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Abstract: Project control operations in construction are mostly executed via direct observations and the manual monitoring of progress and
performance of construction tasks on the job site. Project engineers move physically within job-site areas to ensure activities are executed as
planned. Such physical displacements are error-prone and ineffective in cost and time, particularly in larger construction zones. It is critical to
explore new methods and technologies to effectively assist performance control operations by rapidly capturing data from materials and
equipment on the job site. Motivated by the ubiquitous use of unmanned aerial vehicles (UAVs) in construction projects and the maturity
of computer-vision-based machine-learning (ML) techniques, this research investigates the challenges of object detection—the process of
predicting classes of objects (specified construction materials and equipment)—in real time. The study addresses the challenges of data
collection and predictions for remote monitoring in project control activities. It uses these two proven and robust technologies by exploring
factors that impact the use of UAV aerial images to design and implement object detectors through an analytical conceptualization and a
showcase demonstration. The approach sheds light on the applications of deep-learning techniques to access and rapidly identify and classify
resources in real-time. It paves the way to shift from costly and time-consuming job-site walkthroughs that are coupled with manual data
processing and input to more automated, streamlined operations. The research found that the critical factor to develop object detectors with
acceptable levels of accuracy is collecting aerial images with for adequate scales with high frequencies from different positions of the same
construction areas. DOI: 10.1061/(ASCE)SC.1943-5576.0000598. © 2021 American Society of Civil Engineers.
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Introduction

The inefficient utilization of materials and equipment on a job site is
a significant factor that contributes to lower productivity and higher
costs in a construction project (NAS 2009). Observations and as-
sessments for control operations are error-prone and ineffective
in cost and time (Dozzi and AbouRizk 1993), particularly when
concurrency of multiple construction tasks occurs in larger construc-
tion zones. It is critical to explore new methods and technologies to
effectively assist performance control operations by rapidly captur-
ing data from materials and equipment on the job site. The research
capitalizes on the capabilities of unmanned aerial vehicle (UAV)
technologies—sensing, data collection, and rapid displacements
over the construction site’s airspace—to investigate the implemen-
tation of deep-learning-based methods for effective object detection
from images taken from the construction project airspace. Deep
learning or deep-structured learning is a class of machine-learning
algorithms that employs multiple layers to progressively extract
higher-level features from raw input data (Deng 2014).

The research aim is to lay the foundations for research and tech-
nology implementations to execute control tasks. By facilitating assess-
ments in real-time of the operational status, location, and movements
of a sparsely located trade’s construction equipment and materials in
the job site, it is anticipated that future implementation of these con-
cepts will streamline data collection by reducing the project engineers’
physical displacements and by ensuring that activities are progress-
ing as planned. The study addresses the challenges of using two
proven and robust technologies for the real-time data collection
and predictions for remote monitoring in project control activities.
It is expected that successful application of the approach will sup-
port the decision making of project engineers, superintendents, and
responsible crew members who are monitoring the progress of con-
struction task and the use of resources on a job site.

There exist significant challenges for the detection of construction
resources (object) using a UAV’s sensing systems for image collection
from the airspace of a construction zone. Detecting and collecting im-
ages from the airspace are considerably more problematic methods
than those using standard camera devices on the ground in construction
zones. Critical drawbacks of UAV images include scale variation (ob-
jects from the same category appearing at multiple scales), low reso-
lution [limited visual information that makes it difficult to contrast to
cluttered backgrounds (Zhou et al. 2019)], occlusion (objects of inter-
est in a particular view being partially obstructed by other objects), and
class imbalance (one object occurs in a view at a much higher rate of
frequency when compared with the occurrence of others).

The factors that impact the implementation of object detectors
for the monitoring of construction resources can be grouped into
two categories:
• Those related to freedom of displacement (including character-

istics of motion and position/elevation) when the UAV is used to
collect images over the construction area generates arbitrary ori-
entations and angle views in the image with reference to points
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on the ground. The elevations—the height above ground level
(AGL)—create issues related to high densities over the distribu-
tion of objects of interest within the image area and major scale
variations.

• Those related to the deep-learning approach (e.g., feature extrac-
tion and object prediction and localization methods), which im-
pacts performance in terms of accuracy and inferential speed
due to aerial images’ features as input.
The research presented herein uses a new analytical conceptu-

alization and a showcase demonstration to explore the impact that
UAVaerial images have on the design and implement object detec-
tors for construction resource monitoring. The proposed conceptu-
alization is comprised of two parts: spatial resolution and temporal
resolution. Spatial resolution refers to the instantaneous field of
view (IFOV) within an image of objects and backgrounds on the
ground with an adequate scale at a given instant in time. Temporal
resolution refers to the frequency for obtaining imagery of the same
particular area of a construction project.

The showcase demonstration is an implementation of a deep-
learning object detector that uses aerial images from a construction
project. The aim is to incorporate strategies that address spatial and
temporal resolutions to demonstrate conditions that highlight per-
formance difficulties related to implementation of deep-learning
object detectors for construction resource monitoring (e.g., features
of the existing image data set limit their use for training deep-
learning models due to differences in aerial viewing angles, a con-
dition that complicates training of the models because they need
large amounts of training data to make more accurate predictions).

The research was developed following a five-phase approach:
(1) definition and selection of the main factors that impact imple-
mentation of object detectors; (2) selection of a machine-learning
object-detector algorithm; (3) data collection and postprocessing
steps; (4) training the machine-learning convolutional neural net-
work; and (5) evaluation of the results and analysis. In sum, the
research goals were to explore and develop an analytical concep-
tualization and a showcase demonstration to detect construction
resources within aerial images in real time using the latest machine-
based algorithms.

It is expected that the exploration of the challenges identified
herein will inform and guide strategies for object detectors’ imple-
mentations, thereby benefitting construction stakeholders by ena-
bling efficient data collection, processing, and interpretation in
construction management tasks. The research will serve as a base-
line for UAV technology use in construction planning. It will ef-
fectively build considerations for preventive and corrective actions
in activity assessments—keeping accurate, timely information to
support status updates and progress measurements. The rapid de-
tection and tracking of resources require efficient implementations
of project control methods to facilitate decision making, thereby
assisting the workflows of monitoring tasks and improving the
overall understanding of a project’s status.

The presented approach offers four critical contributions:
1. Conceptually demonstrating methods for choice, training, data-

source, and implementation of deep-learning-based object de-
tectors for UAV low-altitude images from construction projects
as input.

2. Studying the state-of-the-art object-detection approaches to bet-
ter fit their implementations for construction projects’ particular
conditions by exploring and developing an analytical conceptu-
alization and a showcase demonstration that detects construc-
tion resources within aerial images in real time.

3. Offering a guide for researchers on the challenges and require-
ments for aerial image data sets of construction resources (ob-
jects) for quality performance of deep-learning approaches.

4. Advancing knowledge on UAV capabilities to be used as an in-
tervention to reduce human effort on construction-monitoring
tasks and informing job-site activities by combining the power
of UAVs with deep learning to subsequently detect construction
resources based on their unique signatures.
Following a “Background” section explaining the uses of UAV in

construction, this paper details the methodology, the showcase dem-
onstration of implementation, and the results. The discussion and
conclusion examine and summarize findings and lessons learned
during the investigation.

Background

The first part of this section focuses on UAV advancement in
construction. Implementations of object detectors using computer-
vision techniques with standard image collection methods for con-
struction project applications follow.

The UAV is ubiquitous technology that has proven to be safe
and capable of providing information on construction engineering-
related tasks faster and at lower costs (Albeaino et al. 2019). UAVs
enable the simultaneous visualization of in situ construction resour-
ces, processes, and management of activities as they unfold over
time, which in turn supports solutions to construction engineering
tasks, such as following-up on progress in specific locations within
project controls and construction safety tasks (Gheisari and Esmaeili
2019). UAVs as an intervention replace personnel operations in the
job site that are difficult, costly, and inefficient to perform due to a
safety hazard and high level of effort. It collects information to en-
gage a unique bird’s-eye view of reality experiences—a perspective
that personnel in the job site would otherwise not be able to observe.
The UAV information affords experiential observations for aware-
ness, facilitating planning and goal-prioritizing activities essential
for the success of project-site activities.

By air-capturing the physical construction site environment
using a moving ultrahigh-definition camera and sensors (Engel
et al. 2014), and by reducing the limitations of onsite fixed-location
video devices deployed for information collection in locations such
as on occlusions and congested zones, UAV use has significantly
expanded in the last few years (Irizarry and Costa 2016; Zhou et al.
2018). Demonstrated applications include inspections, structural and
health monitoring (Duque et al. 2018), transportation (Greenwood
et al. 2019; Kwon et al. 2017), project control (Asadi et al. 2020),
disaster management, preservation (Bakirman et al. 2020), energy
efficiency in the built environment (Ficapal and Mutis 2019), and
construction safety (Kim et al. 2019; Liu et al. 2019). However, most
of these applications follow a postprocessing approach whereby
users process and interpret information using UAV images and
videos as input after its job-site collection, requiring a high level
of human input for processing and interpretation. New research
approaches should reduce the users’ efforts to collect and process
information from UAVs for decision making based on accurate de-
tection of construction resources available from UAV images in
real time.

Due to the recent availability of curated data sets, the researchers
have deployed high-capacity supervised or discriminative deep-
learning approaches for many construction management applica-
tions, ranging from object category recognition to object tracking.
For example, large-scale data sets such as ImageNet (Deng et al.
2009) and GoogleNet (Szegedy et al. 2015) have facilitated deep-
learning techniques in multiple applications in other domains with
high levels of accuracy. Research in construction management using
deep-learning methods is categorized into major clusters (Seo et al.
2015): object detection, object tracking, and action recognition.
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Each of these clusters aims to obtain specific output from images,
such as data of movement (e.g., tracked construction resources in
the physical space) and activity markers [e.g., cycle times on pro-
ductivity (Sherafat et al. 2020)].

For each cluster, there has been significant research in the last
two decades. Employed methods range from histograms of oriented
gradients (HOG) (Azar et al. 2013; Golparvar-Fard et al. 2013),
latent support vector machines (SVM) (Zhu et al. 2017), optical
flow (Kim et al. 2017) and stereoscopic vision [three-dimensional
(3D)] for object detection (Brilakis et al. 2011), to deep-learning
techniques using convolution neural network (CNN) (Fang et al.
2018) and long short-term memory (LSTM) (Slaton et al. 2020).
Each method has a set of advantages and disadvantages, and the
key has been to select the correct method for the given application.
New contributions to the clusters are growing. The most significant
existing implementations for object detection and activity recogni-
tion in construction specific to deep-learning techniques are pre-
sented in Table 1.

Using kinematic, image/video, and sound-based methods
(Sherafat et al. 2020), there have been numerous approaches de-
ployed for site monitoring systems that are less dependent on
humans. Such systems aim to help project stakeholders control
activities from activity recognition to activity tracking and perfor-
mance monitoring using corrective actions and performance data.
The collected information is analyzed for productivity (Roberts
and Golparvar-Fard 2019), safety (Fang et al. 2020; Kim et al.
2019, 2017), and quality control and decision-making tasks (Luo
et al. 2018) to prevent delays and enable safe and hazard-free
environments.

Methodology

Fig. 1 describes the general steps of the method. The first two
phases focus on understanding the problem and selecting the deep-
learning-based approaches to achieve the research work. The last
three phases contribute to the development, implementation, and
evaluation experimentations of the chosen approach. The authors
conceptualized continuous and iterative feedback in the model to
achieve improved performance and results for detection and recog-
nition, thereby improving the indicators for further decision making.

Phase 1: Aerial Image Analysis and Selection of
Deep-Learning Object-Detector Methods

Object detection refers to capturing and detecting instances of a
specific class in images from videos. Class means the type of con-
struction equipment and materials of interest, such as bulldozer,
crane, ladder, rebar, and formwork. There are two deep-learning ap-
proaches for object detection based on two- and one-phase models.
For the two-phase model, the first step is object localization in the
image by implementing algorithms to generate regions with a series
of candidate frames (bounding boxes). The second step is a classi-
fication for detecting the class of objects in the proposed region by
extracting features from each bounding box to determine if and
which objects are present in the proposals using classifiers [e.g., re-
gion-based convolutional neural networks (R-CNNs)] (Girshick
et al. 2014). CNNs are feed-forward networks in which multiple-
input, output, and hidden layers form a convolutional layer. For the
one-phase model, the algorithm uses regressions instead of a pro-
posed region generation phase, thereby using one step to directly
identify features maps with different resolutions to perform object
localization and classification [e.g., YOLOv3 (Redmon and Farhadi
2018), RetinaNet (Lin et al. 2020), and single-shot detection (Liu
et al. 2016)].

The use of UAV aerial images collected from the construction
zone airspace involves factors for the selection and implementation
of the object-detector approach. The factors can be viewed under a
two-group category. The first group is associated with the UAV’s
motion and position (including elevation) conditions in the airspace
relative to reference points on the ground during the image collec-
tion. The second group is related to the deep-learning algorithm
performance factors when using UAV images that impact the selec-
tion and implementation of an object detector.

The researchers analyzed the motion and position conditions
under the spatial and temporal resolutions to explore the first cat-
egory. The free movement for displacement (motion and positions)
over the construction area generates arbitrary orientations and angle
views of the objects with reference to a point on the ground. Fig. 2
shows the shifting orientations and angle views during UAV data
collection. The elevations—AGL—generate issues related to high
densities over the distribution of objects of interest within the image-
area and major scale variations in the image.

Low—or lack of optimal—spatial resolution indicates that the
UAV image-sensing system (digital camera sensor and lens) pro-
cures images with high densities of objects. The IFOV is from po-
sitions in the airspace with a minimum of 40 m AGL for safe UAV
operations, which in effect is high density. IFOV from positions in
the airspace are not commonly found in the true examples of data
sets used for CNN networks’ training. Low resolutions also occur
when objects in the images have sizes and aspect ratios—small
or wide—with unique scales and views. IFOVof objects with very
low scale values appears within a small proportion to the image’s
full size. The objects would likely appear bunched together with
partial occlusions, adding hurdles to the substantial limitations to
the existing amount of annotated data currently available in the true
ground example. The issue is more significant when objects of in-
terest are placed close to each other, usually the case at construction
sites. Low scale values affect accuracy for predictions.

Spatial resolutions have a significant impact because the existing
data set of images of objects (classes) used in construction projects
is limited in sample object sizes and shapes from aerial viewing
angles. Object-detection applications need large amounts of train-
ing images with representative sample cases of IFOV with optimal
spatial resolutions—objects and backgrounds on the ground with
an adequate scale at a given instant in time—to make predictions.
Another effect of low spatial resolutions is class imbalances—the
conditions of having a few main objects and extensive background
in the images. Class imbalance impacts accuracy due to high values
from the CNN loss functions of well-classified examples with high
probabilities (e.g., the IFOV in the image should not present de-
formations, physical aggregation with multiple classes, and partial
occlusions).

The UAV’s physical moving features impact temporal
resolutions—the frequency of obtaining imagery of the same con-
struction project area. UAVs’ image-sensing systems rapidly shift
positions relative to the ground as opposed to surveillance sensing
systems, where cameras are mostly fixed and maintain the same
position covering the same area. The shifting positions imply having
rapid changes of viewing angles of the covered areas during flight
operations. Shifting positions generate continuous changes of locus
of the UAV sensing system and IFOV. The generation of arbi-
trary IFOV from moving position impact the outcome of the deep-
learning algorithm in terms of their accuracy and speed. Any of
these issues’ materialization impacts performance accuracy and in-
ference time for deep-learning detectors’ implementation. The algo-
rithm requires short inference time to meet the real-time demands of
rapidly changing images from video to process and accurately detect
objects of interest.
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Table 1. Summary of most salient machine-learning implementations for the detection of construction resources and construction management tasks

Objective Architecture Classes Advantages Limitations Metrics References

Detecting construction
equipment

DetectNet (deep neural
network)

Formwork Applied DetectNet architecture to
recognize and locate formwork in
UAV videos.

Detects only a single class with a map
of 44%—poor performance for inputs
with multiple classes.

Mean average
precision (mAP)

Jahr et al. (2018)

Generating metadata
tags for construction
images

VGG-16 (CNN) Building, equipment,
workers

Applied VGG-16 architecture to
generate metadata tags in
constructions images used for object
detection and activity recognition.
Uses data set to generate labels for
single and multilabel classification.

The model can perform the only
classification and cannot identify
object boundaries within an image
for detection. Performance metrics
are comparatively lower for a
classification task.

Accuracy, precision,
recall

Nath et al. (2019)

Automated vision
tracking of
construction equipment

Coordinate triangulation
using multiple cameras

Equipment, workers,
and materials

Detects the spatial location of project
entities like equipment and materials
without sensors.

Cannot display recorded information
to the interested user. The absence of
sensor-based techniques affects the
accuracy of coordinate tracking.

Absolute error,
average error

Brilakis et al.
(2011)

Annotation of
construction footage
using object detection

Histogram of oriented
gradient (HOG) and
Bayesian networks

Bulldozer, excavator,
dump truck, grader,
roller

Detects five equipment classes using
HOG classifiers. Annotates classified
videos using Bayesian networks to
calculate the most probable action of
the equipment class.

Diversity in data can adversely affect
performance. Conditional probability
deteriorates performance when classes
are similar.

Precision–recall
curves

Rezazadeh Azar
(2017)

Real-time object
detection on
construction sites

Sliding-window
detector, random forests

Steer loaders, backhoes Uses sliding windows to detect
objects in construction site videos.

Sliding windows are inefficient for high-
resolution videos. The approach uses
HOG detectors for speed but, in turn,
has a low detection rate of 81.68%.

Miss rate,
false-positive
per window

Memarzadeh
et al. (2012)

Surveillance of power
grids using real-time
object detection

Faster R-CNN Excavator, bulldozer Creates a fine-tuned data set of
engineering vehicles intruding in
power grids.

The use of Faster R-CNN prohibits use
in real time because it can process fewer
frames per second compared with
algorithms such as single-shot detectors.

Mean average
precision
(MAPmAP)

Xiang et al.
(2018)

Utilizers modified R-CNN to detect
objects for surveillance purposes.

Construction site
monitoring

Single-shot detectors
(SSD)

Construction
equipment detected in
surveillance footage

Uses single-shot detector and affinity
propagation clustering to detect seven
classes of equipment in construction
site videos.

Approach results in a maximum map
of 74%, which is very low for the given
task. Greedy nonmax suppression
restricts SSD performance.

Mean average
precision
(MAPmAP)

Thakar et al.
(2018)

Detecting construction
equipment

R-FCN Excavator, dump truck,
loader, road roller,
mixer

Using a region-based convolution
network to detect multiple objects on
a construction site.

It cannot be used in real-time detection
because FPS is low for the model.

Precision–recall
curves

Jinwoo Kim
(2015)
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The selection and design custom of the CNN models must be
made in the context of the problem. Some deep-learning algorithms
have better accuracy but slower processing times and vice versa,
i.e., lower accuracy but faster processing times. The speed–accuracy
trade-off is a critical factor for the choice of deep network for object
detection using UAV in applications. UAV images’ spatial and tem-
poral resolutions of the current for object predictors’ implementa-
tions are significant limitations compared with standard nonaerial
images. The CNN model’s selection and its design customization
hinge on the conditions of the spatial and temporal resolutions by
adjusting balances between accuracy (how well it classifies and lo-
calizes objects of interest) and processing time (how long it takes to
process predictions of classes).

Because real-time detection with classification and localization
from UAVs’ sensing system is the aim, the authors chose a one-
phase CNN model to achieve an acceptable detection accuracy and

shorter inference time to meet the real-time requirement. One-phase
models have low inference time and can predict small object sizes
within lower-resolution images in complex backgrounds. The two-
phase model (R-CNN) was most suitable for non-real-time and
postflight processing and analysis applications with higher predic-
tion score results. The two-phase model required more time for
inference (processing) the predictions and presented a poor perfor-
mance for object localization on images when the object is relatively
small—low spatial resolutions for the aerial image case—thereby
adding limitations for UAVs image usage in real-time. For example,
the maximum reported prediction speed for deep-learning models
(benchmarking experiments), measured in frames per second (FPS)
for Faster R-CNN (VGG 16) was 7 (Ren et al. 2015), SSD300 was
46 (Liu et al. 2016), Fast R-CNNwas 0.5 (Girshick 2015), YOLOv3
was 22 (Redmon and Farhadi 2018), and SSD512 was 19 (Liu
et al. 2016). The reported times offer an approximation of how they

Fig. 1. Research methodology.

Fig. 2. Spatial and temporal resolutions: (a) shifting UAV motion and position in the construction zone airspace; and (b) IFOVs with different angle
viewing, object sample sizes, and densities. (Image of UAV device and UAV images by authors.)
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perform. The experiments were executed in disparate settings
by different authors, which makes exact one-to-one not viable
comparisons.

After small-scale implementations of other one-stage object de-
tectors [e.g., Yolo3 (Redmon and Farhadi 2018) and SqueezeDet
(Wu et al. 2017)], the authors concluded that the single shot detec-
tor (SSD) is an algorithm that best meets the conditions of spatial
and temporal resolution for object detection from UAV in real time,
in the context of construction projects. The authors concluded that
SSD was a more suitable approach for detection from UAVs. The
goal was to achieve high accuracy and precision values with rel-
evant modifications to SSD architecture. An in-depth discussion of
the SSD architecture is explained in Phase 2, as follows.

Phase 2: Architecture

SSD uses only a single shot to detect multiple objects within the
image, unlike techniques that use region-proposal methods. SSD
utilizes predetermined bounding boxes known as priors. Priors
represent the coordinates of the detected object’s location in the
image, called boundary coordinates. They can be expressed in two
ways (Fig. 3). The first specifies the normalized minimum and
maximum of the x- and y-coordinates of the boxes in the Euclidian
space. The second specifies the center coordinates along with the

box’s width and height in normalized form. The research presented
herein features an implementation that utilizes both representation
methods depending on the task being performed.

As a standard and popular algorithm, SSD has been used in re-
search in construction domain applications primarily to monitor
construction activities. An overview and analysis of the existing
SSD approach to applications in construction are summarized in
Table 2.

Single-Shot Detector Approach

The SSD CNN is split into three components. The first component
features the base convolutions that generate feature maps based on
an existing image classification architecture. The second is com-
posed of the auxiliary convolutions that make high-level feature
maps, followed by a convolution layer for predictions. This third
component is a prediction layer that detects and locates the objects
that match previously specified classes. Depending on the number
of layers, the SSD can be referred to as either SSD300 or SSD512.
The trailing number indicates the image size, with SSD300 iden-
tified as a suitable choice for the data in this research. Utilizing
SSD300 in place of SSD512 is contrary to what could be a common
expectation because SSD512 has a higher accuracy metric due to its
use of higher-resolution images. The major drawback of SSD512 is
that it requires more priors, which makes a model computationally
expensive and challenging to deploy in scenarios where processing
power is limited. Further, such a model would need a higher infer-
ence time (e.g., SSD300 and SSD512 can obtain 46 and 19 frames
per second, respectively), rendering it, at times, impossible to feed
the model with high-quality input, thus eventually affecting predic-
tion accuracy.

The authors used existing image classification architectures for a
class of construction resources because the current architectures
have been adapted and improved through years of research to cap-
ture elementary features from a given image. Using existing archi-
tecture to build a new system is more efficient. For the convolution
base (backbone), the system utilized a Visual Geometry Group
(VGG)-16 architecture that was pretrained on the ImageNet
Large-Scale Visual Recognition Competition (ILSVRC) classifica-
tion task (Deng et al. 2009). The kernel size in the fifth pooling
layer and change of the convolution stride facilitated calculations
when training. The classifications used fully connected layers
and were further removed for adaptability in the authors’ implemen-
tation. Fig. 4 shows an example of the processed and fully connected
layers fc6 and fc7 fitted into the convolutional layers as conv6
and conv7.

Phase 3: Data Collection and Postprocessing

There were two sources of data for the implementation, based on
its source. The first was publicly available repositories of scraped
single-class and multiclass images from the internet. The selection
criteria were the spatial resolutions to maintain consistency and
similarity in terms of objects’ sizes and aspect ratios within the im-
age as they were taken from UAV sensing systems. The second was
a real project video from UAV sensing systems. This source helps
maintain consistency based on the temporal resolution of the UAV
images. Postprocessing was performed, selecting frames at inter-
vals in image selection for footage from construction sites. Consid-
erations for data collection and postprocessing activities follow.

A proper viewing angle and IFOV of the ground area with ad-
equate scale were necessary for each image for adequate spatial
and temporal resolutions. Viewing angle included changing viewing
angles of covered areas in the ground because it implied a moving

Fig. 3. Two different methods of representing the bounding box for the
objects: (a) boundary coordinates; and (b) center coordinates. (Images
by authors.)

© ASCE 04021035-6 Pract. Period. Struct. Des. Constr.

 Pract. Period. Struct. Des. Constr., 2021, 26(4): 04021035 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ill
in

oi
s I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 0
8/

03
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



condition of UAV sensing systems during flight operations. The
limit number of images from data sets that are captured in a top-
viewed angle. The images in the data set present objects at a lower
viewing angle, reducing effectiveness in training the model because
the features at lower angles are not transferable for aerial views. The
goal was to procure images with densities of objects that best con-
tribute to the model’s learning.

Images in data sets have objects with large relative dimensions,
adding limitations for their use in object detectors with UAV images
as input. Objects within UAV images tend to appear at small scales
due to UAVelevations—a spatial resolution problem. The research-
ers explored the option of using existing low-altitude aerial image
data sets [e.g., UAV mosaicking and change detection (UMCD)
data set (Avola et al. 2020) and Okutama (Barekatain et al. 2017)].
Their utility was minimal because they specialized for other func-
tions (e.g., event recognition in surveillance, human action detec-
tion, humans’ gestures, or plastic bottle localization). Some data
sets had a general-purpose function, but the existing content did
not intersect with objects used in construction (equipment and ma-
terials), limiting their use for UAV in construction projects.

The researchers used 1,200 images collected using web scraping
and converting interval-separated image frames from existing UAV
footage, then augmented. Not all web-scraped images had similar
dimensions. Often, the target classes were occluded by construction
workers or other objects—these issues needed to be addressed using
suitable transformation methods. The augmentation was performed
with a 50% probability, which means that only half the images were
augmented at random. The resulting data consisted of 1,800 images
balanced in their class distribution and loaded into the model using

PyTorch’s inbuilt DataLoader method. The images were manually
annotated using open-source software called LblImg version 1.8.5
(Tzutalin 2015).

The collected data were augmented using a variety of data trans-
formations (Fig. 5). The first was photometric distortion, consider-
ing variations in hue, brightness, saturation, and noise. The second
was a geometric distortion. The researchers zoomed out the images
to assist the model in learning smaller objects with ease and zoomed
in for larger objects. They were horizontally flipped and normal-
ized using their mean and standard deviation of SSD’s pretrained
weights. Finally, the researchers resized the images to a dimension
of 300 × 300, which is the required input size of SSD300.

The transformed data were then ready to be used as input to the
model. The authors annotated the data manually and uniformly cat-
egorized it into five primary classes of construction resources: bull-
dozer, excavator, ladders, rebar, and formwork. Each class comprises
an object or piece of equipment commonly found at construction
sites. The presence of these classes in a given image can be used to
make inferences on the type of activity being executed on site. The
developed approach is flexible in making it possible to incorporate
additional classes and associated data as efficiently as possible for
further training and adjustment of the model.

Phase 4: Implementation

The implemented approach used SSD’s three different sets of con-
volutions (base, auxiliary, and prediction) to find and classify ob-
jects in an image, i.e., object detection. In the base convolution, the
researchers designed a neural net similar to VGG-16 by modifying

Table 2. Summary of the most salient implementations of deep-learning approaches for object detection

Problem category Description Limitations Performance References

SSD for site
monitoring

Replaces greedy nonmax suppression
with affinity propagation clustering to
improve performance for smaller objects.
Analyzes performance of different SSD
versions with existing neural networks.

Bounding boxes (representation of
predictions) tend to be smaller than the
actual object, thus making it difficult for
use on classes such as cranes and ladders.

Improves mean average
precision (mAP) of SSD by
3.77% on custom data sets

Jahr et al.
(2018)

Object-detection
models on
embedded hardware
for construction sites

Implements SSD and mobilenet in tandem
on web-scraped and subset of ImageNet
data set data to detect six classes of
construction equipment.

Merge bounding boxes of different classes
in close vicinity. It can only detect one
class per image.

Achieves an interpolated
average precision (IAP)
of 91.20% for all classes

Arabi et al.
(2020)

Uses edge computing to deploy the
developed model on embedded hardware.

Detect abnormal
objects on railway
tracks

Uses modified SSD and R-CNN to detect
objects occluding railway tracks using a
technique called region cutting.

The approach does not classify construction
equipment. The size of data required for
each class when training the model is
considerably larger.

Achieves mAP of 88.9%
for 20 classes.

Li et al.
(2020)

Fig. 4. VGG-16-modified architecture for the adaptability of the implemented SSD. (Bulldozer images by authors.)
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the last two fully connected layers, replacing them with convolu-
tional layers. The researchers employed a pretrained weight from
the ImageNet data set. The output from the base convolutions were
two feature maps. These feature maps were used as an input to the
auxiliary convolutional layers. At the end of this stage, the neural
network completed its learning phase to proceed to the generation
of the bounding boxes and predictions.

The previous step generated seven feature maps that fed the pre-
diction convolutions, which subsequently returned the location of
bounding boxes and class labels in each feature map. The layer
utilized priors boxes—anchor boxes—to generate the bounding
boxes around the desired class. The model’s object-detection phase
then used multibox detection to locate class objects in the images as
input. Because there were many detected boxes, the most relevant
boxes were filtered based on Jaccard similarity measures.

The researchers used transfer learning—the process of employ-
ing pretrained (CNN) as the basis for predicting a new given data
set—to build the model. The researchers froze the pretrained
weights and later unfroze them. The unfrozen part helped the model
learn the data once the basic features were extracted using the
pretrained weights. These weights—from the VGG-16 layer’s base
convolutions—are frozen because they have already been trained
for object classification. The weights in the auxiliary and prediction
convolutions were replaced by training the initializations, which
were updated after training the model. One thousand images scraped

from the web and uniformly distributed across all five classes were
used as input to train the model. An important hyperparameter used
for training was the stochastic gradient descent (SGD) optimizer.

To evaluate the model, the researchers used multibox loss.
Multibox loss is a combination of the localization and confidence
losses of the object detected in the images. A parameter alpha bal-
anced the contribution of the localization loss, thereby helping the
predictions approach the ground truth. The trained model using
the previously mentioned evaluation measures was used to output
the predictions.

The resulting data were trained using a model that imple-
mented three approaches for training the deep neural network.
The hyperparameters used in the model are as close to the ideal
values as possible. Thus, instead of the initial tuning of the hyper-
parameters, this research approach focuses on how an ideal learn-
ing rate for the object-detection module was found. Once the
ideal learning rate was achieved, the parameters were fine-tuned
to get more accurate results. The three approaches used to find
the ideal learning rate are (1) a constant-learning-rate method,
(2) learning-rate annealing, and (3) cyclic learning rates. It is im-
portant to note that all three approaches had a different learning
rate. The three different approaches enable comparison and veri-
fication of the methods used within the case example (use case)
implementation.

The model was trained on a Nvidia GeForce TX 1070 GPU for
120 epochs using mini batches of size 32 for all three approaches,
and the model was built and run using the PyTorch library. The first
approach set a constant learning rate for each of the layers in the
model (base, auxiliary, and convolution) of 0.0008 for the base
layer, 0.001 for the extra layer, and 0.004 for the prediction layers.
These values were decided on a trial-and-error basis.

The second approach set the learning-rate annealing values to
0.0008, 0.001, and 0.004 initially. After every 30 epochs, the value
was dropped by a factor of 10. This approach was initially selected
because it required a very high learning rate to identify the range in
which the optimum minima would be found. The learning rate was
gradually reduced to enable the rates to stay in the optimum minima
vicinity.

The third approach used the cyclic learning rate, a strategy for
balancing between a given range of minimum and maximum val-
ues. The range of values was set at 0.0002, 0.0008, and 0.006 as the
minimum for each layer in the model, and 0.001, 0.008, and 0.001
as the maximum. To validate and monitor performance, the predic-
tion, mean average precision (mAP), and loss values were contin-
uously calculated during the training process using the validation
data set. The comparisons helped ensure that the detector maintained
the overall performance during training without overfitting or losing
its generalization. The loss can be visualized for the learning-rate
annealing approach in Fig. 6.

Phase 5: Evaluations and Results

The authors developed a case example to demonstrate the approach
that included implementation and experimentation tasks. It uses
UAV footage collected from several missions over a construction
site. Each video belonged to a UAV mission, and each UAV mis-
sion was composed of a set of flights over a job site during a spe-
cific period in the construction phase. The demonstration analyses
the output of the retrieved cluster of UAV videos critical to the
job-site personnel. It focuses on detecting classes of construction
resources (equipment and tools) that are typically found in con-
struction task projects.

The accuracy of the object-detection modules was evaluated
in terms of the mean average precision [mAP, as defined byFig. 5. Syntax mapping for activity registration. (Images by authors.)
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Everingham et al. (2009)]. The mAP, in simple terms, is the area
under the precision-recall curve. The evaluation was performed us-
ing the raw predictions, then parsing and comparing them with the
ground-truth values. To standardize evaluation, the nonmax sup-
pression was set to a threshold of 0.45. Although hard-negative
mining was used to select the images where the background
was the most difficult to detect, the discarded images were consid-
ered in the evaluation data set to avoid having false positives. The
results showed that the model performs well, given the small size of
the data set.

The optimum learning rate was achieved by calculating the
training and test loss and adjusting the rate along with the number
of epochs required for training the data (one epoch corresponds
to a full training cycle of the network without repetition on each
data value). The implementation considered different approaches
to arrive at the optimal learning rate, such as using a cyclic learning
rate and learning-rate annealing. The hyperparameters such as
weight decay, image resolution, and momentum were tweaked to
account for the number of priors used. As a result, the authors
achieved a comparable performance using less than half the data
used in existing implementations (Jahr et al. 2018), thereby making
the model in this research more effective. The results demonstrated
that using the cyclic-learning-rate approach results in the highest
mAP values for the model. However, the difference in the values
is marginal, indicating that hyperparameters need to be adjusted
and tuned in future work. The results also showed that the model
performs very well for the excavator class (mAP 75.8%). Adding
more data would provide better insight into the results for the given
class.

The coordinates from the bounding boxes (indicators) can be
drawn on the images to analyze the detected objects. Fig. 7 shows
an output of the object identification module based on the SSD
model, showing the bounding boxes and their associated annota-
tions as indicators of the construction resource that was detected in
the image. The bounding boxes are examples of detected classes for
different UAV missions.

A record is generated within segments of one second by the
object-detection algorithm. The approach summarizes the occur-
rence of an activity within 60 frames per second in a text-based
activity list. To reduce the effect of false positives, the algorithm
counts the indicators after registering a minimum of 35 frames
per segment with positive indicators (i.e., if an object is present
in more than 35 frames, the algorithm registers the object as
existing). Using the activity indicators, it was inferred that
the given activity was being performed in that video segment.
If there are no objects detected, then the activity output, along
with the segments, is null.

Demonstration Achieved Performance

The presented approach overcame three main challenges over from
the reviewed implementations, highlighting advantages of the se-
lected strategy in building object detectors using UAVaerial images.
The first is the adaptation of SSD to enable real-time detection of
construction resources from UAVs over R-CNNs. The second is
learning rate annealing and cyclic learning rate training methodol-
ogies, which reduces the human effort of time for collecting and
processing data. The approach demands a considerably smaller data
set for training without compromising the model performance,
thereby using less training and test training resources, facilitating
the implementation with other construction classes. Using a smaller
data set implies reducing the human effort to collect and process
data, making it suitable for the reviewed and presented models. The
third is custom CNN design to meet the requirements of images
collected from UAV-sensing systems with two introduced concepts:
spatial and temporal resolutions. A summary table shows the differ-
ences between the presented research and existing implementations
(Table 3).

Discussion

Current UAVoperations using standard digital camera lens and sen-
sors involve constant movement and traveling along a path within a
short time frame that makes it difficult to capture images to a ground
area with adequate scale at a given instant in time—a spatial reso-
lution problem. The UAV shifting position relative to the ground
impacts the collected images’ temporal resolution because it produ-
ces continuously changing viewing (sensing) area and viewing an-
gles. Small scales and orientations of IFOV due to multiple positions
and elevations in the construction zone airspace translate to major
difficulties when implementing deep-learning-based objects (con-
struction resources) detectors to function in real-time. Construction
equipment and materials appear semioccluded within the images
due to their location, joint positioning, and differing backgrounds.

The UAV images’ unfavorable spatial and temporal resolutions
cause an exhaustive data-preparation process for aerial images to
make them suitable to use as a sample ground truth in the model.
There were not relevant aerial image data sets (low-altitude image
data sets) for construction projects. Most of the existing images
were from the data sets with views taken from the ground, which
have limited use for the object detectors. The researchers used web-
scraped images. However, these images do not always provide the
required viewpoint, and often images appear to be recorded from
very low AGLs. Filtering images that have the desired viewing

Fig. 6. Modeling: train and test loss: learning-rate annealing.
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angle was challenging and time-consuming. Furthermore, the num-
ber of priors being used in the model determines the number of
boxes that could be annotated for the classes in each image.

For the selected one-phase deep-learning model (SSD) in this
study, the performance was affected when the number of bounding
boxes exceeded five or more—this number required further filter-
ing of the scraped data. Real-time applications seldom provided the
option for filtering unwanted frames, thereby affecting the results.
The degradation in performance can be overcome by increasing the
number of priors used, but this strategy has a drawback due to

increased inference time—a processing speed reduction. Finally,
the selected SSD approach has a low localization loss, but a higher
classification loss because the same bounding boxes are used to
predict multiple classes. As a result, an increase in the number of
classes increased the resultant loss. Therefore, there is a trade-off be-
tween processing speed (inference time) and the number of classes
detected when using the SSD. For resource detection in construc-
tion, this drawback is a severe impediment because—even for few
classes—because they might appear grouped in the construction
zone at the same time.

Fig. 7. Detected construction resources (classes) using predictors of the SSD models and UAVaerial images in real time: (a) excavator; (b) excavator
and bulldozer; (c) excavator; (d) crane; (e) rebars; and (f) ladder. (Images by authors.)

Table 3. Performance reported from deep-learning-based detectors for construction resources

Other research efforts Model Data UAV Real Time Score

Formwork detection in UAV pictures of construction sites
(Jahr et al. 2018)

DetectNet 1,400 images (1 class) Yes Yes 44.48% (mAP)

Engineering vehicles detection based on modified faster
R-CNN for power grid surveillance (Xiang et al. 2018)

Faster R-CNN 1,552 images (2 classes) No No 89.12% (mAP)

Single-label and multilabel classification of construction
objects using deep-transfer learning methods (Nath et al. 2019)

VGG16 1,859 images (2 classes) No Yes Accuracy: 85.5%,
precision: 75.6%,
recall: 95.3%

Detecting construction equipment using a region-based fully
convolutional network and transfer learning (Kim et al. 2018)

R-FCN 2,920 images (5 classes) No No 94% (mAP)

Efficient single-shot-multibox detector for construction site
monitoring (Thakar et al. 2018)

SSD-Inception Not given No Yes 51.24% (mAP),
63.76% (mAP)

Presented approach SSD 500 1,400 images (6 classes) Yes Yes 0.751% (mAP)
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The requirement for a large amount of data for training the neural
network was a significant impediment during the implementation.
This issue is common with deep-learning performances because
data sets used directly impact the accuracy. The authors customized
a design for the selected deep-learning model to reduce the effect,
using the cyclic learning rate technique and proper tuning of the
hyperparameters. The effect was obtaining the same or better results
from half the amount of data and half the number of epochs that
have been traditionally required using the same one-phase deep-
learning model. In Fig. 6, it can be observed that test loss converges
to 2.92 in 120 epochs, whereas the loss of test loss reaches 2.94 in
120 epochs. The graph trend indicates that the cyclic learning ap-
proach converges faster than the constant learning rate, where all
other parameters are the same. Although learning-rate annealing re-
sults in a lower test loss, its performance is inferior in terms of test
loss compared with the cyclic learning rate. From this observation, it
can be inferred that training the model on a significantly larger data
set can lead to better performance. Even by changing the nature of
the web-scraped data, better results can be achieved.

Conclusion

The research presented an analytical conceptualization and a show-
case demonstration to detect construction resources within aerial
images in real time. The proposed conceptualization consisted of
two parts: spatial resolution and temporal resolution. Spatial reso-
lution refers to the IFOV within an image of objects and back-
grounds on the ground with an adequate scale at a given instant in
time. Temporal resolution refers to the frequency for obtaining
imagery of the same particular area of a construction project. The
new conceptualization served to analyze the challenges of design-
ing and implementing a deep-learning algorithm for the case object
detection in real time on construction sites.

The showcase demonstration is an implementation that detects
objects of interest (construction resources) extracted from aerial im-
ages produced on UAV sensing systems in real time. The demon-
stration illustrated the challenges of implementation that resulted
from the spatial and temporal resolutions. The authors built the im-
plementation using a customized deep-learning technique (SSD) to
extract and encode images from feature representations to predict
objects of interest. These predictors are bounding boxes that pro-
vide information on the presence of construction resources that in-
form monitoring and project control tasks.

The implementation could detect six classes of construction
resources in a given UAV video with mAP values in the range of
0.78–0.85. These mAP values are considered good results com-
pared with implementations discussed in the literature review, par-
ticularly considering the size, aspect ratio, and UAV aerial image
density. As discussed in the “Architecture (Phase 2)” section,
existing implementations can achieve similar results, but they did
not test the unfavorable spatial and temporal resolution conditions
of UAV images. They also used considerably more extensive data
for the selected classes, and the images were taken from fixed po-
sitions to cover the same particular area of construction sites.

The employed SSD300 method avoids using region-proposal
techniques and performs detection in a single pass over the image.
The approach can run in real time with high accuracy and on hard-
ware with limited capacity, and outperformed its CNN counter-
parts, such as R-CNN and faster R-CNN, in speed. The use of
multiscale feature maps improved object detection at different
scales due to the low spatial resolution of aerial images (e.g., regis-
tration of construction equipment classes with very low scale
values). The existing data for construction resources—any class

or materials and equipment—are limited. Such data are nonexistent
for aerial fields of view, which is a limiting factor for collection and
training sample sets. The limitation impacts deep learning for object-
detecting approaches because they require a good amount of data for
training the models to make accurate predictions. The higher detec-
tion accuracy at different image scales reinforced the choice of the
SSD algorithm.

The proposed research can also address different domains and
applications in construction management with minor modifica-
tions to the architecture. For example, the applications can include
detecting equipment at indoor construction sites or for a particular
piece of equipment, it could account for different makes, models, or
color. The proposed method can be expanded and transferred to
construction projects by training multiple classes, making modifi-
cations in the neural network layers, and training it with relevant
data. However, introducing multiple sets of classes of construction
resources will necessitate additional diversified data for training
the neural network, thereby enhancing the robustness of the model
to improve spatial and temporal resolution conditions. The same
approach used in this research can be implemented using less data
and computing resources for better or equivalent performance as
existing implementations.

Automating the pipeline would help reduce time spent specifying
the model input for training, running it, and feeding the output for
activity recognition in real time. For example, for data preparation
to train the model, tools that automatically solve class imbalances—
multiple sizes of objects of interest in the test images—will improve
the final training network and efficiency of implementing the ap-
proach. Efforts for improvement of implementation should be directed
to automation for data-augmentation techniques that allow the crea-
tion of syntactic scenarios [e.g., cropping and adding some images of
construction resources (equipment) into image frames of empty
construction sites]. The augmentation method allows for creating
different activities in a single image of a vacant construction site,
and the resultant images can then be used to train the model.

The spatial-and-temporal-resolution concept and techniques can
be used to shed light on the potential problems using aerial images
from UAVand to improve the performance of other researchers and
practitioners’ implementations from the community, thereby mak-
ing them more suitable for deployment for activities such as for
project control and management in real-time scenarios.

Finally, the research presented herein offers many important oppor-
tunities for further study. First, there is a trade-off between processing
speed and the number of classes of construction resources that can be
detected from a UAV due to the number of features/details identified
from the birds-eye view of the image, which limits the number of
classes (construction resources) that can be detected within images
in real time. Second, new methods to generate data sources that better
reflect the changing nature of the construction project environment
promise an improvement in training model performance, thereby caus-
ing transferability of the approach to other construction projects
(e.g., web-scraped data on multiple physical construction environ-
ments). Third, bounding boxes as outputs of construction resource
detection could improve awareness for activity identification in con-
struction management tasks by reducing object identification uncer-
tainty for planning and monitoring tasks—reducing human effort as
an input for human–machine interfacing conditions, which benefits,
among other things, safety (particularly for roadway construction).

Data Availability Statement

Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable

© ASCE 04021035-11 Pract. Period. Struct. Des. Constr.

 Pract. Period. Struct. Des. Constr., 2021, 26(4): 04021035 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ill
in

oi
s I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 0
8/

03
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



request (SSD trained model, images used for training, and construc-
tion project UAV videos).

Acknowledgments

This research was partially supported by the National Science
Foundation (NSF) Grant No. IIS 1550833.

References

Albeaino, G., M. Gheisari, and B. W. Franz. 2019. “A systematic review of
unmanned aerial vehicle application areas and technologies in the AEC
domain.” J. Inf. Technol. Constr. 24: 381–405.

Arabi, S., A. Haghighat, and A. Sharma. 2020. “A deep-learning-based
computer vision solution for construction vehicle detection.” Com-
put.-Aided Civ. Infrastruct. Eng. 35 (7): 753–767. https://doi.org/10
.1111/mice.12530.

Asadi, K., A. Kalkunte Suresh, A. Ender, S. Gotad, S. Maniyar, S. Anand,
M. Noghabaei, K. Han, E. Lobaton, and T. Wu. 2020. “An integrated
UGV-UAV system for construction site data collection.” Autom. Constr.
112 (Apr): 103068. https://doi.org/10.1016/j.autcon.2019.103068.

Avola, D., L. Cinque, G. L. Foresti, N. Martinel, D. Pannone, and C.
Piciarelli. 2020. “A UAV video dataset for mosaicking and change de-
tection from low-altitude flights.” IEEE Trans. Syst. Man Cybernetics
Syst. 50 (6): 2139–2149. https://doi.org/10.1109/TSMC.2018.2804766.

Azar, E. R., S. Dickinson, and B. McCabe. 2013. “Server-customer inter-
action tracker: Computer vision-based system to estimate dirt-loading
cycles.” J. Constr. Eng. Manage. 139 (7): 785–794. https://doi.org/10
.1061/(ASCE)CO.1943-7862.0000652.

Bakirman, T., B. Bayram, B. Akpinar, M. F. Karabulut, O. C. Bayrak,
A. Yigitoglu, and D. Z. Seker. 2020. “Implementation of ultra-light
UAV systems for cultural heritage documentation.” J. Cult. Heritage
44 (Jul–Aug): 174–184. https://doi.org/10.1016/j.culher.2020.01.006.

Barekatain, M., M. Martí, H. Shih, S. Murray, K. Nakayama, Y. Matsuo,
and H. Prendinger. 2017. “Okutama-Action: An aerial view video data-
set for concurrent human action detection.” In Proc., 2017 IEEE Conf.
on Computer Vision and Pattern Recognition Workshops (CVPRW).
New York: IEEE.

Brilakis, I., M.-W. Park, and G. Jog. 2011. “Automated vision tracking of
project related entities.” Adv. Eng. Inf. 25 (4): 713–724. https://doi.org
/10.1016/j.aei.2011.01.003.

Deng, J., W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li. 2009. “ImageNet:
A large-scale hierarchical image database.” In Proc., 2009 IEEE Conf.
on Computer Vision and Pattern Recognition. New York: IEEE.

Deng, L. 2014. “Deep learning: Methods and applications.” Found. Trends
Signal Process. 7 (3–4): 197–387. https://doi.org/10.1561/2000000039.

Dozzi, S. P., and S. M. AbouRizk. 1993. Productivity in construction.
Ottawa: Institute for Research in Construction, National Research
Council Ottawa.

Duque, L., J. Seo, and J. Wacker. 2018. “Bridge deterioration quantification
protocol using UAV.” J. Bridge Eng. 23 (10): 04018080. https://doi.org
/10.1061/(ASCE)BE.1943-5592.0001289.

Engel, J., J. Sturm, and D. Cremers. 2014. “Scale-aware navigation of
a low-cost quadrocopter with a monocular camera.” Rob. Auton. Syst.
62 (11): 1646–1656. https://doi.org/10.1016/j.robot.2014.03.012.

Everingham, M., L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman. 2009. “The pascal visual object classes (VOC) challenge.”
Int. J. Comput. Vision 88 (2): 303–338. https://doi.org/10.1007/s11263
-009-0275-4.

Fang, W., L. Ding, B. Zhong, P. E. D. Love, and H. Luo. 2018. “Automated
detection of workers and heavy equipment on construction sites: A con-
volutional neural network approach.” Adv. Eng. Inf. 37 (Aug): 139–149.
https://doi.org/10.1016/j.aei.2018.05.003.

Fang, W., P. E. D. Love, H. Luo, and L. Ding. 2020. “Computer vision
for behaviour-based safety in construction: A review and future direc-
tions.” Adv. Eng. Inf. 43 (Jan): 100980. https://doi.org/10.1016/j.aei
.2019.100980.

Ficapal, A., and I. Mutis. 2019. “Framework for the detection, diagnosis,
and evaluation of thermal bridges using infrared thermography and un-
manned aerial vehicles.” Buildings 9 (8): 179. https://doi.org/10.3390
/buildings9080179.

Gheisari, M., and B. Esmaeili. 2019. “Applications and requirements of
unmanned aerial systems (UASs) for construction safety.” Saf. Sci.
118 (Oct): 230–240. https://doi.org/10.1016/j.ssci.2019.05.015.

Girshick, R. 2015. “Fast R-CNN.” In Proc., 2015 IEEE Int. Conf. on
Computer Vision (ICCV). New York: IEEE.

Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014. “Rich feature
hierarchies for accurate object detection and semantic segmenta-
tion.” In Proc., 2014 IEEE Conf. on Computer Vision and Pattern Rec-
ognition. New York: IEEE.

Golparvar-Fard, M., A. Heydarian, and J. C. Niebles. 2013. “Vision-based
action recognition of earthmoving equipment using spatio-temporal fea-
tures and support vector machine classifiers.” Adv. Eng. Inf. 27 (4):
652–663. https://doi.org/10.1016/j.aei.2013.09.001.

Greenwood, W. W., J. P. Lynch, and D. Zekkos. 2019. “Applications of
UAVs in Civil Infrastructure.” J. Infrastruct. Syst. 25 (2): 04019002.
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464.

Irizarry, J., and D. B. Costa. 2016. “Exploratory study of potential applica-
tions of unmanned aerial systems for construction management tasks.”
J. Manage. Eng. 32 (2): 10. https://doi.org/10.1061/(ASCE)ME.1943
-5479.0000422.

Jahr, K., A. Braun, and A. Borrmann. 2018. “Formwork detection in UAV
pictures of construction sites.” In Vol. 12 of Proc., eWork and eBusiness
in Architecture, Engineering, and Construction, edited by R. S. Jan
Karlshoj, 265–271. Copenhagen, Denmark: CRC Press. https://doi
.org/10.1201/9780429506215-33.

Jinwoo Kim, S. C. 2015. “Robust real-time object detection on construction
sites using integral channel features.” In Proc., Int. Conf. on Construc-
tion Engineering and Project Management. Deakin, Australia:
International Centre for Complex Project Management.

Kim, D., M. Liu, S. Lee, and V. R. Kamat. 2019. “Remote proximity mon-
itoring between mobile construction resources using camera-mounted
UAVs.” Autom. Constr. 99 (Mar): 168–182. https://doi.org/10.1016/j
.autcon.2018.12.014.

Kim, H., H. Kim, Y. W. Hong, and H. Byun. 2018. “Detecting construction
equipment using a region-based fully convolutional network and trans-
fer learning.” J. Comput. Civ. Eng. 32 (2): 04017082. https://doi.org/10
.1061/(ASCE)CP.1943-5487.0000731.

Kim, K., H. Kim, and H. Kim. 2017. “Image-based construction hazard
avoidance system using augmented reality in wearable device.” Autom.
Constr. 83 (Nov): 390–403. https://doi.org/10.1016/j.autcon.2017.06
.014.

Kwon, S., J.-W. Park, D. Moon, S. Jung, and H. Park. 2017. “Smart merg-
ing method for hybrid point cloud data using UAV and LIDAR in
earthwork construction.” Procedia Eng. 196: 21–28. https://doi.org/10
.1016/j.proeng.2017.07.168.

Li, Y., H. Dong, H. Li, X. Zhang, B. Zhang, and Z. Xiao. 2020. “Multi-
block SSD based small object detection for UAV railway scene surveil-
lance.” Chin. J. Aeronaut. 33 (6): 1747–1755. https://doi.org/10.1016/j
.cja.2020.02.024.

Lin, T., P. Goyal, R. Girshick, K. He, and P. Dollár. 2020. “Focal loss for
dense object detection.” IEEE Trans. Pattern Anal. Mach. Intell. 42 (2):
318–327. https://doi.org/10.1109/TPAMI.2018.2858826.

Liu, D., J. Chen, D. Hu, and Z. Zhang. 2019. “Dynamic BIM-augmented
UAV safety inspection for water diversion project.” Comput. Ind.
108 (Jun): 163–177. https://doi.org/10.1016/j.compind.2019.03.004.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. 2016. “SSD: Single shot multibox detector.” In Proc., European
Conf. on Computer Vision, 21–37. Cham, Switzerland: Springer.

Luo, H., C. Xiong, W. Fang, P. E. D. Love, B. Zhang, and X. Ouyang. 2018.
“Convolutional neural networks: Computer vision-based workforce ac-
tivity assessment in construction.” Autom. Constr. 94 (Oct): 282–289.
https://doi.org/10.1016/j.autcon.2018.06.007.

Memarzadeh, M., A. Heydarian, M. Golparvar-Fard, and J. C. Niebles.
2012. Real-time and automated recognition and 2D tracking of con-
struction workers and equipment from site video streams.” In Proc.,
Int. Conf. on Computing in Civil Engineering. Reston, VA: ASCE.

© ASCE 04021035-12 Pract. Period. Struct. Des. Constr.

 Pract. Period. Struct. Des. Constr., 2021, 26(4): 04021035 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ill
in

oi
s I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 0
8/

03
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

https://doi.org/10.1111/mice.12530
https://doi.org/10.1111/mice.12530
https://doi.org/10.1016/j.autcon.2019.103068
https://doi.org/10.1109/TSMC.2018.2804766
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000652
https://doi.org/10.1061/(ASCE)CO.1943-7862.0000652
https://doi.org/10.1016/j.culher.2020.01.006
https://doi.org/10.1016/j.aei.2011.01.003
https://doi.org/10.1016/j.aei.2011.01.003
https://doi.org/10.1561/2000000039
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001289
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001289
https://doi.org/10.1016/j.robot.2014.03.012
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1016/j.aei.2018.05.003
https://doi.org/10.1016/j.aei.2019.100980
https://doi.org/10.1016/j.aei.2019.100980
https://doi.org/10.3390/buildings9080179
https://doi.org/10.3390/buildings9080179
https://doi.org/10.1016/j.ssci.2019.05.015
https://doi.org/10.1016/j.aei.2013.09.001
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000422
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000422
https://doi.org/10.1201/9780429506215-33
https://doi.org/10.1201/9780429506215-33
https://doi.org/10.1016/j.autcon.2018.12.014
https://doi.org/10.1016/j.autcon.2018.12.014
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000731
https://doi.org/10.1016/j.autcon.2017.06.014
https://doi.org/10.1016/j.autcon.2017.06.014
https://doi.org/10.1016/j.proeng.2017.07.168
https://doi.org/10.1016/j.proeng.2017.07.168
https://doi.org/10.1016/j.cja.2020.02.024
https://doi.org/10.1016/j.cja.2020.02.024
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1016/j.compind.2019.03.004
https://doi.org/10.1016/j.autcon.2018.06.007


Nath, N. D., T. Chaspari, and A. H. Behzadan. 2019. “Single- and multi-
label classification of construction objects using deep transfer learning
methods.” J. Inf. Technol. Constr. 24: 511–526. https://doi.org/10.36680
/j.itcon.2019.028.

National Research Council. 2009. Advancing the competitiveness and ef-
ficiency of the U.S. construction industry. Washington, DC: National
Academies Press.

Redmon, J., and A. Farhadi. 2018. “YOLOv3: An incremental improvement.”
Preprint, submitted April 8, 2018. http://arxiv.org/abs/1804.02767.

Ren, S., K. He, R. Girshick, and J. Sun. 2015. “Faster R-CNN: Towards
real-time object detection with region proposal networks.” Preprint,
submitted June 4, 2015. http://arxiv.org/abs/1506.01497.

Rezazadeh Azar, E. 2017. “Semantic annotation of videos from equipment-
intensive construction operations by shot recognition and probabilistic
reasoning.” J. Comput. Civ. Eng. 31 (5): 04017042. https://doi.org/10
.1061/(ASCE)CP.1943-5487.0000693.

Roberts, D., and M. Golparvar-Fard. 2019. “End-to-end vision-based de-
tection, tracking, and activity analysis of earthmoving equipment filmed
at ground level.” Autom. Constr. 105 (Sep): 102811. https://doi.org/10
.1016/j.autcon.2019.04.006.

Seo, J., S. Han, S. Lee, and H. Kim. 2015. “Computer vision techniques for
construction safety and health monitoring.” Artif. Intell. Eng. 29 (2):
239–251. https://doi.org/10.1016/j.aei.2015.02.001.

Sherafat, B., C. R. Ahn, R. Akhavian, A. H. Behzadan, M. Golparvar-Fard,
H. Kim, Y.-C. Lee, A. Rashidi, and E. R. Azar. 2020. “Automated meth-
ods for activity recognition of construction workers and equipment:
State-of-the-art review.” J. Constr. Eng. Manage. 146 (6): 03120002.
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001843.

Slaton, T., C. Hernandez, and R. Akhavian. 2020. “Construction activity
recognition with recurrent convolutional networks.” Autom. Constr.
113 (May): 103138. https://doi.org/10.1016/j.autcon.2020.103138.

Szegedy, C., L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. “Going deeper with
convolutions.” In Proc., IEEE Conf. on Computer Vision and Pattern
Recognition. New York: IEEE.

Thakar, V., H. Saini, W. Ahmed, M. M. Soltani, A. Aly, and J. Y. Yu.
2018. “Efficient single-shot multibox detector for construction site
monitoring.” In Proc., Int. Smart Cities Conf. (ISC2), 1–6. New York:
IEEE.

Tzutalin. 2015. “LabelImg.”Accessed January 25, 2020. https://github.com
/tzutalin/labelImg.

Wu, B., A. Wan, F. Iandola, P. H. Jin, and K. Keutzer. 2017. “SqueezeDet:
Unified, small, low power fully convolutional neural networks for
real-time object detection for autonomous driving.” In Proc., 2017
IEEE Conf. on Computer Vision and Pattern Recognition Workshops
(CVPRW). New York: IEEE.

Xiang, X., N. Lv, X. Guo, S. Wang, and A. El Saddik. 2018. “Engi-
neering vehicles detection based on modified faster R-CNN for power
grid surveillance.” Sensors 18 (7): 2258. https://doi.org/10.3390
/s18072258.

Zhou, J., C.-M. Vong, Q. Liu, and Z. Wang. 2019. “Scale adaptive image
cropping for UAV object detection.” Neurocomputing 366 (Nov):
305–313. https://doi.org/10.1016/j.neucom.2019.07.073.

Zhou, Z., J. Irizarry, and Y. Lu. 2018. “A multidimensional framework for
unmanned aerial system applications in construction project manage-
ment.” J. Manage. Eng. 34 (3): 04018004. https://doi.org/10.1061
/(ASCE)ME.1943-5479.0000597.

Zhu, Z., X. Ren, and Z. Chen. 2017. “Integrated detection and tracking
of workforce and equipment from construction job site videos.” Au-
tom. Constr. 81 (Sep): 161–171. https://doi.org/10.1016/j.autcon.2017
.05.005.

© ASCE 04021035-13 Pract. Period. Struct. Des. Constr.

 Pract. Period. Struct. Des. Constr., 2021, 26(4): 04021035 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ill
in

oi
s I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
on

 0
8/

03
/2

1.
 C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.

https://doi.org/10.36680/j.itcon.2019.028
https://doi.org/10.36680/j.itcon.2019.028
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1506.01497
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000693
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000693
https://doi.org/10.1016/j.autcon.2019.04.006
https://doi.org/10.1016/j.autcon.2019.04.006
https://doi.org/10.1016/j.aei.2015.02.001
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001843
https://doi.org/10.1016/j.autcon.2020.103138
https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg
https://doi.org/10.3390/s18072258
https://doi.org/10.3390/s18072258
https://doi.org/10.1016/j.neucom.2019.07.073
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000597
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000597
https://doi.org/10.1016/j.autcon.2017.05.005
https://doi.org/10.1016/j.autcon.2017.05.005

