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A B S T R A C T   

Higher speeds in work zones have been linked to an increased likelihood of crashes and more severe crash 
outcomes. To enhance safety, speed limits are often reduced in work zones, aiming to create a steady flow of 
traffic and safer traffic operations such as merging and flagging. However, this speed reduction can also lead to 
abrupt speed changes, resulting from sudden braking or acceleration, increasing the risk of crashes. This 
disruption in speed and flow results increases the likelihood of rear-end crashes. Ensuring driver compliance with 
the reduced speed limits and traffic flow operations is challenging as work zones may cause frustration and lead 
to more instances of speeding. Therefore, proactively predicting speeding events in work zones can be crucial for 
the safety of both workers and road users, as it enables the implementation of speed enforcement measures to 
maintain and improve driver compliance in advance. In this study, we employ the duration-based prediction 
framework to forecast speeding occurrences in work zones. The model is used to identify significant predictors of 
speeding including visibility, number of lanes, posted speed limit, segment length, coefficient of variation in 
speed, and travel time index. Among these variables, the number of lanes, posted speed limit, and coefficient of 
variation of speed are positively associated with speeding. On the other hand, visibility, segment length, and 
travel time index are negatively associated with speeding. Results show the model’s predictive accuracy is higher 
for speeding events with shorter durations between consecutive occurrences. The model predicted speeding 
within 61% of the actual epoch when speeding events within 5 h of one another were considered for validation. 
This indicates that the model is more effective for road segments and work zones where speeding occurs more 
frequently. The prediction framework can be a great asset for agencies to improve work zone safety in real-time 
by enabling them to proactively implement effective work zone enforcement measures to control speeding and to 
stay prepared, preventing potential hazards.   

1. Introduction 

Highway construction and maintenance play a crucial role in 
enhancing and sustaining transportation infrastructure, which experi
ences increasing use by travelers every year. During these operations, 
work zones are established to ensure the safety of workers and road 
users. These work zones can be noisy, distracting, and confusing due to 
the presence of heavy equipment and machinery. Consequently, they 
become more susceptible to safety mishaps, particularly from oncoming 
traffic. In fact, highway construction work is categorized as one of the 
most hazardous occupations. For instance, among all road construction 
sites, work zones involving paving/surfacing equipment operators and 
maintenance workers have the second and third highest fatality rates 

(Wang et al., 2018). Most of these fatalities and crashes can be attributed 
to adverse driver behavior and non-compliance with work zone safety 
measures. Among several factors influencing work zone crashes, 
speeding stands out as the most common. According to the Fatality 
Analysis Reporting System (FARS) database, in 2021, 32% of work zone 
fatalities were linked to speeding as a contributing factor, with 24% of 
fatal crashes resulting from rear-end collisions (Federal Highway 
Administration, 2023). 

The Manual of Uniform Traffic Control Devices (MUTCD) classifies 
work zones based on their location and duration (Federal Highway 
Administration, 2009). It serves as a comprehensive guide for traffic 
control and enforcement of safety measures in work zones. The main 
objective of these safety measures is to ensure smooth traffic flow and 
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consistent speeds throughout the work zone, thereby avoiding abrupt 
changes that could lead to crashes. Most work zone crashes, especially 
rear-end collisions, occur due to inconsistent traffic flow or sudden 
speed variations. To address this issue, the MUTCD provides guidance on 
implementing various technologies and strategies to maintain a steady 
traffic flow and enforce safety measures in work zones. The guide fo
cuses on increasing compliance among road users and eliminating 
adverse driver behavior using regulatory strategies (such as speed photo 
radar enforcement and police presence) and warning strategies 
(including warning signs, dynamic message signs, speed feedback sys
tems, etc.). Despite the implementation of existing safety strategies and 
work zone enforcement measures, work zone crashes have been on the 
rise in recent years. Between 2020 and 2021, work zone fatalities wit
nessed a troubling increase of 10.8% (Federal Highway Administration, 
2023). In 2020, 39% of all work zone crash fatalities in the US occurred 
on interstates, with a slight rise to about 40% in 2021. The higher traffic 
speed and lower work zone compliance on interstates contribute 
significantly to the number of fatalities. Extensive evidence in the 
literature suggests that higher speeds are associated with more severe 
crashes (Osman, Mishra, et al., 2018; Osman, Paleti, et al., 2018; Shaer 
et al., 2024). 

In this context, the ability to predict speeding can bring significant 
benefits from both traffic safety and operational perspectives. Having 
prior knowledge of potential speeding events can assist transportation 
planners and agencies in preparing in advance and taking necessary 
steps to prevent such occurrences. Therefore, this study uses a dis
cretized duration framework to model and predict speeding on highway 
segments with existing work zones. The implemented duration-based 
framework is specifically designed to incorporate time-varying cova
riates into the multinomial logit model (MNL) through time- 
discretization. This enables the calculation of the risk of speeding in 
real-time, allowing forecasting road users’ speeding behavior. The 
duration-based approach can be utilized to identify conditions related to 
highway, weather, and traffic flow that elevate the likelihood of 
speeding. Furthermore, it provides the capability to predict crash 
probabilities in specific highway segments in real-time. This enables 
agencies to proactively implement effective work zone enforcement 
measures to control speeding and to stay prepared, preventing potential 
hazards. Real-time predictions also empower agencies to strategically 
allocate limited speed control and regulation resources, such as message 
signs, barricades, etc., in critical segments such as work zones or those 
that are prone to speeding. 

2. Literature review 

In the existing literature, driver behavior within work zones is pri
marily characterized by compliance with two key factors: (i) the 
enforced speed limit and (ii) merge behavior. Notably, these two aspects 
are major contributors to work zone crashes, and as a result, work zone 
safety measures focus on promoting safer driving behavior by regulating 
the operating speed limit and merge behavior. Various studies have 
highlighted the significance of speed compliance in reducing crash risks. 
Higher speeds have been linked to an increased likelihood of crashes and 
more severe outcomes (Osman et al., 2016; Osman, Paleti, et al., 2018; 
Zhang & Hassan, 2019). Additionally, unsafe and aggressive merge 
behavior, combined with adverse weather and lighting conditions, has 
been identified as risky driving behavior (Debnath et al., 2015). Inter
estingly, aggressive driving and merge behavior are also associated with 
traffic speed. Drivers encountering slower speeds, congestion, and travel 
delays tend to become frustrated, leading to more aggressive maneuvers 
on the road. This highlights the interconnectedness between driving 
behavior and traffic flow within work zones. 

2.1. Work zone risk factors and driver behavior 

Work zones can lead to sudden disruptions in traffic flow, resulting in 

slowdowns, queues, lane change maneuvers, traffic conflicts, and 
speeding, all of which impact driving behavior (Flannagan and Selpi, 
2019; Mishra and Zhu, 2015). Researchers have extensively studied the 
factors that influence driver behavior in work zones. Nearly half of all 
work zone crashes occur in the vicinity of the activity area (Dissanayake 
& Akepati, 2009). Among these crashes, approximately 42% are rear- 
end collisions. The main contributors to work zone crashes include 
inattentive driving (19%), following too closely (9.7%), and failure to 
yield right of way (7.5%). Driver behavior also varies based on different 
work zone types and activity levels. For instance, when navigating 
through longer work zone closures, drivers tend to travel at higher 
speeds (Hamdar et al., 2016). The type of barriers used also influences 
driver headway. Adverse weather, poor lighting conditions, and middle- 
aged drivers have been associated with risky driving behavior. Workers 
involved in work zone construction have highlighted the most hazard
ous conditions they face, such as working in wet weather leading to 
reduced visibility and skid resistance, driver frustration, aggression to
wards traffic controllers, and distracted driving due to mobile phone use 
(Debnath et al., 2015). Similarly, according to Debnath et al. (2015), 
workers consider non-daylight hours (dawn, dusk, and night) as the 
most hazardous times for work zone activities, which is attributed to a 
higher number of drunk drivers and reduced visibility (Debnath et al., 
2015). Additionally, workers perceive working on freeways and hilly/ 
curved roads as risky. Regarding speed compliance, workers consider 
police enforcement, the presence of police cars (even without an officer 
present), installation of speed bumps, and work zone-oriented driver 
education as the most effective countermeasures. 

2.2. Predicting driving behavior and traffic flow 

As previously mentioned, driving behavior and traffic flow are 
mutually dependent. Many studies examining driver behavior under 
various circumstances, such as the implementation of new work zone 
enforcement measures, have employed three main approaches: i) Field 
observation and analysis, ii) Traffic micro and macrosimulation, for 
instance, studies conducted by (Berthaume, 2015; Gan et al., 2021; Hou 
& Chen, 2019), and iii) Driving simulator experiments, as demonstrated 
in research conducted by (Algomaiah & Li, 2022; Bashir & Zlatkovic, 
2021). The first approach, field observation and analysis, is beneficial 
when there is no prevalent risk or when adequate safety for road users 
can be ensured, as seen in previous studies (Benekohal et al., 2010; 
Mishra et al., 2021; Thapa & Mishra, 2021). On the other hand, the latter 
two approaches, traffic micro and macrosimulation, and driving simu
lator experiments, are preferred to avoid hazardous conditions and 
provide controlled environments for studying driver behavior in work 
zones. 

Understanding the impact of work zones and driving behavior on 
traffic flow is crucial from an Intelligent Transportation Systems (ITS) 
perspective. Real-time and accurate traffic data play a vital role in 
various ITS applications, including traffic planning and management, 
incident detection and management, travel time estimation, traffic 
predictions, and traffic planning. To achieve these objectives, re
searchers have focused on accurately forecasting traffic flow, for missing 
data and future conditions. 

Numerous research approaches have been explored in this area, 
including time series and regression analysis, Kalman filter, machine 
learning techniques such as neural networks and support vector ma
chines, as well as deep learning techniques like convolutional neural 
networks, long short-term memory, and graphical convolutional net
works. For a detailed description of these methods and relevant litera
ture, readers are encouraged to refer to studies conducted by (Medina- 
Salgado et al., 2022) and (Kashyap et al., 2022). In summary, the pri
mary goal of these methods is to forecast traffic flow conditions rather 
than focusing on driving behavior, contributing to the advancement of 
ITS applications and traffic management. 
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2.3. Predicting speeding behavior 

Various approaches have been employed in the existing literature to 
predict driving intention and behavior related to violating traffic laws. 
The theory of planned behavior has been widely utilized in multiple 
studies (e.g., (Dinh & Kubota, 2013; Elliott & Thomson, 2010; Forward, 
2009; Jovanović et al., 2017; Scott-Parker et al., 2013)). For instance, 
Cestac et al. (2011) investigated young drivers and found that different 
latent constructs influenced speeding behavior in different driver groups 
(Cestac et al., 2011). Novice drivers were influenced by thrill-seeking, 
beginners by subjective norms, and experienced drivers by the feeling 
of being in control. In another study, researchers reported that as young 
drivers are more likely to speed as they gain confidence in their driving 
abilities (Simons-Morton et al., 2012). Risky peer influences were found 
to be significant predictors of speeding among novice teenage drivers. 

Several studies have utilized naturalistic driving data to understand 
and predict speeding behavior. For instance, Yu et al. (2019) used 
naturalistic driving data to develop a speeding prediction model (Yu 
et al., 2019). The study emphasized the role of driver’s visual perception 
as a major factor in speeding. The prediction model was built based on 
visual road information, environmental variables, vehicle kinematics, 
and driver characteristics, utilizing a Random Forest algorithm to ach
ieve an accurate prediction rate of 85%. In a similar vein, Kong et al. 
(2020) investigated hidden rules governing speeding duration and pat
terns using naturalistic driving data to understand speeding behavior 
(Kong et al., 2020). Through classification-based association, they found 
that moderating speeding was associated with shorter trips, absence of 
median, and lower functional classes. Conversely, longer trips and 
higher functional classes were linked to longer speeding events. Perez 
et al. (2021) employed naturalistic driving data to investigate factors 
influencing speeding behavior (Perez et al., 2021). They summarized the 
likelihood of speeding using a beta binomial regression and a driver 
questionnaire. The authors reported that the odds of younger drivers, 
aged 16–24 years, engaging in speeding were 1.5 times higher than that 
of 80-year-old drivers. Additionally, the odds of speeding at lower speed 
limits (10–20 mph) were 9.5 times higher compared to speeding when 
speed limits were over 60 mph. Researchers utilized the Strategic 
Highway Research Program 2 (SHRP 2) naturalistic driving data to study 
the duration of speeding events, aiming to better understand driving 
behavior. They reported that driving 10 mph over the speed limit was a 
common occurrence, with 99.8% of drivers speeding at least once within 
their trips. The average number of speeding events reported in the study 
was 2.75 per trip (Richard et al., 2020). 

Zhao et al., (2013) developed a mathematical model to predict 
intentional and non-intentional speeding (Zhao et al., 2013). The model 
utilized in-vehicle sensor data and driver characteristics to calculate 
speeding probabilities. The experiments were conducted using a driving 
simulator, and the authors reported an average prediction accuracy of 
over 80%. 

In another study, Cheng et al., (2019) adopted a two-step approach 
to identify and predict speed violations (Cheng et al., 2019). They used a 
binary logit model to identify variables contributing to speeding viola
tions and then applied a decision tree method to predict specific types of 
speeding violations, such as “foreign license plate” and “intersection” 
among others. The study found that country roads had a higher inci
dence of speeding violations compared to urban roads, primarily due to 
the lower presence of traffic control infrastructure and lower traffic 
flow. Higher and more intense rainfall was associated with increased 
speeding violations, while local drivers were less likely to violate speed 
limits. 

3. Study contributions 

This study contributes to the literature in three major ways:  

i. First, no studies have attempted to develop or implement an 
econometric framework for proactively predicting speeding, 
especially in work zones. Based on the literature review, 
numerous studies have examined speeding behavior using the 
theory of planned behavior. Additionally, a separate body of 
literature focuses on predicting speeding at the individual driver 
level, utilizing environmental and in-vehicle data. Furthermore, 
another set of studies has applied machine learning, and deep 
learning techniques to forecast traffic flow and speed, enabling 
various actions such as crash and congestion prevention, emer
gency messaging for traffic diversion, rerouting, and queue 
management, particularly in situations with insufficient or 
missing disaggregated data. Despite the wealth of research in 
these areas, we are not aware of any previous study attempting to 
forecast the likelihood of speeding in the future using historical 
data and time-varying covariates through a parametric approach. 
This study aims to fill this research gap by providing insights into 
predicting speeding behavior using historical data, and time- 
varying covariates with a parametric approach.  

ii. While many prediction models rely on modern data-driven black- 
box machine learning and artificial intelligence algorithms, our 
approach is based on exponential models (survival model and 
MNL). These parametric methods offer the advantage of 
providing causal inferences through variable effects, including 
coefficients and marginal/elasticity effects. The enables re
searchers to gain deeper insights into the relationships between 
the predictors and speeding.  

iii. Besides Thapa et al. (2022), there have been no implementations 
of the duration-based model) (Thapa et al., 2022). Notably, the 
original study focused on investigating traffic crashes but over
looked the presence of segment-specific mixed effects despite 
repeated observations across segments. This research distin
guishes itself from the original study as the first to implement the 
framework for predicting speeding in a work zone. It showcases 
the integration of real-time weather, traffic flow, and congestion 
data alongside static covariates like highway characteristics. As 
mentioned previously, to our knowledge, this is the only study 
directed at understanding and predicting speeding in an active 
work zone. Additionally, current research considers the presence 
of unobserved heterogeneity resulting from multiple speeding 
events occurring in the same highway segment through a mixed 
model. 

4. Methodology 

The description of the duration-based framework here is taken 
largely from Thapa, et al. (2022) (Thapa et al., 2022; Thapa et al., 2024). 
Utilizing the duration-based framework, we can determine the likeli
hood of speeding at a particular time-interval t, considering that no 
speeding has been observed in previous time-intervals. This probability 
is represented by the hazard function h(t), which can be formulated 
using a constant hazard rate, h. 

h(t) =
f (t)

1 − F(t)
=

he−ht

1 − (1− e−ht)
= h (1) 

In the given equation, we represent the probability distribution 
function and probability density function related to a continuous 
random variable for time T as f(t) and F(t), respectively. The probability 
density function, in this context, indicates the likelihood of observing 
speeding by time t. This is expressed by equation 2 as follows. 

F(t) = Pr(T ≤ t) (2) 

Assuming that the time duration between consecutive speeding 
events is discretized into n time-intervals, each having a duration of dt, 
we can express the probability of observing the next speeding event at a 
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specific interval n since the occurrence of the last speeding event as 
follows: 

Pr(T = ndt) = Pr(T ≤ ndt) −Pr(T ≤ (n − 1)dt )

= F(ndt) −F((n − 1)dt )

= exp(−h(n − 1)dt) −exp(−hndt)

=
exp(−h(n − 1)dt)
1/(1 − exp(−hdt))

(3) 

Using a Taylor series expansion, i.e., 1
1−x = 1 +x +x2 +x3 +⋯∞ −1 <

x < 1 in the denominator produces equation 4. 
Pr(T = ndt) =

exp(−h(n−1)dt )

1+exp(−hdt)+exp(−2hdt)+exp(−3hdt)+⋯∞ 

=
exp(Un)

exp(U1)+exp(U2)+exp(U3)+⋯∞, where Un = −h(n −1)dt 

=
exp(Un)

∑∞
1 exp(Uc)

(4) 

Simplifying equation 4 makes it evident that the probability of 
speeding at the nth interval can be represented as MNL model with 
infinite alternatives for n. The utility equation for the alternatives can be 
expressed as Un = −h(n −1)dt. As a result, the utility equation can be 
modified to accommodate non-linear hazard profiles, as demonstrated 
in equation 5. However, when disregarding all higher-order polynomial 
terms, equation 5 reduces to a simple MNL model. 

Un = β1(n − 1)dt + β2[(n − 1)dt]2
+ β2[(n − 1)dt]3

+ ⋯ (5) 

For example, consider the time between consecutive speeding events 
observed at a specific segment, denoted as s, is discretized into epochs e, 
with C number of time-intervals, each lasting for dt duration. An illus
trative example of this discretization is presented in Table 1, where two 
speeding events are observed, 4 h apart, with e = 1 h and dt = 15 min. 
Consequently, each epoch contains four distinct time-intervals, indexed 
as i={1,2,3,4}, and each time-interval provides the corresponding time 
elapsed since the previous speeding event. This relationship allows us to 
pinpoint the exact time-interval when the subsequent speeding event 
occurred. For example, consider Table 1, which denotes speeding was 
observed at the fourth time-interval of the fourth epoch, denoted as 1, 
otherwise 0. As a result, the time elapsed between the two speeding 
events can be calculated as te,i = (e −1)Cdt +(i −1)dt = (4 −1)*4 
*0.25 +(4 −1)*0.25 = 3.75hours. This relationship enables us to 
construct the utility function considering the time-intervals as choice 
alternatives in the MNL model. The utility function includes the duration 
dynamics as the first element and a vector of time-varying covariates as 
the last element. Notably, even static variables that do not change with 
time, such as the number of lanes associated with the highway segment, 
were transformed into dynamic covariates by multiplying them with the 
corresponding value of te,i to account for the effect of time elapsed. 

Us,e,i = β1te,i + ⋯ + r′Xs,e,i (6) 

Alongside the four time-intervals, there is a fifth alternative to 
consider, signifying whether the next speeding event will be observed in 
the current epoch (0) or the next epoch (1). This particular choice 
alternative serves as the base with an intercept term and can be repre
sented as follows. 

Us,e,C+1 = βC+1 (7) 

Since speeding at any time-interval is conditional upon no prior 
speeding, the conditional probability for any time-interval can be 

expressed as follows. 

Pr
(
Ts = te,i|Ts > (e − 1)Cdt

)
=

exp(Us,e,i)
∑C

c=1exp(Us,e,c) + exp(Us,e,C+1)
(8) 

We can obtain it by multiplying the conditional probability with the 
product of probabilities for the fifth alternative, as demonstrated in 
equation 9. 

Pr
(
Ts = te,i

)

=
exp

(
Us,e,i

)

∑C
c=1exp

(
Us,e,c

)
+ exp

(
Us,e,C+1

)

×
∏e−1

e*=1

exp
(
Us,e*,C+1

)

∑C
c=1exp

(
Us,e*,c

)
+ exp

(
Us,e*,C+1

) (9) 

Estimating the model parameters, represented as the vector n = (β1,

⋯,r,βC+1)′, involves maximizing the likelihood function associated with 
the probabilities in equation 9 across all speeding events and segments. 
It’s essential to note that the data, after time discretization, takes the 
form of panel data with multiple speeding events observed at each 
segment. Thus, it becomes necessary to consider unobserved heteroge
neity at the segment level. To address this, the vector of parameters for 
any segment is assumed to follow a multivariate normal distribution. 
The resulting mixed logit model is then estimated by integrating the 
vector of parameters over this distribution. The random parameters for 
the mixed logit model are obtained as Cholesky parameters by esti
mating the elements of the unconstrained lower triangular Cholesky 
matrix, represented as Γ. This estimation is performed in relation to their 
variance–covariance matrix, denoted as Σ, such that ΓΓ′ = Σ. 

5. Data 

5.1. Speeding events 

This research focused on speeding incidents observed in a work zone 
set up on I-65 in Robertson County, Tennessee. The I-65 segments within 
the county are currently undergoing lane expansion in both North and 
Southbound lanes. The specific location of these interstate segments 
within Robertson County can be seen in Fig. 1. Based on the data ob
tained from Google Maps Street View, it was determined that the work 
zone has been active since July 2022. Therefore, the study period 
considered for this research spans from July 1, 2022, to May 31, 2023. 
The work zone consists of 14 INRIX Traffic Management Center (TMC) 
segments, in Table 2. To identify speeding events during the study 
period, speed data at 15-minute intervals was collected for these 14 
TMCs, along with the reference speed for the highway segments. In the 
context of INRIX, the reference speed represents the average speed of 
vehicles over the study period. For this study, speeding was identified 
for any given time-interval whenever the average speed exceeded the 
reference speed by 10 mph. Our rationale for this choice was to ensure a 
high level of confidence in identifying speeding, as many vehicles tend 
to drive at or above the posted speed limit. Therefore, we took into 
account the average speed observed in the segment and added 10 mph as 
a threshold to confidently identify instances of speeding. Employing this 
method, a total of 2,444 speeding events were identified. It is essential to 
note that each speeding event corresponds to a specific 15-minute time 
interval during which the average vehicle speed exceeded the reference 
speed by 10 mph. 

Table 1 
Example demonstrating the discretization of duration between speeding events.  

Segment Time to next speeding (hours) Epoch First 15-min Second 15-min Third 15-min Fourth 15-min Next epoch 

A 4 1 0 0 0 0 1 
A 4 2 0 0 0 0 1 
A 4 3 0 0 0 0 1 
A 4 4 0 0 0 1 0  
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5.2. Data aggregation 

As the INRIX TMC data only provides traffic flow information, 
additional datasets were utilized to obtain covariates that could effec
tively represent the highway and weather conditions in the segments 
during the study period and at the time of each speeding event. The 
following datasets were used for this purpose:  

i. Traffic flow data: Traffic flow data was sourced from the TMC data 
provided by INRIX, as mentioned earlier. This data contained 
disaggregated traffic speed information, recorded at 5-minute 
intervals along with respective date and time for the study 
period. This data was aggregated to 15-minute intervals for the 
purposes of model development and speeding identification. 
Moreover, the Coefficient of Variation (COV) was calculated from 
the 5-minute intervals for each 15-minute interval to factor in 
variations in speed. Additionally, to address the presence of 
congestion, values of the travel time index was obtained at 15- 
minute intervals for the study period. Additionally, yearly aver
ages for traffic composition were also collected for each segment. 
All of this data represented the traffic characteristics and condi
tions affecting speeding events during the study period.  

ii. Highway characteristics: The necessary highway characteristics 
were collected from the Enhanced Tennessee Roadway Informa
tion Management System (ETRIMS), a query-based highway in
formation system managed by the Tennessee Department of 
Transportation. Among the variables obtained, terrain type, 
lighting conditions, roadway conditions, and illumination were 
found to be consistent across all segments and, therefore, were 
not included in the analysis. The retained variables were the 
number of lanes and the posted speed limit, as they varied across 
the segments and were considered essential for the study. A 
geospatial proximity approach was applied using road inventory 
data to integrate these highway characteristics with the traffic 
flow data. This ensured that the relevant highway characteristics 
were properly aligned with each segment’s corresponding traffic 
flow data.  

iii. Weather conditions: Weather data for the freeway segments was 
collected from the Local Climatological Data (LCD) recorded by 
the nearest weather station situated at Nashville International 
Airport. The hourly weather data was then merged with the 
traffic flow data based on the corresponding date and time. Fig. 1 
displays the weather station’s location relative to the interstate 
segments. Given that our prediction model’s smallest temporal 
resolution was 15 min with 1-hour epochs, we integrated the 
hourly weather conditions to account for the impact of changing 
weather conditions. To achieve this, we multiplied the hourly 
weather conditions for the corresponding epoch with the time 
elapsed for each time interval. It is important to note that the 
hourly weather data included multiple conditions observed 
within an hour, such as cloudy, rainy, and clear weather. For this 
study, we categorized the data into two main categories: “Clear” 
when no adverse weather conditions were observed in a partic
ular hour, and “Other” when at least one adverse weather con
dition was noted. Additionally, hourly visibility data in miles was 
obtained as part of the weather conditions dataset. The descrip
tive statistics for the variables obtained from these datasets are 
presented in Table 3. 

5.3. Training and testing data 

After identifying the speeding events, 90% of them (2,200 events) 
were randomly selected to create forecasting epochs for generating the 
training data, as explained in the Methodology section. This selection 
process is referred to as Epoch level sampling (Thapa et al., 2022). All 
the MNL and mixed logit models were estimated using this training data. 
The remaining 10% of the speeding events were used to create the 
testing data for model validation. This data was used to assess the per
formance and accuracy of the models. 

6. Results 

The model estimation process comprised two primary steps. In the 
initial step, a fixed parameter MNL model was estimated by maximizing 
the log-likelihood associated with the probabilities in equation 9. The 
parameters acquired during this step served as initial values for the 
subsequent estimation of the mixed model, as described in the last 
paragraph of the Methodology section. In this second step, the mixed 
model was estimated, including the estimation of mean parameters and 
the parametrization of the covariance matrix of the random parameters 
using Cholesky decomposition. The mean parameters from our model 
estimations are shown in Table 4. The mean parameters exhibit similar 
values between the models; however, the mixed MNL model stands out 
as a superior fit due to its lower log-likelihood value at convergence. The 
t-stat values for the mixed model are notably large suggesting low values 
of standard error for the respective estimates. Table 5 presents the 
Cholesky parameters for the mixed model with respective t-stat within 
parenthesis. The reader will note that the significant digits in the value 
of t-stat are reduced in the table to accommodate the results on the same 

Fig. 1. Location of TMC segments within Robertson County and weather station.  

Table 2 
TMC segments within the work zone.  

Northbound Southbound 
TMC 
segments 

Sequence Length 
(mi) 

TMC 
segments 

Sequence Length 
(mi) 

121 + 04668 1  3.49 121–04670 1  3.48 
121P04668 2  0.59 121 N04670 2  0.55 
121 + 04669 3  4.15 121–04669 3  4.48 
121P04669 4  0.59 121 N04669 4  0.53 
121 + 04670 5  4.42 121–04668 5  4.07 
121P04670 6  0.56 121 N04668 6  0.63 
121 + 04671 7  3.39 121–04667 7  3.46 

Note: TMC segments with the character “P” or “N” represents segments with 
ramps. 
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page. The mean parameters presented in Table 4, such as those for the 
fixed model, can be utilized to construct the utility function for each 
alternative following Equation 6 outlined in the Methodology section. 
This allows us to calculate the utility for each choice alternative, 

Us,e,i = −1.582*te,i −15.813*Hourlyvisbilitymorning + 2.187* 
Numberoflanes⋯ 

The reference category corresponding to the Next epoch,Us,e,C+1 =

4.065 
Based on the adopted methodology and utility equations, the results 

can be interpreted as follows: a positive coefficient (or a positive cor
relation) implies that an increase in the variable is associated with a 
higher likelihood of speeding in the current epoch compared to subse
quent epochs. Conversely, a negative coefficient (or a positive correla
tion) implies that speeding is more likely in the subsequent epochs. The 
same interpretation applies to categorical variables: a positive coeffi
cient suggests an increased likelihood of speeding in the current epoch 
for the specific category compared to the base category, while a negative 
coefficient suggests a decreased likelihood. We subsequently discuss our 
findings as follows. The findings indicate that higher visibility is nega
tively correlated with speeding events. As the number of lanes increases, 
the likelihood of speeding events also increases. As anticipated, a higher 
travel time index, which reflects congestion, is negatively linked to 
speeding events. Speeding is most likely during late morning hours. It is 
worth noting that daytime variables that were statistically insignificant 
in the fixed parameter model were statistically significant in the mixed 

model. The effect of posted speed limit was positive in the fixed model 
but changed to negative in the mixed model (β = 0.789, t-stat = 9.67 
versus β = -1.036, t-stat = -285.47). This suggests a strong presence of 
heterogeneity at the segment level. Segments with a higher peak hour 
percentage are positively associated with speeding. Surprisingly, clear 
weather conditions were found to be negatively associated with 
speeding, suggesting that drivers may be more cautious in clear weather 
compared to adverse weather conditions. 

7. Validation 

The duration-based approach offers the capability to predict crash 
probabilities in specific highway segments in real time. Noting the 
practicality of the model, it is essential to demonstrate its predictive 
capability to establish its validity. For this purpose, validation of the 
prediction model was performed at two levels, first, the ability of the 
model to predict the epoch where speeding was observed and second, 
the accuracy of model’s prediction regarding the time-interval at which 
speeding was observed. These predictions were derived from the 
speeding probabilities obtained through the model predictions. To 
elaborate, the estimated model was utilized to calculate the probabilities 
of speeding for forecasted epochs and time-intervals. The specific time- 

Table 3 
Descriptive statistics.  

Categorical variables Frequency of speeding Relative abundance 

Time of day when 
speeding was 
observed   
Early morning (6 a.m. 
to 9 a.m.) 

133 5.44 % 

Late morning (9 a.m. 
to 12p.m.) 

8 0.33 % 

Early afternoon (12p. 
m. to 3p.m.) 

14 0.57 % 

Late afternoon (3p.m. 
to 6p.m.) 

10 0.41 % 

Evening (6p.m. to 12 
a.m.) 

453 18.54 % 

Night (12 a.m. to 6 a. 
m.) 

1,826 74.71 % 

Weather condition   
Clear 2,130 87.15 % 
Other 314 12.85 % 

Continuous variables Min Q1 Median Mean Q3 Max 

Time between 
speeding (hours) 

0.25 1.75 18.62 44.38 44.25 1,559 

Driving conditions       
Hourly visibility 
(miles) 

0.121 9.940 10 9.229 10 10 

Highway 
characteristics       
Number of lanes 
(both directions) 

4 4 4 4.58 5 7 

Speed limit 55 55 55 61 70 70 
Traffic flow 

characteristics       
Coefficient of 
variation of speed 

0 0.014 0.045 0.055 0.082 0.530 

Travel time index 0.7 1 1 1.095 1.1 26.3 
Peak hour (%) 7 8 8 7.95 8 9 
Passenger vehicles 
(%) 

67 67 69 68.41 69 70 

Single unit trucks (%) 3 3 3 3 3 3 
Multiple unit trucks 
(%) 

27 28 28 28.59 30 30 

% Peak SU trucks 2.31 2.31 3.26 2.87 3.26 3.26 
% Peal MU trucks 20.17 20.17 20.17 21.66 23.84 23.84  

Table 4 
Mean parameters for fixed and mixed models.  

Variable groups Variables Coeff. (t-stat) 
Fixed 
model 

Mixed model 

Intercept Intercept 4.065 
(26.300) 

3.863 
(117.901) 

Duration dynamic Time since speeding −1.582 
(-6.228) 

−1.813 
(-196.957) 

Driving condition Hourly visibility 
(miles) 

−15.813 
(-6.233) 

−18.131 
(-209.859) 

Highway 
characteristics 

Number of lanes 2.187 
(2.876) 

2.298 
(110.530) 

Posted speed limit 
(mph) 

0.789 
(9.667) 

−1.036 
(-285.468) 

Segment length (mi) −0.242 
(-2.800) 

−0.762 
(-41.076) 

Traffic flow 
characteristics 

Coefficient of 
variation (Speed) 

1.357 
(3.276) 

0.327 (5.739) 

Travel time index −0.664 
(-4.152) 

−1.862 
(-25.511) 

DHV % 6.464 
(5.404) 

3.930 (38.579) 

SU Tracks % −4.746 
(-6.23) 

−5.441 
(-208.491) 

MU Trucks % 14.383 
(6.059) 

4.601 (11.322) 

% Peak SU Trucks −9.645 
(-6.158) 

−9.275 
(-330.679) 

% Peak MU Trucks −14.564 
(-6.406) 

–23.581 
(-60.451) 

Time of day Early morning (6 a.m. 
to 9 a.m.) 

0.172 
(0.274)* 

0.320 (37.412) 

(base = Night (12 a.m. 
to 6 a.m.)) 

Late morning (9 a.m. 
to 12p.m.) 

9.644 
(4.798) 

9.713 
(2,042.216)  

Early afternoon (12p. 
m. to 3p.m.) 

3.989 
(1.746)* 

4.027 
(1,074.780)  

Late afternoon (3p.m. 
to 6p.m.) 

1.587 
(0.839)* 

1.622 
(427.829)  

Evening (6p.m. to 12 
a.m.) 

0.028 
(0.113)* 

−1.093 
(-18.650) 

Weather condition Clear −1.582 
(-6.228) 

−1.862 
(-25.511) (base = Other) 

Model fit measures Observations 97,346 
Average initial LL −0.381 −0.381 
Average final LL −0.133 −0.124 
McFadden’s R- 
squared 

0.651 0.674 

*Indicates the variables were not statistically significant at 5% level of 
significance. 

D. Thapa et al.                                                                                                                                                                                                                                  



AccidentAnalysisandPrevention196(2024)107427

7

Table 5 
Correlated random parameter model (Cholesky parameters).   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 -1.311 
(-24) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 -0.534 
(-11) 

0.225 
(11) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1.245 
(23) 

0.604 
(42) 

0.232 
(11) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0.759 
(41) 

0.001 
(0) 

-1.066 
(-16) 

-1.856 
(-24) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0.028 
(1) 

0.039 
(11) 

-1.01 
(-18) 

1.789 
(26) 

0.546 
(16) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 -0.089 
(-3) 

0.035 
(8) 

-0.555 
(-13) 

-0.905 
(-17) 

-0.397 
(-18) 

0.658 
(14) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0.04 (1) 0.049 
(10) 

0.131 
(17) 

-0.564 
(-16) 

-0.107 
(-12) 

0.627 
(14) 

0.146 
(14) 

0 0 0 0 0 0 0 0 0 0 0 0 

8 1.31 
(30) 

0.098 
(16) 

0.083 
(8) 

-3.105 
(-19) 

-0.215 
(-15) 

0.856 
(17) 

0.292 
(19) 

4.086 
(18) 

0 0 0 0 0 0 0 0 0 0 0 

9 1.242 
(18) 

0.008 
(3) 

-0.831 
(-18) 

-1.623 
(-28) 

-0.225 
(-17) 

0.45 
(32) 

0.025 
(6) 

1.72 
(30) 

-0.503 
(-18) 

0 0 0 0 0 0 0 0 0 0 

10 -0.072 
(-4) 

-0.013 
(-4) 

0.068 
(5) 

1.064 
(17) 

0.325 
(14) 

-0.177 
(-19) 

-0.04 
(-10) 

-0.504 
(-18) 

-0.028 
(-6) 

-0.328 
(-22) 

0 0 0 0 0 0 0 0 0 

11 1.116 
(27) 

0.02 (6) -0.817 
(-17) 

-1.651 
(-20) 

-0.122 
(-14) 

0.147 
(13) 

0.06 
(13) 

1.248 
(19) 

-0.115 
(-17) 

1.105 
(19) 

0.892 
(20) 

0 0 0 0 0 0 0 0 

12 1.343 
(24) 

-0.033 
(-8) 

-0.874 
(-14) 

1.265 
(13) 

0.06 
(13) 

-0.098 
(-9) 

-0.098 
(-13) 

-1.339 
(-14) 

-0.006 
(-2) 

-1.045 
(-13) 

0.202 
(48) 

-0.09 
(-12) 

0 0 0 0 0 0 0 

13 2.697 
(32) 

0.037 
(8) 

0.804 
(16) 

-3.76 
(-17) 

-0.464 
(-16) 

0.834 
(14) 

0.11 
(11) 

3.04 
(15) 

-0.569 
(-20) 

3.395 
(16) 

-0.141 
(-28) 

-0.221 
(-29) 

-0.045 
(-11) 

0 0 0 0 0 0 

14 0.199 
(3) 

0.023 
(6) 

0.464 
(16) 

2.713 
(31) 

0.874 
(16) 

-0.286 
(-19) 

0.068 
(12) 

-0.534 
(-30) 

0.463 
(19) 

-1.047 
(-24) 

0.779 
(19) 

-0.274 
(-19) 

0.034 
(9) 

0.015 
(4) 

0 0 0 0 0 

15 1.248 
(19) 

0.01 (3) -0.836 
(-13) 

0.302 
(9) 

-0.166 
(-14) 

-0.078 
(-9) 

0.03 (9) -0.143 
(-6) 

0.233 
(18) 

-0.57 
(-14) 

1.495 
(17) 

0.048 
(14) 

-0.004 
(-1) 

-0.005 
(-1) 

0.008 
(3) 

0 0 0 0 

16 0.018 
(0) 

0.079 
(13) 

-0.223 
(-11) 

0.314 
(16) 

0.16 
(18) 

0.221 
(14) 

0.237 
(16) 

1.318 
(15) 

0.681 
(17) 

-0.039 
(-2) 

-0.035 
(-2) 

0.127 
(10) 

0 (0) 0.004 
(1) 

0.003 
(1) 

-0.202 
(-32) 

0 0 0 

17 -0.095 
(-1) 

0.048 
(10) 

0.016 
(1) 

2.896 
(46) 

0.477 
(16) 

0.357 
(11) 

0.144 
(13) 

-0.028 
(-1) 

0.61 
(20) 

-0.785 
(-42) 

0.228 
(14) 

0.105 
(21) 

0.07 
(13) 

0.042 
(11) 

0.044 
(11) 

-0.427 
(-21) 

0.479 
(13) 

0 0 

18 -0.273 
(-3) 

0.056 
(12) 

-0.584 
(-23) 

1.368 
(28) 

0.794 
(16) 

0.429 
(17) 

0.168 
(16) 

0.748 
(17) 

0.465 
(17) 

0.036 
(3) 

1.487 
(19) 

0.011 
(3) 

0.021 
(6) 

0.004 
(1) 

0.005 
(2) 

-1.019 
(-15) 

0.559 
(17) 

0.056 
(12) 

0 

19 -0.272 
(-8) 

0.021 
(5) 

-0.689 
(-14) 

-1.154 
(-12) 

-0.047 
(-11) 

0.37 
(13) 

0.062 
(9) 

1.207 
(11) 

-0.17 
(-13) 

1.329 
(12) 

-0.802 
(-18) 

-0.01 
(-3) 

0.002 
(1) 

0.004 
(1) 

0.008 
(3) 

-0.781 
(-27) 

0.205 
(10) 

0.021 
(5) 

-1.283 
(-21) 

Note: 1 = Intercept, 2 = Time since speeding, 3 = COV (speed), 4 = Posted speed limit, 5 = Number of lanes, 6 = DHV %, 7 = SU Tracks %, 8 = MU Trucks %, 9=% Peak SU Trucks, 10=% Peak MU Trucks, 11 = Segment 
length (mi), 12 = Early morning (6 a.m. to 9 a.m.), 13 = Late morning (9 a.m. to 12p.m.), 14 = Early afternoon (12p.m. to 3p.m.), 15 = Late afternoon (3p.m. to 6p.m.), 16 = Evening (6p.m. to 12 a.m.), 17 = Visibility 
(miles), 18 = Clear weather, 19 = Travel time index. 
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interval and its associated epoch with the highest probability of 
speeding were identified as the exact time when speeding was antici
pated to occur. Subsequently, the corresponding epoch and time- 
interval were employed in the assessment and validation of the model, 
as outlined below. 

i. Epoch level prediction: At the epoch level, we introduce a new 

measure called Predicted Temporal Proximity (PTP) =
⃒
⃒
⃒
Predicted overspeeding epoch−Actual overspeeding epoch

Actual overspeeding epoch

⃒
⃒
⃒*100% to assess the model’s 

performance in predicting the epoch when speeding was observed. A 
lower value of PTP indicates a more accurate prediction of the epoch of 
speeding. To evaluate the model’s predictive ability across different 
temporal ranges, we created subsets of the test data by removing 
speeding events that occurred at higher numbers of epochs. We then 
calculated the average value of PTP for each subset. We created these 
subsets for validation to explore the impact of the duration between 
events on model predictions. This is especially relevant as the frame
work is duration-based, capable of providing insights into the temporal 
dynamics of events. As discussed in the Methodology section, this is 
accomplished through addition of dynamic covariates that vary across 
time-intervals, and static covariates multiplied by te,i to account for the 
effect of time elapsed. 

The results from the average PTP, as shown in Fig. 2 indicate that 
speeding events observed within 25 epochs of the last speeding event 
have notably smaller PTP values. For instance, when considering 
speeding that occurred within 5 epochs, the average PTP is 61%. 
However, this average PTP increases to 76% when considering speeding 
within 25 epochs. These findings suggest that the model’s predictions 
are more accurate for road segments where speeding is more commonly 
observed. Additionally, the model suggests that predictions become less 
reliable as the number of epochs increases, indicating a potential 
decrease in accuracy for predicting speeding events that are farther 
apart in time. 

ii. Time-interval level prediction: The model’s predictions at the 
time-interval level were evaluated by considering the rates of False 
Positive (FP), False Negative (FN), True Positive (TP), and True Negative 
(TN) using two key metrics: Specificity and Sensitivity. 

As presented by equation 10, Specificity is defined as the proportion 
of correctly identified non-speeding intervals (TN) among all the non- 
speeding intervals (TN + FP). It represents the model’s ability to pre
dict the absence of speeding events accurately. Sensitivity, on the other 
hand, as presented in equation 11 is defined as the proportion of 
correctly identified speeding intervals (TP) among all the speeding in
tervals (TP + FN). It measures the model’s ability to predict the presence 
of speeding events correctly. 

Specificity =
True Negatives(TN)

True Negatives(TN) + False Positives(FP)
(10)  

Sensitivity =
True Positives(TP)

True Positives(TP) + False Negatives(FN)
(11) 

Model predictions results were: TN = 544, TP = 56, FP = 188, FN =
188, Specificity = 0.74, Sensitivity = 0.23. High Specificity indicates 
low false positives, while low value of Sensitivity suggests a high rate of 
false negatives. It is important to consider that after reformulating the 
speeding data, there is a preponderance of 0 s (non-speeding intervals) 
compared to 1 s (speeding intervals). Given this imbalance, the low 
Sensitivity is expected. The model may tend to predict non-speeding 
intervals (TN) more accurately but struggle to identify all the in
stances of speeding intervals (TP). This is a common challenge in models 
dealing with imbalanced datasets, and further efforts may be required to 
improve the Sensitivity while maintaining a high Specificity. 

8. Discussion 

Utilizing the capability of parametric regression models to derive 
variable effects, we examined the influence of several variables on 
speeding probability. The variables considered in this investigation are 
listed below. The influence of other variables can also be derived 
similarly. 

Effect of time: Fig. 3(a) demonstrates that the effect of time on 
speeding remains consistent across the four alternatives. As the time 
since the last speeding event increases, the probability of speeding 
steadily rises with each time interval. In this analysis, the time since the 
last speeding event is scaled between a minimum value of 0 and a 
maximum value of 1 to avoid the undue influence of large differences 
between the minimum and maximum time values. 

Effect of visibility: Fig. 3(b) illustrates that as visibility increases, the 
likelihood of speeding decreases for the first and second time-intervals, 
but steadily increases afterward. Furthermore, the rate of increase in the 
probability of speeding is highest during the final time interval. 
Conversely, the rate of decrease in the probability of speeding is most 
pronounced during the first time-interval. This observation indicates 
that the change in the probability of speeding with variations in visi
bility is dependent on the specific time interval. 

Effect of number of lanes: Fig. 3(c) demonstrates that the increase in 
the probability of speeding is characterized by an upward curve as the 
number of lanes increases. However, it is worth noting that the differ
ences between the time intervals themselves are not easily distinguish
able. In other words, although there is no clear time-interval-specific 
differentiation, the probability of speeding exhibits a non-linear increase 
with an increase in the number of lanes. 

Effect of COV: The effect of the coefficient of variation of speed ap
pears to be linear (see Fig. 3(d)). While there is a small difference be
tween the probabilities observed at the second and third time-intervals, 
the contrast between the first and fourth time-intervals is more notice
able, with the latter being associated with a higher probability. In other 
words, although there is a notable difference between the probabilities 
associated with the first and fourth time-intervals, the magnitudes on 
the y-axis suggest that the value differences are relatively small. 

Effect of segment length: As discussed in the literature review section, 
studies have indicated that work zones with longer lane closures are 

Fig. 2. Value of PTP for different subset of test data.  
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more prone to speeding (Hamdar et al., 2016). The findings from this 
study align with those observations, showing that with an increase in 
highway segment length, the average vehicle speed, and consequently 
the probability of speeding, also increases, as depicted in Fig. 3(e). The 
nature of the plot also reveals that the rate of increase in probability 
intensifies as the segment length increases. For instance, the rate of in
crease in the probability of speeding observed on segments longer than 3 
miles is much steeper than on segments that are shorter than 1 mile. 

Effect of travel time index: A travel time index greater than 1 indicates 
a longer travel time than expected based on the operating speed limit, 
suggesting a congestion condition. Interestingly, Fig. 3(f) reveals that 
the probability of speeding rises sharply when the values of the travel 
time index are less than 6. However, beyond a travel time index of 6, the 
probability of speeding remains relatively constant. This plot suggests 
that the probability of speeding increases with higher travel times but 
only to a certain extent, and then it plateaus. This could be attributed to 

drivers attempting to recover lost time during mild congestion. How
ever, when the travel time index is much higher—indicating more 
congestion—the probability of speeding plateaus. This implies that 
during periods of high congestion, when vehicles are very close together, 
such as bumper to bumper, drivers can no longer travel at higher speeds. 

9. Conclusion 

A well-functioning transportation system requires significant high
way construction and maintenance to ensure efficiency. However, 
increased construction activities also expose workers to hazardous 
traffic conditions, which raises the risk of crashes. Despite implementing 
safety equipment, measures, laws, and policies, ensuring driver 
compliance with safety measures remains a concern. Enforcing reduced 
speed limits in work zones proves challenging due to the inherent nature 
of such work zones, leading to abrupt speed changes and speed 

Fig. 3. Change in probability of outcomes with change in variable values.  
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violations that significantly contribute to crashes. Moreover, it is well- 
established that higher speeds are linked to more severe crashes, 
further amplifying the safety risks associated with work zones. 

The objective of this study was to introduce a novel approach for 
predicting speeding, especially in work zones where it poses a significant 
threat to road users. Discretized duration framework was used, which 
allows to consider past speeding trends using historical data and real- 
time factors like weather, traffic flow, and highway characteristics to 
estimate the likelihood of speeding in discrete time intervals. Using this 
modeling framework, we can forecast future speeding behavior by 
treating these time intervals as choice alternatives in a MNL model. We 
focused on speeding events on I-65 in Robertson County, Tennessee, to 
test this approach. We utilized traffic speed and speeding identification 
data from INRIX, highway characteristics from ETRIMS, and weather 
data from LCD. The model successfully identified major contributors to 
speeding and demonstrated reasonably accurate predictive abilities, as 
evaluated using metrics like PTP, Specificity, and Sensitivity. The 
average value of PTP indicates that the model can predict speeding 
within 61% of its time of occurrence. With Specificity at 0.74 and 
Sensitivity at 0.26, the model shows low false-positives and high false 
negatives. Overall, the model predictions suggest that transportation 
agencies can implement it to predict speeding events in real-time with a 
fair degree of accuracy. 

While there are data-driven approaches to predicting speeding, such 
as machine learning, these are not readily transferrable. In contrast, the 
duration-based approach is grounded in an econometric framework that 
is readily applicable to any location. Additionally, the framework en
ables causal analysis through coefficients and marginal/elasticity ef
fects. From a utility perspective, the combined ability of causal and real- 
time predictive analysis using the duration-based framework can be of 
great value to transportation planners, agencies, and safety officials. 
This has become even more relevant in recent years, considering Vision 
Zero initiatives. The causal analysis can help quantify the impact of 
various factors on speeding through coefficients, elasticity effects, and 
marginal effects. Simultaneously, predictive analysis can be of great 
value to agencies with limited resources for advanced planning and 
deployment of resources at critical segments. For instance, adverse 
conditions identified from causal analysis can aid agencies in remaining 
prepared in advance. Meanwhile, predictive analysis can help identify 
critical segments and prioritize the deployment of limited speed 
enforcement measures. 

It is also important to highlight some limitations of the current study. 
First, reformulating speeding events using binary variables for speeding 
identification resulted in a prevalence of 0 s over 1 s in the data, leading 
to a low value of Sensitivity. Future research could explore ways to 
improve model performance by addressing this class imbalance, such as 
using techniques like Synthetic Minority Oversampling Technique 
(SMOTE). In addition, the effects of different work zone enforcement 
techniques and strategies can be further studied. This would be helpful 
to identify which measures are more effective than others for particular 
work zone setups. Finally, it is important to note that the effect of pre
dictors might differ with work zone types. For instance, a difference in 
the model can be expected in left lane closure versus middle lane 
closure, and stationary versus mobile work zones. These factors must be 
taken into account in future analyses. 
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