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Active Perception With Initial-State Uncertainty:
A Policy Gradient Method
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Abstract—This letter studies the synthesis of an active
perception policy that maximizes the information leakage
of the initial state in a stochastic system modeled as a
hidden Markov model (HMM). Specifically, the emission
function of the HMM is controllable with a set of perception
or sensor query actions. Given the goal is to infer the
initial state from partial observations in the HMM, we use
Shannon conditional entropy as the planning objective and
develop a novel policy gradient method with convergence
guarantees. By leveraging a variant of observable operators
in HMMs, we prove several important properties of the gra-
dient of the conditional entropy with respect to the policy
parameters, which allow efficient computation of the policy
gradient and stable and fast convergence. We demonstrate
the effectiveness of our solution by applying it to an infer-
ence problem in a stochastic grid world environment.

Index Terms—Information theory and control, Markov
processes, optimization.

I. INTRODUCTION

T
HIS letter studies the synthesis of an active perception

strategy that maximizes the transparency of an initial state

in a stochastic system given partial observations. We introduce

a set of active perception actions into the system modeled as

a hidden Markov model (HMM) such that the emission at a

given state is jointly determined by the state and a perception

action. The goal is to compute an active perception strategy

that maximizes the information leakage about the initial state

S0 given observations Y , which is measured by the negative

conditional entropy, −H(S0|Y).

The contributions of this letter are summarized as follows:

First, we prove that active perception planning to minimize the
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conditional entropy H(S0|Y) cannot be reduced to a partially

observable Markov decision process (POMDP) with a belief-

based reward function. Leveraging a variant of observable

operators [10], we develop an efficient algorithm to compute

the posterior distribution P(S0|Y) given a perception policy.

Additionally, it is shown that the policy gradient of conditional

entropy depends only on the posterior distribution P(S0|Y) and

the gradient of the policy with respect to its parameters. We

prove that the entropy is Lipschitz continuous and Lipschitz

smooth in the policy parameters under some assumptions for

policy search space and thus ensure the convergence of the

gradient-based planning. Finally, we evaluate the performance

in a stochastic grid world environment.

Related Work: Active perception [4] involves selectively

gathering information to enhance the task performance of

an autonomous system. The applications of active perception

range from object localization [2], target tracking [6], [19] to

mission planning for surveillance and monitoring [7], [11].

Information-theoretic metrics are introduced as planning

objectives in various active perception problems. One

approach [3], [8] to active perception is to formulate a partially

observable Markov decision process (POMDP) with a reward

function that depends on the information state or the belief of

an agent. For example, in target surveillance, a patrolling team

is rewarded by uncertainty reduction of the belief about the

intruder’s position/state. In intent inference, the authors [15]

used the negative entropy of the belief over the opponent’s

intent as a reward and maximized the total reward for active

perception. Another approach is to apply the policy gradient

method in active estimation [17], [18].

Besides active perception, several studies have explored

decision-making with information-theoretic objectives. In [12],

the authors introduce a method for obfuscating/estimating state

trajectories in POMDPs and show that the causal conditional

entropy of the state trajectory given observations and controls

can be reformulated as a cumulative sum, allowing the use of

standard POMDP solvers. The work [16] develops a method

to maximize the conditional entropy of a secret variable in

an MDP to a passive observer. Another work [14] proposes

entropy maximization in POMDPs to minimize the predictabil-

ity of an agent’s trajectories to an outside observer. In both

cases, the planning agent controls the stochastic dynamics and

the observer is passive. In comparison, this letter studies the
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dual problem when the control system is autonomous but the

observer is active. Thus, the observer’s policy is restricted to be

observation-based. Unlike [14] where the goal is to maximize

the sum of the conditional entropy of current states given the

historical states, our goal is to maximize the information about

some past state (initial state) given the observations received

by the observer. See Remark 1 for more discussion.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation: The set of real numbers is denoted by R. Random

variables will be denoted by capital letters, and their real-

izations by lowercase letters (e.g., X and x). A sequence of

random variables and their realizations with length T are

denoted as X0:T and x0:T . The notation xi refers to the i-th

component of a vector x ∈ R
n or to the i-th element of a

sequence x0, x1, . . ., which will be clarified by the context.

Given a finite set S , let D(S) be the set of all probability

distributions over S . The set ST denotes the set of sequences

with length T composed of elements from S , and S∗ denotes

the set of all finite sequences generated from S . The empty

string in S∗ is denoted by λ.

We introduce a class of active perception problems where

the agent cannot control the dynamical system but can select

perception actions to monitor it in order to infer some

unknown state variables. The class of perception actions can be

the choices of sensors to query in a distributed sensor network

or the choices of poses for cameras with a limited field of

view (FoV).

Definition 1: An HMM with a controllable emission func-

tion is a tuple M = 〈S,O,A, P, E, S0〉 where 1) S =

{1, . . . , N} is a finite state space. 2) O is a finite set of

observations. 3) A is a finite set of perception actions.

4) P : S → D(S) is the probabilistic transition function.

5) E : S × A → D(O) is the emission function (observation

function) that takes a state s and a perception action a, outputs

a distribution over observations. 6) S0 is a random variable

representing the initial state. The distribution of S0 is denoted

by μ0. And S0 denotes the set of initial states.

A non-stationary, observation-based perception policy is

a function π : O∗ → D(A) that maps a history o0:t of

observations to a distribution π(·|o0:t) over perception actions.

For a given HMM M, a perception policy π induces a

discrete stochastic process Mπ := {St, At, Ot, t ∈ N}, where

St ∈ S and Ot ∈ O are the underlying hidden state and

observation at the t-th time step, and

P
π (Ot = o|O0:t−1 = o0:t−1, St = st)

=
∑

a∈A

E(o|st, a)π(a|o0:t−1),∀t > 0.

when the perception policy π is understood from the context,

we write P instead of Pπ for clarity.

The conditional entropy of X2 given X1 is defined by

H(X2|X1) = −
∑

x1∈X

∑

x2∈X

p(x1, x2) log p(x2|x1).

The conditional entropy measures the uncertainty about X2

given knowledge of X1. A lower conditional entropy makes it

easier to learn X2 from observing a sample of X1.

For any finite horizon T , the agent’s partial observation

about a path in the HMM includes a sequence o0:T of observa-

tions and a sequence a0:T of perception actions. We denote the

agent’s information by y0:T = (o0:T , a0:T). When the length of

y0:T is clear from the context, we omit the subscript and use

y to denote the sequence. In the following, we refer to y as

an observation sequence with the understanding that it is the

joint observation and perception action sequence.

Problem 1: Let an HMM M and a finite horizon T be

given. Let � be a policy space. Compute an active perception

policy π ∈ � that minimizes the conditional entropy of

the initial state S0 given the partial information Y0:T =

(O0:T , A0:T) induced by π . That is,

minimize
π∈�

H(S0|Y0:T ; Mπ ),

where the conditional entropy term H(S0|Y0:T ; Mπ ) :=

−
∑

s0∈S0,y0:T∈OT×AT P
π (s0, y0:T) logPπ (s0|y0:T) and

P
π (s0, y0:T) is the joint probability of starting from s0 and

observing y0:T under the policy π and P
π (s0|y0:T) is the

conditional probability of starting from s0 given observation

y0:T .

Remark 1: This letter considers an information-theoretic,

quantitative measure of initial-state opacity/transparency due

to uncertainty in transition dynamics and emission function.

Qualitative initial-state opacity has been studied in supervisory

control [5], [13], with applications to intent inference, track-

ing, and system diagnosis. A system is initial-state opaque

if the observer cannot infer if a path started from a set of

secret initial states. Take the intent recognition for example,

consider a surveillance sensor network that can be actively

queried to identify if an agent is benign or adversarial. This

problem is reduced to an initial-state inference problem by

constructing an HMM composed of two HMMs, one for the

benign agent and another for the adversary. The initial state

of the composite HMM determines which HMM (benign or

adversarial) is selected to generate the observation. Thus,

intent inference is equivalent to inferring the initial state of

the composite HMM.

Remark 2: A constrained formulation to minimize entropy

given a bounded perception cost can also be formulated.

Because policy gradient methods [1] for optimizing a cumu-

lative reward/cost are well-understood, we focus on solving

this entropy minimization problem and expect that only a

small modification to the gradient computation is needed to

minimize a weighted sum of the conditional entropy and the

expected total cost of perception actions.

III. MAIN RESULT

Given observations y0:t = (o0:t, a0:t) and a perception policy

π , the agent can compute a posterior distribution about the

initial state S0, referred to as its belief of the initial state, such

that bt(s) = P
π (S0 = s0|o0:t, a0:t).

First, we show that the problem cannot be reduced to a

ρ-POMDP [3] which is a POMDP with a belief-based reward.

Proposition 1: There is no belief-based reward R : D(S) →

R such that
∑t

i=0 R(bi) = −H(S0|y0:t).
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Proof: Suppose, by way of contradiction, such a belief-

based reward function exists. Then, R(bt) =
∑t

i=0 R(bi) −
∑t−1

i=0 R(bi) = −H(S0|y0:t) + H(S0|y0:t−1). We show that

it is possible to reach the same belief with two different

observations y0:t and y′
0:t′

, but −H(S0|y0:t) + H(S0|y0:t−1) 
=

−H(S0|y
′
0:t′

) + H(S0|y
′
0:t′−1

). Consider an example of HMM

where the initial state can be either 0 or 1 with a prior

distribution [0.5, 0.5]; namely, the initial belief is given by

b0 = [0.5, 0.5]. If S0 = 0, the next state S1 will always emit an

observation 0. If S0 = 1, the next state S1 will always emit an

observation 1. Thus, if 0 is observed, then b1 = [1, 0]; if 1 is

observed, then b1 = [0, 1]. The reward R(b1) = −H(S0|o) +

H(S0|λ) = 1 regardless whether o = 0 or o = 1 is observed.

After reaching state S1, the system reaches S2 next and yields

some observation o′. The belief does not change, i.e., b2 =

b1 because the initial state is known with certainty. However,

based on the formula R(b2) = −H(S0|o
′o) + H(S0|o) =

−0 + 0 = 0, which is different from R(b1). A contradiction is

established.

In the next, we develop a policy gradient method to solve

Problem 1. Consider a class of parametrized (stochastic)

policies {πθ | θ ∈ �}. We denote by Mθ the stochastic process

{St, At, Ot, t ∈ N} induced by a policy πθ , and Pθ (·) the

corresponding probability measure.

For a given parameterized policy πθ , the gradient of

H(S0|Y; θ) := H(S0|Y;πθ ) is given by

∇θH(S0|Y; θ)

= −
∑

y∈OT×AT

∑

s0∈S0

[

∇θPθ (s0, y) logPθ (s0|y)

+ Pθ (s0, y)∇θ logPθ (s0|y)
]

= −
∑

y∈OT×AT

∑

s0∈S0

[

Pθ (y)∇θPθ (s0|y) logPθ (s0|y)

+ Pθ (s0|y)∇θPθ (y) logPθ (s0|y) + Pθ (y)∇θPθ (s0|y)
]

= −
∑

y∈Yθ

Pθ (y)
∑

s0∈S0

[

logPθ (s0|y)∇θPθ (s0|y)

+ Pθ (s0|y) logPθ (s0|y)∇θ logPθ (y) + ∇θPθ (s0|y)
]

.

(1)

where Yθ = {y ∈ OT × AT |Pθ (y) > 0} the set of possible

observations under the perception policy πθ . In the following,

Propositions 5 and 4 will allow us to further simplify the

computation of gradient.

To derive the results, we introduce the observable operator

augmented with perception actions. The observable opera-

tor [9] has been proposed to represent a discrete HMM and

used to calculate the probability of an observation sequence

in an HMM using matrix multiplications.

Let the random variable of state, observation, and action,

at time point t be denoted as Xt, Ot, At, respectively. Let T ∈

R
N×N be the transposed state transition matrix with

Ti,j = P(Xt+1 = i|Xt = j).

For each a ∈ A, Let O
a ∈ R

M×N be the observation

probability matrix with O
a
o,j = E(o|j, a).

Definition 2: Given the HMM with controllable emissions

M, for any pair of observation and perception action (o, a), the

observable operator given perception actions Ao|a is a matrix

of size N × N with its ij-th entry defined as

Ao|a[i, j] = Ti,jO
a
o,j

which is the probability of transitioning from state j to state i

and at the state j, an observation o is emitted given perception

action a. In matrix form,

Ao|a = Tdiag
(

O
a
o,1, . . . , O

a
o,N

)

.

Proposition 2: The probability of an observation sequence

o0:t given a sequence of perception actions a0:t, can be written

as matrix operations,

P(o0:t|a0:t) = 1
�
N Aot|at . . . Ao0|a0

μ0. (2)

In addition, for a fixed initial state s0 ∈ S0,

P(o0:t|a0:t, s0) = 1
�
N Aot|at . . . Ao0|a0

1s0
. (3)

where 1N is a vector of size N with all entries equal to one

and 1s0
is a one-hot vector which assigns 1 to the s0-th entry.

Proof: Since the transition does not depend on the percep-

tion actions, the following equation holds according to the

matrix notation of the well-known “forward algorithm” in [9],

P(o0:t|a0:t) = 1
�
N Tdiag

(

O
at

ot,1
, . . . , O

at

ot,N

)

. . .

· Tdiag
(

O
a0

o0,1
, . . . , O

a0
o0,N

)

μ0.

Eq. (3) is derived by replacing the initial distribution μ0 with

the one-hot distribution.

To compute the gradient ∇θ H(S0|Y; θ), we will need the

value of ∇θ logPθ (y). We start by calculating the probability

of an observation sequence y = (o0:t, a0:t) in Mθ .

Proposition 3: The probability of a sequence y = (o0:t, a0:t)

of observations and perception actions in Mθ can be computed

as follows:

Pθ (o0:t, a0:t) =
P(o0:t|a0:t)

P(o0|a0)

t
∏

i=0

πθ (ai|o0:i−1). (4)

where o0:−1 := λ is the initial empty observation.

Proof: By the product rule of probability and causality, we

can write the probability in the form,

Pθ (o0:t, a0:t) = Pθ (ot, at|o0:t−1, a0:t−1)

·Pθ (ot−1, at−1|o0:t−2, a0:t−2) . . .Pθ (o1, a1|o0, a0)

=

t
∏

i=1

Pθ (oi, ai|o0:i−1, a0:i−1). (5)

For any 1 ≤ i ≤ t, i ∈ N, based on the multiplication rule

of probability, we can decompose the conditional probability

P(oi, ai|o0:i−1, a0:i−1) as

Pθ (oi, ai|o0:i−1, a0:i−1) = P(oi|a0:i, o0:i−1)πθ (ai|o0:i−1). (6)

Note that the probability of observing oi given the sequence of

actions a0:i and past observations o0:i−1 is independent from
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the policy πθ . And the conditional probability P(oi|a0:i, o0:i−1)

is derived as

P(oi | a0:i, o0:i−1)

=
∑

si∈S

P(oi|si, a0:i, o0:i−1)P(si|a0:i, o0:i−1)

(i)
=

∑

si∈S

E(oi|si, ai)P(si|a0:i−1, o0:i−1)

=
∑

si∈S

E(oi|si, ai)
P(si, o0:i−1|a0:i−1)

P(o0:i−1|a0:i−1)

=
1

P(o0:i−1|a0:i−1)

∑

si∈S

E(oi|si, ai)P(si, o0:i−1|a0:i−1)

(ii)
=

P(o0:i|a0:i)

P(o0:i−1|a0:i−1)
. (7)

where (i) is because 1) the probability of observing oi is

determined by state si and perception action ai given the

emission function E(·); and 2) the probability of reaching state

si at the i-th time step does not depend on the perception

action ai when the action sequence a0:i is fixed, which can

be calculated by equation (2). The equality (ii) is established

by the definition of observable operators and Proposition 2.

Substituting (7) into (6) and rewrite (5),

Pθ (o0:t, a0:t) =

t
∏

i=1

P(o0:i|a0:i)

P(o0:i−1|a0:i−1)
πθ (ai|o0:i−1)

=
P(o0:t|a0:t)

P(o0|a0)

t
∏

i=0

πθ (ai|o0:i−1). (8)

where P(o0:t|a0:t) can be computed (6).

For a fixed initial state s0 ∈ S0, the result of (4) becomes

Pθ (y|s0) =
P(o0:t|a0:t, s0)

P(o0|a0, s0)

t
∏

i=0

πθ (ai|o0:i−1), (9)

where the calculation of term P(o0:t|a0:t, s0) is given in (3).

Numerical issues may arise in computing Pθ (y|s0) and Pθ (y)

because the probabilities can be close to 0 for a long horizon t.

We can avoid these issues by taking the logarithm of both

sides of equation (9). The following properties further show

the gradient calculation can be simplified.

Proposition 4: Given y = (o0:T , a0:T), the gradient of

log Pθ (y|s0) can be computed as

∇θ logPθ (y|s0) = ∇θ logPθ (y) =

T
∑

t=0

∇θ log πθ (at|o0:t−1).

(10)

which is invariant with respect to the initial state s0.

Proof: First, let us take the logarithm on both sides in (9),

logPθ (y|s0) = logP(o0:t|a0:t, s0) − logP(o0|a0, s0)

+

T
∑

t=0

log πθ (at|o0:t−1).

Then, we calculate the gradient on both sides,

∇θ logPθ (y|s0) =

T
∑

t=0

∇θ log πθ (at|o0:t−1). (11)

which can be shown to equal ∇θ logPθ (y) using (4).

The following proposition states that changing the policy

does not affect the belief given a fixed observation.

Proposition 5: For any y ∈ Yθ , the gradient of the loga-

rithm of the posterior probability Pθ (s0|y) with respect to θ

is 0, i.e., ∇θ logPθ (s0|y) = 0. Further, when Pθ (s0|y) 
= 0,

∇θPθ (s0|y) = 0.

Proof: First, using the Bayes’ rule, Pθ (s0|y) =
Pθ (y|s0)μ0(s0)

Pθ (y)
.

Taking the logarithm on both sides:

logPθ (s0|y) = logPθ (y|s0) + log μ0(s0) − logPθ (y),

and then taking the gradient on both sides with respect to θ ,

∇θ logPθ (s0|y) = ∇θ logPθ (y|s0)

+∇θ log μ0(s0) − ∇θ logPθ (y),

From Proposition 4, we derive ∇θ logPθ (s0|y) = 0 because

∇θ logPθ (y|s0) − ∇θ logPθ (y) = 0 and log μ0(s0) is a

constant. Furthermore, because ∇θ logPθ (s0|y) =
∇θPθ (s0|y)
Pθ (s0|y)

,

when Pθ (s0|y) 
= 0 but ∇θ logPθ (s0|y) = 0, we can derive

that ∇θPθ (s0|y) = 0.

Theorem 1: The gradient of the conditional entropy w.r.t.

the policy parameter θ is

∇θ H(S0|Y; θ) = Ey∼Mθ

[

H(S0|Y = y; θ)∇θ logPθ (y)
]

.

(12)

Proof: The conditional entropy is given by:

H(S0|Y; θ) = −
∑

y∈OT

Pθ (y)
∑

s0∈S0

Pθ (s0|y) logPθ (s0|y).

When computing the gradient using (1), the terms in the

summation corresponding to Pθ (s0|y) = 0 vanish. Let S0,y =

{s0 ∈ S | Pθ (s0|y) > 0} be the set of initial states from which

an observation y is possible. Then,

∇θ H(S0|Y; θ)

= −
∑

y∈Yθ

Pθ (y)
∑

s0∈S0,y

[

logPθ (s0|y)∇θPθ (s0|y)

+ Pθ (s0|y) logPθ (s0|y)∇θ logPθ (y) + ∇θPθ (s0|y)
]

From Proposition 5, the gradient ∇θPθ (s0|y) = 0 when

Pθ (s0|y) 
= 0. Thus, we have

∇θH(S0|Y; θ) = −
∑

y∈Yθ

Pθ (y)

∑

s0∈S0,y

[

Pθ (s0|y) logPθ (s0|y)∇θ logPθ (y)
]

,

= Ey∼Mθ

[

H(S0|Y = y; θ)∇θ logPθ (y)
]

(13)

where the expectation is taken with respect to the stochastic

process of observations induced by the perception policy πθ .

Note that ∇θ logPθ (y) can be computed using (10).
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Next, we show the convergence of a gradient-descent

method under a common assumption of the policy space.

Assumption 1: For any time step t ∈ [0, T], for

any (o0:t−1, a) ∈ Ot × A, both ∇θ log πθ (a|o0:t−1) and

∇2
θ log πθ (at|o0:t−1) are bounded.

Theorem 2: Under Assumption 1, the entropy H(S0|Y; θ)

is Lipschitz-continuous and Lipschitz-smooth in θ .

Proof: We prove the theorem by showing that the gradient

∇θ H(S0|Y; θ) and Hessian ∇2
θ H(S0|Y; θ) are both bounded.

Referring to (13), by Jensen’s inequality, we obtain

H(S0|Y = y; θ) ≤ log |S0|. (14)

The results of Proposition 4 show that

∇θ logPθ (y) =

T
∑

t=0

∇θ log πθ (at|o0:t−1). (15)

which is bounded given Assumption 1 and the triangle

inequality. Due to the boundedness of H(S0|Y = y; θ) and

∇θ logPθ (y), the gradient ∇θ H(S0|Y = y; θ) is also bounded

because Ey∼Mθ
[H(S0|Y = y; θ)∇θ logPθ (y)] ≤ Ey∼Mθ

(β) =

β where β = maxy∈Yθ
‖H(S0|Y = y; θ)∇ logPθ (y)‖∞. Next,

consider the Hessian

∇2
θ H(S0|Y; θ) = Ey∼Mθ

[

∇θ H(S0|Y = y; θ)∇θ logPθ (y)

+ H(S0|Y = y; θ)∇2
θ logPθ (y)

]

= Ey∼Mθ

[

H(S0|Y = y; θ)∇2
θ logPθ (y)

]

(16)

where the last equality is because ∇θPθ (s0|y) =

∇θ logPθ (s0|y) = 0 and thus ∇θ H(S0|Y = y; θ) = 0 by

Proposition 5. Further, when ∇2
θ log πθ (at|o0:t−1) is bounded

for all t ∈ [0, T], o0:t−1 ∈ Ot, and a ∈ A,

∇2
θ logPθ (y) =

T
∑

t=0

∇2
θ log πθ (at|o0:t−1) (17)

is bounded. Thus, ∇2
θ logPθ (y) is bounded by the triangle

inequality. Combining (14) and (17), with similar reasoning

for the boundedness of the gradient, it holds that ∇2
θ H(S0|Y; θ)

is bounded.

To obtain the locally optimal policy parameter θ , we

initialize a policy parameter θ0 and carry out the gradient

descent. At each iteration τ ≥ 1, θτ+1 = θτ −η∇θ H(S0|Y; θτ ),

where η is the step size. When using the gradient descent

algorithm to compute the optimal θ , it may be computationally

expensive to compute ∇θ H(S0|Y; θ) by enumerating all possi-

ble observations y. A sample approximation is employed such

that at each iteration, we collect M sequences of observations

{y1, . . . , yM}, and compute

∇θ H(S0|Y; θ) ≈ ∇̂θ H(S0|Y; θ)

= −
1

M

M
∑

k=1

∑

s0∈S0

[

Pθ (s0|yk) logPθ (s0|yk)∇θ logPθ (yk)

]

.

Fig. 1. A stochastic grid world monitored by a set of sensors.

IV. EXPERIMENTS

Consider a stochastic grid world environment (Fig. 1) with

three types of robots, each starting from different positions to

reach specific goals (flags). The blue robot (type 1) starts at

(0, 3), the red (type 2) at (3, 0), and the green (type 3) at (5, 2).

In line with standard grid world dynamics, each robot has a

20% chance of moving to one of the two nearest cells instead

of the intended direction. Robots hitting walls or boundaries

remain in place. Their policies are computed to maximize

the probability of reaching their goals from their starting

positions.

The environment has five sensors, each with a distinct

range. The observer can query only one sensor at a time. For

sensor i ∈ {1, . . . , 5}, if a robot is within its range and the

observer queries it, the observer receives observation i with

90% probability and a null observation (“n”) with 10% proba-

bility (false negative). Otherwise, the observer also receives a

null observation. We employ a finite-state, observation-based

perception policy π with deterministic transitions, defined as

a tuple π := 〈Q,O,A, δ, ψ, q0〉 where 1) Q is a set of

memory states. 2) O,A are a set of inputs and a set of outputs,

respectively. 3) δ : Q × O → Q is a deterministic transition

function that maps a state and an input (q, o) to a next state

δ(q, o). 4) ψ : Q → D(A) is a probabilistic output function.

5) q0 is the initial state. Specifically, given an integer K ≥

0, the state set Q = {O≤K} are the set of observations with

length ≤ K. For each q ∈ Q, δ(q, o) = q′ is defined such

that q′ = suffix=K
(q · o)1 is the last (up to) K observations

after appending the observation o to q. The probabilistic

output function is parameterized as, ψθ (a|q) =
exp(θq,a)

∑

a′∈A exp(θq,a′ )
,

where θ ∈ R
|Q×A| is the policy parameter vector. Given

observations o0:t, the policy πθ (a|o0:t) = ψθ (a|δ(q0, o0:t)).

The softmax policy satisfies Assumption 1 and is differen-

tiable. In the experiments, we set the length of memory

K = 2.

The initial distribution μ0 is 0.1, 0.4, 0.5 for type 1, type

2, and type 3, respectively. Figure 2a illustrates the conver-

gence of the policy gradient.2 When the algorithm converges,

the conditional entropy H(S0|Y; θ) approaches approximately

1suffix=K(w) is the last K symbols of string w if |w| ≥ K or w itself
otherwise.

2We sample M = 2000 trajectories and set the horizon T = 10 for each
iteration. The fixed step size of the gradient descent algorithm is set to be
0.5. We run N = 2000 iterations on the 12th Gen Intel Core i7-12700, the
average time consumed for one iteration is 6.7 seconds.
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Fig. 2. The convergence results of policy gradients algorithm and beliefs evolution for different true types of robots.

0.22. This indicates that the observations provide substantial

information about the robot’s type on average.

To provide an intuitive understanding, we use the computed

perception policy θ∗, called the “min-entropy” policy, to

evaluate the posterior belief Pθ∗(S0|o0:i) of the robot’s type

given observations o0:i for 0 ≤ i ≤ T . For comparison, we

also generated random policies by randomly selecting policy

parameter θ and chose the one with the lowest conditional

entropy, referred to as the “random policy.” We then sampled

an initial state/type and used both policies to collect obser-

vations. Figures 2b, 2c, and 2d show how the agent’s belief

evolves for different types under the random and min-entropy

policies. For each robot type, the min-entropy policy allows for

accurate type identification by time T = 9, with probabilities

of 0.94 for type 1, 0.96 for type 2, and 1.00 for type 3.

In contrast, the random policy results in lower probabilities:

0.93 for type 1, 0.45 for type 2, and 0.81 for type 3. Both

policies perform well for type 1, but the min-entropy policy

significantly outperforms the random policy for identifying

type 2 and type 3 robots.

V. CONCLUSION AND FUTURE WORK

In this letter, we introduce conditional entropy to quantify

uncertainty and formulate a problem of minimizing the uncer-

tainty of the initial state in an HMM. To solve this optimization

problem, we develop a gradient descent algorithm and derive

the gradient of conditional entropy using observable operators.

Further, we prove that the conditional entropy is Lipschitz-

continuous and L-smooth with respect to the policy parameters

under certain assumptions for the policy search space. An

interesting direction for future research would be to explore

active perception under varying assumptions for the perception

agent. For example, the agent with imprecise knowledge about

the model dynamics. It is also interesting to consider a general

formulation where the active perception agent can change both

the transition dynamics and emission function of the partially

observable systems.
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