Accident Analysis and Prevention 195 (2024) 107407

ACCIDENT
ANALYSIS
&

Contents lists available at ScienceDirect

PREVENTION

Accident Analysis and Prevention

FI. SEVIER

journal homepage: www.elsevier.com/locate/aap

Check for

Advancing proactive crash prediction: A discretized duration approach for [w&s
predicting crashes and severity

Diwas Thapa ?, Sabyasachee Mishra® ", Nagendra R. Velaga ", Gopal R. Patil”

2 Department of Civil Engineering, University of Memphis, Memphis, TN 38152, United States
b Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

ARTICLE INFO ABSTRACT

Keywords:

Crash likelihood

Crash severity likelihood

Survival model

Choice model

Proactive safety performance function
Predictor stability

Real time prediction validation

Driven by advancements in data-driven methods, recent developments in proactive crash prediction models have
primarily focused on implementing machine learning and artificial intelligence. However, from a causal
perspective, statistical models are preferred for their ability to estimate effect sizes using variable coefficients and
elasticity effects. Most statistical framework-based crash prediction models adopt a case-control approach,
matching crashes to non-crash events. However, accurately defining the crash-to-non-crash ratio and incorpo-
rating crash severities pose challenges. Few studies have ventured beyond the case-control approach to develop
proactive crash prediction models, such as the duration-based framework. This study extends the duration-based
modeling framework to create a novel framework for predicting crashes and their severity. Addressing the
increased computational complexity resulting from incorporating crash severities, we explore a tradeoff between
model performance and estimation time. Results indicate that a 15 % sample drawn at the epoch level achieves a
balanced approach, reducing data size while maintaining reasonable predictive accuracy. Furthermore, stability
analysis of predictor variables across different samples reveals that variables such as Time of day (Early after-
noon), Weather condition (Clear), Lighting condition (Daytime), Illumination (Illuminated), and Volume require larger
samples for more accurate coefficient estimation. Conversely, Daytime (Early morning, Late morning, Late after-
noon), Lighting condition (Dark lighted), Terrain (Flat), Land use (Commercial, Rural), Number of lanes, and Speed
converge towards true estimates with small incremental increases in sample size. The validation reveals that the
model performs better in highway segments experiencing more frequent crashes (segments where the duration
between crashes is less than 100 h, or approximately 4 days).

1. Introduction real-time crash prediction models that utilize historical crash data and

static covariates, such as roadway condition and roadway geometry,

Crash prediction models can be categorized into two main types:
diagnostic crash prediction models, also known as reactive crash pre-
diction models, and proactive or real-time crash prediction models.
These two types of prediction models differ in their application and the
variables they incorporate. Reactive crash prediction models rely on
historical crash data, as well as static covariates (variables that do not
change over time) and dynamic covariates (variables that do change
over time), aggregated over a specific period. Examples of such dynamic
covariates include Average Annual Daily Traffic and average speed.
These models are valuable for developing safety performance functions,
which help identify the precursors of crashes and evaluate the impact of
safety interventions and policies on highway safety (Yasmin et al.,
2018). On the other hand, proactive crash prediction models refer to
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along with disaggregated dynamic covariates that vary with time. These
dynamic covariates can include traffic volume, speed, and weather
conditions collected in near real-time. By incorporating dynamic pre-
dictors, these models can account for changing traffic and weather
conditions, allowing for the forecasting of the likelihood of future
crashes in real time. This, in turn, enables the implementation of crash
mitigation strategies.

Proactive crash prediction models have garnered significant atten-
tion from researchers in recent years due to their potential to forecast
and prevent future crashes. The availability of granular traffic flow data,
such as near real-time traffic flow data collected at small time intervals,
from Intelligent Transportation System infrastructure, coupled with the
computational performance of modern computers, has played a crucial
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role in increasing the popularity of these models. Modern data-driven
methods, such as Machine Learning (ML), have gained popularity as
they replace traditional statistical models which are often relatively
more difficult to fit (Mannering et al., 2020). Data-driven methods have
demonstrated superior data fit and predictive capabilities as they are not
constrained by assumptions inherent to traditional econometric frame-
works, such as statistical distribution and variable correlation. However,
data-driven methods have their own limitations too. They struggle with
problems related to model transferability, generalization, and the
inability to quantify variable effects. In this context, statistical econo-
metric frameworks, through variable coefficients and elasticities, can
quantify variable effects and provide model transferability and gener-
alization. In these respects, statistical models can be considered superior
to data-driven methods.

Due to the benefits offered by statistical econometric frameworks,
there are ongoing efforts to enhance and refine traditional statistical
approaches to address their limitations and apply them to proactive
modeling. For instance, researchers have extended standard economet-
ric frameworks by incorporating flexible structures to develop mixed
and generalized models. These models can account for unobserved
heterogeneity and hierarchical structures for variable correlations and
dependencies. More recently, researchers developed and implemented a
new crash prediction framework (Thapa et al., 2022). In their study,
researchers developed a duration-based crash prediction model that
combines elements of the survival model and Multinomial Logit model
(MNL). In this modeling approach, the time duration between crashes is
divided into 1-hour epochs, which are further subdivided into 4 15-min-
ute time intervals. Each epoch between two consecutive crashes is
treated as a separate observation, with the time intervals serving as
choice alternatives. By adopting this approach, the framework can
forecast the likelihood of future crashes by considering two types of
covariates. Firstly, static covariates associated with crashes, such as
highway geometry and environmental conditions, are repeated over
each epoch. Secondly, dynamic covariates, such as traffic flow and
speed, change across epochs and within the 15-minute time intervals.
The authors of the study discovered that the duration-based model could
generate reasonably accurate estimates even when dealing with small
sample sizes.

The current study builds upon the duration-based model by incor-
porating crash severities. While prediction of crash occurrence has
already been addressed in previous research, forecasting likelihood of
different crash severities is crucial from multiple perspectives, including
safety, economic, and planning considerations. The costs associated
with crashes vary significantly depending on their severity. For instance,
the comprehensive unit cost of a Property Damage Only (PDO) crash in
the US was estimated to be around $12,000 in 2016, whereas a fatal
crash was estimated to exceed $11 million (Harmon et al., 2018).
Additionally, crash severities are linked to road user costs. Studies have
indicated that more severe crashes require more time to clear, resulting
in higher road user costs (Golob et al., 1987; Lee and Fazio, 2005).
Therefore, prioritizing the identification and addressing of factors
contributing to more severe crashes is crucial from both safety and
economic perspectives. Furthermore, from a planning standpoint, the
ability to forecast crash severities provides transportation agencies with
valuable insights. Agencies are often constrained with limited resources
and personnel, making it necessary to identify critical segments in
advance and proactively address adverse traffic flow conditions. By
forecasting crash severities, agencies can prioritize the allocation and
deployment of resources and personnel to prevent severe crashes and
mitigate their impacts, contributing to more efficient and effective
traffic operations and planning.

2. Literature review

Research in crash prediction has focused on forecasting both crash
occurrences and severities. In the following sections, we provide a
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literature review of prediction models based on the specific outcomes
they forecast. While we will discuss both proactive and reactive crash
prediction models, this review will place greater emphasis on proactive
crash prediction models, as they align with the scope of our study.

2.1. Crash prediction models

The first group of studies focuses on real-time forecasting of future
crashes, employing both data-driven and statistical methods. Re-
searchers have utilized various approaches to develop these models.
Data-driven methods have gained popularity in the literature, with
several notable examples including Support Vector Machines (Sun and
Sun, 2016; Yu and Abdel-Aty, 2013), decision trees and random forests
(Beshah et al., 2011; Pham et al., 2010), neural networks (Li et al.,
2020), and Bayesian statistics (Hossain and Muromachi, 2012; Zheng
and Sayed, 2020). These data-driven methods have proven effective in
capturing complex relationships and patterns in crash data, allowing for
real-time forecasting of future crash occurrences.

On the statistical side, the case-control design approach has been the
most popular method for developing proactive crash prediction models
(Hossain et al., 2019). In this approach, crashes are matched with non-
crash events based on specific variables such as location and time of the
crash (Abdel-Aty et al., 2004). The resulting dataset, with binary out-
comes indicating crash or non-crash events, is well-suited for binary
logistic regression. However, researchers have also explored the use of
data-driven methods and Bayesian statistics to enhance the modeling
capabilities of this approach (Hossain et al., 2019). In addition to the
traditional case-control approach, alternative methodologies have been
proposed. For example, (Yasmin et al., 2018) developed a MNL that
considered 5-minute intervals for the next 30 days as choice alternatives,
representing the occurrence of crashes in future time intervals. Given the
substantial number of choice alternatives, the authors employed sam-
pling techniques (selecting 29 randomly sampled time intervals and 1
interval with a crash) from the 30-day period.

More recently, researchers implemented a real-time crash prediction
model by combining survival model with the MNL model. Survival
models or duration models have been employed to model traffic crashes
using static data (e.g., (Jovanis and Chang, 1989; Thapa and Mishra,
2021), however, they are incapable of incorporating time-varying
covariates. The researchers developed a new method to restructure the
crash data by creating forecasting epochs and time-intervals that can be
associated with the dynamic covariates (Thapa et al., 2022).

2.2. Crash severity prediction models

The second group of studies focuses on predicting crash severity.
Data-driven methods have been used more often to forecast crash se-
verities, with various approaches utilized in different studies. Deep
learning methods have been applied in crash severity prediction (Rahim
and Hassan, 2021), while Support Vector Machines have been utilized in
studies by (Chen et al., 2016; Iranitalab and Khattak, 2017). Random
forests have also been used as a predictive technique for crash severity
forecasting (Iranitalab and Khattak, 2017). Other methods such as
neural networks and decision trees have been explored in some studies
(Lee et al., 2019; Ospina-Mateus et al., 2021; Zhang et al., 2020). In
recent years, a significant focus has been placed on comparing the
performance of these algorithms in crash severity prediction (Santos
et al., 2022). It is important to note that most prediction models within
this group are reactive in nature, aiming to predict crash severity based
on historical data and established patterns.

The most common statistical approach for developing crash severity
prediction models is applying discrete choice models, specifically
multinomial and ordered response logit/probit models. However, more
advanced statistical models such as random parameter mixed models
have gained popularity among researchers in recent years, as they offer
solutions to the fixed parameter restriction imposed by choice models.
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Uncorrelated random parameter models (Fountas and Anastasopoulos,
2017) correlated random parameter models (Ahmed et al., 2021;
Fountas and Anastasopoulos, 2017), and generalized ordered response
models (Osman et al., 2019; Osman et al., 2018a,b; Yasmin et al., 2014)
are some of the examples of these advanced statistical models. These
models enable researchers to account for parameter variations across
different observations, providing more flexibility in capturing the
complexity of crash severity prediction. Another approach for crash
severity prediction involves the use of sequential models that can ac-
count for the dependency between various levels of crash severities.
Studies have explored the application of sequential models in crash
severity prediction, allowing for the consideration of dependencies be-
tween crash severities (Dissanayake and Lu, 2002; Jung et al., 2010).

With the advent of advanced models, researchers have conducted
studies to examine and compare their predictive performance. For
instance, Yasmin and Eluru, 2013) compared different generalized and
mixed models within the frameworks of ordered and unordered choice
modeling. Their findings indicated that mixed generalized ordered logit
and mixed MNL models showed promise in predicting crash injury
severity. In a study by (J. Zhang et al., 2018), various statistical and
machine learning methods were compared, and it was found that ma-
chine learning algorithms exhibited better performance. This improve-
ment could be attributed to factors such as the linear utility function and
parametric assumptions regarding the error term. (Cerwick et al., 2014)
conducted a comparison between mixed MNL and latent class MNL
models. Their analysis revealed that the former model provided better
average predictions across different severity levels.

2.3. Models predicting crash frequency and severity

The final group of studies focuses on forecasting both crashes and
their severity. However, it is important to note that most of these models
are primarily designed to forecast crash frequencies rather than the
presence or absence of crashes.

Multivariate count data models are commonly employed in these
studies, as seen in the works of (Jonathan et al., 2016; Ma and Kockel-
man, 2006; Park and Lord, 2007). Additionally, random parameter
count data models have been used to account for spatial and temporal
heterogeneity, as demonstrated by (Barua et al., 2016; Cheng et al.,
2017; Dong et al., 2014). Other studies have implemented joint models
with two components: (i) a crash prediction component utilizing count
data models, and (ii) a crash severity component employing discrete
choice models to predict crash counts by severity. This approach has
been employed by (Afghari et al., 2020; Pei et al., 2011; Yasmin and
Eluru, 2018).

The sequential logit model has also been used to predict the likeli-
hood and severity of crashes. (Xu et al., 2013) developed a model using
sequential binary logit models, where crashes were modeled in three
stages: Stage 1 (crash vs. non-crash), Stage 2 (property damage only vs.
higher severities), and Stage 3 (non-capacitating vs. higher severities).
However, a significant drawback of the sequential logit model in the
context of proactive crash prediction is that the estimation of multiple
models can be computationally demanding and time-consuming, mak-
ing it impractical for large datasets.

3. Study contributions

Only a limited number of statistical approaches have been developed
to date for proactive crash prediction, apart from the commonly used
case-control approach. This study introduces a duration-based predic-
tion model for both crash occurrence and crash severity. The model
framework involves dividing the time duration between historical
crashes into distinct time periods to create forecasting epochs and time
intervals. This allows the model to incorporate dynamic covariates and
ascertain the probability of crashes occurring in future epochs and time
intervals (Thapa et al., 2022). While this modeling approach has
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previously been demonstrated for crash prediction, the current study
extends the framework to incorporate crash severities. The major con-
tributions of this paper can be summarized as follows.

1. We expand upon the duration-based proactive crash prediction
model by introducing a novel modeling approach that can forecast both
crash occurrence and severity. Our model framework is one of handful
statistical approaches for proactive crash prediction that does not rely on
the case-control approach (Thapa et al., 2022). Unlike the original
model, which solely predicts the likelihood of crashes for discrete future
time intervals, our proposed model can also predict the corresponding
crash severities.

Furthermore, the proposed model is implemented using a larger
dataset. Specifically, the model is applied to crash data collected from
interstates in two cities in Tennessee, thereby achieving a broader
geographical coverage in comparison to the previous study that focused
on a single city. This expanded geographical scope enhances the
generalizability of the crash predictors, as it ensures adequate repre-
sentation of diverse roadway conditions and traffic patterns across the
study areas.

2. The proposed modeling framework demands discretizing the time
duration between crashes to create forecasting epochs (more on this in
this in the next section). Consequently, the size of the initial crash data
expands significantly. Prior studies have indicated that appropriate
sampling techniques can address estimation complexities arising from
large data size, thereby allowing for parameter estimation with a
reasonable degree of accuracy (Thapa et al., 2022). However, the
incorporation of crash severities adds an additional layer of complexity
to the model estimation process.

Therefore, this study aims to investigate the influence of sample size
on variable coefficients and identify variables that are sensitive to
changes in sample size. Understanding the variables that are particularly
impacted by sample size variations is crucial for the implementation of
the model. Additionally, this information will play a pivotal role in
assessing the reliability of the model and guiding future data collection
efforts.

4. Methodology

In this section, we present the methodology under three distinct
subsections: the duration-based prediction framework, the nested logit
model, and the estimation of the nested logit model. First, we describe
the duration-based prediction framework and the process of creating
forecasting epochs. This section is followed by the introduction of the
two-level nested logit model and its relationship with the duration-based
crash prediction framework. Finally, we discuss the estimation processes
used in this study to estimate the parameters of the models.

4.1. Duration based prediction framework

In the duration-based crash prediction model, the occurrence of a
crash at any time interval dt can be modeled using the MNL framework
with alternatives, n and the hazard rate, h given by U, =—h(n—1)dt
(Thapa et al., 2022). By utilizing this relationship, the latent propensity
function for each time interval can be expressed as a function of static
and dynamic covariates (time-varying factors). The application of this
concept is illustrated in the following example.

Example:

Consider the duration between crashes in a highway segment,
denoted as s, which is discretized into epochs, denoted as e, each with
time intervals, denoted as i, and each interval has a duration of dt. Using
these indices, we can examine historical crash data for a roadway
segment, s = 1, where three consecutive crashes, denoted as A1, A2, and
A3, were observed with durations of 2.5 h and 0.5 h apart (see Table 1
(a)). Additionally, available are dynamic covariates, speed and volume
for the segment and the crash year at a temporal resolution of dt, as
shown in Table 1(b). These covariates, as depicted, exhibit time-varying
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Table 1a
Historical crash data with static covariates.
s Crash  Date of crash ~ Time of crash  Severity =~ Terrain
(Flat = 1, Rolling = 0)
1 Al 1/1/2023 00:00 Fatal 1
1 A2 1/1/2023 02:30 PDO 1
1 A3 1/1/2023 03:00 Injury 1
Table 1b
Dynamic covariates averaged for 15-min intervals: Vehicle speed (in mph).
Date and 1/1/2023 1/1/2023 1/1/2023 1/1/2023
time 00:00 00:15 00:30 01:00
Speed 49 51 50 49
Date and 1/1/2023 1/1/2023 1/1/2023 1/1/2023
time 01:15 01:30 01:45 02:00
Speed 47 50 48 49
Date and 1/1/2023 1/1/2023 1/1/2023 1/1/2023
time 02:15 02:30 02:45 03:00
Speed 51 50 50 51
Date and 1/1/2023 1/1/2023 1/1/2023 1/1/2023
time 03:15 03:30 03:45 04:00
Speed 49 48 47 48
characteristics.

For discretization, let us choose e = 1 h and dt = 0.25 h. Therefore,
the number of time intervals in an epoch, denoted by C = 4, each
identified by the index i = (1, 2, 3, 4). After discretization, the fore-
casting epochs are created as shown in Table 1(c). Each epoch consists of
four 15-minute intervals, and an additional C + 1th column called “Next
epoch” is added, indicating whether the next crash occurred in the cur-
rent or future epoch (0 if in the current epoch, 1 if in future epochs).
Based on the table, we can express the time elapsed since the previous
crash using the equation t,; = (e—1)Cdt + (i—1)dt. For example, the
time between crashes Al and A2 can be determined as t3; =
(3—1)1+(2—1)0.25 = 2.25 hours. As shown in the table, the dynamic
covariate Speed varies across different time periods. The static covariate
Terrain, in this example, does not repeat across the time intervals of a
crash. However, to account for the effect of time, the variable is multi-
plied by t, ;. For instance, the Terrain variable for the first time-interval is
0.25 multiplied by 1, and for the second time interval, it is 0.5 multiplied
by 1, and so on. Therefore, all variables vary across epochs and time-
intervals. The final data obtained after the creation of forecasting
epochs takes the form of panel data with repeated observations for each
crash corresponding to the forecasting epochs.

A few observations can be made from Table 1(c), particularly
regarding the increase in data size after the creation of forecasting
epochs. The final data size is influenced by three factors. The first factor
is the size of the original crash data. The more crashes are observed, the
larger the data size will be after creating forecasting epochs. The second
factor is the choice of discretization. When a smaller time discretization
is chosen, more detailed information regarding traffic flow can be ob-
tained. However, this also leads to a considerable increase in data size.
The third factor is the distribution of inter-crash duration. If the inter-
crash durations are longer, more forecasting epochs will be created,
resulting in a larger data size. Considering these factors, implementing a

Table 1c
Final crash data after creating forecasting epochs.
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model for a wide geographical area with small discretization can
become computationally demanding. Even a slight reduction in time
discretization significantly increases computational complexity. To
reduce computational complexity, it is suggested to use a smaller sample
of the expanded data drawn at the epoch level for model training (Thapa
et al., 2022).

Now, based on the example provided, the latent propensity function
for crash severities, k observed at a particular time interval, i can be
represented as a function of time since crash, static, and dynamic
covariates using the utility function, Uy; in Eq. (1).

Ui = Bilei +p' Xe (@)

In Eq. (1), the coefficient g, represents the impact of duration on
crash severity. The vector of covariates, X.;, captures the effect of
covariates, with its values varying across epochs and time intervals. The
corresponding vector of coefficients is denoted by p. Similarly, if we
assume that the latent propensity function for crash occurrences at any
time interval, i consist of only an intercept term, the utility equations for
each alternative can be formulated using Eq. (2).

Vei=Fi (2)

It is worth noting here that as shown in Table 1(c), occurrence of a
crash at a specific time interval is dependent on crashes not occurring on
previous time intervals. This conditional probability of observing a crash
in a particular time interval within an epoch can be expressed using a
random variable T; as follows.

exp ( Ve,,-)
Zf:l exp (Ve.(') + exp (vx.e,chl)

The resulting unconditional probability of a crash at any time in-
terval can be obtained by multiplying the conditional probability in Eq.
(3) with the cumulative product of all probabilities for the C + 1th in-
tervals preceding the epoch e as represented by Eq. (4).

P(T, = 14|T, > (e — 1)Cdt) = 3)

P(T, =t.;)
B ep(Ve)
Zf:lexp(ver) +KXP(Ve.C+1)
exp (Ve*.CJrl )

o He—l @

=15 exp (Vo) + exp(Ver i)

4.2. Nested logit model

As discussed prior, the crash outcomes in the example are charac-
terized by: (i) occurrence of crashes or the time interval when a crash
happens, and (ii) the severity of the crash that happened at a certain
interval. These outcomes can be effectively modeled using a two-level
nested logit model, as depicted in Fig. 1. In this model, the time in-
tervals, i and an additional alternative (C + 1) serve as nodes repre-
senting the upper-level choice alternatives, while the crash severities
correspond to the lower-level alternatives. It is important to note that
the crash severities at each time interval are conditional upon the
occurrence of a crash within that interval. For simplicity, assume the
severity levels are comprised of two categories, denoted by k = (F/,
PDO), where F/I represents Fatal or Injury crashes, and PDO represents

s ID Time to crash (hr) Epoch 15-min intervals Next epoch Speed (mph) Severity Terrain(Flat=1, Rolling=0)
2 3 4 1 2 3 4 1 2 3 4
1 Al 2.5 1 0 0 0 0 1 49 51 50 49 Fatal 0.25 0.5 0.75 1
1 Al 2.5 2 0 0 0 0 1 47 50 48 49 Fatal 1.25 1.50 1.75 2
1 Al 2.5 3 0 1 0 0 0 51 50 50 51 Fatal 2.25 2.50 2.75 3
1 A2 0.5 1 0 1 0 0 0 49 48 47 48 PDO 0.25 0.5 0.75 1
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Upper level
o Crash occurrence

Lower level
Crash severity

Fig. 1. Two-level nested structure of crash occurrence and severity.

Property Damage Only crashes. The conditional choice probability of
the lower-level alternatives, k given the upper-level alternatives, i can be
expressed as follows.

= P(k|i)*P(i) ©)
exp(Uk i / 0; )

P =5 explvic o) ©

Pl = exp(Ve; + T x 6;) o

E[exp(ve,[ + F[ X 9:) + CXP(Ve,Nm epuch)

= log {;exp(U,‘J /6:) } ®

The parameter 6; in Egs. (6), (7), and (8) represents the logsum
parameter or nesting coefficient, which captures the underlying corre-
lations for alternatives within a nest. I'; in Eq. (8) is the inclusive value
for nodes in the upper level. However, the C + 1th alternative, Next
epoch, lacks the logsum parameter due to its degenerate branch.
Consequently, the probability of this alternative can be determined
using the following equation.

exp (VNer! epuch)
Siexp(Vi + T % 0;) + exp(Vest epoch)

P(Next epoch) = )

The probability of F/I crashes in Eq. (6) can be obtained by
substituting the value of Uy; from Eq. (1) assuming PDO crashes as the
reference case. Similarly, Eq. (7) gives the probability of upper-level
alternatives, which is equivalent to Eq. (3) and can be rewritten using
Eq. (10).

exp(Voi + T x 6))
Z,‘exp(ve,[ + F[ X 9:) + exp(VE.Next epoch)

e—1 K.XP(V(/ C+])
N - 10
LS 7T 2 0) + e (Voms ) a0

Assuming each row in the crash data after creation of forecasting
epochs is represented using the superscript n, the log-likelihood function
for the two-level nested logit model can be expressed as the sum of two
components using Eq. (11). The first and second components of the
equation are associated with the lower and upper-level alternatives,
respectively (Brownstone and Small, 1989). The parameters in the two-
level nested logit model is estimated by maximizing this equation.

L= ZlogP"(k"H”) + Zl(}gP”(i”) an

P(i) =

4.3. 4.3. Estimation of the nested logit model

There are several methods available for estimating parameters in
nested logit models, with sequential estimation and simultaneous esti-
mation being the most cited approaches. In sequential estimation, the
first component of the log-likelihood function (Eq. (11)) is maximized to

estimate the parameters in the lower-level. This step provides estimates
of the coefficients scaled by their respective nesting parameter ¢;. To
simplify the process, the nesting parameters can be assumed to be
constant for all nodes, represented as §; = 6. In the next step, inclusive
values are calculated for each node using the scaled estimates obtained
from the lower level. These inclusive values are then used in the second
component of the log-likelihood function to maximize and obtain the
values of 0 and intercepts p; for the upper level. It is important to note
that while sequential estimation allows for the maximization and esti-
mation of parameters in a stepwise manner, the estimates obtained are
not consistent because the scaled parameters from the lower level are
substituted to find parameters in the upper level. An alternative
approach is simultaneous estimation, where parameters in both levels
are estimated simultaneously using a non-linear maximization algo-
rithm. This method is more rigorous compared to sequential estimation,
and the estimates obtained are consistent.

5. Data
5.1. Data source and preparation

The estimation and validation of the two-level nested logit model
were carried out using data gathered from two main sources. First,
historical crash data for the year 2019 was obtained from the Enhanced
Tennessee Roadway Information Management System (ETRIMS). This
dataset provided information on various crash characteristics such as the
date, time, severity, and coordinates of the crash location, as well as
details on static covariates such as highway geometry, weather condi-
tions, lighting conditions, land use, and terrain characteristics. The dy-
namic covariates for the study, namely traffic flow and speed, were
obtained from the Radar Data System (RDS) stations located along the
highway segments from which the historical crash data was collected.
Since our study aimed to implement a practical time discretization with
15-minute intervals, the RDS data was collected specifically for these 15-
minute intervals. To match the RDS data with the corresponding
crashes, a geospatial mapping approach was employed, aligning the RDS
stations with their respective highway segments.

It is important to note that RDS coverage in Tennessee is limited to its
major cities, including Memphis, Nashville, Chattanooga, and Knoxville.
Therefore, for the purposes of this study, the segments of interstates
within the city limits of Memphis and Chattanooga were considered.
Specifically, the selected segments included I-40 and I-55 in Memphis,
and I-24 and I-75 in Chattanooga.

For this study, the interstates were divided into segments based on
four criteria including the direction of traffic, number of lanes, posted
speed limit, and terrain type. The segmentation details of the interstates
are provided in Table 2. The table includes information on the total
number of segments, their lengths in both directions, and the frequency
of crashes observed within each segment. In total, the dataset consisted
of 2,375 crashes. Table 3 presents a breakdown of the crash frequencies
based on various categorical variables. Additionally, the table includes
descriptive statistics for the continuous variables in the dataset. The
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Table 2
Summary of interstate segmentation.
Interstate  City Number of Length Number of
segments (mi) crashes
1-40 Memphis 146 21.51 905
I-55 94 12.28 268
1-24 Chattanooga 48 14.71 675
1-75 70 13.29 527
Total 358 61.79 2,375

table provides a comprehensive overview of the data, highlighting the
distribution of crashes across different segments and variable categories.

In this study, the 15-minute traffic volumes were scaled to a range
between 0 (minimum value) and 1 (maximum value). This scaling
process was applied to avoid the potential influence of larger volumes on
the model training process. The duration between crashes exhibited a
right-skewed distribution, as indicated by the mean of 516.67 h (about 3
weeks) being greater than the median of 230.46 h (about 1 and a half
weeks). This suggests that there is a longer average time period between
crashes, with occasional instances of shorter durations. A visual repre-
sentation of the distribution of inter-crash duration for the four in-
terstates is presented by a density plot in Fig. 2. The density plot
provides a graphical representation of the distribution, highlighting the

Table 3
Descriptive statistics of crash characteristics.
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shape and spread of the duration between crashes for each interstate.

From the plot, it can be observed that I-40 has the highest peak,
indicating a higher concentration of crashes compared to the other in-
terstates. Furthermore, the density plot reveals that the distribution of
crashes on I-40 is less spread out compared to the other interstates. This
means that the duration between crashes on I-40 is shorter, indicating a
higher frequency of crashes occurring within a shorter period. In terms
of increasing spread, the interstates can be ranked as follows: 1-40, I-55,
I-24, and I-75. This implies that the duration between crashes is longer
and more spread out on I-75 compared to the other interstates.

5.2. Data sampling

In this study, the models were calibrated using training data and
evaluated on testing data. The process of creating training and testing
data involved splitting the historical crash data in a 9:1 ratio, where 90
% of the data was allocated for training and the remaining 10 % for
testing. To create forecasting epochs, both the training and testing
crashes were expanded. The training data was further sampled at 5 %
increments up to 25 % to investigate whether any sample size below 25
% would provide accurate parameter estimates. Thus, the samples used
for parameter estimation were 5 %, 10 %, 15 %, and 25 % of the training
data. This sampling approach is called epoch level sampling (Thapa

Categorical variables Frequency of crashes

Relative abundance

Time of day

Early morning (6 a.m. to 9 a.m.) 447 18.82 %

Late morning (9 a.m. to 12p.m.) 262 11.03 %

Early afternoon (12p.m. to 3p.m.) 351 14.78 %

Late afternoon (3p.m. to 6p.m.) 586 24.67 %

Evening (6p.m. to 12 a.m.) 392 16.51 %

Night (12 a.m. to 6 a.m.) 337 14.19 %

Weather condition

Clear 1,733 72.97 %

Others (Cloudy, rain, fog, or snow) 642 27.03 %

Lighting condition

Daylight 1,612 67.87 %

Dark lighted 463 19.49 %

Dark, not lighted 300 12.63 %

Illumination type

Iluminated 1,780 74.95 %

Not illuminated 595 25.05 %

Terrain

Flat 715 30.11 %

Rolling 1,660 69.89 %

Land use

Commercial 1,187 49.98 %

Rural 765 32.21 %

Mixed 423 17.81 %

Crash severities

Fatal or injury 451 18.99 %

Property Damage Only 1,924 81.01 %

Continuous variables Min Q1 Median Q3 Max Mean SD
Traffic flow characteristics

Speed (mph) 1.00 59.06 63.47 66.96 91.00 61.41 10.46
Volume (scaled between 0-minimum, and 1-maximum) 0.0002 0.12 0.28 0.46 1.00 0.31 0.22
Highway geometry

Number of lanes (both directions) 3 6 8 8 12 7.18 1.78
Inter-crash duration (hours) 0.00 68.05 230.46 627.17 7683.03 516.67 783.18
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Fig. 2. Distribution of inter-crash duration for the interstates.

et al., 2022). The sampled training data, along with the complete
training data, were used to estimate the parameters for the models. For
comparison purposes, the parameter estimates obtained from the com-
plete training data (100 % training data) were considered as the “true”
estimates.

To evaluate the performance of the trained models, the predicted log-
likelihood values were calculated on the training data. In this context,
predicted log-likelihood provided a basis for comparing how well the
models captured the characteristics of the training data.

6. Results

All model computations, including estimation and validation, in this
study were conducted using R version 4.2.3 on a computer equipped
with Intel Core i7-11,700 K processor and 16 GB of memory. We initially
estimated the model parameters using the complete training data,
employing both simultaneous and sequential estimation techniques. The
objective of estimating with the complete training data was to obtain
“true” parameter estimates and compare the results obtained from
different estimation techniques. The estimation results are presented in
Table 4. In Table 4, the first column displays the variable groups in the
model, along with the corresponding variable categories considered as
the base in the models. The second column lists the variables included in
the model. The estimation results are then presented, showing the
parameter estimates and their respective t-statistics for both simulta-
neous and sequential estimation. The parameter estimates obtained
from both estimation methods are comparable, indicating consistency in
the results. Additionally, the average values of predicted log-likelihood
are also similar between the two methods. When considering estimation
complexity, which refers to the time taken for the model to converge
from a null model, it was found that sequential estimation offers a
considerable advantage. Specifically, using simultaneous estimation, the
model took 51.09 h (about 2 days) to converge, which was approxi-
mately six times the time taken by sequential estimation, which was
8.63 h. Therefore, sequential estimation may provide consistent esti-
mates with a significant reduction in computational complexity.

The parameters obtained from simultaneous estimation, as shown in
the table, can be utilized to express the propensity function for F/I
crashes in any time interval using the following utility equation.

Upjrei = Vi—646x t;+ 1.96x Earlymorning+ 3.50 x
Late morning--- — 1.27 x Volume

For example, the utility equation for the first time-interval can be
expressed as follows.

Urjre1 = —871—-6.46x t.1+ 1.96 x Early morning+ 3.50 x
Late morning--- — 1.27 x Volume

The analysis reveals interesting findings regarding the factors influ-
encing F/I crashes. The duration dynamics coefficient indicates that as
the duration between crashes increases, the likelihood of F/I crashes
decreases. Moreover, F/I crashes are more likely to occur between 9 am
and 3 pm. Clear weather conditions are associated with a higher
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Table 4
Results from estimation of model using complete training data.
Variable groups Variables Simultaneous Sequential
estimation estimation
Estimate t-stat Estimate  t-stat

Upper level

Duration Time since —6.46 —22.60 —7.22 —91.82
dynamics previous

crash

Time of day Early 1.96 20.75 2.19 44.87
(Evening 6p. morning (6
m. to 12 a.m., a.m. to 9 a.

Night 12 a.m. m.)
to 6 a.m.) Late 3.50 22.27 3.91 70.82
morning (9
a.m. to 12p.
m.)
Early 3.48 22.39 3.89 75.27
afternoon
(12p.m. to
3p.m.)
Late 2.47 21.74 2.76 58.19
afternoon
(3p.m. to 6p.
m.)

Weather Clear 1.92 22.22 2.15 72.37
conditions
(Others)

Lighting Daytime 0.52 9.79 0.58 10.80
condition Dark lighted 3.47 2211 3.88 67.84
Dark, not
lighted)

Illumination Iluminated —-0.88 -19.04 -0.99 -32.94
type
(Not
illuminated)

Terrain type Flat 0.28 9.58 0.32 10.50
(Rolling)

Land use Commercial —1.06 -18.82 -1.18 —31.78
(Mixed) Rural -2.01 -21.60 -2.24 —56.49

Highway Number of 0.88 22.23 0.98 72.09
geometry lanes

Traffic flow Speed —-0.08 -23.20 —0.09 —506.52
characteristics Volume -1.27 -21.70 —-1.42 —55.39

Lower level

Intercepts First 15-min -8.71 -131.18 -8.85 —128.09
(Next epoch) interval

Second 15- -8.74 -130.92 -8.88 —127.94
min interval
Third 15- -8.77 —130.53 —-8.90 —127.68
min interval
Fourth 15- -8.71 -131.35 -8.85 —128.26
min interval
Nesting 9 4.36 23.22 4.87 24.80

coefficient

Goodness of fit

Number of observations 1,103,104
(Training)

Average initial LL —213.98

Average LL at convergence —2.052

Number of observations (Testing) 140,591

Predicted LL —1.879

Estimation Time (hours) 51.09 8.63
complexity

likelihood of F/I crashes compared to adverse weather conditions such
as clouds, rain, fog, or snow. Dark lighted conditions result in more
severe crashes, followed by daytime and dark unlighted conditions.
Non-illuminated locations are more prone to F/I crashes compared to
illuminated locations. Additionally, locations with flat terrain have a
higher likelihood of F/I crashes compared to those with rolling terrain.
Higher traffic volume leads to a decrease in F/I crashes, due to stop-and-
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go conditions during congested conditions. Similarly, higher speeds are
associated with a lower likelihood of F/I crashes, although the effect size
is small. The coefficients for the upper-level nodes, V;, have similar
magnitudes. The nesting parameter has a value of 4.36, indicating cross
nesting of alternatives. It is worth nothing that the training data
increased significantly after the creation of forecasting epochs, with the
original 2,137 crashes expanding to 1,103,104 observations.

Next, we proceeded to estimate parameters using sampled data to
explore the tradeoff between model performance and estimation
complexity. The results of this estimation can be found in Table 5, which
presents the obtained parameter values along with their respective t-
statistics. Upon visual inspection, it is apparent that the parameter
values obtained using the 25 % sample are much closer to the true values
compared to the 5 % sample. This finding aligns with a previous study
conducted by Thapa et al. (2022). However, it is also crucial to inves-
tigate the impact of sample size within the range of 5 % to 25 % to
determine the sample that offers the optimal balance between model
performance and estimation complexity. To address this, we estimated
parameters at 5 % increments, ranging from 5 % to 25 %. Fig. 3 presents
a graphical representation of estimation complexity and predicted log-
likelihood for the various samples. Notably, the figure indicates a sig-
nificant improvement in prediction performance beyond the 10 %
sample. Furthermore, the models demonstrate similar performance for
the 15 %, 20 %, and 25 % samples.

As expected, estimation complexity increases linearly with the
sample size. For instance, the model required 2.48 h to train on the 5 %
sample, while it took approximately 20 times or 51.09 h (about 2 days)
for the full 100 % dataset. Based on the findings depicted in the figure, it
is evident that using a 15 % sample can yield comparable estimates and
predictive performance to the 25 % sample, while reducing the esti-
mation complexity to 60 % of that offered by the 25 % sample. This
suggests that the 15 % sample size strikes a favorable balance between

Table 5
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Fig. 3. Improvement in model performance with increase in data size/esti-
mation complexity.

model performance and estimation complexity.

6.1. Effect of sampling on coefficients

Based on the parameter estimates, it is evident that certain predictor
variables are particularly sensitive to sampling. A notable example is the
Volume variable, where the coefficients exhibit significant differences
between the sampled data and the complete data (refer to Fig. 4). This
discrepancy can be attributed to the sampling approach and the scaling
of traffic volumes. Since the volumes are scaled between 0 and 1,
random sampling can lead to the exclusion of several observations,
resulting in considerable variations in the parameter estimates for this
variable. On the other hand, coefficients for the Speed variable demon-
strate consistency. This consistency may be attributed to the fact that the
values of the variable do not fluctuate significantly, as indicated by its

Results from simultaneous model estimation using samples drawn at the epoch level.

10 % sample

15 % sample

20 % sample

25 % sample

Variable groups Variables 5 % sample
Upper level
Duration dynamics Time since previous crash —5.05 (—4.21)
Time of day Early morning (6 a.m. to 9 a.m.) 1.58 (3.93)
(Evening 6p.m. to 12 a.m., Late morning (9 a.m. to 12p.m.) 2.56 (4.13)
Night 12 a.m. to 6 a.m.) Early afternoon (12p.m. to 3p.m.) 2.46 (4.14)
Late afternoon (3p.m. to 6p.m.) 1.71 (4.02)
Weather conditions (Others) Clear 1.43 (4.12)
Lighting condition Daytime 0.49 (2.27)
(Dark, not lighted) Dark lighted 2.97 (4.15)
Ilumination type Illuminated —0.66 (—3.60)
(Not illuminated)
Terrain type Flat 0.49 (3.22)
(Rolling)
Land use Commercial —1.22 (-3.94)
(Mixed) Rural —2.03 (—4.14)
Highway geometry Number of lanes 0.77 (4.19)
Traffic flow Speed —0.07 (—4.29)
characteristics Volume —14.94 (—4.26)
Lower level
Intercepts First 15-min interval —8.68 (—28.18)
(Next epoch) Second 15-min interval —9.01 (—-27.42)
Third 15-min interval —8.56 (—28.57)
Fourth 15-min interval —8.60 (—28.37)
Nesting coefficient 0 3.68 (4.30)
Goodness of fit
Number of observations (Training) 55,062
Average initial LL —212.70
Average LL at convergence —2.052
Number of observations (Testing) 140,591
Predicted log-likelihood -1.967
Estimation complexity Time (hours) 2.48

—6.55 (-7.15) —6.60 (—8.65) —6.99 (—10.10) —6.94 (—11.36)
1.81 (6.39) 1.77 (7.73) 1.78 (8.97) 1.84 (10.13)
3.20 (6.97) 3.43 (8.51) 3.40 (9.87) 3.45 (11.03)
3.18 (7.00) 3.60 (8.58) 3.76 (10.03) 3.70 (11.20)
2.40 (6.83) 2.48 (8.32) 2.50 (9.66) 2.52 (10.81)
1.87 (7.00) 1.97 (8.51) 1.98 (9.91) 1.99 (11.08)
0.42 (2.50) 0.31 (2.37) 0.39 (3.33) 0.36 (3.53)
3.31 (6.92) 3.36 (8.41) 3.46 (9.81) 3.52 (11.06)
—0.90 (-5.98) —0.80 (—6.99) —0.72 (-7.74) —0.75 (-8.81)
0.85 (5.89) 0.80 (7.05) 0.70 (7.65) 0.63 (8.15)
—1.28 (—6.27) —1.16 (-7.40) —0.98 (—8.05) —0.99 (-9.01)
—2.15 (—6.87) —2.08 (-8.28) —1.98 (-9.54) —1.96 (-10.63)
0.96 (7.09) 0.86 (8.48) 0.89 (9.89) 0.89 (11.11)
—0.08 (-7.34) —0.08 (—8.86) —0.08 (-10.32) —0.08 (-11.55)
—18.77 (-7.26) —17.74 (-8.77) —17.98 (-10.23) —18.02 (-11.47)
—8.94 (-39.92) —8.89 (—49.03) —8.90 (-56.71) —8.85 (—63.84)
—8.61 (—42.27) —8.56 (—51.90) —8.59 (-59.88) —8.62 (—66.90)
—8.83 (—40.44) —8.77 (—49.69) —8.75 (-57.60) —8.83 (—64.04)
—8.73 (—40.63) —8.77 (—49.53) —8.80 (-57.19) —8.70 (—64.55)
4.49 (7.35) 4.42 (8.87) 4.46 (10.34) 4.45 (11.58)
110,187 165,378 220,662 275,787
—212.87 —212.94 —213.01 —213.08
—2.053 —2.054 —2.053 —2.051

—1.968 —1.962 —1.961 —1.961

4.22 7.49 9.86 13.25
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Fig. 4. Coefficient of variables for different training samples.

descriptive statistics, and are less affected by sampling.

Considering these observations, we aim to identify and report vari-
ables that are sensitive to sampling. To visualize this, a bar plot in Fig. 4
presents the variable coefficients obtained from the sampled and com-
plete data. From the plot, it can be observed that smaller samples are
more likely to overestimate the effect of some variables, for example,
Time since crash, Time of day-Early afternoon, Terrain-Flat, Land Use-
Commercial, and Volume. Conversely, variables such as Time of day-Early
Morning and Late Morning, and Lighting-Daytime are more likely to be
underestimated when smaller samples are used. Overall, these findings
emphasize the importance of considering the impact of sampling on
parameter estimates, particularly for variables that exhibit sensitivity to
sampling.

Considering the impact of sampling, we identified variables that are
unlikely to converge toward the true value when small samples are used
and those that are more likely to do so. Identification of these variables is
crucial from a practical standpoint, especially when analysts and plan-
ners seek greater accuracy for specific variables. In the following figures,
we present two groups of predictors. The first group consists of variables
which are less likely to converge to actual values with small increments
in sample size. These variables would require larger samples to achieve
more accurate estimation. It is important to recognize the limitations in
estimating the coefficients for these variables with smaller sample sizes.
The second group comprises variables whose coefficients converge
closer to the actual values as the sample size increases. This group in-
cludes variables whose coefficients can be obtained with reasonable
accuracy, even with small increments in sample size. The findings will
be useful in identifying variables that becomes more stable and reliable
as the sample size grows. These findings serve as valuable insights for
researchers and practitioners, allowing them to prioritize their data
collection efforts and allocate resources effectively based on the sensi-
tivity of different predictors to sample size.

1380%

1078%

% change in coefficients
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% Time since crash

& Time of day-Early afternoon

F

=

77z

15%

= Weather-Clear

The variables which are less likely to converge to true values despite
an increase in sample size, ranging from 5 % to 25 %, compared to the
full data are Time since crash, Time of day-Early afternoon, Weather Con-
dition-Clear, Lighting Condition-Daytime, Illumination-Illuminated, and
Volume. These variables are presented in Fig. 5, indicating the percent-
age difference of the coefficients from the complete training data. On the
other hand, coefficients for Time of day-Early morning, Time of day-Late
morning, Time of day-Late afternoon, Lighting-Dark lighted, Terrain-Flat,
Land Use-Commercial, Land Use-Rural, Number of lanes, and Speed
converge quicker to the actual values as the sample size increases. These
variables are displayed in Fig. 6, illustrating the percentage difference
compared to the complete training data. These findings highlight the
sensitivity of different variables to sample size and provide valuable
insights into the accuracy and stability of their coefficient estimates.

7. Validation

The validation of the proposed nested logit model was carried out to
assess its predicted capabilities. All validations were conducted using
the simultaneous model trained on 15 % data drawn at the epoch level
since our analysis suggested that it provided the best tradeoff between
accuracy and estimation complexity. As discussed previously, 10 % of
the sample was held out for testing. The test sample consisted of 236
crashes, including 39 F/I crashes and 197 PDO crashes. This test sample
was used for validation. Similar to the two-step model, validation was
conducted to assess predictive abilities for the outcomes considered at
the lower and upper levels. These results are discussed in the following
subsections.

7.1. Upper level: crashes at epoch level

One of the primary objectives of the proposed framework is to
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g. 5. Variables unlikely to converge to their actual values despite of incremental increase in sample size.
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predict the occurrence of future crashes. Therefore, it is crucial to
evaluate the temporal accuracy of the predicted crashes. To evaluate
this, we measured the proximity between the predicted crash epoch and
the actual epoch at which crashes were observed, by introducing a
metric called Predicted Temporal Proximity (PTP), represented by Eq.
(12). This metric quantifies how closely the predicted crash epochs align
with the observed epochs.

Furthermore, we also investigated whether the number of epochs
impacted the model’s performance in terms of PTP. To accomplish this,
we calculated the PTP for different subsets of the testing data by
excluding crashes with a substantial number of epochs. This was
accomplished by creating subsets of the test data to include crashes with
fewer than 100 to 1000 epochs, with intervals of 100 epochs. The
average values of PTP for these subsets of testing data are depicted in
Fig. 7.

Predicted crash epoch — Actual crash epoch

PTP = x 100%

Actual crash epoch a2
It is important to note that, according to the definition of PTP, a
smaller value is desired as it indicates that the predicted crash epoch is
closer to the observed epoch. The results depicted in Fig. 7 indicate that
when there is a substantial number of epochs (i.e., a large inter-crash
duration), the value of PTP increases. This suggests that epoch-level
prediction is more accurate when the duration between crashes is
smaller. In other words, the prediction of crash epochs is more reliable
for highway segments that experience crashes more frequently. For
example, based on the figure, for crashes with inter-crash durations less
than 100 h (approximately 4 days), the predicted crash epoch is within
60 % of the actual epoch, compared to 74 % for durations exceeding
1,000 h.
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7.2. Upper level: crashes in predicted time-intervals

The accuracy of predicting crash occurrences at specific time in-
tervals can be assessed from two perspectives: i) the accuracy of pre-
dicting crashes (true positives), and ii) the accuracy of predicting 'no
crashes’ (true negatives). Therefore, we relied on the metrics of Speci-
ficity and Sensitivity to evaluate the model’s predictions. Specificity
measures the model’s ability to correctly predict ’no crashes’ (true
negatives) and is defined by Eq. (13). On the other hand, Sensitivity
measures the model’s ability to correctly predict crashes (true positives)
and is defined by Eq. (14). It quantifies the proportion of correctly
identified positive cases in relation to the actual positive cases. It
quantifies the proportion of correctly identified negative cases in rela-
tion to the actual negative cases.

The model’s prediction accuracy for crash and severity were evalu-
ated using these metrics. The results are summarized in Table 6 and
described as follows.

e True Negatives(TN
Specificity = - & (V) — 13)
True Negatives(TN) + False Positives(FP)
Table 6
Values of Specificity and Sensitivity from the model predictions.
Predictions TN TP FP FN Specificity Sensitivity
Crash occurrence 539 63 173 169 0.76 0.27
Crash severity
F/I crashes 887 9 20 28 0.97 0.24
PDO crashes 557 41 192 154 0.74 0.21

60%

<500 <400 <300 <200 <100

Crashes included with number of epochs

Fig. 7. Average PTP for different subsets of test samples.
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True Positives(TP)

14
True Positives(TP) + False Negatives(FN) a4

Sensitivity =

The model predictions for the time intervals resulted in the following
counts: True Negatives (TN) = 539, True Positives (TP) = 63, False
Positives (FP) = 173, and False Negatives (FN) = 169. The Specificity is
calculated to be 0.76, indicating a high value. This high value suggests a
low rate of false positive predictions. Therefore, the model demonstrates
reliability in predicting crashes. In other words, the likelihood of clas-
sifying a time interval without a crash as a time interval experiencing a
crash is low. On the other hand, the Sensitivity is calculated to be 0.27,
indicating a low value. This low value suggests a high rate of false
negatives, or in other words, the chances of classifying true crash in-
tervals as having no crash is high.

7.3. Lower level: crash severity for crashes in predicted time-intervals

The Specificity and Sensitivity measures were also utilized to eval-
uate the model’s ability to predict crash severities at each time interval.
For F/I crashes, the following results were obtained: TN = 887, TP =9,
FP = 20, FN = 28, resulting in a Specificity of 0.97 and a Sensitivity of
0.24. Similarly, for PDO crashes, the values obtained were TN = 557, TP
=41, FP = 192, and FN = 154, with a Specificity of 0.74 and a Sensi-
tivity of 0.21.

The results indicate that for both severity types, the Specificity values
are high. This suggests that the model is capable of reliably predicting
both F/I and PDO crashes with a lower chance of false positive pre-
dictions. However, it should be noted that the model also exhibits low
Sensitivity values, indicating that the model may not always accurately
classify the severity types with a high degree of certainty, leading to a
higher occurrence of false negative predictions. This outcome is the
result of exceptionally higher prevalence of time-intervals without
crashes (0 s) in comparison to those with crashes (1 s). Future research
can improve upon the model by addressing this imbalance in the fre-
quency of outcomes (e.g., see Morris and Yang, 2021).

8. Conclusion

This study developed a duration-based model to predict crash
occurrence and severity using historical crash and traffic flow data from
four interstates in Tennessee. The framework involved the reformulation
of crash data to create forecasting epochs and time-intervals, which were
used to calculate crash and severity likelihoods. The creation of fore-
casting epochs significantly increased the data size and estimation
complexity. Additionally, the adoption of a nested structure further
contributed to the complexity of model estimation. To address the
computational challenges, we suggested sampling the data at the epoch
level to reduce estimation complexity. We aimed to find the optimal
sampling strategy by considering the tradeoff between model perfor-
mance and estimation complexity. After evaluating various samples, we
determined that a 15 % sample drawn at the epoch level provided the
best balance in reducing data size. Furthermore, we investigated the
impact of sampling on the coefficients of predictor variables to identify
those most sensitive to changes in sample sizes. Variables such as Time
since crash, Time of day-Early afternoon, Late afternoon, Terrain-Flat, Land
Use-Commercial, Number of lanes, and Volume were found to be more
likely to be overestimated by smaller samples. Conversely, variables
including Time of day-Early Morning, Late Morning, Lighting-Daytime and
Dark lighted were more likely to be underestimated.

When investigating the stability of coefficients for the predictors, it
was found that Time since crash, Time of day-Early afternoon, Weather
Condition-Clear, Lighting Condition-Daytime, Illumination-Illuminated, and
Volume exhibited a higher degree of instability. Consistent estimation of
these coefficients required larger sample sizes. On the other hand, co-
efficients for Time of day-Early morning, Late morning, Late afternoon,
Lighting-Dark lighted, Terrain-Flat, Land Use-Commercial and Rural,
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Number of lanes, and Speed demonstrated a tendency to converge to-
wards true estimates with incremental increases in sample size. These
findings are crucial for obtaining consistent and reliable estimates when
utilizing samples for model estimation and clarify the challenges and
considerations associated with implementing the duration-based model,
including the impact of data sampling on estimation outcomes and the
sensitivity of certain variables to changes in sample sizes.

The proposed framework’s validation provided satisfactory results.
The measure, Predicted Temporal Proximity (PTP), suggests that the
model performs better when implemented on segments where crashes
are more frequent. For context, the model, trained on a 15 % epoch-level
sample, was able to predict crashes within 60 % (i.e., average PTP = 60
%) of the actual epoch for crashes occurring within 100 epochs, or
approximately 4 days of each other. On the contrary, the average value
of PTP was 74 % for crashes occurring within 1,000 epochs of each
other. This finding also sheds light on the practical implications of the
model, as it is often impractical to predict crashes too far into the future
due to potential changes in traffic, weather, and driving conditions.
Similarly, the estimated model displayed a satisfactory value of Speci-
ficity, indicating a low rate of false positives. In other words, the model
is less likely to falsely predict time intervals without crashes as having
experienced crashes. This is particularly important as a reasonable de-
gree of certainty is desired to ensure effective allocation of limited safety
resources to critical segments. The value of Sensitivity was compara-
tively smaller, implying a higher rate of false negatives or missed de-
tections. However, it should also be noted that the frequency of time
intervals without crashes is several multiples larger than the frequency
of time intervals with crashes (preponderance of 0 s compared to 1 s).
Therefore, the low value of Sensitivity is expected in this case.

9. Study limitations and future research

Future research offers opportunities for notable improvements to the
proposed model. Firstly, it would be valuable to investigate alternative
nesting structures to determine if they provide a better fit, especially
considering that the nesting parameter suggests the presence of alter-
native nests. More complex nesting structures based on distinct cate-
gories such as time of day, weather conditions, and other relevant
factors could be explored. Additionally, in this study, the upper-level is
assumed to be a MNL model without considering the effect of time.
Future research should consider addressing this when investigating
alternative structures. Secondly, the model estimates could be enhanced
by incorporating random effects. Since the reformulated data, after the
creation of forecasting epochs, takes the form of panel data with
repeated observations for crashes and road segments, accounting for
segment and crash-specific heterogeneity could lead to more accurate
model estimates. Furthermore, data balancing techniques such as Syn-
thetic Minority Over-sampling Technique can be used to balance the
frequency of outcomes and study its impact on model estimates. Finally,
alternative estimation techniques leveraging parallel and distributed
computing can be implemented to reduce estimation time while still
retaining information from complete training dataset. Addressing these
limitations would contribute to a more comprehensive understanding of
crash prediction and severity estimation and improve the accuracy and
applicability of the model in real-world scenarios.

CRediT authorship contribution statement

Diwas Thapa: Conceptualization, Methodology, Formal analysis,
Software, Validation, Writing — original draft. Sabyasachee Mishra:
Conceptualization, Supervision, Project administration. Nagendra R.
Velaga: Conceptualization, Writing — review & editing. Gopal R. Patil:
Conceptualization, Writing — review & editing.



D. Thapa et al.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
The data that has been used is confidential.
Acknowledgements

This research was partially supported by Fulbright Fellowship to
second author at Indian Institute of Technology (IIT) Bombay, National
Science Foundation award # 2222699 and the Center for Transportation
Innovations in Education and Research (C-TIER) at the University of
Memphis. Any findings and opinions expressed in this paper are those of
the authors and do not necessarily reflect the view of the aforemen-
tioned agencies.

Appendix

Stepwise process for the application of the crash prediction
framework.

Step 1:
Step 1.1:
Step 1.2:

Collect roadway inventory [Roadway characteristics]
Select study area and road segments.

Segment roadways based on attributes, e.g., speed limit,
number of lanes, highway terrain, and travel direction.

Step 1.3: Extract highway characteristics for all segments.
Step 2: Extract and merge historical crash data [Roadway char-
acteristics + Crash data]

Select crashes for the study period on the road segments being
studied.

Extract available crash attributes, e.g., date and time, GPS
coordinates, direction of travel, injury severity with two
levels.

Merge crash attributes with highway characteristics obtained
from Step 1.3 based on GPS proximity and travel direction.

Step 2.1:

Step 2.2:

Step 2.3:

Step 3:
Step 3.1:

Discretization and creation of forecasting epochs

Select temporal resolution for discretization: Values of e and
dt.

Discretize time interval between crashes in the same segment
(data obtained from Step 2.3) and create forecasting epochs.

Step 3.2:

Step 4: Extract and merge RDS data [Roadway characteristics +
Crash data 4+ RDS data]

Identify RDS stations on the roadway segments.

Extract data from RDS stations, e.g., GPS coordinates, travel
direction, traffic flow data at dt intervals along with date and
time.

Merge reformulated data obtained after creation of forecasting
epochs in Step 3.2 with RDS data based on GPS coordinates,

date and time, and travel direction.

Step 4.1:
Step 4.2:

Step 4.3:

Step 5: Model estimation
Step 5: Estimate crash probabilities as a two-level nested logit model
using data obtained from Step 4.3.
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