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Integrating Contact-Aware CPG System for
Learning-Based Soft Snake Robot

Locomotion Controllers
Xuan Liu , Member, IEEE, Cagdas D. Onal , Member, IEEE, and Jie Fu , Member, IEEE

Abstract—Contact-awareness poses a significant challenge in
the locomotion control of soft snake robots. This article is to de-
velop bioinspired contact-aware locomotion controllers, grounded
in a novel theory pertaining to the feedback mechanism of the
Matsuoka oscillator. This mechanism enables the Matsuoka cen-
tral pattern generator (CPG) system to function analogously to
a “spinal cord” in the entire contact-aware control framework.
Specifically, it concurrently integrates stimuli, such as tonic input
signals originating from the “brain” (a goal-tracking locomotion
controller) and sensory feedback signals from the “reflex arc”
(the contact reactive controller), for generating different types of
rhythmic signals to orchestrate the movement of the soft snake
robot traversing through densely populated obstacles and even
narrow aisles. Within the “reflex arc” design, we have designed
two distinct types of contact reactive controllers: 1) a reinforce-
ment learning-based sensor regulator that learns to modulate
the sensory feedback inputs of the CPG system, and 2) a local
reflexive controller that establishes a direct connection between
sensor readings and the CPG’s feedback inputs, adhering to a
specific topological configuration. These two reactive controllers,
when combined with the goal-tracking locomotion controller and
the Matsuoka CPG system, facilitate the implementation of two
contact-aware locomotion control schemes. Both control schemes
have been rigorous tested and evaluated in both simulated and real-
world soft snake robots, demonstrating commendable performance
in contact-aware locomotion tasks. These experimental outcomes
further validate the benefits of the modified Matsuoka CPG system,
augmented by a novel sensory feedback mechanism, for the design
of bioinspired robot controllers.

Index Terms—Adaptive systems, bioinspired control, haptic
interfaces, neurodynamics, reinforcement learning (RL), soft
robotics.
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I. INTRODUCTION

SOFT continuum robots have unique advantages in travers-
ing through cluttered and confined environments, due to

their flexible body structure and deformable materials. Appli-
cations of soft continuum robots in contact-aware environments
include search-and-rescue [1], pipe inspection [2], and medical
surgery [3]. In particular, soft robotic snakes have the unique
potential that any part of their body, if properly controlled,
could adapt to and reduce the impact from collisions, or even
benefit from the propulsion force generated by the contacts
with obstacles. In this article, we investigate the following two
questions.
� How to design the contact-aware controller for the soft

snake robot that can intelligently adapt to and employ the
contact force from crowded obstacles during locomotion?

� How to design the sensory and body structure on a
snake-like soft robot to make the tactile perception
more sensitive while avoiding jamming, and making the
contact-aware locomotion more energy efficient?

In literature, several research groups have studied this unique
topic in snake robot locomotion. The solutions to the contact-
aware locomotion [4], [5], [6] are mainly studied and imple-
mented on rigid snake robots and most of the control meth-
ods are model-based. Transeth et al. [7], [8] first defined this
property as the obstacle-aided locomotion, wherein the snake
robot actively employs external objects to generate propulsion
forces during the locomotion. Their pioneer work proposed
a two-module framework of obstacle-aided locomotion that
includes: 1) a path planner that searches for a trajectory with
more active contact chance for the rigid snake robot, and 2) a
motion controller that controls the snake robot’s real-time body
movements to optimally utilize the contacts between the robot
and the environment and generate desired propulsion force for
the locomotion. In [9], [10], and [11], a hybrid controller is
developed, where a contact event is treated individually by a
reactive controller that maximizes the total propulsion force
at the contacting moment. This controller has been applied to
a rigid snake robot and showed its reliability in maintaining
beneficial propulsion force. Kano et al. [12], [13] proposed
local reflexive mechanisms that interrogate the contact status
between the snake robot and the obstacles to determine whether
the contact is beneficial to the locomotion. In this approach,
only a segment of the robot links neighboring to the link in
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contact react to the sensory feedback. On the basis of the local
reflexive control method, a Tegotae heuristic scoring function
is established by authors in [5], [14], and [15], for selecting
which kind of reaction should be applied to the contacting link
of the robot given certain situations including the snake robot’s
shape and contacting part of the robot. From the bioinspired
perspective, inspired by the entrainment properties of neural
oscillators that allow the systems‘ output to be synchronized
with sensory feedback, several studies [6], [16] introduce CPG
systems to the control loop of snake robots to process the
sensory feedback signals during locomotion. However, in most
existing work the locomotion control inputs of the feedback
CPG systems are usually constant or basic sinusoidal signals
due to the difficulty of coordinating multiple complex signals
through a CPG system. Performing learning-based goal-tracking
and contact reactive control on a CPG-driven snake robot is a
promising, yet underexplored topic.

So far, the results on contact-aware control for soft snake
robots are scarce. Although a few end-to-end soft robot con-
trollers [17] perform well in simulation by assuming fully
proprioceptive observations, it would be appealing to enable
such a capability for soft snake robots in the real world.
Moving from rigid snake robots to soft snake robots in
contact-aware locomotion control faces many challenges as
follows.

1) Due to the continuum of the pneumatic actuators, it is in-
feasible to construct an accurate dynamic model for a soft
snake robot, rendering model-based control ineffective or
inapplicable.

2) The pneumatic actuators in soft snake robots have non-
linear, delayed, and stochastic dynamical response given
inputs, making it difficult to achieve fast responses
through model-based control compared to rigid snake
robots.

3) It is hard to embed tactile sensors in the soft material since
the contact-free deformation of the soft body may interfere
with the sensory data. As a result, the tactile sensors cannot
be densely placed on the soft robot.

4) Equipping tactile sensors could introduce more contact
friction due to the material of the sensors, or cause more
contact jamming due to the bumped shape of the sensors.

5) When a soft snake robot is traversing unknown obsta-
cles, its tactile sensory inputs usually present discrete
and unpredictable impulsive features, which can result in
overshoot and signal interference to a feedback control
system.

For the above-mentioned problems, our solutions and contri-
butions are summarized as follows.

1) Development of a Novel Feedback Mechanism for
the Matsuoka CPG: Our modification on the Matsuoka
oscillators allows the Matsuoka CPG system to effectively
process both the locomotion control signals and tactile
sensory feedback signals during the contact-aware
locomotion of the soft snake robot. Through theoretical
analysis, we leverage the unique advantages of the
Matsuoka oscillator’s feedback mechanism for reducing
the overshoot and latency despite the interference of

Fig. 1. Schematic view of (a) hybrid learning proximal policy optimization
option-critics with central pattern generator (PPOC-CPG), and (b) local reflexive
PPOC-CPG controllers.

unexpected sensory feedback signals with the feedback
control signals throughout the contact events.

2) Design of Contact Reactive Controllers: Based on our
modification of the Matsuoka oscillator, we designed two
different contact reactive control schemes [see Fig. 1(a)
and (b)] for the contact-aware locomotion control of
the soft snake robot. These two control schemes have
disparate sensory feedback patterns: the hybrid learning
controller uses a neural network-based policy to process
the contact information; while the local reflexive method
builds local signal flows between the contact sensor data
and the CPGs’ feedback inputs. We use these two reac-
tive controllers to verify the adaptability of our modified
Matsuoka CPG system to various sensory feedback input
patterns.

3) Design of a Gait Switching Mechanism in the CPG Sys-
tem: Inspired by the way of natural snakes traversing
the combination of plain ground and narrow aisles [18],
[19], we include two classical snake locomotion gaits—the
slithering gait and the rectilinear gait in the soft snake
robot’s contact-aware locomotion. These gaits are gen-
erated by the identical Matsuoka CPG system. We use
different connections between the tactile sensors and the
CPGs’ feedback inputs to realize these two gaits and their
switching mechanism. The triggering conditions for the
gait switching are independent to the type of reactive
mechanisms (hybrid learning or local reflexive modules
for contact processing), and thus allows us to control the
influence of gaits when comparing the performance of
different contact reactive controllers.
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Fig. 2. (a) Soft snake robot in reality. (b) In rigid head and (c) rigid body components (Number 1, 2, and 3 in the above-mentioned figures are used for marking
the covering scale, silicone sensor node, and torsion spring passive wheels, respectively). (d) Signal communication flow of soft snake robot circuit. (e) Example
of sensor-CPG connection model for one link of a soft snake robot.

4) Design and Allocation of the Tactile Sensors: Soft snake
robots’ whole-body contact-aware locomotion faces chal-
lenges due to conventional tactile sensors’ fragility, com-
munication limits, high costs, and integration issues. To
overcome these hurdles, we developed magnetic-based
sensors inspired by Wang et al. [20], mimicking Scale
Sensilla [21] for larger sensing area, fewer sensors, and
improved sensitivity to dynamic contacts in soft snake
robots.

5) Experimental Implementations and Validations: The ef-
ficacy of the proposed reactive control schemes and the
gait switching module are evaluated in the real soft
snake robot’s contact-aware locomotion tasks. Both con-
trol schemes achieve promising locomotion performance
for traversing crowded obstacles, while maintaining accu-
rate target tracking and the ability to handle sharp turns.
The gait switching mechanism is also successfully trig-
gered when the soft snake robot detects narrow aisles.
These results comprehensively verify the advantages
of our modification on the Matsuoka CPGs’ feedback
mechanism.

This article focuses on the theoretical advancements and prac-
tical application of the Matsuoka oscillator’s feedback mecha-
nism for contact-aware locomotion control in soft snake robots.
First, we provide an overview of our schematic design of a
soft snake robot equipped with contact sensors in Section II.
In Section III, we present the novel feedback mechanism of the
Matsuoka CPGs with theoretical analyses to show its advantages
in leveraging sensory feedback signals for contact-aware loco-
motion control. Based on this, we design two contact reactive
controllers and a slithering-rectilinear gait switching module in
Section IV. In Section V, we use several experiments to show
the improvement of the snake robot’s locomotion performance
in the cluttered environments under closed-loop control. Finally,
Section VI concludes this article.

II. HARDWARE DESIGN FOR CONTACT-AWARE SOFT SNAKE

ROBOT LOCOMOTION

Inspired by the mechanical design of the soft pneumatic ac-
tuators in [22], our soft snake robot consists four pneumatically
actuated soft links [see L1∼L4 in Fig. 2(a)] [23], [24], [25].
The links are connected by five rigid bodies [see B1∼B5 in
Fig. 2(a)]. Each of them encloses a set of electronic components
that are necessary to control the snake robot, including a ESP32
microcontroller unit with onboard WiFi module for link-to-link
and link-to-computer communication [see Fig. 2(d)], a pair
of SMC-S070C-SCG 3-2 (three-way two-position) solenoid
valves [25], an 800 mAh LiPo battery, a pair of one-direction pull
back wheels [see Fig. 2(c)] mimicking the anisotropic friction
property,1 and a couple of magnetic-based tactile sensors [see
Fig. 2(b) and (c)], which will be introduced in detail later in this
section.

A. Pulsewidth Modulation (PWM) for the Solenoid Valves

In the earlier episode of our soft snake robot [25], each soft link
[such as L1 depicted in Fig. 2(a)] comprises two chambers, both
of which are independently controlled by solenoid valves; yet,
only one chamber per link is pressurized through a single valve
at any given moment. In this work, we allow both chambers’
valves to be activated simultaneously. Each of the two chambers
controlling the joint were connected to a 20 psi [138 kPa]
pressurized air line and each controlled by a separate solenoid
valve (operated with 1 kHz PWM signal). The solenoid valve
being used is tested to have fully open status when the PWM
signal is at or above 59% duty cycle. This change allows the the
soft snake robot to perform both slithering gait and rectilinear
gait (for traversing narrow aisles) during the locomotion. It is

1 Check supplementary document Section S1 for an explanation of the pull-
back torque mechanism, which enhances the energy efficiency during the snake
robot’s contact-aware locomotion.
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Fig. 3. Electronic design of touch sensor.

noted that the 3–2 valves do not offer the proportional pressure
control option, the bending and elongation movements are not
coupled on a soft link of the snake robot. Therefore, any bending
movements of the soft links controlled by two valves in this
article are equivalent to the “single valve plan” in our previous
work [23], [25].

B. Design of the Tactile Sensor

1) Core Sensing Unit: For any contact-aware robot locomo-
tion task, the tactile sensors should always be time efficient to
ensure safe and prompt reaction of the robot controller. Due
to its whole body contact feature when locomoting through
the obstacles, the soft snake robot brings different challenges
to the design of tactile sensors on the energy and communi-
cation cost, durability, accuracy, size, deformability, and cover
area.

Considering the tradeoff among these requirements, we
choose a magnetic field soft tactile sensor based on [20]. As
shown in Fig. 3, the major component of the soft tactile sensor is
comprised of a small magnet cylinder disk (with 2 mm diameter
and a height of 1 mm) and a Melexis MLX90393 Hall effect
module (3 mm × 3 mm × 0.8 mm, QFN-16 package) separated
by a hemisphere-shaped elastomer (made of EcoflexTM 00-30
silicone rubber). The magnet piece is sealed in the elastomer
through molding of the silicone first and then the elastomer
is glued to the top of the hall sensor on the printed circuit
board. The detailed fabrication steps are similar to [20]. The
working principle of this tactile sensor is based on the detec-
tion of the presence and magnitude of a magnetic field using
the Hall effect. The magnetic field varies when the elastomer
deforms and causes positional changes in the small magnet
disk inside the elastomer. These changes can be detected and
calculated by the hall sensor. The data collected by the hall
sensor is sent to the motherboard via interintegrated circuit (I2C)
bus.

2) Covering Scales: As shown in Fig. 2(a), (b), and (c),
there are in total 12 tactile sensors installed on the robot. The
components marked by number 2 are the installation positions of
the tactile sensors. On top of each tactile sensor, the components
marked by number 1 are the scales. Each scale is made of
two layers of materials—an acrylic layer attached with a steel
plate layer (glued by polyurethane and reinforced with adhesive
tape). The scales are designed for three major purposes as
follows.

Fig. 4. (a) Illustration of contact force decomposition for a scale covered tactile
sensor on the left of a rigid body. (b) Tactile sensor + covering scale structure
(right top) versus its approximation in simulation (right bottom).

1) To significantly increase the contact sensitivity and sens-
ing area of the snake robot [in Fig. 2(c), the contact area
is about 20 times to the uncovered version].

2) To reduce friction resistance on the contact surface (fric-
tion coefficient reduced from 1.7 of dry silicone to around
0.3 of polished acrylic board).

3) To protect the silicone tactile node from frequent colli-
sions.

C. Preprocessing and Data Structure of the Sensory
Information

1) Real Robot Sensors: Based on [20, (12)∼(14)], the tactile
force elements F = {Fx, Fy, Fz} are calculated by

Fz = Σn
k=0Σ

k
i=0CzjB

i
zB

(k−i)
r , j = 1, . . .

(n+ 1)n

2

Fr = Σn
k=0Σ

k
i=0CrjB

i
zB

(k−i)
r , j = 1, . . .

(n+ 1)n

2

where Fz represents the normal contact force and Fr represents
the shear contact force, which can be further decomposed to

Fx =
Bx√

B2
x +B2

y

Fr, Fy =
By√

B2
x +B2

y

Fr.

Parameters Bz and Br are the normal and shear magnetic
intensity, where Br can be decomposed to Bx and By . Czj

and Crj are the jth coefficients of best fitting polynomials of
Fz and Fr calculated by moving least squares (MLS) method
which generates a data-based model that maps the measured
magnetic field to the estimated force on the silicone elas-
tomer. The number n is the polynomial order in the MLS
method.

Due to the constraints of the locomotion’s dimensions and the
relatively low friction between the covering scale and the contact
object (with a friction coefficient of 0.3), the direction of the
contact force can be approximately regarded as perpendicular to
the surface of the covering scale. As Fig. 4(a) shows, the contact
force F̂ e acting on the left side scale covered sensor can be
decomposed to two components—the vertical component F̂ e

n is
transmitted to the normal pressure on the silicone node, which
mainly contributes to the sensor reading Fz; and the tangent
component F̂ e

t is transmitted to the shear squeezing force, which
can be treated as the source of Fr. As a result, the contact force
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on the scale sensor can be approximated by the equivalent effect
of deformation on the silicone elastomer, and translated to the
three axis measurement of the magnetic force F. We reduce the
sensor data dimension by calculating the norm of F, such that

F = ||F|| =
√

F 2
x + F 2

y + F 2
z . (1)

Furthermore, we introduce a sigmoid function to process the
value of the soft tactile sensor, such that

σ(F ) =
2

1 + exp−aF
− 1 (2)

where a ∈ R+ is a positive constant. This step helps to limit the
force value within the range [0, 1] and amplify the weak signals
to increase the sensitivity to the contact events, such that the
small contact signals’ wave shapes become closer to square-like
and easier to be identified.

Inspired by a previous study on obstacle-aided locomotion of
rigid snake robots [10], we approximate the total contact forces
acted on the rigid bodies B1 ∼ B5 based on the inputs sampled
from the force sensors.

According to (2), let F e
i , F

f
i represent the norm of contact

force vectors detected by the left and right sensor respectively
on the ith rigid body of the soft snake robot, then Ne

i = σ(F e
i ),

and Nf
i = σ(F f

i ) (the superscripts e, f denote left and right of
the sensors’ placement in reference to the heading direction of
the soft snake robot). We use the collection of contact forces in
the soft snake robot from head to tail to represent the contact
states of the soft snake robot as follows:

N =
[
Ne

1 , N
f
1 , N

e
2 , N

f
2 , N

e
3 , N

f
3 , N

e
4 , N

f
4 , N

e
5 , N

f
5

]T
whereNe

1 = Ne
11 +Ne

12, andNf
1 = Nf

11 +Nf
12 specially, since

the robot has two pairs of tactile sensors on the head rigid link
(B1 in Fig. 2).

2) Simulated Sensors: In order to simulate the robot for rein-
forcement learning (RL) and sim-to-real transfer of the learned
controller, we developed a physics-based high-fidelity simulator
that models the inflation and deflation of the air chamber and
the resulting deformation of the soft bodies with tetrahedral
finite elements [23]. To simplify the tactile sensing function of
the scale structure in simulation, we use two hemisphere elastic
force fields with different sensing radii to model the tactile sensor
node + scale structure in reality [as shown in Fig. 4(a)]. The
elastic force fields have equilibrium positions (where elastic
force equals zero) everywhere on the surface of the hemispheres
and have no friction on the hemispheres. The tactile readings are
modeled by the elastic forces when an object’s distance is smaller
than the radius of any simulated tactile node. In the simulation,
the readings of the two hemisphere force fields are averaged to
simulate the contact force signal of one tactile sensor in the real
robot.

III. MODIFIED MATSUOKA OSCILLATOR WITH SENSORY

FEEDBACK

In order to effectively integrate the tactile information into the
contact-aware locomotion framework of the soft snake robot,

we study the effect of an additional variable on the Matsuoka
oscillator for handling the feedback force signals from the tactile
sensors. In this section, we analyze the properties of our method
and the conventional approach [6], [16] from a theoretical per-
spective.

In our previous work [24], [25], we presented a control scheme
that employs sensor-free Matsuoka oscillators to generate un-
dulating control signals as actuation inputs for the soft snake
robot to perform Serpentine locomotion. The original Matsuoka
oscillator is a piecewise linear dynamical system mimicking a
neuron’s behavior, which has the form

kfτrẋ
e
i = − xe

i − azfi − byei − Σe
coupling + ue

i + c

kfτaẏ
e
i = zei − yei

kfτrẋ
f
i = − xf

i − azei − byfi − Σf
coupling + uf

i + c

kfτaẏ
f
i = zfi − yfi (3)

where the subscripts e and f represent variables related to the
extensor neuron and flexor neuron, respectively.xe

i , x
f
i represent

the activation states (or membrane potentials) and yei , y
f
i denote

the self-inhibitory states (or adaptation states [26], [27]) of the
ith neuron respectively, zei , z

f
i are the outputs of the ith neuron.

Tonic inputs ue
i , u

f
i are the major coefficients that can be con-

trolled to affect the output bias and amplitude of the Matsuoka
oscillator. The frequency ratio kf ∈ R can be manipulated to af-
fect the natural oscillation frequency of the system. The interneu-
ron couplings have common expressions by assuming fully con-
nected topology, which are Σe

coupling =
∑N

j=1(w
ee
ji z

e
j + wfe

ji z
f
j )

and Σf
coupling =

∑N
j=1(w

ef
ji z

e
j + wff

ji z
f
j ), where the subscript

and superscript of a coupling weight is defined by the connection
between the CPG nodes, e.g., wef

ji indicates the coupling weight
from jth CPG node’s extensor to the ith CPG node’s flexor. The
free-response input is denoted as parameter c in the equation,
which is used for amplifying the free-response oscillation of the
CPG system. The remaining parameters are all constant weights.
In system (3), all coupled states including xe

i , x
f
i , y

e
i , y

f
i and

zei , z
f
i are inhibited (negatively weighted), except that the tonic

inputs are activating signals (positively weighted). In the context
of this article, the extensor and flexor subsystems in the CPG
system play distinct roles in actuating left and right chambers
of the snake robot respectively (taking the head direction of the
robot as reference).

Based on the form of the original Matsuoka oscillator, the
question is—how to integrate sensory feedback into the Mat-
suoka CPG system to enable effective response to contact
events?

A conventional approach is to directly add positive force
feedback (as activation signals) to the membrane potential state
equations (ẋe

i , ẋ
f
i ) of the original Matsuoka oscillator [16, (5)].

Such form of feedback Matsuoka oscillator has been used in
some snake robot locomotion studies [6], [16], where the tonic
inputs (for locomotion control) of the CPG systems in these
applications are mostly constant or regular sinusoidal waves. We
summarize the dynamic equations of the conventional feedback
Matsuoka oscillator as follows.
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Membrane potential feedback form (MPF) Matsuoka oscilla-
tor:

kfτrẋ
e
i = − xe

i − azfi − byei − Σe
coupling + ue

i + bpei + c

kfτaẏ
e
i = zei − yei

kfτrẋ
f
i = − xf

i − azei − byfi − Σf
coupling + uf

i + bpfi + c

kfτaẏ
f
i = zfi − yfi (4)

where the sensory force feedback signals are represented by pei
and pfi . The reason for naming MPF to this type of Matsuoka
oscillator is because the sensory feedback signals are directly
added to the membrane potential states as activation (positive)
signals.

However, we have a concern about the above-mentioned con-
ventional form. In the case when the tonic inputs are complicated
wave signals and the sensory feedback are irregular signals, these
two types of inputs may intervene each other, and therefore fail to
effectively present the impact of sensory feedback to the system
output.

Sato et al. [28] mentioned the addition of the CPG state
coupling terms not only to the fast dynamic states’ equations (po-
tential membrane ẋe

i , ẋ
f
i ) but also to the slow dynamic states’

equations (adaptation states ẏei , ẏ
f
i ) of the Matsuoka oscillator

with opposite signs to improve the dynamic impact of the cou-
pling signals. Given the inspiration, we are interested in knowing
whether it is possible to add sensory feedback signals which are
external impulse signals to the adaptation states of the Matsuoka
oscillator. After in-depth theoretical analysis and experimental
comparison, we construct a novel branch of feedback mecha-
nism in the Matsuoka oscillator as follows.

Adaptation feedback (AF) form Matsuoka oscillator:

kfτrẋ
e
i = − xe

i − azfi − byei − Σe
coupling + ue

i + c

kfτaẏ
e
i = zei − yei − pei

kfτrẋ
f
i = − xf

i − azei − byfi − Σf
coupling + uf

i + c

kfτaẏ
f
i = zfi − yfi − pfi . (5)

In this design, the tonic inputs ue
i , u

f
i as well as the free oscilla-

tion tonic input c are still added to the potential membrane states
(xe

i , x
f
i ) as fast dynamic inputs, while the sensory feedback pei

and pfi are inhibitive signals2 added to the equations of adap-
tation states (yei , y

f
i ) of Matsuoka oscillator as slow dynamic

feedback inputs. In this article, we name this version of the
Matsuoka oscillator as the AF form Matsuoka oscillator.

To explore the feasibility of the AF form Matsuoka oscillator,
and find out the advantage of the AF form design, we discuss the
difference between the AF and MPF form of Matsuoka oscillator
when both the tonic inputs and the sensory feedback signals
are variables. The discussion is organized by the following
derivations.

2 For the reason of making inhibitive sensory feedbacks, please refer to the
supplementary document S-Section 3.

Considering AF form Matsuoka oscillator described in system
(5) and MPF form Matsuoka oscillator method described in
system (4). For the AF-form Matsuoka CPG system, consider the
coupling term based on the CPG network connection topology
of the soft snake robot (as shown in Fig. 7), we have the
mathematics formulation as follows:

kfτrẋ
e
i = − xe

i − azfi − byei − wi−1,iz
f
i−1 − wi+1,iz

e
i+1

+ ue
i + c

kfτaẏ
e
i = zei − yei − pei

kfτrẋ
f
i = − xf

i − azei − byfi − wi−1,iz
e
i−1 − wi+1,iz

f
i+1

+ uf
i + c

kfτaẏ
f
i = zfi − yfi − pfi (6)

with i = 1, 2, 3, 4, w0,1 = w5,4 = 0.
Let Xe = [xe

1, x
e
2, x

e
3, x

e
4]

T ,Xf = [xf
1 , x

f
2 , x

f
3 , x

f
4 ]

T , and ap-
ply this notation analogously to Ye, Yf , Ze, Zf , Ue, Uf , Pe,
Pf . Let C = [c, c, c, c]T ∈ R4. Then, the vector form of (6) can
be expressed as follows:

kfτrẊe=−Xe−aZf−bYe−WuZ
e−WdZ

f+Ue+C

kfτaẎe = Ze −Ye −Pe

kfτrẊf =−Xf−aZe−bYf−WuZ
f−WdZ

e+Uf+C

kfτaẎf = Zf −Yf −Pf (7)

where

Wu =

⎡
⎢⎢⎢⎣
0 w21 0 0

0 0 w32 0

0 0 0 w43

0 0 0 0

⎤
⎥⎥⎥⎦ ,

Wd =

⎡
⎢⎢⎢⎣

0 0 0 0

w12 0 0 0

0 w23 0 0

0 0 w34 0

⎤
⎥⎥⎥⎦ .

Let W = Wu −Wd, such that

W =

⎡
⎢⎢⎢⎣

0 w21 0 0

−w12 0 w32 0

0 −w23 0 w43

0 0 −w34 0

⎤
⎥⎥⎥⎦ .

Let X = Xe −Xf , and apply this notation analogously to
Y,Z,U,P. Subtracting Ẋe and Ẋf , Ẏe and Ẏf in (7), we
can obtain

kfτrẊ = −X+ aZ−WZ− bY +U

kfτaẎ = Z−Y −P. (8)

When xe
i and xf

i are perfectly entrained for i = 1, 2, 3, 4, rxe
i
≈

rxf
i

(r is the ratio of bias to the amplitude of the signal x), we
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Fig. 5. (a) Output of AF form and MPF form Matsuoka oscillator given sensory feedback data. Highlighted region A presents overshoots problem, region B
presents phase distortion issue, and region C shows the influence of continuous feedback waves. (b) Spectrum and phase difference between the outputs of AF
form and MPF form Matsuoka oscillator in responding to a square like sensory input.

Fig. 6. AF-learning control scheme with rectilinear gait module and the switching method. G1 represents the sensory feedback data flow for the slithering gait,
while G2 indicates the data flow for the rectilinear gait. The CPG nodes Me

i and Mf
i colored in light green represent the extensor half and flexor half of the

primitive Matsuoka oscillator corresponding to the ith soft link’s pattern. The ON/OFF switch signifies that the R2 module is activated only when ||N|| > δ+ (where
δ+ ≈ 0), indicating that contact has been detected. This scheme also applies to the MPF-learning method except that the primitive CPG nodes are replaced by
the MPF form Matsuoka oscillator.

Fig. 7. Control scheme of the AF-local method with rectilinear gait module and the switching method. G1 represents the sensory feedback inputs flow for the
slithering gait, while G2 indicates the feedback inputs flow for the rectilinear gait. This scheme also applies to the MPF-local method except that the CPG nodes
are replaced by the MPF form Matsuoka oscillator.
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have zi ≈ Kixi [according to (B.2)3]. Denote

ΛK =

⎡
⎢⎢⎢⎣
K1 0 0 0

0 K2 0 0

0 0 K3 0

0 0 0amp;K4

⎤
⎥⎥⎥⎦

where Ki = K(rxi
) (see Appendix B), and E as a 4-D identity

matrix, then (8) can be simplified to

kfτrẊ = (−E+ aΛK −WΛK)X− bY +U (9)

kfτaẎ = ΛKX−Y −P. (10)

Differentiate (9) on time t to obtain

kfτrẌ = (−E+ aΛK −WΛK)Ẋ− bẎ + U̇. (11)

Calculate the equations through (9)− b (10) + kfτa (11), we
can obtain the second order ODE form of the CPG system as

k2fτaτrẌ+ kf ((τa + τr)E− aτaΛK + τaWΛK)Ẋ

+ (E+ (b− a)ΛK +WΛK)X = kfτaU̇+U+ bP.
(12)

For MPF-form Matsuoka oscillator, according to (4) and the
CPG network structure in Fig. 7, we can obtain the vector form
as follows:

kfτrẊ = −X+ aZ−WZ− bY +U+ bP

kfτaẎ = Z−Y. (13)

Similar to the derivations in the AF-form Matsuoka CPG system,
the second order ODE of the MPF-form Matsuoka CPG can be
derived as

k2fτaτrẌ+ kf ((τa + τr)E− aτaΛK + τaWΛK)Ẋ+ (E

+(b−a)ΛK+WΛK)X=kfτaU̇+U+kfτabṖ+bP.
(14)

From the right-hand side of (12) and (14), the derivation (12)
of MPF form Matsuoka oscillator has an additional free term
kfτabṖ compared to the derivation (14) of the AF form Mat-
suoka oscillator. According to the superposition property of
solutions of the second order ODE, when P is a variable with
complex waveform (e.g., collision force signals), the interfer-
ence of kfτabṖ will be relatively large. Concluding the above-
mentioned discussion yields the following remark.

Remark 1: For the AF form and MPF form feedback Mat-
suoka systems satisfying perfect entrainment condition [27],
when the feedback inputs Pe,Pf are variables, an additional
first order derivative input disturbance kfτabṖ (where P =
Pe −Pf ) is introduced to the MPF form Matsuoka oscillator,
which could cause overshoot and phase distortion4 problems
to the system. Thus, the feedback inputs of AF form Matsuoka

3 The detailed derivation of this approximation can be found in the supple-
mentary document S-Section 2.

4 Phase distortion [29] is an important concept in signal processing, which
refers to the alteration of the phase relationship between the various frequency
components of a signal, resulting in changes to the original waveform shape.

oscillator are more effective than the feedback inputs of MPF
form Matsuoka oscillator.

Next, in the AF form and the MPF form Matsuoka oscillator,
in order to compare the impact of tonic inputsue

i , u
f
i and sensory

feedback inputs pei , p
f
i to the output amplitude bias, we introduce

the following proposition.
Proposition 1: For the AF form or MPF form Matsuoka

oscillator, if the tonic inputs ue
i and uf

i are complementary to
each other (Definition 1), then the oscillation bias of zi, ui, pi
satisfy the following relationship:

BZ = ((2 + b− a)E+W)−1(bBP +BU) (15)

where

BZ = [bias(z1), bias(z2), bias(z3), bias(z4)]
T

BP = [bias(p1), bias(p2), bias(p3), bias(p4)]
T

BU = [bias(u1), bias(u2), bias(u3), bias(u4)]
T

and zi = zei − zfi , ui = ue
i − uf

i , pi = pei − pfi .
Proof: (See Appendix C). �
Proposition 1 shows that in both the AF form and the MPF

form Matsuoka oscillator, there exists a binary linear relation-
ship between the bias of ui, pi, and the bias of zi. When both
ue
i , u

f
i are limited within [0, 1] (according to the tonic input

control design in [25]), since pei , p
f
i are both nonnegative, the

impact of pi is larger than ui as long as the coefficient of
bias(pi) is larger than the coefficient of bias(ui). Hence, this
attribute guarantees the efficacy and flexibility of the feedback
mechanism within the Matsuoka CPGs, enabling sensory feed-
back inputs to significantly influence the CPG system’s output
pattern whenever contact occurs, regardless of the pattern of
tonic inputs.

The disturbance caused by kfτabṖ in the MPF form Mat-
suoka oscillator (in Remark 1) and the dominance of BP (in
Proposition 1) during the contacts are further testified in a
controlled variable test [as shown in Fig. 5(a)]. In this test, both
the primitive AF and MPF forms of the Matsuoka oscillator
(configured by Table I) were subjected to an identical time series
of sensory signals (depicted in red) that were directly fed into
each pi. The tonic inputs were held constant for both CPGs’
configurations. It is evident from the figure that the outputs of
both CPGs are notably influenced by contact events whenever
they occur, thereby confirming Proposition 1. By comparing
the output patterns of the AF and MPF Matsuoka oscillators
during and following a contact feedback event, we can highlight
the significant drawbacks of the MPF form in processing these
feedback signals as follows.

1) In segment A [in Fig. 5(a)], the rising edge of the contact
signal produces significantly large Ṗ, prompting the MPF
form of the Matsuoka oscillator to output considerably
larger overshoots compared to the AF form. Due to the in-
herent elasticity of the Matsuoka CPG’s oscillation, these
enlarged overshoots can introduce substantial fluctuations
into the system, resulting in rapid high-low-high control
command of the corresponding actuator.
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Fig. 8. (a) Example of reflexive mechanism on link L1. The red circle rep-
resents the target position. (b) Example of reflexive mechanism on L2 and L3
links.

Fig. 9. Two types of soft body link actuation determined by the feedback
inputs of the Matsuoka oscillator (assuming the outputs of the extensor and flexor
controls left chamber and right chamber, respectively). In Type I actuation, pei >

0, pfi = 0 or pei = 0, pfi > 0, leads to the inhibition of yei or yfi , and activation

of xei or xfi on the same side, which causes the opposite bending direction to the

nonzero feedback input. In Type II actuation, pei > 0, pfi > 0 inhibit yei , y
f
i ,

leading to activation of xei , x
f
i , which means free-response oscillatory actuation

of the chambers.

2) In segment B, it is noticed that upon the disappearance
of contact, the AF model’s output signal promptly returns
to its regular oscillation phase controlled by the constant
tonic inputs. Conversely, the MPF model undergoes sig-
nificant disruption due to the descending spike in the feed-
back input, leading to discernible phase distortion. Based
on this observation, we conducted a detailed spectrum
analysis of both output signals. Our findings reveal a phase
difference of 9.78 and 10.31 rad for the primary frequency
components at 0.875 and 2.657 Hz, respectively. This
indicates a phase delay of approximately 1.5 periods,
further emphasizing the distinct impact of the feedback
inputs on the MPF model’s performance.

3) In segment C, when unexpected feedback waves per-
sist, the issues of overshoots and phase distortion occur
frequently, resulting in a dilemma for the MPF form
Matsuoka oscillator. It faces a challenge in accurately
responding to contact and recovering from an incorrect
control state once contact has been established.

Fig. 10. (a) Soft snake robot traversing a narrow aisle using rectilinear gait.
(b) Phase pattern illustration of CPG control command that can be used for both
the slithering and rectilinear gait.

Fig. 11. Experiment setup of the contact-aware goal tracking locomotion task.

Overall, the properties of AF form Matsuoka oscillator show
its flexibility and accuracy in reacting to the contact events.
Based on this, we can further develop contact-aware controllers
for the soft snake robot locomotion.

IV. DESIGN OF CONTROLLERS

In this section, we devise two distinct reactive control methods
for the contact-aware locomotion of the soft snake robot, tailored
to manipulate the sensory feedback inputs of the AF-form Mat-
suoka CPG system based on contact events. Specifically, 1) the
AF-learning method integrates the notion of hybrid control [9]
with biological insights drawn from reptiles’ brains, specifically
their utilization of distinct dorsal cortex regions for process-
ing navigation commands and somatosensory signals [30]. It
employs a learning-based, contact event-triggered controller
to monitor the sensory data and adjust the sensory feedback
coefficients within the Matsuoka CPGs of the soft snake robot [as
depicted in Fig. 1(a)]. 2) The AF-local method, on the other hand,
utilizes the reflex control paradigm [12]. It directly interfaces the
contact sensory signals with the sensory feedback coefficients
of the Matsuoka CPGs, following localized reflexive rules [as
illustrated in Fig. 1(b)].

We consider contact events pertaining to the passable envi-
ronment for the soft snake robot. This implies that the minimum
gap between the surfaces of any two distinct obstacles (with
convex geometry) exceeds the width of our soft snake robot,
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considering fully compressed scale sensors. Specifically, this
width measures approximately 73 mm.

Common contact situations for the soft snake robot can be
categorized into two distinct groups as follows.
� Group I: None of the robot’s body links detects simultane-

ous contact signals from both sides of its sensors.
� Group II: At least one body link of the snake robot registers

contact signals from both sensor sides concurrently.
Taking into account the varying contact scenarios, Group I can

be effectively managed using the slithering gait as the primary
locomotion mode. However, for Group II, a specific rectilinear
gait is necessary for successful locomotion. Our design of the
reactive controllers incorporates this, where the AF-learning and
AF-local methods initially operate on the slithering gait and tran-
sition to the rectilinear gait whenever a Group II situation arises.
The unified switching module can be seamlessly integrated into
the AF-learning and AF-local frameworks, as depicted in Figs. 6
and 7. In the latter part of this section, we will elaborate on the
design of this gait switching mechanism.

A. Event-Triggered Learning-Based Sensory Reactive
Controller

In the AF-learning method, we introduce the concept of hy-
brid control to a model-free learning-based control framework,
which is composed of two controllers in the contact-aware
goal-tracking task of soft snake robot—including a regular RL
controller (C1) for goal-tracking locomotion control, and an
event-triggered RL controller (R2) for contact reactive control,
which only acts when the contact event-triggering condition is
satisfied. The scheme of the controller is shown in Fig. 6. The
reason for constructing the AF-learning method with two RL
controllers is mainly due to the difference between goal-reaching
and contact-reacting objectives.
� In the goal-reaching tasks, the actuators are controlled

consistently to maintain propulsive slithering for the soft
snake robot to approach the target positions, which requires
continuous and periodic operations of the corresponding
CPG’s tonic inputs [25]. While the contact-reactive control
aims to output the adjustments to the snake robot’s behav-
ior only when the robot is in contact with the obstacles.
In this case, the contact events are neither continuous
nor cyclic. Based on our analysis of feedback signals of
the the Matsuoka oscillator in Section III and the sam-
pled curve in Fig. 5(a), the features and timing of the
contact-reactive actions are significantly different from
the goal-reaching actions. As a result, we need different
policies for the above-mentioned two objectives during the
contact-aware locomotion tasks.

� In literature, people have proposed similar idea that adopts
hybrid control concept to RL. For instance, a recent
work [31] uses the parameterized action RL to solve con-
trol problem that requires both continuous actions and
discrete actions to operate the agent, which has separated
policy networks and a shared value network in the control
scheme. In another state-of-the-art approach that study
the bipedal locomotion control, the authors use totally

separated learning-based sub-controllers for walking gait
generator and reflexive balancing module [32].

A goal-tracking controller named free-response oscillation
constrained proximal policy optimization option-critics with
central pattern generator (FOC-PPOC-CPG) [25], is introduced
as the C1 controller. The C1 controller takes the soft snake
robot’s dynamic states and a one-step action history [25, Figs. 3
and 4] as input observations and generates actions with a policy
network to manipulate the tonic inputs and frequency parameters
of the Matsuoka CPG network. The 4-D primitive action of C1
is a = [a1, a2, a3, a4]

T ∈ R4 and are mapped to the tonic input
vector u as follows:

ue
i =

1

1 + e−ai
, and uf

i = 1− ue
i , for i = 1, . . . , 4.

This function bounds the tonic input within [0, 1].
For the R2 controller, we define the contact event-triggering

condition as follows: At each time step, given the contact
force vector N̄ and contact detection threshold εc. The event-
triggering condition for the contact-aware scenario is ‖N̄‖ > εc.
When the event-triggering condition is satisfied, R2 is triggered
to join the manipulation of the CPG system. The R2 controller
shares the same reward function with C1 and operates on the
same AF form CPG system as C1 does, but has different obser-
vations and actions.

Although it is not necessary for R2 to use the same learn-
ing algorithm as C1, for simplicity we also train R2 with
PPO [33] in this work. In the obstacle-based locomotion sce-
nario, there are in total 19 observation states for R2, denoted
as ζ = {ζ1, ζ2, . . . , ζ19}. ζ1 ∼ ζ4 represents the dynamic states
of the robot referenced on the goal position (ζ1 represents the
distance between snake’s head COM to the goal position, ζ2 is
the velocity value on the direction pointing from snake’s head
to the goal, ζ3 is the angle between goal and the snake’s heading
direction, and ζ4 is the turning angular velocity of the snake’s
head [25]). ζ5, . . . , ζ8 represent the real-time body curvatures of
the 4 soft links. ζ9, . . . , ζ12 record the R2 control actions from
the last time step. ζ13 and ζ14 represents the frequency control
option and its terminating probability by the C1 controller in the
last time step, which contains the frequency information of the
CPG system. ζ15, . . . , ζ19 are the preprocessed contact forces.
Similar to C1 that maps the 4-D actions to 8-D tonic inputs, the
4-D actions of R2 are mapped to fit the 8-D sensory feedback
signals of the Matsuoka CPG network of the soft snake robot.
Next, the 4-D action of R2 is ã = [ã1, ã2, ã3, ã4]

T ∈ R4 and
map ã to sensory feedback vector p as follows:

pei =
1

1 + e−ãi
, and pfi = 1− pei , for i = 1, . . . , 4. (16)

This function also bounds pei and pfi within [0, 1]. It is noted that,
the definition of pei , p

f
i varies depending on the specific contact

reactive control method employed. Equation (16) only describes
a way that maps R2’s actions to the Matsuoka CPGs’ sensory
feedback inputs in the hybrid learning context.

The learning process of the whole control scheme [as shown in
Fig. 1(a)] is: C1 is first trained in an obstacle-free environment
in simulation. After C1 is converged, we fix C1 as a regular
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controller for goal-tracking purposes. C1 policy is always effec-
tive regardless of the triggering of the contact events. Then we
train R2 in the environment with randomly generated obstacle
mazes in simulation until convergence. R2 is effective only when
the contact event-triggering condition is satisfied. According to
Remark 1 and Proposition 1, when the parameters of the AF form
Matsuoka CPG system satisfy Table I, when R2 is effective, it
will dominate the control of the CPG system (contact-awareness
over goal-awareness).

B. Design of the Shared Reward Function

Now we present our design for the reward function shared
by both learning based goal-tracking locomotion (C1) and
contact-aware (R2) controllers. Our design will ensure that by
maximizing the discounted sum of reward, the learned controller
can achieve efficient locomotion and accurate set-point tracking.

To improve learning efficiency, we employ a potential field-
based reward function. Artificial potential field (APF) is widely
applied in planning problems and potential game theory [34],
[35], [36] to accelerate the process of searching for the optimal
strategy. The potential field can be classified into two categories
– the attracting field for target reaching and the repulsive field
for obstacle avoidance. In this work, we only use the attracting
field, and consider the obstacles’ positions as unobservable
environment information. The attracting field function is defined
as follows:

Uatt(ρ) =
1

2
katt||ρ− ρg||2

where ρ is the coordinate of the agent and ρg is the coordinate
of the goal. Coefficient katt is a positive constant indicating
the strength of the attractive potential field. Since the attracting
gravity is always pointing toward the goal coordinate from any
position of the map, the value of gravity force should be negative.
By taking the negative gradient of Uatt, we have the attracting
force function

Fatt(ρ) = −∇Uatt = −katt(ρ− ρg).

The reward is designed to encourage the goal-reaching, guided
by the APF. We designed the reward to be composed of two
rewards

R = ω1Rgoal + ω2Ratt (17)

where ωi, i = 1, 2, 3 are constant weights. Rgoal is the termina-
tion reward for reaching a circular accepting area centered at the
goal

Rgoal = cos θg

i∑
k=0

1

lk
max{sgn(lk − ρrg), 0}

where θg is the deviation angle between the locomotion direction
of the snake robot and the direction of the goal, lk denotes
the radius of the accepting area in task-level k defined by the
learning curriculum in [25], for k = 0, . . . , i. ρrg = ‖ρ− ρg‖
is the reference linear distance between the head of the robot
and the goal, and the term max{sgn(lk − ρrg), 0} is used for
determining whether the robot’s head is within the accepting

area of the goal. Ratt is the reward function of the attracting
potential field

Ratt = v · Fatt(ρ)

where v is the velocity vector. The dot product v · Fatt(ρ)
represents the extent of the agent’s movement on following the
potential flow in the task space.

C. Local Reflexive Control of Contact-Aware Locomotion

In this section, we introduce another novel contact reactive
controller, referred to as AF-local, which incorporates the sen-
sory feedback control module grounded in the local reflexive
mechanism proposed by Kano [12] and the sensory feedback
characteristics of the AF form Matsuoka oscillator.

The local reflexive mechanism, originally described in [5] and
[12], functions by allowing only the snake robot’s links proximal
to a contact sensor to respond to contact events. However, given
the distinct structural features of our pneumatically actuated
soft snake robot, including antagonistic actuators and partially
tunable chambers, we have tailored specific rules for establishing
the reflexive loop between the sensors and the sensory feedback
inputs of the CPG network. These rules are designed to work
synergistically with a learning-based controller (C1), which fo-
cuses on manipulating the tonic inputs of the AF form Matsuoka
CPG to achieve goal-reaching objectives (see Fig. 7).

Considering the typical contact cases encountered by our
soft snake robot while locomoting through obstacles (with only
Group I contact situations), our local reflexive rules can be
succinctly described as follows.

1) Since the snake robot maneuvered by the goal-tracking
controller tends to adjust its heading direction toward the
goal, the robot could be blocked by the obstacles right
in front the robot’s heading direction if the head joint
cannot properly react to the contact and turn away from
the obstacle. Thus, the snake robot’s head should always
bend in the opposite direction to the major contact event,
which means that the ipsilateral chamber of L1 link to
the contact side of B1’s sensor will be actuated. Fig. 8(a)
provides an example showing the reflexive behavior of
the L1 link when the head sensor on B1 touches an
obstacle.

2) In biological snakes’ scaffold-based locomotion [13], a
lot of snake species bend a large portion of their body
links, such as compressed springs to generate propul-
sion forces. In our four-link soft snake robot, the latter
two links act as the major source of the scaffold-based
propulsion. Therefore, we let the snake robot’s latter
half body bend against any obstacle detected by the tail
sensors to create scaffold-like propulsion. To be more
specific, the ipsilateral chamber of L3 and L4 links to
the contact side of B5’s sensor are actuated in this contact
situation.

3) Except for the head and tail links, the corresponding CPG
nodes of the rest of the soft body links should refer to
their neighboring links’ contact states to determine their
reflexive behaviors accordingly. To design the connection
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between these CPG nodes’ feedback inputs and their
neighboring sensors, we need to account for the jamming
case. As shown in Fig. 8(b), the B2, B3, and B4 rigid
parts detect the contact events in a “left-right-left” order
(could be “right-left-right” otherwise). A way of escaping
from jamming is to decrease the bending curvature of L3,
and inflate L2’s ipsilateral chamber to B2’s contact side to
create more space for the slithering gait controlled by the
goal-reaching controller.

Based on the above-mentioned features and former expe-
rience in designing local reflexive control rules [12], we de-
sign the topology of the sensor connection to each CPG node
in the soft snake robot’s “vertebrate” system. We first define
Di, i = 1, 2, 3, 4 as the sets of paired sensors installed on B1∼B5
that are connected to the ith Matsuoka CPG node. For ex-
ample, for the third CPG node in Fig. 7, the sensory feed-
back inputs pe3, p

f
3 are connected to the sensors with subscripts

listed by D3 = {3, 4, 5}, which indicates that the sensor sig-
nals {Ne

3 , N
f
3 , N

e
4 , N

f
4 , N

e
5 , N

f
5 } are involved. In addition, we

define the connection marker array J = [J1, J2, J3, J4, J5] =
[−1,−1, 1, 1,−1]. The value in J is assigned based on the way
of connection between the sensors and the CPG network

pei = Σk∈Di

(
Ie(Jk)N

e
k + (1− Ie(Jk))N

f
k

)
pfi = Σk∈Di

(
If (Jk)N

e
k + (1− If (Jk))N

f
k

)
(18)

where

Ie(x) = max{0, sgn(−x)}
If (x) = max{0, sgn(x)}

for any x ∈ R+.
More specifically, the mechanism of (18) acting on the actua-

tors of the soft snake robot can be explained as follows (referred
to Fig. 9).

1) In the L1 CPG node, the sensors are connected to the
same side of sensory feedback inputs pei , p

f
i of L1 CPG.

When one side of the B1 sensors is in contact, the L1 link
is actuated in Type I, which bends toward the opposite
direction to the triggered sensors.

2) In the L2 CPG node, the sensors on B2 are connected to the
same side of sensory feedback inputs of L2 CPG, while
the sensors on B3 are connected to the opposite side of
sensory feedback inputs of L2 CPG. When only the B2 or
B3 sensor is triggered, or both B2 and B3 receive contact
feedback from the opposite side, L2 will behave in Type
I. When B2 and B3 have contacts on the same side, both
ye2 and yf2 will be inhibited, leading to Type II behavior of
L2.

3) In the L3 CPG node, the sensors on B3 and B4 are
connected to the opposite side of sensory feedback inputs
of L3 CPG, while the B5 sensors are connected to the
same side of sensory feedback inputs of L3 CPG. Consider
a single sensor-triggered case, when only the B3, or B4,
or B5 sensor is triggered, L3 will also behave in Type
I. For two sensors triggered case: when only (B3 and

B4) are triggered on the same side, or (B3 and B5) or
(B4 and B5) are triggered on the opposite side, L3 will
behave in Type I; when only (B3 and B4) are triggered
on the opposite side, or (B3 and B5) or (B4 and B5) are
triggered on the identical side, L3 will oscillate like Type
II. For three sensor-triggered cases, when B3 and B4 are
triggered on the same side opposite to the contact side of
B5, L3 will behave in Type I, otherwise, L3 follows Type II
oscillation.

4) In the L4 CPG node, the B5 sensors are connected to the
same side of sensory feedback inputs of L4 CPG. When
one side of the B5 sensor is in contact, the actuation of the
L4 link follows Type I, which bends toward the opposite
direction to the triggered sensors.

In order to compare the AF form Matsuoka CPG system with
the conventional MPF form Matsuoka CPG system, we also
develop MPF-local and MPF-learning controllers by replacing
the AF form Matsuoka oscillator with MPF form Matsuoka
oscillator in the two control methods introduced in Sections IV-C
and IV-A. In Section V, we will comprehensively compare
the performance of the AF-local, AF-learning, MPF-local, and
MPF-learning methods.

D. Gait Switching Module for the Two-Sided Contact Situation

Consider the contact situations belonging to Group II, this
occurs when the soft snake robot transverses a just passable
narrow aisle [see Fig. 10(a)]. This situation leaves no room for
the operations on slithering gait (including the scaffold-based
reactions) mentioned in [12] to traverse through.

To solve this problem, we introduce the rectilinear gait to
help the snake robot squeeze through narrow aisles using worm-
like locomotion pattern. Realizing the rectilinear gait for the
soft snake robot requires both the left and right chambers to
be actuated simultaneously with stable phase delay (less than
π/2, or equivalently expressed as a wave speed above 1 body
length per period of the four-link soft snake robot in this work).
According to the Type II actuation, since both pei > 0, pfi > 0
lead to free-response oscillation of the ith CPG node, then the
uniform value assignment of the whole CPG’s sensory feedback
inputs guarantees stable phase delay. Therefore we change the
connection between sensor readings and CPG feedback inputs
to the following topology:

pei =

5∑
i=1

Ne
i , pfi =

5∑
i=1

Nf
i . (19)

In our CPG system configured by Fig. 7 and Table I, the phase
delay in the slithering gait pattern can be applied to the rectilinear
gait [as shown in Fig. 10(b)] by assigning one-sided outputs
of the CPG system to both left and right chambers of the soft
link.

In order to effectively integrate this gait with the feedback
reactive patterns generated by the Matsuoka CPG system within
our control framework, we develop a mechanism for sensing and
quantifying the narrowing degree of the contacting obstacles.
First, we design a new pair of outputs as control command for
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the soft pneumatic chambers on top of zei and zfi , denoted as

he
i = zei , h

f
i = (1− μ(N))zei + μ(N)zfi (20)

where

μ(N) = max{sgn(|ξ(N)| − ε), 0}

ξ(N) =

∑5
i=1 ŵiN

e
i −∑5

i=1 ŵiN
f
i + δ+∑5

i=1 ŵiNe
i +

∑5
i=1 ŵiN

f
i + δ+

. (21)

The threshold ε > 0 is used for determining whether the
number of contact events on both sides of the robot are close
enough, and the total number of contacts are dense enough. A
small positive constant δ+ is added to avoid division by zero
problem, and avoid μ(N) < ε when no contacts are detected
(N = 0). The weight coefficients Ŵ = {ŵ1, ŵ2, ŵ3, ŵ4, ŵ5}
and ε are selected based on the following principles.

1) Simultaneous contact on both sides of the head (B1) sen-
sors must trigger rectilinear gait, regardless of the contact
situations of the other body links.

2) When there are only both sides contact situation on the
snake robot’s body links (either two-sided contact or no
contact), the gait pattern must be switched to rectilinear.

3) When the head (B1) sensors are in one-sided con-
tact situation and no two-sided contact is detected
by the B2 sensors, the gait must be switched to
slithering.

In this article, we select Ŵ = {16, 8, 6, 4, 2} and ε = 0.39.
Our experiment results in the later section show good per-
formance to support this design. It is important to highlight
that the rectilinear gait and its associated switching mecha-
nism are universally applicable to AF-local, AF-learning, MPF-
local, and MPF-learning methods. Essentially, the rectilinear
gait and switching mechanism remain consistent across the
various reactive control schemes presented in Figs. 6 and
7. As a result, in the experimental section, we have em-
ployed the AF-local method shown in Fig. 7 as a typical in-
stance to showcase the effectiveness of this adaptable switching
mechanism.

V. EXPERIMENTS

A. Signal Communication and Obstructed Environment
Setting

The planar dynamic states of the soft snake robot [25, Fig. 4]
are captured and calculated by a web camera (works under
120 Hz) hanging on the ceiling of the experiment room. We
use Aruco [37] to detect and localize QR codes attached to
every rigid body of the snake robot and the goal position.
Fig. 11 shows the experiment setup for the real snake robot
goal-reaching tasks. In this work, we update two major parts of
the experiment settings compared to our previous work [25] as
follows.

1) In the signal communication part, each ESP32 chip col-
lects contact sensor information from local I2C and shares
the data with the head chip through WiFi. In every time
step, the head ESP32 chip packs all the sensor data and
sends it back to the PC controller. The controller program

running on a desktop computer receives the observation
states from the web camera and the robot, generates the
8-D PWM duty ratio vector mapped from the CPG output
and passes it to the ESP32 chips on B1∼B5 through WiFi
communication. A three-step procedure is designed to
translate the CPG output to the PWM control commands
for the robot actuators.
a) STEP 1, determine the gait and select the correspond-

ing output from the CPG system according to (20).
b) STEP 2, multiply the modified CPG outputs he

i , h
f
i

with a normalization ratio aϕ (see Table I) obtained
by calculating the boundary of zei and zfi sampled
from contact-free trials. When there are no contacts,
pei + pfi = 0, the CPG outputs are normalized to the
values within [0, 1] (according to the BIBO property
of the Matsuoka CPG [26], [38]). When pei + pfi > 0,
the values of aϕhe

i and aϕh
f
i could exceed 1 and need

to be clipped with min(·, 1).
c) STEP 3, map min(aϕh

e
i , 1),min(aϕh

f
i , 1) to the

PWM duty cycle in 0% ∼ 100% to control the left
chamber’s valve and right chamber’s valve, respec-
tively.

The communication rate between the PC controller and the
snake robot is 30 Hz, and the maximum communication
delay is below 0.03 s.

2) In the environment setting, a number of tin cans filled
with stones and sand are placed in the experiment field
as obstacles. Each vertical peg in Fig. 11 represents a
cylinder tin can with a diameter of 100 mm and height
of 80 mm. The average weight of the obstacles is around
1.1 kg each, and the weight of the soft snake robot is 0.7 kg
(including batteries). It has been tested to ensure that any
collision caused by the soft snake robot will not move the
obstacles.

B. Simulated Training and Evaluation

RL configuration: In the simulated training part, the goal-
reaching controller C1 is a pretrained module as configured
in [25, Sections V.A and VI.A.2)]. In this work, the contact-
aware regulator R2 in AF-learning and MPF-learning controllers
is trained in a goal-reaching task with a randomly generated
6× 5 obstacle maze. During the training process of R2, the
distance between the robot and the goal is fixed to 1.5 m. The
deviation angle between the snake robot and the goal is initially
sampled from0 ∼ 60° with a uniform distribution. In the simula-
tor, the distance between every two obstacles is sampled between
120 ∼ 180 mm. The coordinate of each obstacle is added by
an additional clipped standard Gaussian noise (ω ∼ N (0, 1),
clipped by −0.01 < ω < 0.01). The method of simulating con-
tact sensors is introduced in Section II-B. To compensate for
the mismatch between the simulation and the real environment,
we employ a domain randomization (DR) technique [39], in
which a subset of physical parameters are sampled from sev-
eral uniform distributions. The range of distributions of DR
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Fig. 12. Flowchart depicting the C1+ Method. The term “C1+” encapsulates
two distinct aspects. (a) RL component of C1+ integrates contact states to the
aforementioned C1 module as additional observations. (b) Its CPG component is
modeled using the original Matsuoka oscillator, as described in (3), to generate
rhythmic patterns.

parameters used for training can be found in the supplementary
document.5

Matsuoka CPG configuration: In this study, the constant
parameters of the Matsuoka oscillator, as configured in Table I,
were determined using an evolutionary parameter optimization
method tailored for CPG systems [25], [40] in a contact-free
environment. Given this condition, where b � 1, Proposition 1
ensures that BP exerts a dominant influence on the system’s
output compared to BU. Therefore, this configuration is ap-
plicable to both the AF and MPF forms, as well as the original
form of the Matsuoka oscillator. The optimality of the configured
parameters to both AF form and MPF form Matsuoka CPGs has
also been confirmed in a contact-rich environment (refer to the
Supplementary document).

Task specification: In the contact-aware locomotion task, the
robot is required to traverse an array of obstacles and reach the
randomly generated goals. Similar to the real-world setting in
Fig. 11, there is also an accepting radius in the simulation for
each goal-reaching task, which means that the robot needs to
be close enough to the goal in order to succeed and receive a
terminal reward. At each time step, the robot also receives a
reward from the potential field defined in Section IV-B. If the
agent reaches the accepting region of the current goal, a new goal
is randomly sampled. In the failing situation, when the robot is
jammed by obstacles for a certain amount of time, the desired
goal will be resampled and updated. We set the time threshold for
this failing condition to 900 ms. In addition, if the linear velocity
of the snake robot stays negative in the goal direction for over
360 time steps (each time step is about 20 ms), the goal-reaching
task is also judged as a failure and trigger the resampling of
the new task. After the end of each learning episode, both the
physical state of the soft snake robot and the dynamic states
of all Matsuoka CPG nodes within the system are initialized to
zero.

Training/average evaluation score comparison: According
to the above-mentioned task specification, we train the AF-
learning, MPF-learning, and C1+ methods, and compare their
training scores with the average evaluation scores of AF-local,
MPF-local in the same environment. As illustrated in Fig. 12,
C1+ functions as a benchmark for comparison due to its direct
end-to-end mapping from contact and environmental observa-
tions to CPG tonic inputs. In this simulated experiment, the

5 The whole training process of each method runs on four simulated soft snake
robots (Rendered by Nvidia Flex) on a workstation equipped with an Intel Core
i7-9700K, 32GB of RAM, and one NVIDIA RTX2080 Super GPU.

Fig. 13. Comparison of learning process rewards (AF-learning, MPF-learning,
C1+) and average evaluation scores (AF-local, MPF-local) obtained in an
obstacle-based training environment, averaged across three seeded trials. The
shaded area depicts the standard deviation of the value curves for each method.

shared C1 controller has been pre-trained in the obstacle-free
environment till convergence [25]. This means all AF-local,
AF-learning, MPF-local, and MPF-learning methods use the
identical frozen C1 policy throughout learning/evaluation in
contact-aware locomotion experiments. It is worth noting that
both AF-local and MPF-local methods utilize fixed contact
reaction strategies, serving as benchmarks for the learning-based
contact reactive methods (AF-learning, MPF-learning, C1+).
Consequently, their final scores are calculated by averaging the
episode scores throughout the evaluation process. On the other
hand, the R2 controllers of AF-learning and MPF-learning meth-
ods are trained respectively in the obstacle-based goal-tracking
tasks for 3000 episodes till convergence. Different from the
other four methods, the C1+ controller is first trained in the
contact-free environment, then transferred to the obstacle-based
environment, and is also trained for 3000 episodes. As the
rectilinear gait and its switching mechanism constitute a fixed,
independent module compatible with AF-learning, AF-local,
MPF-learning, and MPF-local methods and remains unaffected
by any learning algorithms, there is no need to incorporate the
gait into the training score comparison experiment. Furthermore,
as C1+’s CPG component utilizes the original Matsuoka oscil-
lator without incorporating sensory feedback, it is incompatible
with the rectilinear gait switching module illustrated in Fig. 6.
Consequently, all methods outlined in Fig. 13 are trained or
evaluated excluding the rectilinear switching module.

From Fig. 13, it can be observed that the AF-learning method
attains the highest reward and stands out as the sole learning
approach that continues to progress throughout the learning pro-
cess. Among the other methods, AF-local is notably the closest to
the AF-learning method in terms of average reward, highlighting
the superiority of AF-related approaches. In addition, although
the MPF-learning method initially lags slightly behind the C1+
method, it continuously improves and eventually converges to
a higher score, surpassing the reward of C1+. As discussed in
Remark 1, the lower scores observed in the MPF series methods
compared to the AF series methods may be attributed to the
influence of kfτabṖ (introduced by the varying contact signals)
in the MPF form Matsuoka oscillator, which complicates the R2
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Fig. 14. Statistics of escaping time of the proposed methods and the baseline.

RL controller’s ability to process sensory feedback signals from
the CPG system.

C. Performance Analysis in Real Robot Experiments

In this section, we compare the performance of all five
methods (mentioned in Section V-B) in contact-aware soft snake
robot locomotion tasks in the real world. Furthermore, we test
the performance of the top two methods in more challenging
obstacle-based environments.

1) Escaping Experiment: In the real-world contact-aware lo-
comotion scenario, we design an escaping task to distinguish the
strength and weakness of the contact-aware controllers (listed
in Section V-B).

Environment settings: The escaping task is designed for the
following principles.

1) The allocation of the obstacles should create a narrow pas-
sage for the snake robot, with more contact opportunities
and a sharper tuning angle to test the overall capability
of the controllers in escaping the jamming situations. In
addition, the narrow space also limits the amplitude for
regular body oscillation of the snake robot.

2) The obstacles should be allocated to obstruct the goal-
reaching behavior. This is to test the coordination of the
goal-reaching module (C1 controller) and contact reactive
module (local reflexive or R2 method) in the compared
controllers.

3) The allocation of the obstacles should include the situation
where only the latter half links of the robot are stuck in the
obstacles. This is for telling whether the controller relies
mostly on its head steering to escape from the obstacles.

4) The obstacles should be placed more densely in reality to
test the generality of the compared controllers.

Based on the above-mentioned principles, the obstacles in the
escaping task are allocated, as shown in Fig. 15. In the escaping
task, the distance between every two obstacles ranged from 85 to
150 mm. The robot is initially bending to its left, and placed
at a position where four rigid bodies are in contact with the
obstacles from different sides. The exit direction (left) of the
obstacle region is intentionally set opposite to the goal direction
(right). The distance between the exit of the obstacle region and
the goal is 540 mm, which is close to the length of the snake
robot.

Performance statistics: According to the free oscillation
tonic input property of coefficient c in [25, Appendix B-D],
as the value of c increases, it can increase the oscillation
amplitude of the outputs of FOC-PPOC-CPG controller and
therefore improve its sim-to-real adaptability in the locomotion
tasks. However, the value of c should not be larger since a higher
free oscillation tonic input could decrease the goal-tracking
accuracy. As a result, we separate the experiment into two groups
with c = 0.2 and c = 0.5, respectively. For each value of c, we
run five trials for each control method.6

We record and compare the finishing time of the escaping
task of each controller. As shown in Fig. 14, AF-local and AF-
learning methods outperform the other methods in the escaping
task in both speed and stability. The increase of c from 0.2 to
0.5 does not significantly improve the performance of both AF
methods. The main reason is that the sim-to-real adaptability of
the AF methods is already good. MPF-learning method’s aver-
age finishing time is shorter than MPF-local when c = 0.2, but is
less stable than MPF-local, with the task finishing time varying
from 42 to 120 s. When c = 0.5, MPF-local method outperforms
MPF-learning in both speed and stability. C1+ method cannot
reach the goal in every trial when c = 0.2. However, with the
increase of c to 0.5, the adaptability of the C1+ controller is
also improved so that it succeeds in a few of the trials. It is noted
that, although MPF-learning converges to a lower reward level
than C1+ method during the learning process (see Fig. 13), its
adaptability to the harder unseen task (in sim-to-real) is better
than C1+ method. Generally, the results in Fig. 14 further verify
the advantages of AF feedback Matsuoka oscillator predicted by
Remark 1 and Proposition 1.

Discussion: We can further compare the sample output tra-
jectories of contact feedback signals and control commands for
different control methods (refer to Fig. 16, and the Supplemen-
tary document) to analyze the special features of AF-local and
AF-learning methods. It is noted that in these figures, the positive
and negative values are related to the extensor and flexor of the
CPG system, as well as the left and right of the snake body,
respectively.

First, we investigate the trajectory sample of the AF-local
method in the escaping task on the basis of AF-local mechanisms
illustrated by Fig. 7. As shown in Fig. 16, we highlight four time
intervals of the trajectory that present typical local reflexive
control in the AF-local controller [the robot’s body postures
before and after contacts at intervals (a)∼(d) are captured by
Fig. 15(a)∼(d)]. Here, we select time intervals (a) and (c) for
discussion. At time interval (a) of Fig. 16, both CPG nodes
at L3 and L4 are first influenced by the contact from the Nf

5

(N5 < 0), so the flexors of CPG nodes in L3 and L4 are activated
to open the right valves of L3 and L4, which results in both
links bend to the left in Fig. 15(a). Then L3’s CPG output is
influenced by Nf

3 , which will activate L3’s left chamber. At
time interval (c) of Fig. 16, the CPG node at L2 is influenced
by the superposition of Ne

3 and Nf
2 , and is supposed to activate

its flexor to open the right valve of L2, which results in L2 bend

6 The related video is available at: https://youtu.be/FyiTn4AyBjY.
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Fig. 15. Sample screenshots of performance of the AF-local method in a goal oriented escaping task from the obstacles. Each pair of pictures shows the local
reactive behavior of the soft snake robot before and after contacts.

Fig. 16. Recorded sensory input and CPG output of each body link of the soft snake robot controlled by the AF-local method in the goal-oriented escaping task.
The variable ψi refers to the Matsuoka CPG’s output signal defined in [25, (3)], which is equivalent to aϕ(hei − hfi ).

leftward in Fig. 15(c). Due to the whole snake robot’s tendency
to turn right toward the target position, the amplitude of L2’s
CPG output signal is smaller than expected. The CPG node at
L3 is influenced by the superposition of Ne

3 and Nf
5 , which also

causes L3’s right chamber activated to bend to the left side. The
CPG node at L4 is influenced by Nf

5 , which activates L4’s right
chamber and bends link L4 to the left. From the above-mentioned
behavior of the CPG outputs, we can verify that the experi-
ment results match the local reflexive mechanism illustrated in
Fig. 7.

Similarly, from the sampled trajectories of the MPF-local
method (refer to the Supplementary document), we can conclude
that the sensory inputs and the CPG outputs for all body links
satisfy the local reflexive mechanism determined by Fig. 7.
However, when comparing MPF-local behavior to the AF-local
behavior in Fig. 16, the MPF-local controller produces signifi-
cantly larger overshoots even when the contact signals are small.
The MPF-local controller also suffers from the phase distortion
issue in most contact events. However, the combination of
numerous contact events and the turning locomotion command
complicates the clear identification of phase distortion. To ad-
dress this, we devise a targeted miniexperiment to demonstrate

the presence of phase distortion in the MPF form of the Matsuoka
CPG system during real robot contact-aware locomotion tasks.
As depicted in Fig. 17, a brief contact force of approximately
2 N, lasting for a duration of 0.5 ∼ 0.7 seconds, is exerted once
on the tactile sensor located on the right side of the robot’s head
joint. This operation occurs when the robot is moving toward
its target on the left side, guided by the AF-local and MPF-local
policies, respectively. Following the local reflexive connection
rule outlined in Section IV-C, the L1 link promptly turns left
after experiencing contact on the right side. We then monitor
the recovery process postcontact, plot, and analyze the joint
trajectory of the CPG’s output command to the L1 link actuator.
The head reaction behavior is selected owing to the clean and
decoupled sensory feedback connection to the L1’s CPG node,
which makes the reaction phase particularly observable and easy
to assess.

In this experiment, we consistently observed the absence of
one left turning phase in the period following the contact reac-
tion phase in cases controlled by MPF-local, whereas AF-local
controlled cases did not exhibit this issue.7 As illustrated in

7 The related video is available at https://youtu.be/iH38aop9ZDg
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Fig. 17. Isolated phase distortion test on AF-local and MPF-local methods.

Fig. 18. (a) AF-local and (b) MPF-local phase patterns of the L1 link’s CPG
node in response to an isolated contact force. The blue shaded regions are
bounded by the curve of ψ1, which refers to the Matsuoka CPG’s output signal
defined in [25, (3)], equivalent to aϕ

(
he1 − hf1

)
.

Fig. 18(b), the missing left turning phase results in an extra cycle
of delay in the recovery from the contact reactive pattern back
to its original oscillation pattern, thus is named as an invalid
recovery. The AF-local controller demonstrates the ability to
perform a valid recovery, featuring a minimal latency interval
between the contact reactive phase and the subsequent period,
and distinguished by a clear left turning phase after the distur-
bance. We conduct ten trials for both the AF-local and MPF-local
methods, with the results indicating that the average recovery
delay for the AF-local method is around 0.148± 0.031 s, while
for the MPF-local method, counting the additional invalid recov-
ery time, is 1.285± 0.103 s. This invalid recovery signifies the
failure to resume the precontact locomotion pattern within the
CPG system, as evidenced in Fig. 17, where a proper recovery
from the right-side contact event during left turning should
manifest as a consistently left-biased oscillation. The results of
this experiment corroborate the phase distortion issue observed

in the MPF form of the Matsuoka oscillator, as anticipated by
the output trajectory of the primitive CPG node depicted in
Fig. 5.

These observations further verify Remark 1, that the first order
derivative term kfτabṖ will seriously interfere with the control
of MPF form CPG system when the contact feedback signals
are densely emerging, and therefore hinder the performance of
contact-aware locomotion.8

The issue of the output wave response can also be observed
in MPF-learning (refer to the Supplementary document). With
more chaotic sensory feedback signals from the RL event-based
controller R2, the CPG outputs also show disturbed behaviors,
which significantly slow down the locomotion in the escaping
task. It is worth noting that, due to the black-box property of
the learning-based method, both AF-learning and MPF-learning
methods send more complex sensory feedback signals to their
CPG systems. However, we can still observe clear and coordi-
nated oscillation in the sample performance of the AF-learning
method (refer to the Supplementary document). This is also
because AF series methods are free from the disturbances of
the kfτabṖ term.

In conclusion, the results and analyses in the escaping tasks
show AF-local and AF-learning controllers excel in contact-
aware locomotion of soft snake robots.

2) General Performance of AF Series Methods in Difficult
Contact-Aware Locomotion Tasks: In this section, we test the
two methods with the best performance in a more complicated
scenario, which requires the soft snake robot to traverse a densely
distributed obstacle maze to reach multiple targets by sequence.
Although the positions of the initial targets are predetermined
by specific geometries devoid of randomness, the positional
information pertaining to the subsequent goals are only disclosed
to the robot controllers upon their successful achievement of the
preceding objectives.

The primary challenges in this task stem from the intricate in-
terplay between contact awareness and goal-tracking objectives,
which are densely intertwined. Given the control agents’ lack of
knowledge regarding the positions of obstacles, the soft snake

8 The locomotion performance of the MPF-local method can be observed in
videos https://youtu.be/_pFegKgscn8 and https://youtu.be/TZakvxSAFSY.
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Fig. 19. Key frame screenshot of gait switching before and after the snake robot traversing through a narrow aisle (the green circles indicate reached goals and
red circles indicate desired goals, the green arrows point to the sensors in contact at certain time step captured by the screenshot).

robot’s navigation toward each goal is frequently disrupted and
diverted by these unseen barriers. Consequently, this results in
the robot encountering significantly sharper turning angles and
unforeseen jamming scenarios. Furthermore, the unpredictable
nature of contacts within the obstacle maze introduces an el-
ement of randomness that renders the timing and location of
detours utterly unforeseeable for any control method during the
robot’s locomotion toward its goals. We show the detoured paths
and shortcuts for each task (goals allocated on the square or
triangle vertices) in video “square.mp4” and “triangle.mp4” to
justify the adaptability of the two controllers without the help
of path preplanning or any positional information of the obsta-
cles. Both methods demonstrate their proficiency in visiting the
goals in the prescribed sequence, even amidst challenging tracks
characterized by a heightened density of blocking obstacles
and steeper turning angles (as shown in the Supplementary
document). Notably, the experimental outcomes underscore the
superiority of the AF series controllers in locomoting through
environments abundant with contacts, as well as the remarkable
adaptability of the AF-form Matsuoka oscillator in responding
to feedback signals characterized by their high complexity and
variability.

3) Performance of AF-Local Method Equipped With Recti-
linear Gait Mechanism: To investigate the efficacy of the gait
switching mechanism between the slithering and rectilinear gait
during the intelligent goal-tracking locomotion in a contact-rich
environment with the passable narrow aisles, we design an
experiment with goals and obstacles allocated as Fig. 19 shows.
We integrate the switching module to the AF-local controller
according to the scheme in Fig. 7. To guide the soft snake robot
traverse the aisle to complete this task, we allocate goals on both
sides of a narrow aisle with about half length of the snake robot
(260 mm) and set the width of the path as 74 mm, which is 2 mm
wider than the minimum width [see Fig. 2(c)] of the rigid body
of the snake robot after the scale sensors are fully squeezed.

The sample trial (video “gait switching performance.mp4”)
shows a successfully task completion process of the soft snake
robot with clear gait switching behaviors to the rectilinear gait
when traversing the aisle. From Fig. 20, it is observed that μ(N)
only drops below zero when the head or the major part of the
snake robot links are inside the aisle. Fig. 19 shows the screen-
shots of the switching process in the experiment. First, it takes
the robot about 8 s to recognize the entrance of the aisle. Using
the contact buffer introduced in Section IV-D, the switching
condition could be satisfied without rigorously simultaneous
contacts on both sides of the snake’s head. It takes about 60 s for
the soft snake robot to squeeze through the aisle (head in, tail
out). It is noticed that when t = 75 s, the one-sided contact to the

Fig. 20. Example head trajectory of pattern switching between local reflexive
slithering gait and rectilinear gait governed by the switching function μ(N).

head sensor significantly breaks the sum value balance between
all the left and right contacts, and causes μ(N) > 0. As the slim
red arrow emphasizes in Fig. 20, the controller shortly switches
to the slithering gait and turns the robot’s head toward the second
goal and then switch back to the rectilinear gait after the head
contact vanishes. At t = 94 s, the head sensor receives one side
contact signal after reaching the second goal, and switches to
the slithering gait again, until reaching the target.

In summary, the experimental findings conclusively demon-
strate that our switching mechanism, rooted in the feedback
characteristics of the AF-form Matsuoka CPGs, has effectively
facilitated the detection and traversal of navigable narrow cor-
ridors during the soft snake robot’s contact-aware locomotion
tasks. This experiment not only validates the AF-form Matsuoka
CPG system’s resilience in managing simultaneous bilateral
contact events but also underscores the versatility of the soft
snake robot, capable of executing both slithering and rectilinear
gaits utilizing the same set of actuators.

VI. CONCLUSION

This article establishes a novel framework for the contact-
aware intelligent locomotion control of a soft snake robot.
This framework is an organic integration of hardware design,
feedback mechanism study through a bioinspired CPG sys-
tem, and implementation of sensory feedback control schemes.
The proposed approaches are able to achieve promising
performance in both simulation and real robots in several
contact-aware locomotion tasks with densely allocated obsta-
cles. Our novel method tackles jointly contact sensing, contact
reacting controls and a gait switching mechanism in the contact-
aware locomotion control of the soft snake robot. Our work
brings inspiration for both the distributed reflexive method and
learning-based control method and forms the basis to design and
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control of soft snake robots that can pass through environments
with unpredictable and dense obstacles.

For future study, the contact module and design can be
enhanced with the consideration of more advanced materials
and structures to improve contact sensitivity and locomotion
efficiency for more challenging environments (e.g., underwater
contact or uneven and compliant terrains). The tactile informa-
tion and the locomotion gait can also be enriched by increasing
the number of body links of the snake robot. More investigation
is also needed to understand the influence of couplings among
primitive AF form feedback Matsuoka oscillators in the CPG
network so that the variation of couplings can be utilized to
improve the control performance.

The proposed learning-based controller is mainly reactive to
contacts but does not leverage obstacles to aid the locomotion.
To achieve so, the control system may need to employ depth
visual information and physics properties of the obstacles and
a trajectory planning module. Another limitation is that we do
not allow the soft snake robot to perform any mixed gait (e.g.,
half-slithering half-rectilinear). However, such mixed gaits for
the snake robot are important to enable the artificial snakes
to achieve better environmental adaptability. From bioinspired
perspective, the natural snakes have been witnessed using mixed
gaits when traversing the cluttered terrains [18], [19]. Devel-
oping locomotion controllers with mixed gaits could be an
interesting future direction.

APPENDIX A
DATA

TABLE I
PARAMETER CONFIGURATION OF THE MATSUOKA CPG NET CONTROLLER FOR

THE SOFT SNAKE ROBOT (i = 1, 2, 3, 4, w0,1 = w5,4 = 0.0)

This section includes the parameter configuration of the Mat-
suoka CPG network and the hyperparameter setting of DR for
the experiment.

APPENDIX B
PRELIMINARY

This section is mainly cited from [25] as the key preliminary
information for the theoretical derivations in this article.

A. Important Concepts by Definitions

Definition 1: (Complementation) For two real signals u(t)
and v(t), and a known bounded range D : [a, b] where D ⊆ R,
we say u(t) and v(t) are complementary to each other in range
D when u(t), v(t) ∈ D for all t ∈ R+ and u(t) + v(t) ≡ b− a.

Definition 2: (Entrainment) Given a neural oscillator system
with its natural frequency ωn > 0. If the neural oscillator’s

output is synchronized to the coupled input with frequency ω,
then this system is entrained with the coupled input signal. The
relation between the neural oscillator’s output and the coupled
input signal is called entrainment. If the two signals are per-
fectly entrained, they are supposed to have the same oscillation
amplitude and bias in addition to the synchronized oscillation
frequency.

B. Describing Function Analysis of the Matsuoka Oscillator

According to Fourier theory, we denote the main sinusoidal
and constant component in Fourier expansion of the vanilla state
x(t) as

xF (t) = A cos(ωt) + d = A(cos(ωt) + r) (B.1)

where r = d/A, r ∈ R is the ratio of bias to the amplitude of
the signal. We assume xF (t) only contains cosine term for sim-
plicity. And because this chapter only discusses amplitude and
bias properties of the signals, such simplification will not affect
the following derivations. We use zF (t) = g(xF (t))− ε(t) =
max (xF (t), 0)− ε(t) to represent the main sinusoidal property
of z(t) = g(x(t)) = max (x(t), 0). In a single period

[−π
ω ,

π
ω

]
g(xF (t))=

{
0 elsewhere

A(cos (ωt)+r) t ∈
[
− arccos (−r)

ω , arccos (−r)
ω

]
.

Using Fourier expansion, the output state zF (t) can also be
expressed as

g(xF (t)) = g(A(cos(ωt) + r))

= zF (t) + ε(t)

= A(K(r) cos(ωt) + L(r)) + ε(t) (n ≥ 1) (B.2)

where ε(t) is the summation of all remaining high frequency
terms in the Fourier expansion of zF (t)

K(r) =

⎧⎪⎨
⎪⎩
0 (r < −1)
1
π

(
r
√
1− r2 − cos−1(r)

)
+ 1 (−1 ≤ r ≤ 1)

1 (r > 1)

(B.3)

L(r) =

⎧⎪⎨
⎪⎩
0 (r < −1)
1
π

(√
1− r2 − r cos−1(r)

)
+ r (−1 ≤ r ≤ 1)

r (r > 1).

(B.4)

The derivation of K(r) and L(r) are based on Fourier series
analysis. Both K(r) and L(r) are constrained by −1 ≤ r ≤ 1
for xF (t) to be nonnegative in the period

[−π
ω ,

π
ω

]
.

When t ∈
[
− arccos (−r)

ω , arccos (−r)
ω

]
, zF (t) = xF (t), we

have

ε(t) = xF (t)−A{K(r) cos (ωt) + L(r)}

= − A

π

{(
r
√

1− r2 − arccos r
)
cos (ωt) +

√
1− r2

− r arccos r

}
.
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When t ∈
[
−π

ω ,− arccos (−r)
ω

]
∪
[
arccos (−r)

ω , π
ω

]
, zF (t) = 0,

we have

ε(t) = 0−A{K(r) cos (ωt) + L(r)}

= −A

{[
1

π

(
r
√

1− r2 − arccos r
)
+ 1

]
cos (ωt)

− 1

π

(√
1− r2 − r arccos r

)
− r

}
.

APPENDIX C
PROOF OF PROPOSITION 1

Proof: For an AF form Matsuoka oscillator, using Taylor
expansion at around r = 0, we have

L(r) ≈ 1

2
r +

1

π
.

Let BX denote the amplitude bias vector of X, and apply this
notation analogously to BZ,BU,BP. Let

Ae =

⎡
⎢⎢⎢⎣
Axe

1
0 0 0

0 Axe
2

0 0

0 0 Axe
3

0

0 0 0 Axe
4

⎤
⎥⎥⎥⎦

Af =

⎡
⎢⎢⎢⎢⎣
Axf

1
0 0 0

0 Axf
2

0 0

0 0 Axf
3

0

0 0 0 Axf
4

⎤
⎥⎥⎥⎥⎦

where Axe
i
, Axf

i
are the amplitude of xe

i , x
f
i , respectively.

SinceUe = E−Uf with all elements being positive satisfies
the complementary definition, we can assume xe, xf have sim-
ilar amplitudes when the CPG system for the soft snake robot
is mostly under forced-response oscillation and slithering gait,
thus Ae −Af ≈ 0. Let I = [1, 1, 1, 1]T , then we have

BZ = AeL(re)−AfL(rf )

=
1

2

(
Aere −Afrf

)
+

1

π

(
AeI−Af I

)
≈ 1

2

(
Aere −Afrf

)
=

1

2
BX. (C.1)

Taking the bias of (8) yields

BX = ((−b+ a)E−W)BZ + bBP +BU. (C.2)

Plugging (C.1) back to (C.2) yields

((2 + b− a)E+W)BZ = bBP +BU.

Therefore, we have the relation among inputs’ and outputs’
biases in vector form as follows:

BZ = ((2 + b− a)E+W)−1(bBP +BU).

Similarly, this conclusion for the MPF form Matsuoka oscillator
can be proven by the same method. �
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