GSA Connects 2023 Meeting in Pittsburgh, Pennsylvania

Paper No. 221-5

Presentation Time: 9:15 AM

USING DEEP NEURAL NETWORKS AND DATA FUSION TO ASSESS RELATIVE DEGREES OF CHEMICAL AND PHYSICAL WEATHERING OF ALLUVIAL FANS: AN EXAMPLE FROM SOUTHEASTERN CALIFORNIA

POLUN, Sean¹, BIDGOLI, Tandis S.², GOMEZ, Francisco¹ and MURPHY, Taylor¹, (1)Department of Geological Sciences, University of Missouri, 101 Geology Building, Columbia, MO 65211, (2)Department of Geological Sciences, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407

Alluvial fans are a commonly used landform in arid regions for assessing the climatic and tectonic history of a region. Physical and chemical processes shape the evolution of these surfaces, with distinct properties visible in various remote sensing datasets, specifically surface roughness and spectral reflectance. These properties are widely used to delineate individual relative age units, but this is labor-intensive and requires a trained interpreter and can be highly subjective. Efforts to integrate relative age into a framework that integrates sensed surface properties with directly measured surface ages should ideally minimize any subjectivity. Machine learning processes offer enhanced methods to solve classification related tasks on imaged properties. Specifically, deep neural networks (artificial neural networks with multiple layers) have seen wide application for the interpretation of remote sensing data for classification, segmentation, identification, and regression tasks. These processes offer new opportunities to analyze landforms in a systematic manner that takes full advantage of numerous datasets that characterize different processes.

In southeastern California, we have ongoing efforts to characterize the age of inaccessible faulted landforms along portions of the Garlock and associated faults. While ultimately, we expect to link remote sensing properties with absolute age measurements, an intermediate task is producing a classifier that can consistently classify segments of alluvial fans and slopes. Using a training dataset produced by a trained interpreter, we built a classifier to segment areas of different relative age using NAIP 4 band VNIR (Visual-Near Infrared) imagery, ASTER, Landsat 8/9, and Sentinel 2 multispectral VNIR-SWIR (SWIR: Shortwave Infrared) imagery, L-band (~23 cm wavelength) PALSAR and C-band (~5.6 cm wavelength) Sentinel-1 backscatter intensity, and surface roughness metrics calculated from ~5 pt/m² aerial LiDAR. For this, we assessed the accuracy of multiple commonly applied published deep learning networks, such as ResNet, DenseNet, Vision Transformer, and InceptionNet. This methodology will be incorporated into a model linking the surface absolute age with the same remote sensing data.

Session No. 221

T103. Sedimentary Archives of Mountain Building from the Fault-Scarp to the Range-Front: Interpreting Colluvial Wedge and Alluvial Fan Systems

Wednesday, 18 October 2023: 8:00 AM-12:00 PM

321 (David L Lawrence Convention Center)

Geological Society of America Abstracts with Programs. Vol. 55, No. 6 doi: 10.1130/abs/2023AM-395197

© Copyright 2023 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.