. Weather conditions: Weather data for the freeway segments was
collected from the Local Climatological Data (LCD) recorded by
the nearest weather station situated at Nashville International
Airport. The hourly weather data was then merged with the
traffic flow data based on the corresponding date and time. Fig. 1
displays the weather station’s location relative to the interstate
segments. Given that our prediction model’s smallest temporal
resolution was 15 min with 1-hour epochs, we integrated the
hourly weather conditions to account for the impact of changing
weather conditions. To achieve this, we multiplied the hourly
weather conditions for the corresponding epoch with the time
elapsed for each time interval. It is important to note that the
hourly weather data included multiple conditions observed
within an hour, such as cloudy, rainy, and clear weather. For this
study, we categorized the data into two main categories: “Clear”
when no adverse weather conditions were observed in a partic-
ular hour, and “Other” when at least one adverse weather con-
dition was noted. Additionally, hourly visibility data in miles was
obtained as part of the weather conditions dataset. The descrip-
tive statistics for the variables obtained from these datasets are
presented in Table 3.

5.3. Training and testing data

After identifying the speeding events, 90% of them (2,200 events)
were randomly selected to create forecasting epochs for generating the
training data, as explained in the Methodology section. This selection
process is referred to as Epoch level sampling (Thapa et al., 2022). All
the MNL and mixed logit models were estimated using this training data.
The remaining 10% of the speeding events were used to create the
testing data for model validation. This data was used to assess the per-
formance and accuracy of the models.

6. Results

The model estimation process comprised two primary steps. In the
initial step, a fixed parameter MNL model was estimated by maximizing
the log-likelihood associated with the probabilities in equation 9. The
parameters acquired during this step served as initial values for the
subsequent estimation of the mixed model, as described in the last
paragraph of the Methodology section. In this second step, the mixed
model was estimated, including the estimation of mean parameters and
the parametrization of the covariance matrix of the random parameters
using Cholesky decomposition. The mean parameters from our model
estimations are shown in Table 4. The mean parameters exhibit similar
values between the models; however, the mixed MNL model stands out
as a superior fit due to its lower log-likelihood value at convergence. The
t-stat values for the mixed model are notably large suggesting low values
of standard error for the respective estimates. Table 5 presents the
Cholesky parameters for the mixed model with respective t-stat within
parenthesis. The reader will note that the significant digits in the value
of t-stat are reduced in the table to accommodate the results on the same
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Table 3
Descriptive statistics.
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Table 4
Mean parameters for fixed and mixed models.

Categorical variables Frequency of speeding Relative abundance

Time of day when
speeding was

observed
Early morning (6 a.m. 133 5.44 %
to 9 a.m.)
Late morning (9 a.m. 8 0.33 %
to 12p.m.)
Early afternoon (12p. 14 0.57 %
m. to 3p.m.)
Late afternoon (3p.m. 10 0.41 %
to 6p.m.)
Evening (6p.m. to 12 453 18.54 %
a.m.)
Night (12am.to6a. 1,826 74.71 %
m.)
Weather condition
Clear 2,130 87.15 %
Other 314 12.85 %
Continuous variables Min Q1 Median Mean Q3 Max
Time between 0.25 1.75 18.62 44.38 44.25 1,559
speeding (hours)
Driving conditions
Hourly visibility 0.121  9.940 10 9.229 10 10
(miles)
Highway
characteristics
Number of lanes 4 4 4 4.58 5 7
(both directions)
Speed limit 55 55 55 61 70 70
Traffic flow
characteristics
Coefficient of 0 0.014 0.045 0.055 0.082 0.530
variation of speed
Travel time index 0.7 1 1 1.095 1.1 26.3
Peak hour (%) 7 8 8 7.95 8 9
Passenger vehicles 67 67 69 68.41 69 70
(%)
Single unit trucks (%) 3 3 3 3 3 3
Multiple unit trucks 27 28 28 28.59 30 30
(%)
% Peak SU trucks 2.31 2.31 3.26 2.87 3.26 3.26
% Peal MU trucks 20.17 20.17 20.17 21.66 23.84 23.84

page. The mean parameters presented in Table 4, such as those for the
fixed model, can be utilized to construct the utility function for each
alternative following Equation 6 outlined in the Methodology section.
This allows us to calculate the utility for each choice alternative,

Ugei =  —1.582%,; —15.813*Hourlyvisbiliymorning +  2.187*
Numberoflanes---

The reference category corresponding to the Next epoch,Us.ci1 =
4.065

Based on the adopted methodology and utility equations, the results
can be interpreted as follows: a positive coefficient (or a positive cor-
relation) implies that an increase in the variable is associated with a
higher likelihood of speeding in the current epoch compared to subse-
quent epochs. Conversely, a negative coefficient (or a positive correla-
tion) implies that speeding is more likely in the subsequent epochs. The
same interpretation applies to categorical variables: a positive coeffi-
cient suggests an increased likelihood of speeding in the current epoch
for the specific category compared to the base category, while a negative
coefficient suggests a decreased likelihood. We subsequently discuss our
findings as follows. The findings indicate that higher visibility is nega-
tively correlated with speeding events. As the number of lanes increases,
the likelihood of speeding events also increases. As anticipated, a higher
travel time index, which reflects congestion, is negatively linked to
speeding events. Speeding is most likely during late morning hours. It is
worth noting that daytime variables that were statistically insignificant
in the fixed parameter model were statistically significant in the mixed

Variable groups Variables Coeff. (t-stat)
Fixed Mixed model
model
Intercept Intercept 4.065 3.863
(26.300) (117.901)
Duration dynamic Time since speeding —1.582 -1.813
(-6.228) (-196.957)
Driving condition Hourly visibility —15.813 —18.131
(miles) (-6.233) (-209.859)
Highway Number of lanes 2.187 2.298
characteristics (2.876) (110.530)
Posted speed limit 0.789 -1.036
(mph) (9.667) (-285.468)
Segment length (mi) —0.242 —-0.762
(-2.800) (-41.076)
Traffic flow Coefficient of 1.357 0.327 (5.739)
characteristics variation (Speed) (3.276)
Travel time index —0.664 —1.862
(-4.152) (-25.511)
DHV % 6.464 3.930 (38.579)
(5.404)
SU Tracks % —4.746 —5.441
(-6.23) (-208.491)
MU Trucks % 14.383 4.601 (11.322)
(6.059)
% Peak SU Trucks —9.645 —9.275
(-6.158) (-330.679)
% Peak MU Trucks —14.564 -23.581
(-6.406) (-60.451)
Time of day Early morning (6 am.  0.172 0.320 (37.412)
to 9 a.m.) (0.274)*
(base = Night (12a.m.  Late morning (9 a.m. 9.644 9.713
to 6 a.m.)) to 12p.m.) (4.798) (2,042.216)
Early afternoon (12p. 3.989 4.027
m. to 3p.m.) (1.746)* (1,074.780)
Late afternoon (3p.m. 1.587 1.622
to 6p.m.) (0.839)* (427.829)
Evening (6p.m. to 12 0.028 —1.093
a.m.) (0.113)* (-18.650)
Weather condition Clear —1.582 —1.862
(base = Other) (-6.228) (-25.511)
Model fit measures Observations 97,346
Average initial LL —0.381 —0.381
Average final LL -0.133 -0.124
McFadden’s R- 0.651 0.674

squared

*Indicates the variables were not statistically significant at 5% level of
significance.

model. The effect of posted speed limit was positive in the fixed model
but changed to negative in the mixed model ( = 0.789, t-stat = 9.67
versus = -1.036, t-stat = -285.47). This suggests a strong presence of
heterogeneity at the segment level. Segments with a higher peak hour
percentage are positively associated with speeding. Surprisingly, clear
weather conditions were found to be negatively associated with
speeding, suggesting that drivers may be more cautious in clear weather
compared to adverse weather conditions.

7. Validation

The duration-based approach offers the capability to predict crash
probabilities in specific highway segments in real time. Noting the
practicality of the model, it is essential to demonstrate its predictive
capability to establish its validity. For this purpose, validation of the
prediction model was performed at two levels, first, the ability of the
model to predict the epoch where speeding was observed and second,
the accuracy of model’s prediction regarding the time-interval at which
speeding was observed. These predictions were derived from the
speeding probabilities obtained through the model predictions. To
elaborate, the estimated model was utilized to calculate the probabilities
of speeding for forecasted epochs and time-intervals. The specific time-



Table 5
Correlated random parameter model (Cholesky parameters).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 -1.311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(-24)

2 -0.534 0.225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(-11) an

3 1.245 0.604 0.232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(23) (42) 11

4 0.759 0.001 -1.066 -1.856 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(41) ) (-16) (-24)

5 0.028 0.039 -1.01 1.789 0.546 0 0 0 0 0 0 0 0 0 0 0 0 0 0
@ an (-18) (26) (16)

6 -0.089 0.035 -0.555 -0.905 -0.397 0.658 0 0 0 0 0 0 0 0 0 0 0 0 0
-3) ® (-13) (-17) (-18) a4

7 0.04 (1) 0.049 0.131 -0.564 -0.107 0.627 0.146 0 0 0 0 0 0 0 0 0 0 0 0

(10) a7 (-16) (-12) a4 14

8 1.31 0.098 0.083 -3.105 -0.215 0.856 0.292 4.086 0 0 0 0 0 0 0 0 0 0 0
(30) (16) ® (-19) (-15) 7) 19) (18)

9 1.242 0.008 -0.831 -1.623 -0.225 0.45 0.025 1.72 -0.503 0 0 0 0 0 0 0 0 0 0
18) (©)] (-18) (-28) -17) (32) (®) (30) (-18)

10 -0.072 -0.013 0.068 1.064 0.325 -0.177 -0.04 -0.504 -0.028 -0.328 0 0 0 0 0 0 0 0 0
-4 -4 O] 17) a4 (-19) (-10) (-18) (-6) (-22)

11 1.116 0.02 (6) -0.817 -1.651 -0.122 0.147 0.06 1.248 -0.115 1.105 0.892 0 0 0 0 0 0 0 0
27) (-17) (-20) (-14) 13) 13) 19) (-17) 19) (20)

12 1.343 -0.033 -0.874 1.265 0.06 -0.098 -0.098 -1.339 -0.006 -1.045 0.202 -0.09 0 0 0 0 0 0 0
24) (-8) 14 13) 13) -9) (-13) 14 (-2) (-13) (48) (-12)

13 2.697 0.037 0.804 -3.76 -0.464 0.834 0.11 3.04 -0.569 3.395 -0.141 -0.221 -0.045 0 0 0 0 0 0
(32) (©)] (16) (-17) (-16) a4 an 15) (-20) (16) (-28) (-29) (-11)

14 0.199 0.023 0.464 2.713 0.874 -0.286 0.068 -0.534 0.463 -1.047 0.779 -0.274 0.034 0.015 0 0 0 0 0
()] 6 (16) (31) 16) (-19) 12) (-30) 19) (-24) 19) (-19) (©)] 4)

15 1.248 0.01 (3) -0.836 0.302 -0.166 -0.078 0.03 (9) -0.143 0.233 -0.57 1.495 0.048 -0.004 -0.005 0.008 0 0 0 0
19) (-13) ©)] (-14) -9) (-6) (18) (-14) 17) a4 QY] D 3

16 0.018 0.079 -0.223 0.314 0.16 0.221 0.237 1.318 0.681 -0.039 -0.035 0.127 0(0) 0.004 0.003 -0.202 0 0 0
(] 13) (-11) (16) 18) a4 (16) (15) a7 (-2) (-2) (10) (€3] @ (-32)

17 -0.095 0.048 0.016 2.896 0.477 0.357 0.144 -0.028 0.61 -0.785 0.228 0.105 0.07 0.042 0.044 -0.427 0.479 0 0
-1 (10) @ (46) 16) an 13) (@) (20) (-42) a4 (21) 13) an an (-21) 13)

18 -0.273 0.056 -0.584 1.368 0.794 0.429 0.168 0.748 0.465 0.036 1.487 0.011 0.021 0.004 0.005 -1.019 0.559 0.056 0
-3) 12) (-23) (28) (16) 17) (16) 7) a7 3 (19) 3 ®) (€3] () (-15) 7 (12)

19  -0.272 0.021 -0.689 -1.154 -0.047 0.37 0.062 1.207 -0.17 1.329 -0.802 -0.01 0.002 0.004 0.008 -0.781 0.205 0.021 -1.283
-8) 5) (-14) (-12) 1D 13) (©)] an (-13) 12) (-18) -3) @ @ 3 (-27) 10) ) (-21)

Note: 1 = Intercept, 2 = Time since speeding, 3 = COV (speed), 4 = Posted speed limit, 5 = Number of lanes, 6 = DHV %, 7 = SU Tracks %, 8 = MU Trucks %, 9=% Peak SU Trucks, 10=% Peak MU Trucks, 11 = Segment
length (mi), 12 = Early morning (6 a.m. to 9 a.m.), 13 = Late morning (9 a.m. to 12p.m.), 14 = Early afternoon (12p.m. to 3p.m.), 15 = Late afternoon (3p.m. to 6p.m.), 16 = Evening (6p.m. to 12 a.m.), 17 = Visibility
(miles), 18 = Clear weather, 19 = Travel time index.
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interval and its associated epoch with the highest probability of
speeding were identified as the exact time when speeding was antici-
pated to occur. Subsequently, the corresponding epoch and time-
interval were employed in the assessment and validation of the model,
as outlined below.

i. Epoch level prediction: At the epoch level, we introduce a new

measure  called Predicted Temporal Proximity (PTP) =

Predicted overspeeding epoch—Actual overspeeding epoch | s 0, 5
ctual overspeeding epoch 100% to assess the model’s

performance in predicting the epoch when speeding was observed. A
lower value of PTP indicates a more accurate prediction of the epoch of
speeding. To evaluate the model’s predictive ability across different
temporal ranges, we created subsets of the test data by removing
speeding events that occurred at higher numbers of epochs. We then
calculated the average value of PTP for each subset. We created these
subsets for validation to explore the impact of the duration between
events on model predictions. This is especially relevant as the frame-
work is duration-based, capable of providing insights into the temporal
dynamics of events. As discussed in the Methodology section, this is
accomplished through addition of dynamic covariates that vary across
time-intervals, and static covariates multiplied by t.; to account for the
effect of time elapsed.

The results from the average PTP, as shown in Fig. 2 indicate that
speeding events observed within 25 epochs of the last speeding event
have notably smaller PTP values. For instance, when considering
speeding that occurred within 5 epochs, the average PTP is 61%.
However, this average PTP increases to 76% when considering speeding
within 25 epochs. These findings suggest that the model’s predictions
are more accurate for road segments where speeding is more commonly
observed. Additionally, the model suggests that predictions become less
reliable as the number of epochs increases, indicating a potential
decrease in accuracy for predicting speeding events that are farther
apart in time.

ii. Time-interval level prediction: The model’s predictions at the
time-interval level were evaluated by considering the rates of False
Positive (FP), False Negative (FN), True Positive (TP), and True Negative
(TN) using two key metrics: Specificity and Sensitivity.

As presented by equation 10, Specificity is defined as the proportion
of correctly identified non-speeding intervals (TN) among all the non-
speeding intervals (TN + FP). It represents the model’s ability to pre-
dict the absence of speeding events accurately. Sensitivity, on the other
hand, as presented in equation 11 is defined as the proportion of
correctly identified speeding intervals (TP) among all the speeding in-
tervals (TP + FN). It measures the model’s ability to predict the presence
of speeding events correctly.

True Negatives(TN)

Accident Analysis and Prevention 196 (2024) 107427

Model predictions results were: TN = 544, TP = 56, FP = 188, FN =
188, Specificity = 0.74, Sensitivity = 0.23. High Specificity indicates
low false positives, while low value of Sensitivity suggests a high rate of
false negatives. It is important to consider that after reformulating the
speeding data, there is a preponderance of 0 s (non-speeding intervals)
compared to 1 s (speeding intervals). Given this imbalance, the low
Sensitivity is expected. The model may tend to predict non-speeding
intervals (TN) more accurately but struggle to identify all the in-
stances of speeding intervals (TP). This is a common challenge in models
dealing with imbalanced datasets, and further efforts may be required to
improve the Sensitivity while maintaining a high Specificity.

8. Discussion

Utilizing the capability of parametric regression models to derive
variable effects, we examined the influence of several variables on
speeding probability. The variables considered in this investigation are
listed below. The influence of other variables can also be derived
similarly.

Effect of time: Fig. 3(a) demonstrates that the effect of time on
speeding remains consistent across the four alternatives. As the time
since the last speeding event increases, the probability of speeding
steadily rises with each time interval. In this analysis, the time since the
last speeding event is scaled between a minimum value of 0 and a
maximum value of 1 to avoid the undue influence of large differences
between the minimum and maximum time values.

Effect of visibility: Fig. 3(b) illustrates that as visibility increases, the
likelihood of speeding decreases for the first and second time-intervals,
but steadily increases afterward. Furthermore, the rate of increase in the
probability of speeding is highest during the final time interval.
Conversely, the rate of decrease in the probability of speeding is most
pronounced during the first time-interval. This observation indicates
that the change in the probability of speeding with variations in visi-
bility is dependent on the specific time interval.

Effect of number of lanes: Fig. 3(c) demonstrates that the increase in
the probability of speeding is characterized by an upward curve as the
number of lanes increases. However, it is worth noting that the differ-
ences between the time intervals themselves are not easily distinguish-
able. In other words, although there is no clear time-interval-specific
differentiation, the probability of speeding exhibits a non-linear increase
with an increase in the number of lanes.

Effect of COV: The effect of the coefficient of variation of speed ap-
pears to be linear (see Fig. 3(d)). While there is a small difference be-
tween the probabilities observed at the second and third time-intervals,
the contrast between the first and fourth time-intervals is more notice-
able, with the latter being associated with a higher probability. In other

Specificity = True Neaatives(IN) + False Positives(EP (10) words, although there is a notable difference between the probabilities
rue Negatives(TN) + False Positives(FP) associated with the first and fourth time-intervals, the magnitudes on
Sonsitivi True Positives(TP) an the g—amts suggest tthlat t};le Xal:ilfe dlfferg?ci; arﬁtrelzitlvely s¥nall. .
ensinvirty = .
Y = Toiie Positives (TP) + False Negatives(FN) ffec of segmern ength: As discussed in he literature review section,
studies have indicated that work zones with longer lane closures are
87%
82% = - L "
84% 84% 83% 820
’ 81%
& 77%
&~ 0,
©72% 76%
< 67%
62%
57% 61%
<150 <125 <100 <75 <50 <25 <5

Speeding included with the number of epochs

Fig. 2. Value of PTP for different subset of test data.
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Fig. 3. Change in probability of outcomes with change in variable values.

more prone to speeding (Hamdar et al., 2016). The findings from this
study align with those observations, showing that with an increase in
highway segment length, the average vehicle speed, and consequently
the probability of speeding, also increases, as depicted in Fig. 3(e). The
nature of the plot also reveals that the rate of increase in probability
intensifies as the segment length increases. For instance, the rate of in-
crease in the probability of speeding observed on segments longer than 3
miles is much steeper than on segments that are shorter than 1 mile.
Effect of travel time index: A travel time index greater than 1 indicates
a longer travel time than expected based on the operating speed limit,
suggesting a congestion condition. Interestingly, Fig. 3(f) reveals that
the probability of speeding rises sharply when the values of the travel
time index are less than 6. However, beyond a travel time index of 6, the
probability of speeding remains relatively constant. This plot suggests
that the probability of speeding increases with higher travel times but
only to a certain extent, and then it plateaus. This could be attributed to

drivers attempting to recover lost time during mild congestion. How-
ever, when the travel time index is much higher—indicating more
congestion—the probability of speeding plateaus. This implies that
during periods of high congestion, when vehicles are very close together,
such as bumper to bumper, drivers can no longer travel at higher speeds.

9. Conclusion

A well-functioning transportation system requires significant high-
way construction and maintenance to ensure efficiency. However,
increased construction activities also expose workers to hazardous
traffic conditions, which raises the risk of crashes. Despite implementing
safety equipment, measures, laws, and policies, ensuring driver
compliance with safety measures remains a concern. Enforcing reduced
speed limits in work zones proves challenging due to the inherent nature
of such work zones, leading to abrupt speed changes and speed
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violations that significantly contribute to crashes. Moreover, it is well-
established that higher speeds are linked to more severe crashes,
further amplifying the safety risks associated with work zones.

The objective of this study was to introduce a novel approach for
predicting speeding, especially in work zones where it poses a significant
threat to road users. Discretized duration framework was used, which
allows to consider past speeding trends using historical data and real-
time factors like weather, traffic flow, and highway characteristics to
estimate the likelihood of speeding in discrete time intervals. Using this
modeling framework, we can forecast future speeding behavior by
treating these time intervals as choice alternatives in a MNL model. We
focused on speeding events on I-65 in Robertson County, Tennessee, to
test this approach. We utilized traffic speed and speeding identification
data from INRIX, highway characteristics from ETRIMS, and weather
data from LCD. The model successfully identified major contributors to
speeding and demonstrated reasonably accurate predictive abilities, as
evaluated using metrics like PTP, Specificity, and Sensitivity. The
average value of PTP indicates that the model can predict speeding
within 61% of its time of occurrence. With Specificity at 0.74 and
Sensitivity at 0.26, the model shows low false-positives and high false
negatives. Overall, the model predictions suggest that transportation
agencies can implement it to predict speeding events in real-time with a
fair degree of accuracy.

While there are data-driven approaches to predicting speeding, such
as machine learning, these are not readily transferrable. In contrast, the
duration-based approach is grounded in an econometric framework that
is readily applicable to any location. Additionally, the framework en-
ables causal analysis through coefficients and marginal/elasticity ef-
fects. From a utility perspective, the combined ability of causal and real-
time predictive analysis using the duration-based framework can be of
great value to transportation planners, agencies, and safety officials.
This has become even more relevant in recent years, considering Vision
Zero initiatives. The causal analysis can help quantify the impact of
various factors on speeding through coefficients, elasticity effects, and
marginal effects. Simultaneously, predictive analysis can be of great
value to agencies with limited resources for advanced planning and
deployment of resources at critical segments. For instance, adverse
conditions identified from causal analysis can aid agencies in remaining
prepared in advance. Meanwhile, predictive analysis can help identify
critical segments and prioritize the deployment of limited speed
enforcement measures.

It is also important to highlight some limitations of the current study.
First, reformulating speeding events using binary variables for speeding
identification resulted in a prevalence of 0 s over 1 s in the data, leading
to a low value of Sensitivity. Future research could explore ways to
improve model performance by addressing this class imbalance, such as
using techniques like Synthetic Minority Oversampling Technique
(SMOTE). In addition, the effects of different work zone enforcement
techniques and strategies can be further studied. This would be helpful
to identify which measures are more effective than others for particular
work zone setups. Finally, it is important to note that the effect of pre-
dictors might differ with work zone types. For instance, a difference in
the model can be expected in left lane closure versus middle lane
closure, and stationary versus mobile work zones. These factors must be
taken into account in future analyses.
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