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ARTICLE INFO ABSTRACT

Keywords: Website fingerprinting is a passive network traffic analysis technique that enables an adversary to identify
Beta distribution the website visited by a user despite encryption and the use of privacy services such as Tor. Several website
Censorship fingerprinting defenses built on top of Tor have been proposed to guarantee a user’s privacy by concealing
Cybersecurity

trace features that are important to classification. However, some of the best defenses incur a high bandwidth
and/or latency overhead. To combat this, new defenses have sought to be both lightweight — i.e., introduce
a small amount of bandwidth overhead — and zero-delay to real network traffic. This work introduces a
novel zero-delay and lightweight website fingerprinting defense, called BRO, which conceals the feature-rich
beginning of a trace while still enabling the obfuscation of features deeper into the trace without spreading the
padding budget thin. BRO schedules padding with a randomized beta distribution that can skew to both the
extreme left and right, keeping the applied padding clustered to a finite portion of a trace. This work specifically
targets deep learning attacks, which continue to be among the most accurate website fingerprinting attacks.
Results show that BRO outperforms other well-known website fingerprinting defenses, such as FRONT, with
similar bandwidth overhead.
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1. Introduction classifiers [6]. As such, these defenses have not been implemented in

any privacy service such as Tor.

It is no secret that Internet surveillance exists and poses a persistent
threat to individual privacy [1,2]. One such type of surveillance is
website fingerprinting, which seeks to uncover the website a user visits
despite the use of privacy services such as Tor by exploiting patterns in
network traffic. Using website fingerprinting, an adversary can detect
whether a user visited a website targeted for surveillance with high
accuracy [3-9].

Classic state-of-the-art attacks utilize machine learning [3-5,8,10]
and exploit features such as packet ordering statistics, the number
of incoming and outgoing packets, packet lengths, etc. More recent
attacks [6,7,9,11] leverage deep learning, which does not burden the
attacker with manually selecting a feature set. Furthermore, deep learn-
ing attacks continue to pose a threat as some of the most accurate
attacks even against modest defenses [6,12]. In response to attacks,
many defenses [10,12-18] have been proposed to conceal sensitive
features of website traffic used in classification. However, some of the
best defenses require a high bandwidth and/or latency overhead to be
carried out [10,13,15,17]. Bandwidth overhead burdens the network
with useless traffic and latency overhead diminishes user experience
by increasing webpage load times. Moreover, some defenses that strive
to be lightweight with zero latency remain vulnerable to deep learning

In light of these factors, this research proposes a novel website fin-
gerprinting defense titled Beta Randomized Obfuscation (BRO) which
is both lightweight and introduces zero latency overhead. BRO heavily
disrupts both the feature-rich beginning of a trace as well as important
packet ordering statistics; both of which are crucial for trace classifica-
tion [4,12]. BRO is evaluated in several metrics to show its effectiveness
and practicality. BRO is demonstrated to be effective against state-of-
the-art attacks including a deep learning attack, Deep Fingerprinting
(DF) [6], widely considered to be one of the best attacks.

BRO diminishes the accuracy of Deep Fingerprinting to below all
of the machine learning attacks used in the experiment despite ini-
tially performing better on undefended traffic. Furthermore, BRO out-
performs FRONT [12], another lightweight and zero-delay website
fingerprinting defense, with similar bandwidth overhead.

The contributions made by this work are twofold. First and fore-
most, this paper demonstrates that BRO is effective at diminishing the
accuracy of deep learning website fingerprinting attacks over that of
previously proposed zero-delay and lightweight website fingerprinting
defenses. Secondly, this work examines what sets BRO apart from
FRONT with respect to the clustering and location of dummy packets
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applied by each defense. Experimental results indicate that dummy
packets in BRO are clustered closer together and experience a higher
degree of trace-to-trace randomness concerning their location in a
defended trace than in FRONT.

This work is organized as follows. Section 2 gives background
information related to website fingerprinting including the mechanics
of Tor and the premise of attacks and Section 3 describes related work.
Section 4 gives the necessary definitions to understand bandwidth and
latency overhead. Section 5 describes the implementation and fine-
tuning of the BRO defense and analyzes what sets BRO apart from
FRONT. Section 6 details the experimental setup used in this research
for data collection and defense evaluation. Section 7 presents the
findings of this work and finally, Section 8 gives the conclusion and
future work.

2. Background
2.1. Tor background

Research on website fingerprinting consistently uses Tor as a foun-
dation for testing [3,4,6,8,12-17]. This is due to Tor’s reputation as
an effective anonymity network used to provide privacy to users. Tor
creates a circuit typically consisting of three nodes; network traffic
is sent from the client through the circuit and at each node, a layer
of encryption is removed. The use of multiple layers of encryption
and a multi-node routing methodology makes it impossible for any
network intermediary to know both the origin and final destination of
the communication; this forms the premise of website fingerprinting
attacks—identifying the website visited despite the use of Tor. Further-
more, Tor packs network traffic into packets — termed cells by the Tor
Project — of fixed size, nullifying the use of individual packet lengths
as a feature for classification. In this work cell and packet are used
interchangeably.

2.2. Attacking Tor traffic

Prior work [3,4,6,8,9] has shown that a passive analysis of en-
crypted network traffic is effective at identifying the website visited
by a user. As such, this work considers an adversary consistent with
other research on website fingerprinting: a passive adversary situated
between the user and the Tor entry node. In this sense, passive means
that the adversary does not disrupt the network traffic of the user—they
do not delay, drop, or inject any packets in the stream. The adversary
knows the identity of the user but is unaware of which websites they
are browsing. To design a successful attack, the adversary collects
their own sequence of packets (AKA a trace) sourced from/destined to
websites they would like to be able to identify and feeds the traces
into a classifier for training. The training process extracts important
and identifying features from each website. Once the adversary has
trained their classifier, they collect traces from the user’s connection
and attempt to identify the website visited using their classifier.

3. Related work

Website fingerprinting is a thoroughly researched topic dating as
far back as the late 1990s with analysis of HTTP traffic encrypted by
SSL [19,20]. Research on website fingerprinting is broadly divided into
two categories of work: attacks and defenses. Website fingerprinting
attacks are concerned with the classification of encrypted network
traffic using machine learning or deep learning. Website fingerprinting
defenses attempt to overcome attacks with as little disruption to the
user as possible. At their core, most defenses boil down to introducing
some sort of delay and/or a reordering of network traffic and/or
padding traffic with dummy packets. Attacks and defenses can be
evaluated in both the closed- and open-world setting. In the open-
world setting, websites are split into two categories: monitored and
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unmonitored. The monitored set is typically much smaller. The attacker
must determine if a trace belongs to either the monitored or unmon-
itored set. This presents a more realistic challenge to the attacker as
it mimics real web browsing behavior. In the closed-world setting, all
websites are considered monitored, and the attacker must choose which
website a trace belongs to. This presents a challenge to a defense as the
classification problem for the attacker is much smaller.

3.1. Website fingerprinting attacks

Website fingerprinting attacks have become increasingly accurate
in recent years in both the closed- and open-world scenario with
some [3,6] boasting precision in the open-world setting of over 90%
on undefended traffic. Many older attacks [3,4,8,10], utilize machine
learning for classification whereas some newer attacks [6,7,9,11] are
beginning to use deep learning.

3.1.1. FineWP

Shen et al. [5] argue that previous research on website fingerprint-
ing has solely focused on individual, differing websites and ignored
website fingerprinting of multiple webpages from the same website—
e.g., multiple items on a shopping website. They propose FineWP,
which splits a trace into two distinct states: uplink and downlink. An
uplink-dominant stage is defined as when the client is making requests
to the server; specifically, when there are at least 4 uplink packets
for every downlink packet. A downlink-dominant stage is the inverse.
Traditionally, a packet in a sequence is classified as either positive
or negative for outgoing and incoming traffic; FineWP alters this by
marking outgoing packets as 0. In this way, when a cumulative sum of
a trace is taken, the uplink-only stages are clearly defined.

To classify a webpage, they use block features, sequence features,
and statistical features. Block features describe the number and location
of uplink-only blocks within a trace. Sequence features define the
location and length of uplink-dominant stages (which can consist of 1
or more uplink-only blocks). Statistical features consist of statistics such
as minimum, maximum, mean, standard deviation, etc. on the uplink
packets, downlink packets, and the entire trace together. These features
are input into a random forest classifier. The authors note that, like
other attacks, theirs is susceptible to the fact that website content is
not necessarily static. Therefore, the accuracy of their attack degrades
with time and requires a retraining of the classifier with updated traces.

3.1.2. k-Fingerprinting

k-Fingerprinting [4] is an attack that utilizes a random forest classi-
fier in conjunction with k-nearest neighbors. The attack first generates
what the authors denote as a fingerprint using the random forest
classifier then performs the classification of the trace using the k-
nearest neighbors of the training data. Note however that only the
random forest is used in the closed-world scenario.

The authors of [4] also make notable contributions to the im-
portance and ranking of different trace features for classification—
something that was lacking previously. They calculate the importance
of 150 features and find that some of the most important features in-
clude the total number of incoming packets and several packet ordering
statistics.

3.1.3. CUMUL

CUMUL [3] is proposed by Panchenko et al. as an attack leveraging
the cumulative sum of the packet lengths in a trace as a feature.
The cumulative sum as a feature allows for easy visualization of the
shape of the trace (such as where in the trace there are more outgoing
packets than incoming and vice versa). The authors use a support
vector machine (SVM) as the classifier with an RBF kernel. Notably,
the authors tune and optimize their feature sampling rate to create the
most accurate attack without burdening the attacker with high compu-
tational overhead. The result is an accurate attack with comparatively
smaller computation time.
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3.1.4. Deep fingerprinting

In 2018, Sirinam et al. proposed Deep Fingerprinting (DF) [6] as
a state-of-the-art website fingerprinting attack. DF leverages a deep
convolutional neural network (CNN) to fingerprint encrypted network
traffic on Tor. Deep Fingerprinting differs from conventional website
fingerprinting attacks in that the attacker is not forced to determine
which features are most important for classification—it has automatic
feature extraction. Furthermore, the attack only requires a sequence of
packet directions as input. Their implementation is widely considered
to be one of the most effective and state-of-the-art attacks due to its
ability to perform well even against moderate defenses.

3.2. Website fingerprinting defenses

Website fingerprinting defenses employ a myriad of different strate-
gies, attempting to conceal trace features important for classification.
Below gives an overview of different strategies.

3.2.1. Walkie-Talkie

Walkie-Talkie (WT) [17] is a defense that implements half-duplex
communication of HTTP requests between the client and server; that is,
between the client and the server, only one is sending data at a time.
The half-duplex implementation only needs to be implemented on the
client side—i.e., the client will queue up any additional requests until
it has received all responses to the outstanding requests from the server
at which point it will send the next burst of requests. On top of that,
two websites are paired with each other and padded in burst sequences;
the front of the traces are aligned and the trace with the smaller burst
is padded to the length of the larger burst. If the traces are not the same
size, the shorter trace is padded out with the remaining bursts from the
longer trace.

The goal of Walkie-Talkie is to create collisions between two web-
sites by requiring that the loading of paired websites generates the
same trace sequence. The main drawbacks of WT are that the client
and proxy must maintain a database of burst sequences for the padding
step and the delay introduced to webpage loading by half-duplex
communication.

3.2.2. Tail Time

Tail Time (TT) [15] is proposed by Liang et al. as an improvement
to Walkie-Talkie. As such, it is built on top of WT, sharing the same
underlying defense. The implementation of TT in [15] chooses a single
reference sequence (the longest trace in the dataset) to be used for
all webpage loads during the padding step. TT earns its name through
its concern for page loading time—WT suffers from long page-loading
times due to its strict use of half-duplex communication. TT does not
allow queued requests to wait for outstanding requests longer than
the configured tail time value, thereby decreasing page-loading time
over WT. In [15], the authors uncover that WT suffers from long page
loading times due to webpage resources (such as ads) being given a
lower priority to process other resources more quickly, but the half-
duplex nature of WT does not allow for any new requests to be sent
until all outstanding ones are received. This causes the queued requests
to block for slow resources. Importantly, TT does not experience an
increase in fingerprintability over WT.

3.2.3. FRONT

Gong et al. propose FRONT [12] as a zero-delay and lightweight de-
fense. Similar to TT, FRONT is concerned with the delay associated with
many state-of-the-art website fingerprinting defenses. FRONT builds off
previous research that the very beginning of a trace is an important
feature for identifying which website a trace belongs to. To combat
this, FRONT obfuscates the beginning of a trace by using a Rayleigh
distribution. A Rayleigh distribution is shaped in such as way that the
dummy packets sampled from it are more likely to have values closer to
0—i.e., the beginning of the trace. Both the client and proxy randomly
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sample a padding budget (the number of dummy cells to be sent) and a
padding window (to determine where most of the dummy packets will
be injected). Both properties are sampled from a uniform distribution.
The Rayleigh distribution is shaped by the padding window and the
dummy packets are then sampled from the distribution. The client
and proxy perform each step of the defense independently to enhance
the degree of randomness. Any dummy packets that are scheduled to
be sent after the last real packet are canceled, which decreases the
bandwidth overhead and keeps the latency overhead at zero. FRONT
outperforms another lightweight defense, WTF-PAD [16], which was
previously defeated by Deep Fingerprinting.

3.2.4. GLUE

GLUE [12] is built in conjunction with FRONT to provide coverage
between multiple website loads. The defense attempts to elongate and
merge several traces by sending dummy packets between the client
and proxy until another browsing request is made or a timeout value
is reached. This forces the attacker to find a split point where one
trace ends and the next one starts. A client will start in FRONT mode
during an initial browsing request. When the website finishes loading,
GLUE mode is entered where dummy packets are exchanged back and
forth between the client and proxy. If a request for a new website is
made before GLUE mode times out, BACK mode is entered, and the
website is loaded as though it were an undefended trace. Once the new
page loads, GLUE mode is reentered. The state will continue to switch
between GLUE mode and BACK mode until GLUE mode times out, at
which point it will return to FRONT mode. The attacker is forced to
find a split point potentially for several websites.

In [12], the authors devise their own attack to identify the split
point of a given trace defended by FRONT and GLUE, and from there
identify which website each subtrace belongs to. They demonstrate that
even if the attacker is given the correct number of subtraces within a
defended trace (i.e., they know exactly how many websites the user
visited within one trace), identifying where to split the trace still proves
difficult.

3.2.5. QCSD

HTTP/3 will not support TCP and will instead use QUIC, a protocol
built on top of UDP aimed at speeding up communication [21]. As such,
research on the effects of QUIC on website fingerprinting has become
more prevalent, such as QCSD [22]. QCSD emulates existing website
fingerprinting defenses on top of the QUIC protocol.

QCSD has two main advantages over the conventional implemen-
tation of website fingerprinting defenses: (1) QUIC is implemented in
user space on top of UDP, which enables defenses to be deployed on
a per-application basis; and (2) QCSD is implemented strictly on the
client side. The second point is particularly important as it does not
require coordination between the client and proxy to implement a
defense, which contrasts with the standard implementations of many
state-of-the-art website fingerprinting defenses [12,14-17]. By omitting
the requirement for a proxy to participate in the defense, the imple-
mentation is greatly simplified and a defense can be packaged into a
browser.

In [22], FRONT [12] and Tamaraw [18] are emulated. The authors
use the QUIC PADDING and PING control frames to send client-to-
server padding, and they create what they term chaff-steams to pad in
the server-to-client direction by forcing the server to send chaff data
using HTTP GET requests. Furthermore, the implementation of QUIC
in user-space enables them to delay traffic to shape the transmission as
needed. Using these methods, they are able to successfully emulate both
FRONT and Tamaraw with some important insights on the difference in
both latency and bandwidth overhead—e.g., that defenses with smaller
bandwidth overhead remain small when implemented in QCSD but
those with larger bandwidth overheads increased. Particularly of note
is that the FRONT implementation with QCSD is able to successfully
defend against attacks with results similar to the simulated version.
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4. Preliminaries

Here, definitions necessary to understand the criteria used to eval-
uate website fingerprinting defenses are given. First, overhead def-
initions are given. Then, definitions of accuracy and True Positive
Rate (TPR), which are used to measure the performance of a website
fingerprinting attack against a defense, are given. In some works,
accuracy and TPR are used somewhat interchangeably; however, this
work makes a distinction between the two. Accuracy is used in the
closed-world where the attacker knows that all websites are monitored
and is limited to choosing which website a trace belongs to. In contrast,
TPR is used in the open-world where attacker is also given the option
of labeling a trace as unmonitored. This distinction yields the two
equations below.

4.1. Bandwidth overhead

Bandwidth overhead describes the additional traffic that the net-
work must bear to carry out a defense. Two metrics are used to evaluate
the defense in this manner: the mean bandwidth overhead and the
median bandwidth overhead. Both metrics provide insight into the
effect a defense has on an individual trace. It is important to note
that the dummy packets are only exchanged between the client and
the proxy (i.e., the Tor entry node) and that the resulting bandwidth
overhead is thus limited to this portion of the network. The destination
server does not receive dummy packets and furthermore is unaware of
the defense altogether. Limiting the bandwidth overhead to this portion
of the network has the effect of decreasing the amount of time and
number of hops that dummy packets spend traversing the network,
thereby minimizing congestion. Moreover, it makes a defense simpler
to implement by only having 2 entities taking part. The following
definitions are given to succinctly define bandwidth overhead.

4.1.1. Trace

A trace is a sequence of packets where each index defines a tuple
containing a timestamp ¢ and the direction d. Since Tor cells are all the
same size, +1 and —1 are used to define outgoing and incoming cells
respectively. The sequence is ordered by timestamp. Note that in this
research each trace consists of 15 s worth of packets. Therefore, a trace
is defined by the following.

T ={@.d)), (@, dp), ..., (1,,dy)} 1)

4.1.2. Bandwidth overhead of a single trace

The bandwidth overhead definition of a trace from [12] is main-
tained. The bandwidth overhead of a single trace explains how much
additional padding is applied to the trace relative to its original length.
Let T denote a trace before padding and T’ denote a trace after padding.
The bandwidth overhead O of a single trace T is given by the following
equation where |T'| is the number of packets in 7.

IT'| - |T|

oT)= ———— 2
(T) Tl 2

4.1.3. Mean bandwidth overhead
The mean bandwidth overhead applied by a defense gives a metric
of how much bandwidth overhead is applied to an individual trace on
average. It is calculated by taking the sum of the bandwidth overhead
for each individual trace and dividing that by the number of traces in
the dataset. The mean bandwidth overhead of a defense D is given by
the following equation where N defines the total number of traces in
the dataset.
L, 0)

Omean(D) = N

3
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4.1.4. Median bandwidth overhead

The median bandwidth overhead of the defense defines the median
bandwidth overhead observed in the defended dataset. This is a useful
metric to show the skew in the distribution of bandwidth overhead. The
median bandwidth overhead of a defense D is given by the following
equation where S}, 1.i4:n defines a sorted array of all individual trace
bandwidth overheads and N defines the total number of traces in the
dataset.

OunedianD) = Spandwidin H%” 4

4.2. Latency overhead

The latency overhead describes the additional time required to carry
out a defense relative to the original trace. To be consistent with
related work [12,17] bandwidth overhead and latency overhead are
independent; that is, dummy packets sent before the last real packet
do not contribute to latency overhead. Similar to bandwidth overhead,
a defense is evaluated by the mean latency overhead and the median
latency overhead. The mean latency overhead provides a metric for
how much latency a defense applies to individual traces on average.
The median is included as a metric as well to indicate skew. The
relevant definitions for latency overhead are given below.

4.2.1. Latency overhead of a single trace

The latency overhead of a single trace is defined by the additional
time required to carry out a defense on a trace divided by the time
taken to load the undefended trace. Let 7, denote the final timestamp
in an undefended trace and 7 denote the final timestamp in the same
trace with a defense applied. Then, the latency overhead L of a single
trace T is given as the following.

!

T -
L(T) =

n

n

(5)

4.2.2. Mean latency overhead

The mean latency overhead defines the mean latency that a defense
applies to traces within the dataset. It can be computed by taking the
sum of latency overhead for each individual trace and dividing that by
the number of traces in the dataset. The following equation gives the
mean latency overhead for a defense D where N is the number of traces
in the dataset.

>N L)

N (6)

Lmean(D) =

4.2.3. Median latency overhead

The median latency overhead provides another measure of how
much latency overhead a defense applies to traces within the dataset.
The median latency overhead of a defense D is given by the following
equation where S,,,,., defines a sorted array of the latency overhead
for all individual traces in the dataset and N defines the total number
of traces in the dataset.

Lyedian(D) = Siarency H%” @]

4.2.4. Accuracy

The accuracy of an attack defines the percentage of traces correctly
identified within a dataset. The purpose of using accuracy as a metric
of evaluation is twofold: (1) it indicates how well an attack performs
despite the use of a defense; and (2) it demonstrates the ability of
a defense to evade an attack and provide protection to the user—
i.e., a lower accuracy means a better defense. Furthermore, the use of
accuracy in the closed-world setting is consistent with related work in
website fingerprinting [3-6,8-10,13-18].

The accuracy A of an attack is given by the following equation
where T, defines the number of traces correctly identified and N
defines the total number of traces in the dataset.

T,

A= ~ (8
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4.2.5. True positive rate

In the context of website fingerprinting, the TPR describes the
percentage of correctly labeled monitored traces. The TPR is commonly
used for evaluation in the open-world setting [3,4,6-9,12,13,16,17,21,
22]. Just as with accuracy in the closed-world setting, the TPR in the
open-world setting measures the effectiveness of a website fingerprint-
ing defense at providing a user with protection—a lower TPR means a
better defense.

The TPR of an attack is given by the following equation where
TP defines the number of correctly labeled monitored traces and FN
defines the number traces that have been incorrectly identified as
unmonitored.

TP

TPR= —— 9
TP+ FN

5. Beta randomized obfuscation

Recent website fingerprinting defenses have sought to decrease the
latency and bandwidth overhead required by previous defenses. The
goal is to provide the best protection without burdening the network
with unnecessary traffic, as well as avoid diminishing the experience
of the user, who may perceive delays in browsing as an unreliable
connection. Furthermore, the defense should be simple (i.e., minimize
computational overhead) and practical to implement. FRONT [12]
is a recently proposed zero-delay, lightweight website fingerprinting
defense. The authors of FRONT base their defense on the fact that the
beginning of a trace — the first few seconds worth of a website load —
leaks important information as to which website the trace belongs to.
In addition, some attacks [4,8] explicitly use the front of a trace as an
independent feature for classification, which points to its importance
as a feature. To obscure these important features, FRONT allocates the
majority of its padding budget to the beginning of the trace using a
Rayleigh distribution and a randomized padding window.

In the case of [4], statistics of the front of the trace for incoming
and outgoing packets are ranked as the 19th and 20th, respectively,
out of 150 tested features, which emphasizes their importance to clas-
sification. Despite this, other high-ranking features, such as a variety of
packet ordering statistics, may not be as easily obfuscated by FRONT
due to the shape of a Rayleigh distribution—that is, as the window size
used by FRONT increases, the spread of the distribution for sampling
dummy packets also increases. This spreads the padding budget thin
throughout a larger portion of the trace. Furthermore, many of the
machine learning attacks with manual feature selection are dated, and
newer attacks [6,7,9] trend toward the use of deep learning, such as
Deep Fingerprinting, which has automatic feature extraction. With au-
tomatic feature extraction, it is not clear which features are the highest
ranked for classification. The authors of [9] stress that the continued
use of manual feature selection in machine learning attacks will lead to
what they call an arms race between attacks and defenses where attacks
gain the upper hand by including previously unconsidered features, and
then new defenses rush to conceal the new features, only for attacks to
subsequently exploit newer features yet again. Thus, a defense must
be able to conceal several important features simultaneously and take
into account changes in attack methodology such as the use of deep
learning.

Considering all these factors, this paper proposes a new defense,
titled Beta Randomized Obfuscation (BRO). The constraints of the
FRONT defense are maintained—i.e., the defense must introduce no
delay to real traffic and be lightweight. The defense also must maintain
that the beginning of the trace will remain the most likely portion of
the trace to receive padding due to its importance as a feature for
classification. Furthermore, this defense seeks to diminish the accuracy
of deep learning attacks, which continue to be some of the most
effective attacks.

The novelty of BRO is summarized by three key points. Firstly,
BRO uses a randomized beta distribution for sampling dummy packets
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Table 1
BRO Defense Parameters and Variables.

Notation Description

Woin Minimum padding window

M, Maximum padding window

i Minimum « parameter for beta
distribution
Maximum arameter for beta

Parameters Gimax uomuri @ p

distribution

Prin Minimum g parameter for beta
distribution

Brax Maximum p parameter for beta
distribution

P Client’s minimum padding budget

Pose Client’s maximum padding budget

Prin_s Proxy’s minimum padding budget

Py Proxy’s maximum padding budget

w, = UW s War) Client’s padding window

wy =UW,im Winax) Proxy’s padding window

o = U(tyips T Client’s alpha parameter

=U , Client’s beta parameter
Variables Be = UBpin: Brax P

a; = U(at,,, Xpax Proxy’s alpha parameter
By = UBins Prnax Proxy’s beta parameter
p.=U(P, Pax—c) Client’s dummy packet number

min—c>
Ps = U(Pinss Praxs) Proxy’s dummy packet number

max—s

timestamps. This ensures that the distribution for sampling timestamps
does not severely increase its spread as the defense’s padding window
size increases. Secondly, this work makes the important observation
that clustering dummy packets closer together within a defended trace
provides better protection compared to other website fingerprinting
defenses where the spread of dummy packets is sparser. Finally, exper-
imental results show that the use of a beta distribution increases the
degree of trace-to-trace randomness regarding the location of dummy
packets within a defended trace over previous website fingerprinting
defenses.

The defense maintains that the start of the padding distribution
is always at time 0 — meaning that the sampled dummy packet
timestamps are not deliberately offset — to conceal the beginning of
the trace. The defense parameters and variables are shown in Table 1;
U denotes a uniform distribution and U denotes a discrete uniform
distribution where both are bounded by the terms in parentheses.

5.1. BRO defense design

In BRO, padding timestamps are sampled from a randomized beta
distribution to ensure that as the size of the padding window increases,
the padding budget is not spread thin throughout the trace while
also maintaining randomness. To provide a fair comparison with other
defenses, BRO is implemented as a defense mechanism in simulations
in which padding is applied to a previously collected trace. This is
typical of other defenses [10,12,13,15,17]. Note, however, that much
like other defenses, BRO is practical to implement in real-time and use
on live traffic—the requirement is to generate a timetable, in exactly
the same manner as the simulated defense, for each website load and
send dummy packets when specified. When the client loads a website, it
first generates a new timetable, and then sends a special control packet
to the proxy indicating that a new website is being loaded and that
it needs to generate its own timetable. For each dummy packet in the
timetable, a timer is started, and when a timer expires, an interrupt
is triggered causing a dummy packet to be sent. When the website
has finished loading — i.e., the client has received all website artifacts
— the client sends a second control packet indicating to the proxy to
cancel any timers for outstanding dummy packets. If all dummy packets
are sent and the website has not yet finished loading, traffic proceeds
uninterrupted.

BRO has two steps, followed by both the client and proxy indepen-
dently: sampling a number of dummy packets and scheduling dummy
packets. Below explains the process for each step.
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5.2. Sampling a number of dummy packets

The client and proxy first sample a number of dummy packets from
a discrete uniform distribution bounded by 1 and a defined maximum,
P,ox_c and P, . for the client and proxy respectively. For each trace,
the client samples p, from U(P,,_., Ppax_c)» and the proxy samples p,
from U(P,,;,_» Ppax—s)- By varying the amount of padding added to each
trace from both the client and the proxy independently and using a
lower bound of P,;,_. = P,;,_s = 1, the randomness from trace-to-trace
for the same website is greatly enhanced. The process of choosing P,
is explained below in Section 5.4.

ax

5.3. Scheduling dummy packets

The next step is to schedule the dummy packets. Scheduling dummy
packets has three sub-steps: sample a padding window, sample beta
distribution parameters, and sample dummy packet timestamps. The
padding window is used to scale the beta distribution; x-values of a beta
distribution are always bounded by 0 and 1—therefore, the distribution
is multiplied by the padding window size to randomize its scale. Finally,
the client and proxy then sample timestamps for dummy packets from
the appropriate beta distribution.

5.3.1. Sampling a padding window

The client and proxy each sample a padding window. The padding
window determines the scale of the beta distribution and therefore the
location of the dummy packets applied to the trace. In this experiment,
a maximum window size of 14 s is used to provide a fair comparison
with FRONT. Therefore, following the naming conventions used in
FRONT, the client’s padding window, w,, and the proxy’s padding

window, wy, are sampled from U(W,;,,, W,,ux)-

in>
5.3.2. Sampling beta distribution parameters

The client and proxy sample « and g parameters for a beta distri-
bution from a uniform distribution. This is done independently and on
a per-trace basis; that is, for each trace, the client and proxy obtain
new beta distribution parameters. The « parameter is chosen from
U(apins %may)> and the g parameter from U(B,,,, Bnay)- Section 5.4.1
below describes the process for selecting a,,;,,, @pax> Pin> a0 Bx- BY
choosing a beta distribution with randomized parameters, the peak of
the probability density function can be shifted, improving upon the
randomness of padding. The probability density function for a beta
distribution is defined by the equation below where « corresponds to
a, and a;, p corresponds to g, and f,, and ¢ is time.

IS P PR N
[ p) Bap) -0 (10)

Fig. 1 shows the probability density function for different alpha
and beta parameters. As a becomes larger than g, the peak of the
distribution shifts to the right and vice versa. The varying skew of the
beta distribution enables dummy packets to be scheduled into different
parts of a defended trace while remaining clustered together—this
point is discussed further in Section 5.6.

5.3.3. Sampling dummy packet timestamps

The client’s beta distribution is scaled by w,, and the proxy’s
beta distribution is scaled by w,. From there, the client samples p,
dummy packets from its beta distribution, and the proxy samples p;
dummy packets from its beta distribution. The two resulting sets are
the timestamps for dummy packets where each timestamp corresponds
to a single dummy packet. Dummy packets are injected into the trace at
the corresponding timestamps and in the appropriate direction. Dummy
packets with timestamps later than the last real packet in the trace are
not sent.
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Table 2
Beta Distribution Testing Parameters. All configurations use the follow-

ing values for the remaining defense variables: P, . = P,._, = 1,
Prax—c = Prax—s = 2000, W,,,, =1, and W, = 14.
Configuration Parameter settings
amll)
A, .
BTB1 max
Boin =9
Prax =10
@iy =1
a, 4
BTB2 max
Poin =7
Prax = 10
Wi = 1
Ay =6
BTB3 e
Boin =5
Bax = 10
(lmm = 1
amax = 8
BTB4 g =3
Binax = 10
@iy =1
Ao = 10
BTB max
° Bria =1
Pax = 10

5.4. Parameter selection

The following sections describe the process for selecting defense
parameters. First, beta distribution parameters are chosen. Then, two
P,.. values are selected to create one lightweight defense configuration
and a second configuration with slightly higher bandwidth overhead.

5.4.1. Choosing beta distribution parameters

The range of possible beta distribution parameters, « and g, should
be optimized to create the best defense. This section demonstrates the
necessity of fully randomizing the shape of the beta distribution. To
test this, five configurations are created that place constraints on the
shape of the beta distribution used within BRO. The beta distribution
parameters for each configuration, BTB1-BTB5, are shown in Table 2.
The other defense variables remain constant. A P, value for both
the client and proxy of 2000 is chosen for each configuration to give
a medium bandwidth overhead. Similarly, the value of W, is held
constant across all configurations at the previously mentioned value of
14 s.

At each successive configuration, the amount of rightward skew
permitted in the shape of the beta distribution is increased. This means
that BTB1 is strictly limited to a leftward skew — i.e., it is only possi-
ble to sample dummy packet timestamps positioned at the beginning
of the trace — whereas BTB5 implements a fully randomized beta
distribution that can have a shape skewed to both the extreme left
and right. The reasoning for beginning with a strictly leftward skew
and gradually increasing the amount of rightward skew is twofold: (1)
given the knowledge that the beginning of the trace contains sensitive
features, this will ensure that the amount of rightward skew is not
excessive — that is, this ensures that the rightward skew permitted
is only that which is beneficial to the defense; and (2) the amount of
rightward skew permitted and the degree of trace-to-trace randomness
increase simultaneously — therefore, this experiment will examine the
importance of an increased degree of trace-to-trace randomness.

Each configuration BTB1-BTB5 is tested against the three
attacks chosen for this research — Deep Fingerprinting (DF) [6],
k-Fingerprinting (k-FP) [4], and CUMUL [3] — to find the most effec-
tive configuration. The results are shown in Fig. 2. Against all attacks,
BTB5 performs the best, emphasizing the importance of fully random-
izing the shape of the beta distribution. Furthermore, this reinforces
the importance of a high degree of trace-to-trace randomness, which is
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Fig. 1. Beta Distribution Shape. Note that as a becomes greater than g, the peak of the distribution shifts to the right and vice versa.
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Fig. 2. Evaluation of Beta Distribution Parameters. As the amount of rightward skew permitted in the beta distribution’s shape increases, the accuracy of all attacks decreases;

thus, BTB5 provides the best protection.

explored further in Section 5.6.2. Note the trend among DF and k-FP
that the attack accuracy continues to decrease each time the amount of
rightward skew permitted increases; this reinforces the intuition above
that solely targeting the beginning of a trace leaves other important
features undefended. Also of note is the sensitivity of DF to an increased
rightward skew, particularly in BTB4 and BTB5. Between BTB1 and
BTB5, DF experiences a drop in accuracy from 59.6% to 45.8%. With
these results, the beta distribution parameters of BTB5 are chosen as
the final defense settings of BRO.

5.4.2. Choosing a padding budget

The next step in designing the defense is to choose a padding
budget—i.e., the maximum number of dummy packets that will be
present on the network as part of the defense. It is important to
optimize this value; it must provide the most protection while intro-
ducing the smallest amount of bandwidth overhead. To test this, BRO
is simulated using the parameters of BTB5 and varying the value of
P,,. at increments of 250 starting at 250 through 3000. Note that here

max

P,.. refers to the value of both P,,._. and P,,._,. Fig. 3 shows the
relationship between P, and attack accuracy.

Observe that the accuracy of all attacks declines as P,,,, increases.
The protection provided by BRO is particularly apparent against DF,
whose accuracy is decreased below both CUMUL and k-FP despite being
the strongest attack against undefended traffic. The results also indicate
that even a relatively small padding budget is effective at defending
against attacks; all attacks experience at least a 5% drop in accuracy
with a P, value of just 250 (2.8% median bandwidth overhead). Two
values of P, are chosen for two different BRO configurations: one
resulting in a lightweight configuration with moderate protection, and
the other a configuration with slightly increased bandwidth overhead
but excellent protection, similar to FT-1 and FT-2 in [12].

DF and CUMUL are used to tune the value of P, since they are
the two best-performing attacks in this experiment, outperforming k-
FP. The accuracy of DF is reduced below 50% with a P,,, value of
1750; however, it is important to keep each configuration’s bandwidth
overhead similar to FRONT for a fair comparison. Therefore, for the
first configuration, BRO-1, a P,,. value of 1500 is chosen, which
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Fig. 3. P,
yields a median bandwidth overhead of 16.8% vs. 16.1% for FT-1.
The accuracy of CUMUL holds steady between 52% and 54% until
P,.. is increased to 2500, where it dips below 50%; however, the
accuracy of DF continues to decline somewhat linearly as the padding
budget increases. Though a higher value of P,,. could be selected, a
value of 2250 is chosen for the second configuration, BRO-2, to limit
the bandwidth overhead; this gives a median bandwidth overhead of
25.4% vs. 23.6% for FT-2. Hence, for the final configurations of BRO-
1 and BRO-2, P,,. values of 1500 and 2250 are chosen. Note that
the complete defense settings for BRO-1, BRO-2, FT-1, and FT-2 are
available in Table 3.

5.5. Computational overhead of BRO

Note that the computational overhead of implementing BRO is
minimal due to its comparatively small bandwidth overhead and the
fact that it does not delay real traffic. The required overhead is dom-
inated by the sampling of dummy packet timestamps—i.e., as the
padding budget increases, so too does the computational overhead
simply because there are more dummy packet timestamps to sample.

5.6. Analyzing why BRO outperforms FRONT

In the sections below, two characteristics of the padding applied by
BRO and FRONT are explored. First is the spread of dummy packets—
here, the spread is used to measure the clustering of timestamps
for dummy packets applied by the defense. Measuring the spread of
dummy packets will test the intuition that FRONT spreads its padding
budget across a wider portion of the trace than BRO, and therefore
may struggle to conceal trace features efficiently. For the dummy
packet spread analysis, the timestamps applied to the trace by the
client and proxy are considered independent—i.e., when gathering the
timestamps of a defended trace, the padding applied by the client and
proxy are collected as separate distributions.

The second characteristic is the location of the dummy packets
within a defended trace. The location specifies where within a trace
(the distance in seconds from the beginning) dummy packets are posi-
tioned. Determining the location of dummy packets in a defended trace
will verify whether BRO applies padding deeper into the trace, which is
crucial for obscuring features outside of the beginning of the trace. To
ensure accurate results, BRO and FRONT are simulated 10 times and
the statistics calculated in Sections 5.6.1 and 5.6.2 are averaged across
all iterations.

P,
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vs. Attack Accuracy. BRO reduces the accuracy of DF from 72.2% on undefended traffic to 33.8% with a padding budget of 3000.

Table 3
Defense Settings.
Defense Settings
Win =18, W, .. =14 s
BRO-1 @in = Prin = 1 Cax = Prax = 10
Prax—c = Prax—s = 1500
Wi =18, Wy = 145
BRO-2 @in = Prin = 1 ax = Pax = 10
Prax—c = Prax—s = 2250
N, =N, =1700
FT-1 [12 ¢ :
- Woin =1 5. Wogy = 145
N, =N,=2
FT-2 [12] ¢ + = 2500
Win =1 8 Wy = 14 5
TT-2 [15] Longest trace as reference sequence
TT-6 [15] Longest trace as reference sequence
WT [17] Longest trace as reference sequence

5.6.1. Dummy packet spread

The first characteristic is the spread of dummy packet timestamps.
Using prior intuition on the shape of beta and Rayleigh distributions, it
is hypothesized that the dummy packet timestamps throughout a single
trace defended by FRONT will on average have a wider spread than that
of a trace defended by BRO—i.e., BRO will deliver a clustered burst of
dummy packets into the trace. This does not mean that FRONT provides
padding deeper (further from the beginning) into the trace than BRO,
but rather that to achieve coverage further from the beginning of the
trace, FRONT must spread its padding budget across a much wider por-
tion of the trace. In contrast, the beta distribution used in BRO provides
coverage outside of the beginning of a trace while keeping the dummy
packets clustered and targeted to a smaller portion of the trace. This is
because the shape of the Rayleigh distribution employed by FRONT is
directly tied to the size of the padding window; as the padding window
grows in size, the spread of the Rayleigh distribution increases. This
means that for a wider padding window in FRONT, dummy packets will
be sparser and therefore less disruptive to trace features. In contrast, the
beta distribution used by BRO is only scaled by the padding window—
the distribution keeps the same shape, which clusters the dummy
packets closer together. Furthermore, to be disruptive to the features
of a trace further from the beginning, BRO only needs to generate beta
distribution parameters that skew the distribution further to the right,
which does not spread its padding budget thin.

To test this, the distribution of dummy packet timestamps applied to
each trace is collected and the mean, median, and standard deviation of
the interquartile range (IQR) are computed. The interquartile range is
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Table 4
Dummy Packet Spread. BRO applies dummy packets into a more finite portion of the
trace.

Defense Median IQR Mean IQR Std. Dev.

BRO-1 1.4 1.5 0.8

BRO-2 1.4 1.5 0.8

FT-1 5.9 5.1 1.8

FT-2 6.0 5.1 1.8
Table 5

Dummy Packet Location. The median timestamp between BRO and FRONT is similar;
however, the mean timestamp indicates that BRO simultaneously applies padding
deeper into the trace. The coefficient of variation proves that BRO has a higher degree
of trace-to-trace randomness.

Defense Median Mean Coefficient of
timestamp timestamp variation

BRO-1 0.66 0.84 101.2%

BRO-2 0.61 0.90 101.3%

FT-1 0.30 0.37 80.6%

FT-2 0.39 0.49 76.8%

selected over the entire range of timestamps because it will not contain
outliers and thus provide a better metric that is not sensitive to extreme
cases. Table 4 summarizes the results. Observe that BRO has an IQR of
dummy packet timestamps smaller than that of FRONT. This means that
on average, BRO uses half of its padding budget within a 1.5-second
window, whereas FRONT uses half of its padding budget within a 5.1-
second window. Again, note the importance that this is not the location
of dummy packets within a trace, but rather how dispersed from each
other the dummy packets are.

For further analysis, the maximum interquartile range of dummy
packet timestamps observed across all simulated iterations for each
defense is examined; BRO-1 and BRO-2 experience a maximum of 6.55
and 6.32 s respectively, and FT-1 and FT-2 experience a maximum
of 13.11 and 14.32 s respectively. Hence, the maximum interquartile
range of dummy packet timestamps applied by BRO is much smaller
than that of FRONT—further emphasizing the clustering of dummy
packets in BRO. This verifies the intuition above that the dummy
packets applied by FRONT have a wider spread and are therefore
sparser throughout the trace than BRO; meaning that the padding
applied by BRO is more comparable to an injection of dummy packets
into a more finite portion of the trace. In other words, BRO delivers a
highly concentrated injection of dummy packets to a random and finite
portion of the trace whereas FRONT’s coverage provides a blanket of
dummy packets dispersed over a wider portion of the trace, spreading
its padding budget thin.

5.6.2. Dummy packet location

The differences in the distribution of dummy packets between BRO
and FRONT are further analyzed by calculating the mean, median,
and coefficient of variation of dummy packet timestamps. The median
and mean timestamp will provide insight into the location of padding
within a defended trace. The coefficient of variation for the dummy
packet timestamps applied by each defense provides further insight into
the level of trace-to-trace randomness with respect to the location of
padding within a defended trace. The results are given in Table 5.

The median dummy packet timestamps of BRO-1 and BRO-2 in-
dicate that the defense applies a good measure of padding to the
beginning of a trace, with half of all dummy packets being sent before
the 1-second mark. Furthermore, BRO-1 and BRO-2 have median and
mean timestamps greater than that of FT-1 and FT-2; this implies that
BRO applies coverage to the beginning of the trace while simultane-
ously injecting dummy packets deeper into the trace than FRONT. This
proves that despite the beta distribution used in BRO’s ability to skew
to the extreme right, BRO does not struggle to apply padding to the
beginning of a trace.
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Next, the coefficient of variation for dummy packet timestamps is
examined. BRO-1 and BRO-2 have a coefficient of variation of 101.2%
and 101.3% respectively and FT-1 and FT-2 have a coefficient of
variation of 80.6% and 76.8%. This implies that BRO has a higher
degree of randomness than FRONT regarding the location of dummy
packets, while still ensuring that the beginning of a trace receives
padding. It does this without spreading its padding budget thin across
a large portion of the trace as was seen previously. This is likely due to
the parameters of the beta distribution which allow it to skew to both
the extreme left and extreme right.

6. Experimental setup

In this experiment, a new dataset of traces is collected. Traces
of regular, unmodified traffic as well as 3 implementations of half-
duplex traffic corresponding to entirely half-duplex traffic for Walkie-
Talkie [17], and two Tail Time [15] configurations (TT-2, and TT-6).
Specifics on the dataset are described in Section 6.2 below. Using
the collected traces paired with simulated defenses, several website
fingerprinting attacks are carried out to test the effectiveness of each
defense.

6.1. Half-duplex implementation

Half-duplex website loading is implemented using the webRequest
API [23] from Firefox WebExtensions [24]. Using the webRequest API
allows for each configuration to be loaded as a browser extension
without requiring modifications to the Firefox source code. This ensures
ease of use and long-term compatibility. There are 3 configurations
used in this experiment that implement Walkie-Talkie [17], and the two
best-performing Tail Time configurations against each attack in [15]
with tail timeout values of 2 and 6 s.

6.2. Dataset

In this experiment, the closed-world scenario is used to evaluate
defense effectiveness. The top 100 websites from the Alexa Top Sites
list [25] are used as the initial dataset. As a first round of elimination,
the methodology of [15] is followed and subdomains and localized
domains are removed. In the second round of elimination, each website
is loaded through Tor a single time, and each website that fails to load
is removed from the dataset. After each elimination round, the dataset
is replenished with websites ranking further down the list. The result is
a set of 100 websites without duplicates and subdomains that are less
likely to experience failed page loads. Each website is accessed 1000
times for a total of 100,000 traces.

6.3. Data collection

A controller synchronizes and carries out all subcomponents of trace
capture. The components include a modified Tor proxy, a cell logger,
a script that verifies connectivity, and a script that visits the desired
website. The controller is a simple shell script that starts and stops each
component when needed and keeps track of which instance of which
website is being captured.

The Tor source code is modified to directly emit cell sequences at a
layer that excludes SENDME cells. SENDME cells are used for control
within Tor but provide no useful information for classification [26].
The information emitted includes the timestamp and cell direction. The
modified version of Tor is compiled and run in a Docker container
so that it can be started and stopped at each page load, completely
resetting Tor and the existing circuits. To minimize additional overhead
to the modified instance of Tor, the cells are emitted to a cell logger.
The cell logger listens for information from Tor and logs it to a file for
the corresponding trace. Cell information is emitted from Tor to the cell
logger using UDP packets.
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In this experiment, it is desired to have the fullest and most accu-
rate traces. Without checking for connectivity before starting a trace,
valuable capture time is wasted if the initial website request must
first wait for connectivity. This would make such traces smaller than
traces from the same website where connectivity was not a problem—
therefore increasing variation between traces from the same website.
An increased variation could make classification more difficult and not
provide a fair experiment. Thus, before visiting a website, the controller
verifies that it can make a connection through Tor. It issues a request
to http://connectivitycheck.gstatic.com/generate_204 with a timeout
value of 15 s. If a connection is unable to be made, rather than skipping
to the next capture, the capture components are torn down and the
capture is restarted until a connection can be made.

The controller visits each website using Firefox, which is controlled
by Selenium [27] through GeckoDriver [28]. This is the point at which
extensions (if any) are loaded into the Firefox profile. The Firefox
profile is configured to use the modified instance of Tor as a proxy.
Note that for each website access, a new Tor circuit is used—i.e., each
time the controller starts a capture, a new Tor circuit is created. The
controller terminates each website capture after 15 s first by stopping
the Docker container and then by sending a special packet to the cell
logger telling it to save the trace. A 15-second trace capture is adequate
due to the use of a connectivity check before browsing a website.
This is demonstrated by the trace length in each dataset—the 90th
percentile of trace lengths in DS-14 [8] and DS-19 [12] are 4947 and
9862 packets, respectively. The 90th percentile of traces in the dataset
collected in this work is 18238 packets.

To further ensure the quality of traces, the 1000 captures for each
website are split into 40 rounds. That is, for each of the 100 websites,
there are 25 successive captures before moving on to the next website.
This is done 40 times for a total of 1000 traces per website. This is to
decrease the likelihood of being temporarily IP banned by the website’s
server due to repeated visits, hence providing quality traces.

The dataset is collected using 8 machines with a wired connection to
the university network. Two machines are paired, and each pair collects
traces for a different configuration. Among a pair of machines, each
machine collects 500 traces per website. One pair collects unmodified,
full-duplex traffic and the other three pairs use one of the previ-
ously mentioned extensions implementing half-duplex, burst traffic for
Walkie-Talkie, TT-2, and TT-6. Furthermore, trace collection is stagger-
started with 2 h between each machine to guarantee they are not all
accessing the same website at once. Note that there are no ethical
concerns with this experiment because each website visit is done with
an automated script and there are no real users involved in the data
collection.

6.4. Attacking experiment

In order to evaluate each defense, the best-performing attacks
from [12] are chosen; they are Deep Fingerprinting' [6],
k-Fingerprinting®® [4], and CUMUL*® [3]. This enables BRO to be
evaluated against both deep learning and machine learning attacks,
verifying that it is effective at defending against both. For each attack,
the default settings are used and k-fold cross-validation is done as
specified in their original work [3,4,6] Note that this experiment

1 Source code for the DF attack used in this work: https://github.com/deep-
fingerprinting/df.

2 Source code for the k-FP attack used in the closed-world scenario in this
work: https://github.com/jhayes14/k-FP.

3 Source code for the k-FP attack used in the open-world scenario in this
work: https://github.com/websitefingerprinting/WebsiteFingerprinting.

4 Source code for the CUMUL attack used in the closed-world scenario in
this work: https://www.cs.sfu.ca/~taowang/wf/attacks/.

5 Source code for the CUMUL attack used in the open-world scenario in this
work: https://github.com/websitefingerprinting/WebsiteFingerprinting.

10

Computer Communications 228 (2024) 107976

Table 6
Bandwidth Overhead. TT and WT cause a high bandwidth overhead due to the choice
of the longest trace as the reference sequence.

Defense Median bandwidth Mean bandwidth
overhead overhead

BRO-1 16.8% 24.2%

BRO-2 25.4% 36.7%

FT-1 16.1% 23.6%

FT-2 23.6% 34.5%

TT-2 607.4% 855.2%

TT-6 592.9% 835.8%

WT 570.3% 805.6%

assumes the attacker knows which defense is being used, and therefore
trains their classifier using defended traces—i.e., when simulating an
attack on a defense, the defended dataset is split into a training and
testing set. Defenses are evaluated in a closed-world scenario.

7. Defense evaluation

To provide a comparison, three defenses, FRONT [12], Tail Time
(TT) [15], and Walkie-Talkie (WT) [17] are selected. FRONT is another
lightweight defense and Walkie-Talkie represents a defense that intro-
duces delay to the trace. Tail Time is selected because it is an improved
version of Walkie-Talkie that decreases page loading time. For both Tail
Time and Walkie-Talkie, the padding method of [15] is followed where
the longest trace is selected as the reference sequence. BRO is simulated
in two configurations (BRO-1 and BRO-2) using the parameters detailed
in Section 5, and FRONT is simulated with the parameters of FT-1 and
FT-2 as outlined in [12]. Table 3 summarizes the configuration for each
defense.

7.1. Bandwidth overhead

BRO aims to provide an improved defense while maintaining com-
paratively low bandwidth overhead. BRO’s bandwidth overhead is
similar to FRONT’s (see Table 6). The slightly higher bandwidth over-
head of BRO may be explained by the increased degree of dummy
packet clustering relative to FRONT; both defenses cancel all dummy
packets scheduled to be sent after the last real packet, and the wider
spread of dummy packets in FRONT could allow more dummy packets
to be canceled, resulting in a 1%-2% higher bandwidth overhead in
BRO. However, it is important to note that BRO-1 and BRO-2 have
smaller padding budgets (1500 and 2250) than FT-1 and FT-2 (1700
and 2500), respectively. This means that if either defense were to utilize
the entire padding budget on a single trace, BRO would introduce fewer
dummy packets to the network, lessening the burden on the network
over FRONT.

Observe that in all cases, the median bandwidth overhead is much
lower than the mean bandwidth overhead—indicating positive skew.
This suggests that several smaller traces within the dataset pull the
mean bandwidth overhead higher than the median.

7.2. Latency overhead

Recall that dummy packets sent before the last real packet do not
contribute to latency overhead. This means that BRO and FRONT have
0% latency overhead. The mean and median latency overhead for
each defense is shown in Table 7. Notice that Tail Time and Walkie-
Talkie incur high latency overheads due to their use of half-duplex
communication.

Note that TT experiences a higher latency overhead than WT. It
is believed that this does not contradict TT’s goal of decreasing page
load times over WT and rather that the half-duplex bursts in TT are
smaller and more irregular than WT, leading to a backlog of bursts from
the reference sequence that still must be sent despite all real packets
already being received. Since this is not relevant to the evaluation of
BRO, it is not further explored and is left for future work.


http://connectivitycheck.gstatic.com/generate_204
https://github.com/deep-fingerprinting/df
https://github.com/deep-fingerprinting/df
https://github.com/jhayes14/k-FP
https://github.com/websitefingerprinting/WebsiteFingerprinting
https://www.cs.sfu.ca/~taowang/wf/attacks/
https://github.com/websitefingerprinting/WebsiteFingerprinting

C. McGuan et al.

Table 7
Latency Overhead. BRO and FRONT incur no latency overhead because they do not
delay real traffic.

Defense Median latency Mean latency
overhead overhead

BRO-1 0.0% 0.0%
BRO-2 0.0% 0.0%
FT-1 0.0% 0.0%
FT-2 0.0% 0.0%
TT-2 53.1% 52.4%
TT-6 59.7% 59.2%
WT 48.5% 48.6%

Table 8

Attack Accuracy (Note that a lower accuracy means a better defense.).
Defense Accuracy

DF k-FP CUMUL

Undefended 72.2% 61.3% 62.5%
BRO-1 52.7% 42.0% 53.3%
BRO-2 43.0% 39.5% 51.9%
FT-1 58.8% 42.6% 57.2%
FT-2 54.2% 38.9% 51.1%
TT-2 60.0% 55.3% 27.7%
TT-6 57.9% 47.2% 27.2%
WT 53.7% 44.9% 25.1%

7.3. Evaluation against attacks

Each defense is evaluated against the three attacks chosen above:
DF, k-FP, and CUMUL. Table 8 summarizes the accuracy of the attacks
on each defense. BRO performs nearly equal to FRONT against the
machine learning attacks (k-FP and CUMUL), suggesting that BRO is
not any more susceptible to these attacks. However, BRO-1 and BRO-
2 outperform FT-1 and FT-2 against DF with comparable bandwidth
overhead, making BRO the superior defense. BRO-1 and BRO-2 reduce
the accuracy of DF down to 52.7% and 43.0% respectively compared
to 58.8% and 54.2% for FT-1 and FT-2. BRO and FRONT outperform
TT and WT against DF and k-FP, with WT providing the best protection
against CUMUL. Note, however, that the extra protection by WT in this
case comes at the cost of an increased bandwidth and latency overhead.

A decrease in accuracy for all attacks against undefended traffic is
observed compared to their original research. In line with [15], it is
hypothesized that this is due to the trace collection method used in
this experiment, which provides more accurate end-to-end trace data by
logging cell sequences directly from Tor as opposed to reconstructing
them from a tcpdump. Additionally, the trace collection method utilizes
UDP packets, which may allow for some packet loss, though this loss
is expected to be small.

7.4. The extent to which BRO outperforms FRONT

It is essential to understand the extent to which BRO outperforms
FRONT and how much FRONT must increase its padding budget to
perform on par with BRO. To examine this, BRO and FRONT are
evaluated against DF by increasing the padding budget at increments
of 250 packets starting at 250 through 3000, similar to the experiment
above which tuned the padding budget of BRO. Here, the padding
budget refers to the value given to both the client and proxy. DF is
chosen as the only attack due to its reputation as being accurate even
against modest defenses [6,12], which makes it ideal to demonstrate
how effectively BRO and FRONT utilize their padding budgets. The
results are shown in Fig. 4; note that a lower accuracy means a better
defense. Observe that BRO outperforms FRONT immediately with a
padding budget as low as 250 packets. BRO reduces the accuracy of DF
to below 50% with a padding budget of just 1750 packets. At a padding
budget of 3000 — nearly double the requirement of BRO — FRONT is
not able to bring the accuracy of DF below 50%. At the most effective
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Table 9

BRO vs. FRONT on DS-19 (Note that TPR is more appropriate than accuracy for an
open-world dataset as discussed in Section 4, and that a lower TPR means a better
defense. Note also that a larger padding window size increases the effectiveness of
BRO.).

Defense TPR
DF k-FP CUMUL

BRO-1 (14 s) 57.2% 62.0% 34.2%
BRO-2 (14 s) 46.5% 57.8% 26.3%
BRO-1 (30 s) 58.4% 46.1% 27.0%
BRO-2 (30 s) 38.6% 39.0% 19.4%
FT-1 76.4% 48.0% 40.5%
FT-2 63.0% 35.6% 25.8%

configuration with a padding budget of 3000 dummy packets, the ac-
curacy of DF on BRO is reduced to 33.8% whereas FRONT reduces the
accuracy to just 51.1%. Furthermore, with a padding budget equal to
or greater than 1000, DF experiences on average 10.9% lower accuracy
on BRO than it does on FRONT, and the gap in the protection provided
by each defense continues to widen as the padding budget increases.
This suggests that DF is more sensitive to the highly concentrated and
randomized injection of dummy packets administered by BRO.

7.5. BRO vs. FRONT on DS-19

A comparison of BRO and FRONT was done on DS-19, an open-
world dataset outlined in [12]. The reason for this comparison is
twofold: (1) it tests the performance of BRO in an open-world set-
ting; and (2) it enhances the comparison of the performance of BRO
and FRONT by analyzing both defenses on the dataset FRONT was
developed on. For each attack, the TPR is calculated, which is more
appropriate for an open-world dataset as discussed in Section 4. The
results are given in Table 9.

Observe that the same overall trends from Section 7.3 are
maintained — i.e., that BRO outperforms FRONT, particularly against
DF — except for that BRO performs worse than FRONT against k-FP.
The last packet in traces from DS-19 has an average timestamp of
27.3 s, and the longest trace (by order of time) has a final timestamp
of 93 s. By contrast, the dataset collected in this work has an average
final packet timestamp of 17.3 s and a maximum of 20.2 s. Somewhat
arbitrarily, a new padding window size of 30 s is selected for BRO
(denoted as BRO-1 (30 s) and BRO-2 (30 s) in Table 9) to encompass a
larger part of the trace in DS—-19. Note that increasing the padding
window size decreases the bandwidth overhead due to the increase
in potential for dummy packets to be scheduled beyond the last real
packet in a trace, and therefore canceled. Increasing the padding
window to 30 s decreases the performance of k-FP such that BRO-1
outperforms FT-1 but FT-2 is marginally better than BRO-2 against k-
FP. Further increasing the padding window size to 45 s decreases the
TPR of k-FP to 41.4% against BRO-1 and 32.4% against BRO-2. In this
work, a padding window size of 14 s was chosen for a comparison with
FRONT, and these results reiterate the need to fine-tune the padding
window size in BRO to create an optimal defense. This is left as future
work.

8. Conclusion and future work
8.1. Conclusion

This work presents a new lightweight website fingerprinting defense
called Beta Randomized Obfuscation (BRO) that introduces no delay to
real browsing traffic. BRO utilizes a randomized beta distribution and
padding window for sampling dummy packet timestamps. The padding
distribution always starts at time 0, but the beta distribution’s ability
to skew to the extreme right allows for easy obfuscation of important
features further from the beginning of the trace.
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Fig. 4. Deep Fingerprinting Accuracy vs. Padding Budget. At all padding budget increments, BRO provides better protection than FRONT against DF. In order to restrict the
accuracy of DF below 50%, FRONT requires a padding budget of over 3000 whereas BRO only requires 1750.

The results are verified by the experimental setup used which is
consistent with related work. Furthermore, the dataset size mirrors
that of the original DF work, and the evaluation techniques used
to compare BRO to other recent website fingerprinting defenses are
relevant, reinforcing the authority of the results.

BRO is demonstrated to be effective at concealing website traffic
against several state-of-the-art website fingerprinting attacks. Analysis
of dummy packet timestamps shows that BRO delivers a more concen-
trated injection of padding to a finite section of the trace than does
FRONT, another lightweight website fingerprinting defense. Further-
more, BRO has a higher rate of trace-to-trace randomness than FRONT
regarding the location of dummy packets within a trace. This means
that BRO more efficiently utilizes its padding budget against attacks as
demonstrated by the experimental results.

Against attacks, BRO proves to diminish the accuracy of Deep
Fingerprinting to the point that it performs worse than the other attacks
used in this experiment despite being more accurate on undefended
traffic. BRO provides better protection against Deep Fingerprinting than
other state-of-the-art defenses.

Analysis of how increasing the padding budget of BRO and FRONT
affects the accuracy of Deep Fingerprinting shows that FRONT must
increase its padding budget (therefore increasing the bandwidth over-
head) over that of BRO to achieve the same level of protection; in some
cases, FRONT must nearly double its padding budget. In fact, with a
padding budget of 1000 or greater, Deep Fingerprinting is on average
10.9% less accurate against BRO than it is against FRONT.

8.2. Future work

This work presents five configurations for experimenting with beta
distribution parameters. Future work may include a better fine-tuning
of these parameters to find the best defense. This includes testing to
see if the range of possible parameters should differ between the client
and proxy. Experimentation with the maximum padding window size
is also warranted. This work uses a maximum padding window size of
14 s for comparison with FRONT; a more optimal value may exist.

Another area of future work is testing BRO on the QUIC protocol.
This would involve creating a QUIC-compatible implementation of BRO
to analyze both its implementation as a client-side-only defense and the
protection it provides on the QUIC protocol as was done with FRONT
in [22].

This work is limited in that only a single deep learning attack is
simulated against BRO. To gain a better sense of BRO’s capabilities and
the generalizability of its performance against deep learning attacks, it
is necessary to experiment with others such as [7,9].
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Availability

The source code for this experiment is made available to the re-
search community to replicate results.

BRO

https://github.com/csmcguan/bro
Tail time and walkie-talkie

https://github.com/csmcguan/tail-time
Tor cell capture

https://github.com/csmcguan/tor-capture
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