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A B S T R A C T   

Driven by advancements in data-driven methods, recent developments in proactive crash prediction models have 
primarily focused on implementing machine learning and artificial intelligence. However, from a causal 
perspective, statistical models are preferred for their ability to estimate effect sizes using variable coefficients and 
elasticity effects. Most statistical framework-based crash prediction models adopt a case-control approach, 
matching crashes to non-crash events. However, accurately defining the crash-to-non-crash ratio and incorpo
rating crash severities pose challenges. Few studies have ventured beyond the case-control approach to develop 
proactive crash prediction models, such as the duration-based framework. This study extends the duration-based 
modeling framework to create a novel framework for predicting crashes and their severity. Addressing the 
increased computational complexity resulting from incorporating crash severities, we explore a tradeoff between 
model performance and estimation time. Results indicate that a 15 % sample drawn at the epoch level achieves a 
balanced approach, reducing data size while maintaining reasonable predictive accuracy. Furthermore, stability 
analysis of predictor variables across different samples reveals that variables such as Time of day (Early after
noon), Weather condition (Clear), Lighting condition (Daytime), Illumination (Illuminated), and Volume require larger 
samples for more accurate coefficient estimation. Conversely, Daytime (Early morning, Late morning, Late after
noon), Lighting condition (Dark lighted), Terrain (Flat), Land use (Commercial, Rural), Number of lanes, and Speed 
converge towards true estimates with small incremental increases in sample size. The validation reveals that the 
model performs better in highway segments experiencing more frequent crashes (segments where the duration 
between crashes is less than 100 h, or approximately 4 days).   

1. Introduction 

Crash prediction models can be categorized into two main types: 
diagnostic crash prediction models, also known as reactive crash pre
diction models, and proactive or real-time crash prediction models. 
These two types of prediction models differ in their application and the 
variables they incorporate. Reactive crash prediction models rely on 
historical crash data, as well as static covariates (variables that do not 
change over time) and dynamic covariates (variables that do change 
over time), aggregated over a specific period. Examples of such dynamic 
covariates include Average Annual Daily Traffic and average speed. 
These models are valuable for developing safety performance functions, 
which help identify the precursors of crashes and evaluate the impact of 
safety interventions and policies on highway safety (Yasmin et al., 
2018). On the other hand, proactive crash prediction models refer to 

real-time crash prediction models that utilize historical crash data and 
static covariates, such as roadway condition and roadway geometry, 
along with disaggregated dynamic covariates that vary with time. These 
dynamic covariates can include traffic volume, speed, and weather 
conditions collected in near real-time. By incorporating dynamic pre
dictors, these models can account for changing traffic and weather 
conditions, allowing for the forecasting of the likelihood of future 
crashes in real time. This, in turn, enables the implementation of crash 
mitigation strategies. 

Proactive crash prediction models have garnered significant atten
tion from researchers in recent years due to their potential to forecast 
and prevent future crashes. The availability of granular traffic flow data, 
such as near real-time traffic flow data collected at small time intervals, 
from Intelligent Transportation System infrastructure, coupled with the 
computational performance of modern computers, has played a crucial 
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role in increasing the popularity of these models. Modern data-driven 
methods, such as Machine Learning (ML), have gained popularity as 
they replace traditional statistical models which are often relatively 
more difficult to fit (Mannering et al., 2020). Data-driven methods have 
demonstrated superior data fit and predictive capabilities as they are not 
constrained by assumptions inherent to traditional econometric frame
works, such as statistical distribution and variable correlation. However, 
data-driven methods have their own limitations too. They struggle with 
problems related to model transferability, generalization, and the 
inability to quantify variable effects. In this context, statistical econo
metric frameworks, through variable coefficients and elasticities, can 
quantify variable effects and provide model transferability and gener
alization. In these respects, statistical models can be considered superior 
to data-driven methods. 

Due to the benefits offered by statistical econometric frameworks, 
there are ongoing efforts to enhance and refine traditional statistical 
approaches to address their limitations and apply them to proactive 
modeling. For instance, researchers have extended standard economet
ric frameworks by incorporating flexible structures to develop mixed 
and generalized models. These models can account for unobserved 
heterogeneity and hierarchical structures for variable correlations and 
dependencies. More recently, researchers developed and implemented a 
new crash prediction framework (Thapa et al., 2022). In their study, 
researchers developed a duration-based crash prediction model that 
combines elements of the survival model and Multinomial Logit model 
(MNL). In this modeling approach, the time duration between crashes is 
divided into 1-hour epochs, which are further subdivided into 4 15-min
ute time intervals. Each epoch between two consecutive crashes is 
treated as a separate observation, with the time intervals serving as 
choice alternatives. By adopting this approach, the framework can 
forecast the likelihood of future crashes by considering two types of 
covariates. Firstly, static covariates associated with crashes, such as 
highway geometry and environmental conditions, are repeated over 
each epoch. Secondly, dynamic covariates, such as traffic flow and 
speed, change across epochs and within the 15-minute time intervals. 
The authors of the study discovered that the duration-based model could 
generate reasonably accurate estimates even when dealing with small 
sample sizes. 

The current study builds upon the duration-based model by incor
porating crash severities. While prediction of crash occurrence has 
already been addressed in previous research, forecasting likelihood of 
different crash severities is crucial from multiple perspectives, including 
safety, economic, and planning considerations. The costs associated 
with crashes vary significantly depending on their severity. For instance, 
the comprehensive unit cost of a Property Damage Only (PDO) crash in 
the US was estimated to be around $12,000 in 2016, whereas a fatal 
crash was estimated to exceed $11 million (Harmon et al., 2018). 
Additionally, crash severities are linked to road user costs. Studies have 
indicated that more severe crashes require more time to clear, resulting 
in higher road user costs (Golob et al., 1987; Lee and Fazio, 2005). 
Therefore, prioritizing the identification and addressing of factors 
contributing to more severe crashes is crucial from both safety and 
economic perspectives. Furthermore, from a planning standpoint, the 
ability to forecast crash severities provides transportation agencies with 
valuable insights. Agencies are often constrained with limited resources 
and personnel, making it necessary to identify critical segments in 
advance and proactively address adverse traffic flow conditions. By 
forecasting crash severities, agencies can prioritize the allocation and 
deployment of resources and personnel to prevent severe crashes and 
mitigate their impacts, contributing to more efficient and effective 
traffic operations and planning. 

2. Literature review 

Research in crash prediction has focused on forecasting both crash 
occurrences and severities. In the following sections, we provide a 

literature review of prediction models based on the specific outcomes 
they forecast. While we will discuss both proactive and reactive crash 
prediction models, this review will place greater emphasis on proactive 
crash prediction models, as they align with the scope of our study. 

2.1. Crash prediction models 

The first group of studies focuses on real-time forecasting of future 
crashes, employing both data-driven and statistical methods. Re
searchers have utilized various approaches to develop these models. 
Data-driven methods have gained popularity in the literature, with 
several notable examples including Support Vector Machines (Sun and 
Sun, 2016; Yu and Abdel-Aty, 2013), decision trees and random forests 
(Beshah et al., 2011; Pham et al., 2010), neural networks (Li et al., 
2020), and Bayesian statistics (Hossain and Muromachi, 2012; Zheng 
and Sayed, 2020). These data-driven methods have proven effective in 
capturing complex relationships and patterns in crash data, allowing for 
real-time forecasting of future crash occurrences. 

On the statistical side, the case-control design approach has been the 
most popular method for developing proactive crash prediction models 
(Hossain et al., 2019). In this approach, crashes are matched with non- 
crash events based on specific variables such as location and time of the 
crash (Abdel-Aty et al., 2004). The resulting dataset, with binary out
comes indicating crash or non-crash events, is well-suited for binary 
logistic regression. However, researchers have also explored the use of 
data-driven methods and Bayesian statistics to enhance the modeling 
capabilities of this approach (Hossain et al., 2019). In addition to the 
traditional case-control approach, alternative methodologies have been 
proposed. For example, (Yasmin et al., 2018) developed a MNL that 
considered 5-minute intervals for the next 30 days as choice alternatives, 
representing the occurrence of crashes in future time intervals. Given the 
substantial number of choice alternatives, the authors employed sam
pling techniques (selecting 29 randomly sampled time intervals and 1 
interval with a crash) from the 30-day period. 

More recently, researchers implemented a real-time crash prediction 
model by combining survival model with the MNL model. Survival 
models or duration models have been employed to model traffic crashes 
using static data (e.g., (Jovanis and Chang, 1989; Thapa and Mishra, 
2021), however, they are incapable of incorporating time-varying 
covariates. The researchers developed a new method to restructure the 
crash data by creating forecasting epochs and time-intervals that can be 
associated with the dynamic covariates (Thapa et al., 2022). 

2.2. Crash severity prediction models 

The second group of studies focuses on predicting crash severity. 
Data-driven methods have been used more often to forecast crash se
verities, with various approaches utilized in different studies. Deep 
learning methods have been applied in crash severity prediction (Rahim 
and Hassan, 2021), while Support Vector Machines have been utilized in 
studies by (Chen et al., 2016; Iranitalab and Khattak, 2017). Random 
forests have also been used as a predictive technique for crash severity 
forecasting (Iranitalab and Khattak, 2017). Other methods such as 
neural networks and decision trees have been explored in some studies 
(Lee et al., 2019; Ospina-Mateus et al., 2021; Zhang et al., 2020). In 
recent years, a significant focus has been placed on comparing the 
performance of these algorithms in crash severity prediction (Santos 
et al., 2022). It is important to note that most prediction models within 
this group are reactive in nature, aiming to predict crash severity based 
on historical data and established patterns. 

The most common statistical approach for developing crash severity 
prediction models is applying discrete choice models, specifically 
multinomial and ordered response logit/probit models. However, more 
advanced statistical models such as random parameter mixed models 
have gained popularity among researchers in recent years, as they offer 
solutions to the fixed parameter restriction imposed by choice models. 
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Uncorrelated random parameter models (Fountas and Anastasopoulos, 
2017) correlated random parameter models (Ahmed et al., 2021; 
Fountas and Anastasopoulos, 2017), and generalized ordered response 
models (Osman et al., 2019; Osman et al., 2018a,b; Yasmin et al., 2014) 
are some of the examples of these advanced statistical models. These 
models enable researchers to account for parameter variations across 
different observations, providing more flexibility in capturing the 
complexity of crash severity prediction. Another approach for crash 
severity prediction involves the use of sequential models that can ac
count for the dependency between various levels of crash severities. 
Studies have explored the application of sequential models in crash 
severity prediction, allowing for the consideration of dependencies be
tween crash severities (Dissanayake and Lu, 2002; Jung et al., 2010). 

With the advent of advanced models, researchers have conducted 
studies to examine and compare their predictive performance. For 
instance, Yasmin and Eluru, 2013) compared different generalized and 
mixed models within the frameworks of ordered and unordered choice 
modeling. Their findings indicated that mixed generalized ordered logit 
and mixed MNL models showed promise in predicting crash injury 
severity. In a study by (J. Zhang et al., 2018), various statistical and 
machine learning methods were compared, and it was found that ma
chine learning algorithms exhibited better performance. This improve
ment could be attributed to factors such as the linear utility function and 
parametric assumptions regarding the error term. (Cerwick et al., 2014) 
conducted a comparison between mixed MNL and latent class MNL 
models. Their analysis revealed that the former model provided better 
average predictions across different severity levels. 

2.3. Models predicting crash frequency and severity 

The final group of studies focuses on forecasting both crashes and 
their severity. However, it is important to note that most of these models 
are primarily designed to forecast crash frequencies rather than the 
presence or absence of crashes. 

Multivariate count data models are commonly employed in these 
studies, as seen in the works of (Jonathan et al., 2016; Ma and Kockel
man, 2006; Park and Lord, 2007). Additionally, random parameter 
count data models have been used to account for spatial and temporal 
heterogeneity, as demonstrated by (Barua et al., 2016; Cheng et al., 
2017; Dong et al., 2014). Other studies have implemented joint models 
with two components: (i) a crash prediction component utilizing count 
data models, and (ii) a crash severity component employing discrete 
choice models to predict crash counts by severity. This approach has 
been employed by (Afghari et al., 2020; Pei et al., 2011; Yasmin and 
Eluru, 2018). 

The sequential logit model has also been used to predict the likeli
hood and severity of crashes. (Xu et al., 2013) developed a model using 
sequential binary logit models, where crashes were modeled in three 
stages: Stage 1 (crash vs. non-crash), Stage 2 (property damage only vs. 
higher severities), and Stage 3 (non-capacitating vs. higher severities). 
However, a significant drawback of the sequential logit model in the 
context of proactive crash prediction is that the estimation of multiple 
models can be computationally demanding and time-consuming, mak
ing it impractical for large datasets. 

3. Study contributions 

Only a limited number of statistical approaches have been developed 
to date for proactive crash prediction, apart from the commonly used 
case-control approach. This study introduces a duration-based predic
tion model for both crash occurrence and crash severity. The model 
framework involves dividing the time duration between historical 
crashes into distinct time periods to create forecasting epochs and time 
intervals. This allows the model to incorporate dynamic covariates and 
ascertain the probability of crashes occurring in future epochs and time 
intervals (Thapa et al., 2022). While this modeling approach has 

previously been demonstrated for crash prediction, the current study 
extends the framework to incorporate crash severities. The major con
tributions of this paper can be summarized as follows. 

1. We expand upon the duration-based proactive crash prediction 
model by introducing a novel modeling approach that can forecast both 
crash occurrence and severity. Our model framework is one of handful 
statistical approaches for proactive crash prediction that does not rely on 
the case-control approach (Thapa et al., 2022). Unlike the original 
model, which solely predicts the likelihood of crashes for discrete future 
time intervals, our proposed model can also predict the corresponding 
crash severities. 

Furthermore, the proposed model is implemented using a larger 
dataset. Specifically, the model is applied to crash data collected from 
interstates in two cities in Tennessee, thereby achieving a broader 
geographical coverage in comparison to the previous study that focused 
on a single city. This expanded geographical scope enhances the 
generalizability of the crash predictors, as it ensures adequate repre
sentation of diverse roadway conditions and traffic patterns across the 
study areas. 

2. The proposed modeling framework demands discretizing the time 
duration between crashes to create forecasting epochs (more on this in 
this in the next section). Consequently, the size of the initial crash data 
expands significantly. Prior studies have indicated that appropriate 
sampling techniques can address estimation complexities arising from 
large data size, thereby allowing for parameter estimation with a 
reasonable degree of accuracy (Thapa et al., 2022). However, the 
incorporation of crash severities adds an additional layer of complexity 
to the model estimation process. 

Therefore, this study aims to investigate the influence of sample size 
on variable coefficients and identify variables that are sensitive to 
changes in sample size. Understanding the variables that are particularly 
impacted by sample size variations is crucial for the implementation of 
the model. Additionally, this information will play a pivotal role in 
assessing the reliability of the model and guiding future data collection 
efforts. 

4. Methodology 

In this section, we present the methodology under three distinct 
subsections: the duration-based prediction framework, the nested logit 
model, and the estimation of the nested logit model. First, we describe 
the duration-based prediction framework and the process of creating 
forecasting epochs. This section is followed by the introduction of the 
two-level nested logit model and its relationship with the duration-based 
crash prediction framework. Finally, we discuss the estimation processes 
used in this study to estimate the parameters of the models. 

4.1. Duration based prediction framework 

In the duration-based crash prediction model, the occurrence of a 
crash at any time interval dt can be modeled using the MNL framework 
with alternatives, n and the hazard rate, h given by Un = −h(n −1)dt 
(Thapa et al., 2022). By utilizing this relationship, the latent propensity 
function for each time interval can be expressed as a function of static 
and dynamic covariates (time-varying factors). The application of this 
concept is illustrated in the following example. 

Example: 
Consider the duration between crashes in a highway segment, 

denoted as s, which is discretized into epochs, denoted as e, each with 
time intervals, denoted as i, and each interval has a duration of dt. Using 
these indices, we can examine historical crash data for a roadway 
segment, s = 1, where three consecutive crashes, denoted as A1, A2, and 
A3, were observed with durations of 2.5 h and 0.5 h apart (see Table 1 
(a)). Additionally, available are dynamic covariates, speed and volume 
for the segment and the crash year at a temporal resolution of dt, as 
shown in Table 1(b). These covariates, as depicted, exhibit time-varying 
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characteristics. 
For discretization, let us choose e = 1 h and dt = 0.25 h. Therefore, 

the number of time intervals in an epoch, denoted by C = 4, each 
identified by the index i = (1, 2, 3, 4). After discretization, the fore
casting epochs are created as shown in Table 1(c). Each epoch consists of 
four 15-minute intervals, and an additional C + 1th column called “Next 
epoch” is added, indicating whether the next crash occurred in the cur
rent or future epoch (0 if in the current epoch, 1 if in future epochs). 
Based on the table, we can express the time elapsed since the previous 
crash using the equation te,i = (e −1)Cdt + (i −1)dt. For example, the 
time between crashes A1 and A2 can be determined as t3,2 =

(3 − 1)1 +(2 − 1)0.25 = 2.25 hours. As shown in the table, the dynamic 
covariate Speed varies across different time periods. The static covariate 
Terrain, in this example, does not repeat across the time intervals of a 
crash. However, to account for the effect of time, the variable is multi
plied by te,i. For instance, the Terrain variable for the first time-interval is 
0.25 multiplied by 1, and for the second time interval, it is 0.5 multiplied 
by 1, and so on. Therefore, all variables vary across epochs and time- 
intervals. The final data obtained after the creation of forecasting 
epochs takes the form of panel data with repeated observations for each 
crash corresponding to the forecasting epochs. 

A few observations can be made from Table 1(c), particularly 
regarding the increase in data size after the creation of forecasting 
epochs. The final data size is influenced by three factors. The first factor 
is the size of the original crash data. The more crashes are observed, the 
larger the data size will be after creating forecasting epochs. The second 
factor is the choice of discretization. When a smaller time discretization 
is chosen, more detailed information regarding traffic flow can be ob
tained. However, this also leads to a considerable increase in data size. 
The third factor is the distribution of inter-crash duration. If the inter- 
crash durations are longer, more forecasting epochs will be created, 
resulting in a larger data size. Considering these factors, implementing a 

model for a wide geographical area with small discretization can 
become computationally demanding. Even a slight reduction in time 
discretization significantly increases computational complexity. To 
reduce computational complexity, it is suggested to use a smaller sample 
of the expanded data drawn at the epoch level for model training (Thapa 
et al., 2022). 

Now, based on the example provided, the latent propensity function 
for crash severities, k observed at a particular time interval, i can be 
represented as a function of time since crash, static, and dynamic 
covariates using the utility function, Uk,i in Eq. (1). 

Uk,i = βtte,i + ρ′Xe,i (1) 

In Eq. (1), the coefficient βt represents the impact of duration on 
crash severity. The vector of covariates, Xe,i, captures the effect of 
covariates, with its values varying across epochs and time intervals. The 
corresponding vector of coefficients is denoted by ρ′. Similarly, if we 
assume that the latent propensity function for crash occurrences at any 
time interval, i consist of only an intercept term, the utility equations for 
each alternative can be formulated using Eq. (2). 

Ve,i = βi (2) 

It is worth noting here that as shown in Table 1(c), occurrence of a 
crash at a specific time interval is dependent on crashes not occurring on 
previous time intervals. This conditional probability of observing a crash 
in a particular time interval within an epoch can be expressed using a 
random variable Ts as follows. 

P
(
Ts = te,i|Ts > (e − 1)Cdt

)
=

exp
(
Ve,i

)

∑C
c=1exp

(
Ve,c

)
+ exp

(
Vs,e,c+1

) (3) 

The resulting unconditional probability of a crash at any time in
terval can be obtained by multiplying the conditional probability in Eq. 
(3) with the cumulative product of all probabilities for the C + 1th in
tervals preceding the epoch e as represented by Eq. (4). 

P
(
Ts = te,i

)

=
exp

(
Ve,i

)

∑C
c=1exp

(
Ve,c

)
+ exp

(
Ve,C+1

)

×
∏e−1

e*=1

exp
(
Ve*,C+1

)

∑C
c=1exp

(
Ve*,c

)
+ exp

(
Ve*,C+1

) (4)  

4.2. Nested logit model 

As discussed prior, the crash outcomes in the example are charac
terized by: (i) occurrence of crashes or the time interval when a crash 
happens, and (ii) the severity of the crash that happened at a certain 
interval. These outcomes can be effectively modeled using a two-level 
nested logit model, as depicted in Fig. 1. In this model, the time in
tervals, i and an additional alternative (C + 1) serve as nodes repre
senting the upper-level choice alternatives, while the crash severities 
correspond to the lower-level alternatives. It is important to note that 
the crash severities at each time interval are conditional upon the 
occurrence of a crash within that interval. For simplicity, assume the 
severity levels are comprised of two categories, denoted by k = (F/I, 
PDO), where F/I represents Fatal or Injury crashes, and PDO represents 

Table 1a 
Historical crash data with static covariates.  

s Crash Date of crash Time of crash Severity Terrain 
(Flat = 1, Rolling = 0) 

1 A1 1/1/2023 00:00 Fatal 1 
1 A2 1/1/2023 02:30 PDO 1 
1 A3 1/1/2023 03:00 Injury 1  

Table 1b 
Dynamic covariates averaged for 15-min intervals: Vehicle speed (in mph).  

Date and 
time 

1/1/2023 
00:00 

1/1/2023 
00:15 

1/1/2023 
00:30 

1/1/2023 
01:00 

Speed 49 51 50 49 
Date and 

time 
1/1/2023 
01:15 

1/1/2023 
01:30 

1/1/2023 
01:45 

1/1/2023 
02:00 

Speed 47 50 48 49 
Date and 

time 
1/1/2023 
02:15 

1/1/2023 
02:30 

1/1/2023 
02:45 

1/1/2023 
03:00 

Speed 51 50 50 51 
Date and 

time 
1/1/2023 
03:15 

1/1/2023 
03:30 

1/1/2023 
03:45 

1/1/2023 
04:00 

Speed 49 48 47 48  

Table 1c 
Final crash data after creating forecasting epochs.  

s ID Time to crash (hr) Epoch 15-min intervals Next epoch Speed (mph) Severity Terrain(Flat¼1, Rolling¼0) 

1 2 3 4 1 2 3 4 1 2 3 4 

1 A1 2.5 1 0 0 0 0 1 49 51 50 49 Fatal 0.25 0.5 0.75 1 
1 A1 2.5 2 0 0 0 0 1 47 50 48 49 Fatal 1.25 1.50 1.75 2 
1 A1 2.5 3 0 1 0 0 0 51 50 50 51 Fatal 2.25 2.50 2.75 3 
1 A2 0.5 1 0 1 0 0 0 49 48 47 48 PDO 0.25 0.5 0.75 1 
… … … … … … … … … … … … … … … … … …  
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Property Damage Only crashes. The conditional choice probability of 
the lower-level alternatives, k given the upper-level alternatives, i can be 
expressed as follows. 

Pk = P(k|i)*P(i) (5)  

P(k|i) =
exp

(
Uk,i

/
θi

)

∑
kexp

(
Uk,i

/
θi

) (6)  

P(i) =
exp

(
Ve,i + Γi × θi

)

∑
iexp

(
Ve,i + Γi × θi

)
+ exp

(
Ve,Next epoch

) (7)  

Γi = log

[
∑

k
exp

(
Uk,i

/
θi

)
]

(8) 

The parameter θi in Eqs. (6), (7), and (8) represents the logsum 
parameter or nesting coefficient, which captures the underlying corre
lations for alternatives within a nest. Γi in Eq. (8) is the inclusive value 
for nodes in the upper level. However, the C + 1th alternative, Next 
epoch, lacks the logsum parameter due to its degenerate branch. 
Consequently, the probability of this alternative can be determined 
using the following equation. 

P(Next epoch) =
exp

(
VNext epoch

)

∑
iexp(Vi + Γi × θi) + exp

(
VNext epoch

) (9) 

The probability of F/I crashes in Eq. (6) can be obtained by 
substituting the value of Uk,i from Eq. (1) assuming PDO crashes as the 
reference case. Similarly, Eq. (7) gives the probability of upper-level 
alternatives, which is equivalent to Eq. (3) and can be rewritten using 
Eq. (10). 

P(i) =
exp

(
Ve,i + Γi × θi

)

∑
iexp

(
Ve,i + Γi × θi

)
+ exp

(
Ve,Next epoch

)

×
∏e−1

e*=1

exp
(
Ve* ,C+1

)

∑
iexp

(
Ve* ,i + Γi × θi

)
+ exp

(
Ve* ,Next epoch

) (10) 

Assuming each row in the crash data after creation of forecasting 
epochs is represented using the superscript n, the log-likelihood function 
for the two-level nested logit model can be expressed as the sum of two 
components using Eq. (11). The first and second components of the 
equation are associated with the lower and upper-level alternatives, 
respectively (Brownstone and Small, 1989). The parameters in the two- 
level nested logit model is estimated by maximizing this equation. 

L =
∑

n
logPn(kn|in) +

∑

n
logPn(in) (11)  

4.3. 4.3. Estimation of the nested logit model 

There are several methods available for estimating parameters in 
nested logit models, with sequential estimation and simultaneous esti
mation being the most cited approaches. In sequential estimation, the 
first component of the log-likelihood function (Eq. (11)) is maximized to 

estimate the parameters in the lower-level. This step provides estimates 
of the coefficients scaled by their respective nesting parameter θi. To 
simplify the process, the nesting parameters can be assumed to be 
constant for all nodes, represented as θi = θ. In the next step, inclusive 
values are calculated for each node using the scaled estimates obtained 
from the lower level. These inclusive values are then used in the second 
component of the log-likelihood function to maximize and obtain the 
values of θ and intercepts βi for the upper level. It is important to note 
that while sequential estimation allows for the maximization and esti
mation of parameters in a stepwise manner, the estimates obtained are 
not consistent because the scaled parameters from the lower level are 
substituted to find parameters in the upper level. An alternative 
approach is simultaneous estimation, where parameters in both levels 
are estimated simultaneously using a non-linear maximization algo
rithm. This method is more rigorous compared to sequential estimation, 
and the estimates obtained are consistent. 

5. Data 

5.1. Data source and preparation 

The estimation and validation of the two-level nested logit model 
were carried out using data gathered from two main sources. First, 
historical crash data for the year 2019 was obtained from the Enhanced 
Tennessee Roadway Information Management System (ETRIMS). This 
dataset provided information on various crash characteristics such as the 
date, time, severity, and coordinates of the crash location, as well as 
details on static covariates such as highway geometry, weather condi
tions, lighting conditions, land use, and terrain characteristics. The dy
namic covariates for the study, namely traffic flow and speed, were 
obtained from the Radar Data System (RDS) stations located along the 
highway segments from which the historical crash data was collected. 
Since our study aimed to implement a practical time discretization with 
15-minute intervals, the RDS data was collected specifically for these 15- 
minute intervals. To match the RDS data with the corresponding 
crashes, a geospatial mapping approach was employed, aligning the RDS 
stations with their respective highway segments. 

It is important to note that RDS coverage in Tennessee is limited to its 
major cities, including Memphis, Nashville, Chattanooga, and Knoxville. 
Therefore, for the purposes of this study, the segments of interstates 
within the city limits of Memphis and Chattanooga were considered. 
Specifically, the selected segments included I-40 and I-55 in Memphis, 
and I-24 and I-75 in Chattanooga. 

For this study, the interstates were divided into segments based on 
four criteria including the direction of traffic, number of lanes, posted 
speed limit, and terrain type. The segmentation details of the interstates 
are provided in Table 2. The table includes information on the total 
number of segments, their lengths in both directions, and the frequency 
of crashes observed within each segment. In total, the dataset consisted 
of 2,375 crashes. Table 3 presents a breakdown of the crash frequencies 
based on various categorical variables. Additionally, the table includes 
descriptive statistics for the continuous variables in the dataset. The 

Fig. 1. Two-level nested structure of crash occurrence and severity.  

D. Thapa et al.                                                                                                                                                                                                                                  



Accident Analysis and Prevention 195 (2024) 107407

6

table provides a comprehensive overview of the data, highlighting the 
distribution of crashes across different segments and variable categories. 

In this study, the 15-minute traffic volumes were scaled to a range 
between 0 (minimum value) and 1 (maximum value). This scaling 
process was applied to avoid the potential influence of larger volumes on 
the model training process. The duration between crashes exhibited a 
right-skewed distribution, as indicated by the mean of 516.67 h (about 3 
weeks) being greater than the median of 230.46 h (about 1 and a half 
weeks). This suggests that there is a longer average time period between 
crashes, with occasional instances of shorter durations. A visual repre
sentation of the distribution of inter-crash duration for the four in
terstates is presented by a density plot in Fig. 2. The density plot 
provides a graphical representation of the distribution, highlighting the 

shape and spread of the duration between crashes for each interstate. 
From the plot, it can be observed that I-40 has the highest peak, 

indicating a higher concentration of crashes compared to the other in
terstates. Furthermore, the density plot reveals that the distribution of 
crashes on I-40 is less spread out compared to the other interstates. This 
means that the duration between crashes on I-40 is shorter, indicating a 
higher frequency of crashes occurring within a shorter period. In terms 
of increasing spread, the interstates can be ranked as follows: I-40, I-55, 
I-24, and I-75. This implies that the duration between crashes is longer 
and more spread out on I-75 compared to the other interstates. 

5.2. Data sampling 

In this study, the models were calibrated using training data and 
evaluated on testing data. The process of creating training and testing 
data involved splitting the historical crash data in a 9:1 ratio, where 90 
% of the data was allocated for training and the remaining 10 % for 
testing. To create forecasting epochs, both the training and testing 
crashes were expanded. The training data was further sampled at 5 % 
increments up to 25 % to investigate whether any sample size below 25 
% would provide accurate parameter estimates. Thus, the samples used 
for parameter estimation were 5 %, 10 %, 15 %, and 25 % of the training 
data. This sampling approach is called epoch level sampling (Thapa 

Table 2 
Summary of interstate segmentation.  

Interstate City Number of 
segments 

Length 
(mi) 

Number of 
crashes 

I-40 Memphis 146  21.51 905 
I-55 94  12.28 268 
I-24 Chattanooga 48  14.71 675 
I-75 70  13.29 527 
Total  358  61.79 2,375  

Table 3 
Descriptive statistics of crash characteristics.  

Categorical variables Frequency of crashes Relative abundance 

Time of day 
Early morning (6 a.m. to 9 a.m.) 447 18.82 % 
Late morning (9 a.m. to 12p.m.) 262 11.03 % 
Early afternoon (12p.m. to 3p.m.) 351 14.78 % 
Late afternoon (3p.m. to 6p.m.) 586 24.67 % 
Evening (6p.m. to 12 a.m.) 392 16.51 % 
Night (12 a.m. to 6 a.m.) 337 14.19 %  

Weather condition 
Clear 1,733 72.97 % 
Others (Cloudy, rain, fog, or snow) 642 27.03 %  

Lighting condition 
Daylight 1,612 67.87 % 
Dark lighted 463 19.49 % 
Dark, not lighted 300 12.63 %  

Illumination type 
Illuminated 1,780 74.95 % 
Not illuminated 595 25.05 %  

Terrain 
Flat 715 30.11 % 
Rolling 1,660 69.89 %  

Land use 
Commercial 1,187 49.98 % 
Rural 765 32.21 % 
Mixed 423 17.81 %  

Crash severities 
Fatal or injury 451 18.99 % 
Property Damage Only 1,924 81.01 % 
Continuous variables Min Q1 Median Q3 Max Mean SD 

Traffic flow characteristics 
Speed (mph) 1.00 59.06 63.47 66.96 91.00 61.41 10.46 
Volume (scaled between 0-minimum, and 1-maximum) 0.0002 0.12 0.28 0.46 1.00 0.31 0.22  

Highway geometry 
Number of lanes (both directions) 3 6 8 8 12 7.18 1.78 
Inter-crash duration (hours) 0.00 68.05 230.46 627.17 7683.03 516.67 783.18  
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et al., 2022). The sampled training data, along with the complete 
training data, were used to estimate the parameters for the models. For 
comparison purposes, the parameter estimates obtained from the com
plete training data (100 % training data) were considered as the “true” 
estimates. 

To evaluate the performance of the trained models, the predicted log- 
likelihood values were calculated on the training data. In this context, 
predicted log-likelihood provided a basis for comparing how well the 
models captured the characteristics of the training data. 

6. Results 

All model computations, including estimation and validation, in this 
study were conducted using R version 4.2.3 on a computer equipped 
with Intel Core i7-11,700 K processor and 16 GB of memory. We initially 
estimated the model parameters using the complete training data, 
employing both simultaneous and sequential estimation techniques. The 
objective of estimating with the complete training data was to obtain 
“true” parameter estimates and compare the results obtained from 
different estimation techniques. The estimation results are presented in 
Table 4. In Table 4, the first column displays the variable groups in the 
model, along with the corresponding variable categories considered as 
the base in the models. The second column lists the variables included in 
the model. The estimation results are then presented, showing the 
parameter estimates and their respective t-statistics for both simulta
neous and sequential estimation. The parameter estimates obtained 
from both estimation methods are comparable, indicating consistency in 
the results. Additionally, the average values of predicted log-likelihood 
are also similar between the two methods. When considering estimation 
complexity, which refers to the time taken for the model to converge 
from a null model, it was found that sequential estimation offers a 
considerable advantage. Specifically, using simultaneous estimation, the 
model took 51.09 h (about 2 days) to converge, which was approxi
mately six times the time taken by sequential estimation, which was 
8.63 h. Therefore, sequential estimation may provide consistent esti
mates with a significant reduction in computational complexity. 

The parameters obtained from simultaneous estimation, as shown in 
the table, can be utilized to express the propensity function for F/I 
crashes in any time interval using the following utility equation. 

UF/I,e,i = Vi − 6.46 × te,i + 1.96 × Early morning + 3.50 ×

Late morning⋯ − 1.27 × Volume 
For example, the utility equation for the first time-interval can be 

expressed as follows. 
UF/I,e,1 = −8.71 − 6.46 × te,1 + 1.96 × Early morning + 3.50 ×

Late morning⋯ − 1.27 × Volume 
The analysis reveals interesting findings regarding the factors influ

encing F/I crashes. The duration dynamics coefficient indicates that as 
the duration between crashes increases, the likelihood of F/I crashes 
decreases. Moreover, F/I crashes are more likely to occur between 9 am 
and 3 pm. Clear weather conditions are associated with a higher 

likelihood of F/I crashes compared to adverse weather conditions such 
as clouds, rain, fog, or snow. Dark lighted conditions result in more 
severe crashes, followed by daytime and dark unlighted conditions. 
Non-illuminated locations are more prone to F/I crashes compared to 
illuminated locations. Additionally, locations with flat terrain have a 
higher likelihood of F/I crashes compared to those with rolling terrain. 
Higher traffic volume leads to a decrease in F/I crashes, due to stop-and- 

Fig. 2. Distribution of inter-crash duration for the interstates.  

Table 4 
Results from estimation of model using complete training data.  

Variable groups Variables Simultaneous 
estimation 

Sequential 
estimation 

Estimate t-stat Estimate t-stat 

Upper level 
Duration 

dynamics 
Time since 
previous 
crash  

−6.46  −22.60  −7.22  −91.82 

Time of day 
(Evening 6p. 
m. to 12 a.m., 
Night 12 a.m. 
to 6 a.m.) 

Early 
morning (6 
a.m. to 9 a. 
m.)  

1.96  20.75  2.19  44.87 

Late 
morning (9 
a.m. to 12p. 
m.)  

3.50  22.27  3.91  70.82 

Early 
afternoon 
(12p.m. to 
3p.m.)  

3.48  22.39  3.89  75.27 

Late 
afternoon 
(3p.m. to 6p. 
m.)  

2.47  21.74  2.76  58.19 

Weather 
conditions 
(Others) 

Clear  1.92  22.22  2.15  72.37 

Lighting 
condition 
Dark, not 
lighted) 

Daytime  0.52  9.79  0.58  10.80 
Dark lighted  3.47  22.11  3.88  67.84 

Illumination 
type 
(Not 
illuminated) 

Illuminated  −0.88  −19.04  −0.99  −32.94 

Terrain type 
(Rolling) 

Flat  0.28  9.58  0.32  10.50 

Land use 
(Mixed) 

Commercial  −1.06  −18.82  −1.18  −31.78 
Rural  −2.01  −21.60  −2.24  −56.49 

Highway 
geometry 

Number of 
lanes  

0.88  22.23  0.98  72.09 

Traffic flow 
characteristics 

Speed  −0.08  −23.20  −0.09  −506.52 
Volume  −1.27  −21.70  −1.42  −55.39  

Lower level 
Intercepts 

(Next epoch) 
First 15-min 
interval  

−8.71  −131.18  −8.85  −128.09 

Second 15- 
min interval  

−8.74  −130.92  −8.88  −127.94 

Third 15- 
min interval  

−8.77  −130.53  −8.90  −127.68 

Fourth 15- 
min interval  

−8.71  −131.35  −8.85  −128.26 

Nesting 
coefficient 

θ  4.36  23.22  4.87  24.80  

Goodness of fit 
Number of observations 

(Training) 
1,103,104 

Average initial LL −213.98 
Average LL at convergence −2.052 
Number of observations (Testing) 140,591 
Predicted LL −1.879 
Estimation 

complexity 
Time (hours)  51.09  8.63  

D. Thapa et al.                                                                                                                                                                                                                                  



Accident Analysis and Prevention 195 (2024) 107407

8

go conditions during congested conditions. Similarly, higher speeds are 
associated with a lower likelihood of F/I crashes, although the effect size 
is small. The coefficients for the upper-level nodes, Vi, have similar 
magnitudes. The nesting parameter has a value of 4.36, indicating cross 
nesting of alternatives. It is worth nothing that the training data 
increased significantly after the creation of forecasting epochs, with the 
original 2,137 crashes expanding to 1,103,104 observations. 

Next, we proceeded to estimate parameters using sampled data to 
explore the tradeoff between model performance and estimation 
complexity. The results of this estimation can be found in Table 5, which 
presents the obtained parameter values along with their respective t- 
statistics. Upon visual inspection, it is apparent that the parameter 
values obtained using the 25 % sample are much closer to the true values 
compared to the 5 % sample. This finding aligns with a previous study 
conducted by Thapa et al. (2022). However, it is also crucial to inves
tigate the impact of sample size within the range of 5 % to 25 % to 
determine the sample that offers the optimal balance between model 
performance and estimation complexity. To address this, we estimated 
parameters at 5 % increments, ranging from 5 % to 25 %. Fig. 3 presents 
a graphical representation of estimation complexity and predicted log- 
likelihood for the various samples. Notably, the figure indicates a sig
nificant improvement in prediction performance beyond the 10 % 
sample. Furthermore, the models demonstrate similar performance for 
the 15 %, 20 %, and 25 % samples. 

As expected, estimation complexity increases linearly with the 
sample size. For instance, the model required 2.48 h to train on the 5 % 
sample, while it took approximately 20 times or 51.09 h (about 2 days) 
for the full 100 % dataset. Based on the findings depicted in the figure, it 
is evident that using a 15 % sample can yield comparable estimates and 
predictive performance to the 25 % sample, while reducing the esti
mation complexity to 60 % of that offered by the 25 % sample. This 
suggests that the 15 % sample size strikes a favorable balance between 

model performance and estimation complexity. 

6.1. Effect of sampling on coefficients 

Based on the parameter estimates, it is evident that certain predictor 
variables are particularly sensitive to sampling. A notable example is the 
Volume variable, where the coefficients exhibit significant differences 
between the sampled data and the complete data (refer to Fig. 4). This 
discrepancy can be attributed to the sampling approach and the scaling 
of traffic volumes. Since the volumes are scaled between 0 and 1, 
random sampling can lead to the exclusion of several observations, 
resulting in considerable variations in the parameter estimates for this 
variable. On the other hand, coefficients for the Speed variable demon
strate consistency. This consistency may be attributed to the fact that the 
values of the variable do not fluctuate significantly, as indicated by its 

Table 5 
Results from simultaneous model estimation using samples drawn at the epoch level.  

Variable groups Variables 5 % sample 10 % sample 15 % sample 20 % sample 25 % sample 

Upper level 
Duration dynamics Time since previous crash −5.05 (−4.21) −6.55 (−7.15) −6.60 (−8.65) −6.99 (−10.10) −6.94 (−11.36) 
Time of day 

(Evening 6p.m. to 12 a.m., 
Night 12 a.m. to 6 a.m.) 

Early morning (6 a.m. to 9 a.m.) 1.58 (3.93) 1.81 (6.39) 1.77 (7.73) 1.78 (8.97) 1.84 (10.13) 
Late morning (9 a.m. to 12p.m.) 2.56 (4.13) 3.20 (6.97) 3.43 (8.51) 3.40 (9.87) 3.45 (11.03) 
Early afternoon (12p.m. to 3p.m.) 2.46 (4.14) 3.18 (7.00) 3.60 (8.58) 3.76 (10.03) 3.70 (11.20) 
Late afternoon (3p.m. to 6p.m.) 1.71 (4.02) 2.40 (6.83) 2.48 (8.32) 2.50 (9.66) 2.52 (10.81) 

Weather conditions (Others) Clear 1.43 (4.12) 1.87 (7.00) 1.97 (8.51) 1.98 (9.91) 1.99 (11.08) 
Lighting condition 

(Dark, not lighted) 
Daytime 0.49 (2.27) 0.42 (2.50) 0.31 (2.37) 0.39 (3.33) 0.36 (3.53) 
Dark lighted 2.97 (4.15) 3.31 (6.92) 3.36 (8.41) 3.46 (9.81) 3.52 (11.06) 

Illumination type 
(Not illuminated) 

Illuminated −0.66 (−3.60) −0.90 (−5.98) −0.80 (−6.99) −0.72 (−7.74) −0.75 (−8.81) 

Terrain type 
(Rolling) 

Flat 0.49 (3.22) 0.85 (5.89) 0.80 (7.05) 0.70 (7.65) 0.63 (8.15) 

Land use 
(Mixed) 

Commercial −1.22 (−3.94) −1.28 (−6.27) −1.16 (−7.40) −0.98 (−8.05) −0.99 (−9.01) 
Rural −2.03 (−4.14) −2.15 (−6.87) −2.08 (−8.28) −1.98 (−9.54) −1.96 (−10.63) 

Highway geometry Number of lanes 0.77 (4.19) 0.96 (7.09) 0.86 (8.48) 0.89 (9.89) 0.89 (11.11) 
Traffic flow 

characteristics 
Speed −0.07 (−4.29) −0.08 (−7.34) −0.08 (−8.86) −0.08 (−10.32) −0.08 (−11.55) 
Volume −14.94 (−4.26) −18.77 (−7.26) −17.74 (−8.77) −17.98 (−10.23) −18.02 (−11.47)  

Lower level 
Intercepts 

(Next epoch) 
First 15-min interval −8.68 (−28.18) −8.94 (−39.92) −8.89 (−49.03) −8.90 (−56.71) −8.85 (−63.84) 
Second 15-min interval −9.01 (−27.42) −8.61 (−42.27) −8.56 (−51.90) −8.59 (−59.88) −8.62 (−66.90) 
Third 15-min interval −8.56 (−28.57) −8.83 (−40.44) −8.77 (−49.69) −8.75 (−57.60) −8.83 (−64.04) 
Fourth 15-min interval −8.60 (−28.37) −8.73 (−40.63) −8.77 (−49.53) −8.80 (−57.19) −8.70 (−64.55) 

Nesting coefficient θ 3.68 (4.30) 4.49 (7.35) 4.42 (8.87) 4.46 (10.34) 4.45 (11.58)  

Goodness of fit 
Number of observations (Training) 55,062 110,187 165,378 220,662 275,787 
Average initial LL −212.70 −212.87 −212.94 −213.01 −213.08 
Average LL at convergence −2.052 −2.053 −2.054 −2.053 −2.051 
Number of observations (Testing) 140,591 
Predicted log-likelihood −1.967 −1.968 −1.962 −1.961 −1.961 
Estimation complexity Time (hours) 2.48 4.22 7.49 9.86 13.25  

Fig. 3. Improvement in model performance with increase in data size/esti
mation complexity. 
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descriptive statistics, and are less affected by sampling. 
Considering these observations, we aim to identify and report vari

ables that are sensitive to sampling. To visualize this, a bar plot in Fig. 4 
presents the variable coefficients obtained from the sampled and com
plete data. From the plot, it can be observed that smaller samples are 
more likely to overestimate the effect of some variables, for example, 
Time since crash, Time of day-Early afternoon, Terrain-Flat, Land Use- 
Commercial, and Volume. Conversely, variables such as Time of day-Early 
Morning and Late Morning, and Lighting-Daytime are more likely to be 
underestimated when smaller samples are used. Overall, these findings 
emphasize the importance of considering the impact of sampling on 
parameter estimates, particularly for variables that exhibit sensitivity to 
sampling. 

Considering the impact of sampling, we identified variables that are 
unlikely to converge toward the true value when small samples are used 
and those that are more likely to do so. Identification of these variables is 
crucial from a practical standpoint, especially when analysts and plan
ners seek greater accuracy for specific variables. In the following figures, 
we present two groups of predictors. The first group consists of variables 
which are less likely to converge to actual values with small increments 
in sample size. These variables would require larger samples to achieve 
more accurate estimation. It is important to recognize the limitations in 
estimating the coefficients for these variables with smaller sample sizes. 
The second group comprises variables whose coefficients converge 
closer to the actual values as the sample size increases. This group in
cludes variables whose coefficients can be obtained with reasonable 
accuracy, even with small increments in sample size. The findings will 
be useful in identifying variables that becomes more stable and reliable 
as the sample size grows. These findings serve as valuable insights for 
researchers and practitioners, allowing them to prioritize their data 
collection efforts and allocate resources effectively based on the sensi
tivity of different predictors to sample size. 

The variables which are less likely to converge to true values despite 
an increase in sample size, ranging from 5 % to 25 %, compared to the 
full data are Time since crash, Time of day-Early afternoon, Weather Con
dition-Clear, Lighting Condition-Daytime, Illumination-Illuminated, and 
Volume. These variables are presented in Fig. 5, indicating the percent
age difference of the coefficients from the complete training data. On the 
other hand, coefficients for Time of day-Early morning, Time of day-Late 
morning, Time of day-Late afternoon, Lighting-Dark lighted, Terrain-Flat, 
Land Use-Commercial, Land Use-Rural, Number of lanes, and Speed 
converge quicker to the actual values as the sample size increases. These 
variables are displayed in Fig. 6, illustrating the percentage difference 
compared to the complete training data. These findings highlight the 
sensitivity of different variables to sample size and provide valuable 
insights into the accuracy and stability of their coefficient estimates. 

7. Validation 

The validation of the proposed nested logit model was carried out to 
assess its predicted capabilities. All validations were conducted using 
the simultaneous model trained on 15 % data drawn at the epoch level 
since our analysis suggested that it provided the best tradeoff between 
accuracy and estimation complexity. As discussed previously, 10 % of 
the sample was held out for testing. The test sample consisted of 236 
crashes, including 39 F/I crashes and 197 PDO crashes. This test sample 
was used for validation. Similar to the two-step model, validation was 
conducted to assess predictive abilities for the outcomes considered at 
the lower and upper levels. These results are discussed in the following 
subsections. 

7.1. Upper level: crashes at epoch level 

One of the primary objectives of the proposed framework is to 

Fig. 4. Coefficient of variables for different training samples.  

Fig. 5. Variables unlikely to converge to their actual values despite of incremental increase in sample size.  
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predict the occurrence of future crashes. Therefore, it is crucial to 
evaluate the temporal accuracy of the predicted crashes. To evaluate 
this, we measured the proximity between the predicted crash epoch and 
the actual epoch at which crashes were observed, by introducing a 
metric called Predicted Temporal Proximity (PTP), represented by Eq. 
(12). This metric quantifies how closely the predicted crash epochs align 
with the observed epochs. 

Furthermore, we also investigated whether the number of epochs 
impacted the model’s performance in terms of PTP. To accomplish this, 
we calculated the PTP for different subsets of the testing data by 
excluding crashes with a substantial number of epochs. This was 
accomplished by creating subsets of the test data to include crashes with 
fewer than 100 to 1000 epochs, with intervals of 100 epochs. The 
average values of PTP for these subsets of testing data are depicted in 
Fig. 7. 

PTP =

⃒
⃒
⃒
⃒
Predicted crash epoch − Actual crash epoch

Actual crash epoch

⃒
⃒
⃒
⃒ × 100% (12) 

It is important to note that, according to the definition of PTP, a 
smaller value is desired as it indicates that the predicted crash epoch is 
closer to the observed epoch. The results depicted in Fig. 7 indicate that 
when there is a substantial number of epochs (i.e., a large inter-crash 
duration), the value of PTP increases. This suggests that epoch-level 
prediction is more accurate when the duration between crashes is 
smaller. In other words, the prediction of crash epochs is more reliable 
for highway segments that experience crashes more frequently. For 
example, based on the figure, for crashes with inter-crash durations less 
than 100 h (approximately 4 days), the predicted crash epoch is within 
60 % of the actual epoch, compared to 74 % for durations exceeding 
1,000 h. 

7.2. Upper level: crashes in predicted time-intervals 

The accuracy of predicting crash occurrences at specific time in
tervals can be assessed from two perspectives: i) the accuracy of pre
dicting crashes (true positives), and ii) the accuracy of predicting ’no 
crashes’ (true negatives). Therefore, we relied on the metrics of Speci
ficity and Sensitivity to evaluate the model’s predictions. Specificity 
measures the model’s ability to correctly predict ’no crashes’ (true 
negatives) and is defined by Eq. (13). On the other hand, Sensitivity 
measures the model’s ability to correctly predict crashes (true positives) 
and is defined by Eq. (14). It quantifies the proportion of correctly 
identified positive cases in relation to the actual positive cases. It 
quantifies the proportion of correctly identified negative cases in rela
tion to the actual negative cases. 

The model’s prediction accuracy for crash and severity were evalu
ated using these metrics. The results are summarized in Table 6 and 
described as follows. 

Specificity =
True Negatives(TN)

True Negatives(TN) + False Positives(FP)
(13)  

Fig. 6. Variables likely to converge to their actual values with incremental increase in sample size.  

Fig. 7. Average PTP for different subsets of test samples.  

Table 6 
Values of Specificity and Sensitivity from the model predictions.  

Predictions TN TP FP FN Specificity Sensitivity 

Crash occurrence 539 63 173 169  0.76  0.27  

Crash severity 
F/I crashes 887 9 20 28  0.97  0.24 
PDO crashes 557 41 192 154  0.74  0.21  
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Sensitivity =
True Positives(TP)

True Positives(TP) + False Negatives(FN)
(14) 

The model predictions for the time intervals resulted in the following 
counts: True Negatives (TN) = 539, True Positives (TP) = 63, False 
Positives (FP) = 173, and False Negatives (FN) = 169. The Specificity is 
calculated to be 0.76, indicating a high value. This high value suggests a 
low rate of false positive predictions. Therefore, the model demonstrates 
reliability in predicting crashes. In other words, the likelihood of clas
sifying a time interval without a crash as a time interval experiencing a 
crash is low. On the other hand, the Sensitivity is calculated to be 0.27, 
indicating a low value. This low value suggests a high rate of false 
negatives, or in other words, the chances of classifying true crash in
tervals as having no crash is high. 

7.3. Lower level: crash severity for crashes in predicted time-intervals 

The Specificity and Sensitivity measures were also utilized to eval
uate the model’s ability to predict crash severities at each time interval. 
For F/I crashes, the following results were obtained: TN = 887, TP = 9, 
FP = 20, FN = 28, resulting in a Specificity of 0.97 and a Sensitivity of 
0.24. Similarly, for PDO crashes, the values obtained were TN = 557, TP 
= 41, FP = 192, and FN = 154, with a Specificity of 0.74 and a Sensi
tivity of 0.21. 

The results indicate that for both severity types, the Specificity values 
are high. This suggests that the model is capable of reliably predicting 
both F/I and PDO crashes with a lower chance of false positive pre
dictions. However, it should be noted that the model also exhibits low 
Sensitivity values, indicating that the model may not always accurately 
classify the severity types with a high degree of certainty, leading to a 
higher occurrence of false negative predictions. This outcome is the 
result of exceptionally higher prevalence of time-intervals without 
crashes (0 s) in comparison to those with crashes (1 s). Future research 
can improve upon the model by addressing this imbalance in the fre
quency of outcomes (e.g., see Morris and Yang, 2021). 

8. Conclusion 

This study developed a duration-based model to predict crash 
occurrence and severity using historical crash and traffic flow data from 
four interstates in Tennessee. The framework involved the reformulation 
of crash data to create forecasting epochs and time-intervals, which were 
used to calculate crash and severity likelihoods. The creation of fore
casting epochs significantly increased the data size and estimation 
complexity. Additionally, the adoption of a nested structure further 
contributed to the complexity of model estimation. To address the 
computational challenges, we suggested sampling the data at the epoch 
level to reduce estimation complexity. We aimed to find the optimal 
sampling strategy by considering the tradeoff between model perfor
mance and estimation complexity. After evaluating various samples, we 
determined that a 15 % sample drawn at the epoch level provided the 
best balance in reducing data size. Furthermore, we investigated the 
impact of sampling on the coefficients of predictor variables to identify 
those most sensitive to changes in sample sizes. Variables such as Time 
since crash, Time of day-Early afternoon, Late afternoon, Terrain-Flat, Land 
Use-Commercial, Number of lanes, and Volume were found to be more 
likely to be overestimated by smaller samples. Conversely, variables 
including Time of day-Early Morning, Late Morning, Lighting-Daytime and 
Dark lighted were more likely to be underestimated. 

When investigating the stability of coefficients for the predictors, it 
was found that Time since crash, Time of day-Early afternoon, Weather 
Condition-Clear, Lighting Condition-Daytime, Illumination-Illuminated, and 
Volume exhibited a higher degree of instability. Consistent estimation of 
these coefficients required larger sample sizes. On the other hand, co
efficients for Time of day-Early morning, Late morning, Late afternoon, 
Lighting-Dark lighted, Terrain-Flat, Land Use-Commercial and Rural, 

Number of lanes, and Speed demonstrated a tendency to converge to
wards true estimates with incremental increases in sample size. These 
findings are crucial for obtaining consistent and reliable estimates when 
utilizing samples for model estimation and clarify the challenges and 
considerations associated with implementing the duration-based model, 
including the impact of data sampling on estimation outcomes and the 
sensitivity of certain variables to changes in sample sizes. 

The proposed framework’s validation provided satisfactory results. 
The measure, Predicted Temporal Proximity (PTP), suggests that the 
model performs better when implemented on segments where crashes 
are more frequent. For context, the model, trained on a 15 % epoch-level 
sample, was able to predict crashes within 60 % (i.e., average PTP = 60 
%) of the actual epoch for crashes occurring within 100 epochs, or 
approximately 4 days of each other. On the contrary, the average value 
of PTP was 74 % for crashes occurring within 1,000 epochs of each 
other. This finding also sheds light on the practical implications of the 
model, as it is often impractical to predict crashes too far into the future 
due to potential changes in traffic, weather, and driving conditions. 
Similarly, the estimated model displayed a satisfactory value of Speci
ficity, indicating a low rate of false positives. In other words, the model 
is less likely to falsely predict time intervals without crashes as having 
experienced crashes. This is particularly important as a reasonable de
gree of certainty is desired to ensure effective allocation of limited safety 
resources to critical segments. The value of Sensitivity was compara
tively smaller, implying a higher rate of false negatives or missed de
tections. However, it should also be noted that the frequency of time 
intervals without crashes is several multiples larger than the frequency 
of time intervals with crashes (preponderance of 0 s compared to 1 s). 
Therefore, the low value of Sensitivity is expected in this case. 

9. Study limitations and future research 

Future research offers opportunities for notable improvements to the 
proposed model. Firstly, it would be valuable to investigate alternative 
nesting structures to determine if they provide a better fit, especially 
considering that the nesting parameter suggests the presence of alter
native nests. More complex nesting structures based on distinct cate
gories such as time of day, weather conditions, and other relevant 
factors could be explored. Additionally, in this study, the upper-level is 
assumed to be a MNL model without considering the effect of time. 
Future research should consider addressing this when investigating 
alternative structures. Secondly, the model estimates could be enhanced 
by incorporating random effects. Since the reformulated data, after the 
creation of forecasting epochs, takes the form of panel data with 
repeated observations for crashes and road segments, accounting for 
segment and crash-specific heterogeneity could lead to more accurate 
model estimates. Furthermore, data balancing techniques such as Syn
thetic Minority Over-sampling Technique can be used to balance the 
frequency of outcomes and study its impact on model estimates. Finally, 
alternative estimation techniques leveraging parallel and distributed 
computing can be implemented to reduce estimation time while still 
retaining information from complete training dataset. Addressing these 
limitations would contribute to a more comprehensive understanding of 
crash prediction and severity estimation and improve the accuracy and 
applicability of the model in real-world scenarios. 

CRediT authorship contribution statement 

Diwas Thapa: Conceptualization, Methodology, Formal analysis, 
Software, Validation, Writing – original draft. Sabyasachee Mishra: 
Conceptualization, Supervision, Project administration. Nagendra R. 
Velaga: Conceptualization, Writing – review & editing. Gopal R. Patil: 
Conceptualization, Writing – review & editing. 

D. Thapa et al.                                                                                                                                                                                                                                  



Accident Analysis and Prevention 195 (2024) 107407

12

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The data that has been used is confidential. 

Acknowledgements 

This research was partially supported by Fulbright Fellowship to 
second author at Indian Institute of Technology (IIT) Bombay, National 
Science Foundation award # 2222699 and the Center for Transportation 
Innovations in Education and Research (C-TIER) at the University of 
Memphis. Any findings and opinions expressed in this paper are those of 
the authors and do not necessarily reflect the view of the aforemen
tioned agencies. 

Appendix 

Stepwise process for the application of the crash prediction 
framework.  

Step 1: Collect roadway inventory [Roadway characteristics]  
Step 1.1: Select study area and road segments.  
Step 1.2: Segment roadways based on attributes, e.g., speed limit, 

number of lanes, highway terrain, and travel direction.  
Step 1.3: Extract highway characteristics for all segments. 

Step 2: Extract and merge historical crash data [Roadway char
acteristics þ Crash data]  

Step 2.1: Select crashes for the study period on the road segments being 
studied.  

Step 2.2: Extract available crash attributes, e.g., date and time, GPS 
coordinates, direction of travel, injury severity with two 
levels.  

Step 2.3: Merge crash attributes with highway characteristics obtained 
from Step 1.3 based on GPS proximity and travel direction.  

Step 3: Discretization and creation of forecasting epochs  
Step 3.1: Select temporal resolution for discretization: Values of e and 

dt.  
Step 3.2: Discretize time interval between crashes in the same segment 

(data obtained from Step 2.3) and create forecasting epochs.  

Step 4: Extract and merge RDS data [Roadway characteristics þ
Crash data þ RDS data]  

Step 4.1: Identify RDS stations on the roadway segments.  
Step 4.2: Extract data from RDS stations, e.g., GPS coordinates, travel 

direction, traffic flow data at dt intervals along with date and 
time.  

Step 4.3: Merge reformulated data obtained after creation of forecasting 
epochs in Step 3.2 with RDS data based on GPS coordinates, 
date and time, and travel direction.  

Step 5: Model estimation  
Step 5: Estimate crash probabilities as a two-level nested logit model 

using data obtained from Step 4.3. 
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