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A Policy Gradient Method
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Abstract—This letter studies the synthesis of an active
perception policy that maximizes the information leakage
of the initial state in a stochastic system modeled as a
hidden Markov model (HMM). Specifically, the emission
function of the HMM is controllable with a set of perception
or sensor query actions. Given the goal is to infer the
initial state from partial observations in the HMM, we use
Shannon conditional entropy as the planning objective and
develop a novel policy gradient method with convergence
guarantees. By leveraging a variant of observable operators
in HMMs, we prove several important properties of the gra-
dient of the conditional entropy with respect to the policy
parameters, which allow efficient computation of the policy
gradient and stable and fast convergence. We demonstrate
the effectiveness of our solution by applying it to an infer-
ence problem in a stochastic grid world environment.

Index Terms—Information theory and control, Markov

processes, optimization.

[. INTRODUCTION

HIS letter studies the synthesis of an active perception
T strategy that maximizes the transparency of an initial state
in a stochastic system given partial observations. We introduce
a set of active perception actions into the system modeled as
a hidden Markov model (HMM) such that the emission at a
given state is jointly determined by the state and a perception
action. The goal is to compute an active perception strategy
that maximizes the information leakage about the initial state
So given observations Y, which is measured by the negative
conditional entropy, —H (Sg|Y).

The contributions of this letter are summarized as follows:
First, we prove that active perception planning to minimize the
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conditional entropy H(Sp|Y) cannot be reduced to a partially
observable Markov decision process (POMDP) with a belief-
based reward function. Leveraging a variant of observable
operators [10], we develop an efficient algorithm to compute
the posterior distribution P(Sp|Y) given a perception policy.
Additionally, it is shown that the policy gradient of conditional
entropy depends only on the posterior distribution P(Sp|Y) and
the gradient of the policy with respect to its parameters. We
prove that the entropy is Lipschitz continuous and Lipschitz
smooth in the policy parameters under some assumptions for
policy search space and thus ensure the convergence of the
gradient-based planning. Finally, we evaluate the performance
in a stochastic grid world environment.

Related Work: Active perception [4] involves selectively
gathering information to enhance the task performance of
an autonomous system. The applications of active perception
range from object localization [2], target tracking [6], [19] to
mission planning for surveillance and monitoring [7], [11].
Information-theoretic metrics are introduced as planning
objectives in various active perception problems. One
approach [3], [8] to active perception is to formulate a partially
observable Markov decision process (POMDP) with a reward
function that depends on the information state or the belief of
an agent. For example, in target surveillance, a patrolling team
is rewarded by uncertainty reduction of the belief about the
intruder’s position/state. In intent inference, the authors [15]
used the negative entropy of the belief over the opponent’s
intent as a reward and maximized the total reward for active
perception. Another approach is to apply the policy gradient
method in active estimation [17], [18].

Besides active perception, several studies have explored
decision-making with information-theoretic objectives. In [12],
the authors introduce a method for obfuscating/estimating state
trajectories in POMDPs and show that the causal conditional
entropy of the state trajectory given observations and controls
can be reformulated as a cumulative sum, allowing the use of
standard POMDP solvers. The work [16] develops a method
to maximize the conditional entropy of a secret variable in
an MDP to a passive observer. Another work [14] proposes
entropy maximization in POMDPs to minimize the predictabil-
ity of an agent’s trajectories to an outside observer. In both
cases, the planning agent controls the stochastic dynamics and
the observer is passive. In comparison, this letter studies the
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dual problem when the control system is autonomous but the
observer is active. Thus, the observer’s policy is restricted to be
observation-based. Unlike [14] where the goal is to maximize
the sum of the conditional entropy of current states given the
historical states, our goal is to maximize the information about
some past state (initial state) given the observations received
by the observer. See Remark 1 for more discussion.

[1. PRELIMINARIES AND PROBLEM FORMULATION

Notation: The set of real numbers is denoted by R. Random
variables will be denoted by capital letters, and their real-
izations by lowercase letters (e.g., X and x). A sequence of
random variables and their realizations with length 7 are
denoted as Xo.r and xp.7. The notation x; refers to the i-th
component of a vector x € R"” or to the i-th element of a
sequence Xxg, X[, ..., which will be clarified by the context.
Given a finite set S, let D(S) be the set of all probability
distributions over S. The set ST denotes the set of sequences
with length 7' composed of elements from S, and S* denotes
the set of all finite sequences generated from S. The empty
string in S* is denoted by A.

We introduce a class of active perception problems where
the agent cannot control the dynamical system but can select
perception actions to monitor it in order to infer some
unknown state variables. The class of perception actions can be
the choices of sensors to query in a distributed sensor network
or the choices of poses for cameras with a limited field of
view (FoV).

Definition 1: An HMM with a controllable emission func-
tion is a tuple M = (S,0,A,P,E,Sy) where 1) § =
{1,...,N} is a finite state space. 2) O is a finite set of
observations. 3) A is a finite set of perception actions.
4) P : S — D(S) is the probabilistic transition function.
5)E:S x A— D(O) is the emission function (observation
function) that takes a state s and a perception action a, outputs
a distribution over observations. 6) Sg is a random variable
representing the initial state. The distribution of Sy is denoted
by wo. And Sp denotes the set of initial states.

A non-stationary, observation-based perception policy is
a function 7w : O* — D(A) that maps a history og; of
observations to a distribution  (-|og.;) over perception actions.

For a given HMM M, a perception policy 7 induces a
discrete stochastic process M, = {S;, A;, O;, t € N}, where
S; € § and O, € O are the underlying hidden state and
observation at the 7-th time step, and

P* (0; = 0]|00:1—1 = 00:1—1, St = 8¢)
=Y E(ls. aym (alog;-1). Vt > 0.
acA

when the perception policy 7 is understood from the context,
we write P instead of P” for clarity.
The conditional entropy of X, given Xj is defined by

HXaX) ==Y Y plxi,x2) logp(ualx).
x1€X xpeX

The conditional entropy measures the uncertainty about X,
given knowledge of X;. A lower conditional entropy makes it
easier to learn X, from observing a sample of Xj.

For any finite horizon T, the agent’s partial observation
about a path in the HMM includes a sequence oq.7 of observa-
tions and a sequence ag.r of perception actions. We denote the
agent’s information by yo.7 = (0¢.T, @o.7). When the length of
yo.r 1s clear from the context, we omit the subscript and use
y to denote the sequence. In the following, we refer to y as
an observation sequence with the understanding that it is the
joint observation and perception action sequence.

Problem 1: Let an HMM M and a finite horizon T be
given. Let IT be a policy space. Compute an active perception
policy m € II that minimizes the conditional entropy of
the initial state Sp given the partial information Yp.r =
(Oo:1, Ap.T) induced by m. That is,

minimize H(So|Yo.1; M),
mwell

where the conditional entropy term H(So|Yo.7; My;) =
= 2 0eSovore0T x AT BT (0, yo:r) log P (solyo:7) and
P™ (s9, yo.7) is the joint probability of starting from sy and
observing yo.r under the policy @ and P”(so|yo.7) is the
conditional probability of starting from so given observation
Yo:T-

Remark 1: This letter considers an information-theoretic,
quantitative measure of initial-state opacity/transparency due
to uncertainty in transition dynamics and emission function.
Qualitative initial-state opacity has been studied in supervisory
control [5], [13], with applications to intent inference, track-
ing, and system diagnosis. A system is initial-state opaque
if the observer cannot infer if a path started from a set of
secret initial states. Take the intent recognition for example,
consider a surveillance sensor network that can be actively
queried to identify if an agent is benign or adversarial. This
problem is reduced to an initial-state inference problem by
constructing an HMM composed of two HMMs, one for the
benign agent and another for the adversary. The initial state
of the composite HMM determines which HMM (benign or
adversarial) is selected to generate the observation. Thus,
intent inference is equivalent to inferring the initial state of
the composite HMM.

Remark 2: A constrained formulation to minimize entropy
given a bounded perception cost can also be formulated.
Because policy gradient methods [1] for optimizing a cumu-
lative reward/cost are well-understood, we focus on solving
this entropy minimization problem and expect that only a
small modification to the gradient computation is needed to
minimize a weighted sum of the conditional entropy and the
expected total cost of perception actions.

[1l. MAIN RESULT

Given observations yo.; = (0o, ao:;) and a perception policy
7, the agent can compute a posterior distribution about the
initial state Sp, referred to as its belief of the initial state, such
that b;(s) = P* (So = soloo:r, ao.r)-

First, we show that the problem cannot be reduced to a
p-POMDP [3] which is a POMDP with a belief-based reward.

Proposition 1: There is no belief-based reward R : D(S) —
R such that Y iy R(b;) = —H(Solyo:1)-
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Proof: Suppose, by way of contradiction, such a belief-
based reward function exists. Then, R(b;) = Zfzo R(b;) —
YIZoR(b) = —H(Solyos) + H(Solyos—1). We show that
it is possible to reach the same belief with two different
observations yo; and Y(/):t/’ but —H(Solyo:r) + H(Solyo:r—1) #
—H(Solyp,,) + H(Solyy.,_,)- Consider an example of HMM
where the initial state can be either O or 1 with a prior
distribution [0.5, 0.5]; namely, the initial belief is given by
by = [0.5, 0.5]. If Sp = 0, the next state S will always emit an
observation 0. If So = 1, the next state S will always emit an
observation 1. Thus, if O is observed, then by = [1,0]; if 1 is
observed, then by = [0, 1]. The reward R(b;) = —H(Sp|o) +
H(Sp|A) = 1 regardless whether 0 = 0 or 0 = 1 is observed.
After reaching state S, the system reaches S, next and yields
some observation o’. The belief does not change, i.e., by =
b1 because the initial state is known with certainty. However,

based on the formula R(by) = —H(Sp|lo'0) + H(Splo) =
—0+40 = 0, which is different from R(b1). A contradiction is
established. |

In the next, we develop a policy gradient method to solve
Problem 1. Consider a class of parametrized (stochastic)
policies {my | 6 € ®}. We denote by My the stochastic process
{S;,As, Oy, t € N} induced by a policy mg, and Py(-) the
corresponding probability measure.

For a given parameterized policy mg, the gradient of
H(SolY; 0) := H(SolY; mg) is given by

VoH (SolY; 0)
== 3 X [VePatso, v logPy(soly)
yeOT x AT 50€Sp

+ Py (50, y) Vo log Py (So|y)]

== Z Z []PH(Y)VGPH(SO|Y) log P (soly)

yeOT x AT 50€Sy

+ Py (s0y) VoPe () log P (soly) + Po(y)VePy (s0|y)]
==> Py Y. [10g]P’0(Soly)V9]P’0(Soly)

ves 50€S0
+ Py (s0ly) log Py (501) Vo log P (y) + VaPy (soly) |
()

where Jy = {y € OT x AT|Py(y) > 0} the set of possible
observations under the perception policy my. In the following,
Propositions 5 and 4 will allow us to further simplify the
computation of gradient.

To derive the results, we introduce the observable operator
augmented with perception actions. The observable opera-
tor [9] has been proposed to represent a discrete HMM and
used to calculate the probability of an observation sequence
in an HMM using matrix multiplications.

Let the random variable of state, observation, and action,
at time point ¢ be denoted as X;, O;, A;, respectively. Let T €
RV*N be the transposed state transition matrix with

Ti,j = P(Xt+l = i|X; =J')'

For each a € A, Let O¢ € RM*N be the observation
probability matrix with O i =E(@lj,a).

Definition 2: Given the HMM with controllable emissions
M, for any pair of observation and perception action (o, a), the
observable operator given perception actions A, iS a matrix
of size N x N with its ij-th entry defined as

Aala[iyj] = Ti,joz,j

which is the probability of transitioning from state j to state i
and at the state j, an observation o is emitted given perception
action a. In matrix form,

Aol = Tdiag(0% ..., 0% ).

Proposition 2: The probability of an observation sequence
00:; given a sequence of perception actions ag.;, can be written
as matrix operations,

P(00:11a0:) = 13 Ao(a, - - - Aoplag 140- (2)

In addition, for a fixed initial state so € Sop,

. Aoolao lso . (3)

where 1y is a vector of size N with all entries equal to one
and 1y, is a one-hot vector which assigns 1 to the so-th entry.

Proof: Since the transition does not depend on the percep-
tion actions, the following equation holds according to the
matrix notation of the well-known “forward algorithm” in [9],

-
P(oq:tlao:s, s0) = 1yAg,j, - -

P(ooqlao) = 17 Tdiag(05 (... 0% ) ...

- Tdiag(0f0 ..., %9  )o.

Eq. (3) is derived by replacing the initial distribution wg with
the one-hot distribution. |

To compute the gradient VoH(Sg|Y; 6), we will need the
value of VylogPg(y). We start by calculating the probability
of an observation sequence y = (0o, do:;) in Mp.

Proposition 3: The probability of a sequence y = (0¢.¢, ao:r)
of observations and perception actions in My can be computed
as follows:

P(00:/|ao.)

Pg (001, ag:) = P(ogla0)

t
[[rot@ilooi-n. @
i=0

where 0p._1 := A is the initial empty observation.
Proof: By the product rule of probability and causality, we
can write the probability in the form,

Py (00:1, ao:t) = Py (01, arloo:r—1, ao:r—1)
Py (011, ar—1100:1—2, ap:1—2) . . . Po (01, a1 oo, ap)
t
= [[Po(oi ailooi-1. ag:i—1). (&)
i=1

For any 1 <i <t i € N, based on the multiplication rule
of probability, we can decompose the conditional probability
P(oi, ailog:i-1, ap:i—1) as

Py (0;, ailoo:i—1, ao.i—1) = P(ojlag.;, 00.i—1)7s (ailoo.i-1). (6)

Note that the probability of observing o; given the sequence of
actions ag.; and past observations 0g.;—; is independent from
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the policy my. And the conditional probability P(o;|ag:i, 00:i—1)
is derived as

P(Oi | ao:i, 00:i—1)
= Z P(oilsi, ao.i, 00:i—1)P(silao:i, 00:i—1)
S,’ES

@
= > E(oilsi. ai)P(silaoi-1. 00:i-1)
S,‘ES

P(s;, 00:i-1lao:i—1)
=Y E(oilsi, ai) P — dor 1)
5ieS 0:i—1140:i—1

1

- E(0;ls:. a))P(s;, 00:—1 |01
P(o0s1 doi1) Z (0ilsi, a)P(s;, 00:i—1lao:i—1)

s;i€S
(@) P(0o:i|ao:i)
P(00:i—1lao:.i—1)

)

where (i) is because 1) the probability of observing o; is
determined by state s; and perception action a; given the
emission function E(-); and 2) the probability of reaching state
s; at the i-th time step does not depend on the perception
action @; when the action sequence ag.; is fixed, which can
be calculated by equation (2). The equality (ii) is established
by the definition of observable operators and Proposition 2.
Substituting (7) into (6) and rewrite (5),

t
P(00:i|ao.;)
Py (001, ao:r) = ————————myg(ailoo:i-1)
o E P(00:i—1lao:i-1) o
P(oo.lao:) 1+
= ———— | | mo(ailoo:i-1). 3

P(0o|ao) Q o

where P(0¢.¢|ap:;) can be computed (6). |

For a fixed initial state so € Sp, the result of (4) becomes

P(00:/|ao., so)
P(oolao, so)

t
[ [7e@ilooi-). ©)

i=0

Po (ylso) =

where the calculation of term P(og.|ag:;, so) is given in (3).

Numerical issues may arise in computing Py (y|so) and Py (y)
because the probabilities can be close to 0 for a long horizon .
We can avoid these issues by taking the logarithm of both
sides of equation (9). The following properties further show
the gradient calculation can be simplified.

Proposition 4: Given y = (oo.T, aop.-T), the gradient of
log Py (y|so) can be computed as

T
Vi log Py (yls0) = Vg logPy(y) = Z Vi log 7t (a4100:—1)-
=0
(10)

which is invariant with respect to the initial state sq.
Proof: First, let us take the logarithm on both sides in (9),

log Py (y|so) = logP(00./lao., s0) — log P(oplao, so)
T
+ Y logms(arloos—1)-
t=0

Then, we calculate the gradient on both sides,

T
Vo logPy(ylso) = Y _ Vo logmg(ailoos—1). (1)
=0
which can be shown to equal Vg log Py (y) using (4). ]

The following proposition states that changing the policy
does not affect the belief given a fixed observation.

Proposition 5: For any y € )y, the gradient of the loga-
rithm of the posterior probability Py (so|y) with respect to 6
is 0, i.e., VglogPy(soly) = 0. Further, when Py(soly) # O,
VolPg (soly) = 0.

Proof: First, using the Bayes’ rule, Py (soly) = %’%.
Taking the logarithm on both sides:

log Py (soly) = log Py (y|so) + log po(so) — log Py (y),

and then taking the gradient on both sides with respect to 6,

Vo log Py (soly) = Vg log Py (y|so)
+ Vg log po(so) — Vg log Py (v),

From Proposition 4, we derive Vg logPg(soly) = O because
Vo logPy(ylso) — VglogPs(y) = 0 and logpuo(so) is a
constant. Furthermore, because Vj logPy(soly) = %(Osw),
when Pg(sply) # 0 but VglogPy(soly) = 0, we can derive
that VyPy (soly) = O. |

Theorem 1: The gradient of the conditional entropy w.r.t.

the policy parameter 0 is

VoH (SolY; 0) = Ey, [H(SolY = y: 0) Vg log Py ()]
(12)

Proof: The conditional entropy is given by:

H(SolY; ) = — Y Po(y) Y Py(soly) logPy(soly)-

yeOT 50€S0

When computing the gradient using (1), the terms in the
summation corresponding to Pg(soly) = 0 vanish. Let Spy =
{so € S| Py(soly) > 0} be the set of initial states from which
an observation y is possible. Then,

VoH (SolY; 0)
==Y Pa) Y [logPo(soly) VaPatsoly)
veVs 50€8S0,y

+ Po (soly) log Py (soly) Vg log Py (y) + VPa (so Iy)]

From Proposition 5, the gradient VgPy(soly) = 0 when
Py (soly) # 0. Thus, we have
VoH(SolY:0) = — Y Pa(y)
veVp
>~ [Patsoly) log Patsoly) Vs log Pay) |,
S()ES()_y
= Eym, [H(SolY = y; 6) Vg log Pa ()] (13)

where the expectation is taken with respect to the stochastic
process of observations induced by the perception policy my.
Note that Vg logPg(y) can be computed using (10). |
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Next, we show the convergence of a gradient-descent
method under a common assumption of the policy space.

Assumption 1: For any time step t € [0,7T], for
any (ogy—1,a) € O" x A, both Vylogmg(alogs—1) and
Vg log mg (a;|0p:1—1) are bounded.

Theorem 2: Under Assumption 1, the entropy H(So|Y; 6)
is Lipschitz-continuous and Lipschitz-smooth in 6.

Proof: We prove the theorem by showing that the gradient
VeH(Sp|Y; 6) and Hessian VgH(So|Y; ¢) are both bounded.
Referring to (13), by Jensen’s inequality, we obtain

H(SolY = y; 0) < log|Sol. (14)
The results of Proposition 4 show that
T
Vo logPs(y) = Y _ Vo logms(ailoo.—1). (15)
=0

which is bounded given Assumption 1 and the triangle
inequality. Due to the boundedness of H(Sp|Y = y;60) and
Vo log Py (y), the gradient VoH(Sp|Y = y; 6) is also bounded
because Eyp, [H(SolY = y; 0)VologPe ()] < Eypr, (B) =
B where B = max,cy, [|H(SolY = y; 0)V1ogPy(y)|loo. Next,
consider the Hessian

V3H(S0|Y: ) = By, [ VoH(SolY = 5 6)Vo log Po(»)
+ H(SolY = ;6)V3 log Po ()]

= By, [H(SOlY = y: 6)V} 1og P )| (16)

where the last equality is because VyPg(soly) =
Vo logPy(soly) = 0 and thus VgH(SplY = y;0) = 0 by
Proposition 5. Further, when Vg log 7y (at|og:1—1) is bounded
for all 1 € [0, T, 00:1—1 € O', and a € A,

T

Vi logPe(y) = ) _ Vi log g (arloos1)
=0

a7)

is bounded. Thus, ng logPy(y) is bounded by the triangle
inequality. Combining (14) and (17), with similar reasoning
for the boundedness of the gradient, it holds that VgH (SolY; 6)
is bounded. |

To obtain the locally optimal policy parameter 6, we
initialize a policy parameter 6y and carry out the gradient
descent. At each iteration t > 1, 6,41 = 0; —nVeH(Sp|Y; 6;),
where 7 is the step size. When using the gradient descent
algorithm to compute the optimal 6, it may be computationally
expensive to compute VoH (So|Y; 6) by enumerating all possi-
ble observations y. A sample approximation is employed such
that at each iteration, we collect M sequences of observations
{v1,...,ymu}, and compute

VoH(SolY; 6) ~ VoH(SolY; 6)

M
1
= =2 2 [Potsolyw) log Posolye) Ve log Pa o) |-
k=1 50€Sp
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Fig. 1. A stochastic grid world monitored by a set of sensors.

IV. EXPERIMENTS

Consider a stochastic grid world environment (Fig. 1) with
three types of robots, each starting from different positions to
reach specific goals (flags). The blue robot (type 1) starts at
(0, 3), the red (type 2) at (3, 0), and the green (type 3) at (5, 2).
In line with standard grid world dynamics, each robot has a
20% chance of moving to one of the two nearest cells instead
of the intended direction. Robots hitting walls or boundaries
remain in place. Their policies are computed to maximize
the probability of reaching their goals from their starting
positions.

The environment has five sensors, each with a distinct
range. The observer can query only one sensor at a time. For
sensor i € {1,...,5}, if a robot is within its range and the
observer queries it, the observer receives observation i with
90% probability and a null observation (“n”) with 10% proba-
bility (false negative). Otherwise, the observer also receives a
null observation. We employ a finite-state, observation-based
perception policy  with deterministic transitions, defined as
a tuple 7 = (0,0, A,38, ¥, qo) where 1) Q is a set of
memory states. 2) O, A are a set of inputs and a set of outputs,
respectively. 3) § : Q x O — Q is a deterministic transition
function that maps a state and an input (g, o) to a next state
8(q,0). 4) ¥ : Q — D(A) is a probabilistic output function.
5) qo is the initial state. Specifically, given an integer K >
0, the state set Q = {O=K} are the set of observations with
length < K. For each ¢ € Q, 8§(q,0) = ¢ is defined such
that ¢ = suffix=X (g - 0)! is the last (up to) K observations
after appending the observation o to g. The probabilistic

. . 6
output function is parameterized as, ¥ (alq) = %,
d e q.a

where 6 € RI2XAl is the policy parameter vector. Given
observations o0q;, the policy mg(aloo:) = Yo(ald(qo, 00:t))-
The softmax policy satisfies Assumption 1 and is differen-
tiable. In the experiments, we set the length of memory
K=2.

The initial distribution wg is 0.1, 0.4, 0.5 for type 1, type
2, and type 3, respectively. Figure 2a illustrates the conver-
gence of the policy gradient.” When the algorithm converges,
the conditional entropy H(Sp|Y; ) approaches approximately

Tsuffix=X (w) is the last K symbols of string w if |w| > K or w itself
otherwise.

2we sample M = 2000 trajectories and set the horizon T = 10 for each
iteration. The fixed step size of the gradient descent algorithm is set to be
0.5. We run N = 2000 iterations on the 12th Gen Intel Core i7-12700, the
average time consumed for one iteration is 6.7 seconds.
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Fig. 2. The convergence results of policy gradients algorithm and beliefs evolution for different true types of robots.

0.22. This indicates that the observations provide substantial
information about the robot’s type on average.

To provide an intuitive understanding, we use the computed
perception policy 6%, called the “min-entropy” policy, to
evaluate the posterior belief Pg=(Sg|og:;) of the robot’s type
given observations og.; for 0 < i < T. For comparison, we
also generated random policies by randomly selecting policy
parameter 6 and chose the one with the lowest conditional
entropy, referred to as the “random policy.” We then sampled
an initial state/type and used both policies to collect obser-
vations. Figures 2b, 2c, and 2d show how the agent’s belief
evolves for different types under the random and min-entropy
policies. For each robot type, the min-entropy policy allows for
accurate type identification by time 7 = 9, with probabilities
of 0.94 for type 1, 0.96 for type 2, and 1.00 for type 3.
In contrast, the random policy results in lower probabilities:
0.93 for type 1, 0.45 for type 2, and 0.81 for type 3. Both
policies perform well for type 1, but the min-entropy policy
significantly outperforms the random policy for identifying
type 2 and type 3 robots.

V. CONCLUSION AND FUTURE WORK

In this letter, we introduce conditional entropy to quantify
uncertainty and formulate a problem of minimizing the uncer-
tainty of the initial state in an HMM. To solve this optimization
problem, we develop a gradient descent algorithm and derive
the gradient of conditional entropy using observable operators.
Further, we prove that the conditional entropy is Lipschitz-
continuous and L-smooth with respect to the policy parameters
under certain assumptions for the policy search space. An
interesting direction for future research would be to explore
active perception under varying assumptions for the perception
agent. For example, the agent with imprecise knowledge about
the model dynamics. It is also interesting to consider a general
formulation where the active perception agent can change both
the transition dynamics and emission function of the partially
observable systems.
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