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the group Γ, such that L∞(B, ν) ∼= Har(µ) via a map, called the Poisson
transform. More precisely, Furstenberg proved that if we define P(f)(g) =∫
B f(gx)dν(x), for f ∈ L∞(B, ν), then P(f) is a µ-harmonic function. More-

over, every µ-harmonic function arises this way. Furthermore, P is an isom-
etry, and Γ-equivariant, i.e., P(g · f) = g · P(f) for all g ∈ Γ, and for all
f ∈ L∞(B, ν). Furstenberg also showed that the above probability space is
unique (upto isomorphism of Γ-spaces), and called it the Poisson boundary
of (Γ, µ).

Let us provide a bit more technical context by invoking the language
of random walks, and operator spaces. Given a countable, discrete group
G and a probability measure µ ∈ Prob(G), the associated random walk
on G is the Markov chain on G whose transition probabilities are given by
the measures µ ∗ δx. The Markov operator associated to this random walk
is given by Pµf(g) =

∑
x∈G µ(x)f(gx), where f ∈ `∞(G). The Markov

operator is unital and (completely) positive. A function f ∈ `∞(G) is µ-
harmonic if Pµ(f) = f . We let Har(G,µ) denote the Banach space of µ-
harmonic functions. The Poisson boundary [Fur63b] of G with respect to
µ is a G-probability space (B, ν), such that we have a natural positivity
preserving isometric G-equivariant identification of L∞(B, ν) with Har(G,µ)
via a Poisson transform. Up to isomorphisms of G-spaces, it is the unique G-
probability space such that L∞(B, ν) is isomorphic, as an operator G-space,
to Har(G,µ).

Under natural conditions on the measure µ, the boundary (B, ν) pos-
sesses a number of remarkable properties. It is an amenable G-space [Zim78],
it is doubly ergodic with isometric coefficients [GW16], and it is strongly
asymptotically transitive [Jaw94]. The boundary has therefore become a
powerful tool for studying rigidity properties for groups and their probabil-
ity measure preserving actions [Mar75, Zim80, BS06, BM02, BF20].

In light of the aforementioned successful application of the Poisson bound-
ary to rigidity properties in group theory, Alain Connes suggested (see [Jo00,
Section 4]) that developing a theory of the Poisson boundary in the set-
ting of operator algebras would be the first step toward studying rigidity
phenomenons associated with group von Neumann algebras. We refer the
readers to the Preliminaries section for a definition of group von Neumann
algebras. Roughly speaking, given a countable discrete group Γ, there is
a natural algebra of operators (on the Hilbert space `2(Γ)), denoted by
L(Γ). It turns out that non isomorphic groups can give rise to isomor-
phic group von Neumann algebras. However, Connes conjectured in [Co82]
that if Γ = SL3(Z), and if Λ is any group, such that L(Γ) ∼= L(Λ), then
Γ ∼= Λ! This problem, called Connes’ rigidity conjecture, has so far been
intractable. As emphasized by C. Houdayer in his ICM survey [Ho22, Sec-

.
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tion 5], the study of (noncommutative) Poisson boundaries is expected to be
particularly relevant for approaching Connes’ rigidity conjecture. Further
evidence for this is witnessed by the significant role that Poisson boundaries
play in [CP13, CP17, Pet15], where a related rigidity conjecture of Connes
was investigated.

Motivated by this, the author and Prof. Peterson initiated the study
of noncommutative Poisson boundaries in [DP22]. Roughly speaking, since
the group Γ acts on the boundary (B, ν), we can form a ”larger” von Neu-
mann algebra, denoted by L∞(B, ν) o Γ, called the group measure space
construction. We refer the readers to the Preliminaries section for a short
introduction to the group measure space construction. Our starting point
was to investigate the properties of the inclusion L(Γ) ⊆ L∞(B, ν) o Γ.

The study of the Poisson boundary inclusion L(Γ) ⊆ L∞(B, ν)oΓ := Bµ
proved to be quite fruitful in unlocking several properties of the von Neu-
mann algebra L(Γ) in [DP22]. For instance, using this inclusion, we provided
a new proof of Ge’s theorem that every continuous derivation on L(Γ) is in-
ner. We also answered a question of Popa by utilizing this inclusion. Hence,
it is imperative to understand this inclusion better, for further future ap-
plications of Poisson boundaries to the study of von Neumann algebras. In
particular, a natural question is what is the normalizer of L(Γ) inside Bµ,?
In this short article, we will show that the Poisson boundary inclusion is
singular, i.e., if a unitary element of Bµ normalizes L(Γ), then it must lie
inside L(Γ).

2 Preliminaries

2.1 von Neumann algebras

The study of algebra of operators on a Hilbert space H was initiated by
John von Neumann in the mid 1920’s to provide a mathematical founda-
tion of quantum mechanics. Indeed, Stone and von Neumann’s work in the
mid 1920’s and early 1930’s showed that Heisenberg’s matrix mechanics was
equivalent to Schrödinger’s wave mechanics. This pivotal work, which was
based on the study of self-adjoint operators on a Hilbert space, provided a
coherent mathematical description of quantum mechanics.

Recall that a linear map (operator) T : H → H is continuous if and
only if T is bounded; i.e., ||T ||∞ := sup||Tξ||H < ∞, where the supremum
is taken over all units vectors ξ ∈ H. Exploiting the self-duality of Hilbert
spaces, one defines the adjoint of a bounded linear operator T to be the
unique linear operator T ∗ satisfying 〈T ∗ξ, η〉 = 〈ξ, Tη〉 for all ξ, η ∈ H. A
bounded linear operator T is called self-adjoint if T = T ∗. The set of all
bounded linear operators on a Hilbert space H will be denoted by B(H). If

.
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H is finite dimensional, then B(H) is just the algebra of n×n matrices over
C, where n is the dimension of H.

For his applications to quantum mechanics, von Neumann needed to
consider the “topology of pointwise convergence” (as opposed to the topol-
ogy of uniform convergence afforded by the norm || · ||), called the Strong
Operator Topology, henceforth abbreviated as SOT. A net of bounded linear
operators {Tα} converges in SOT to a bounded linear operator T if and only
if ||(Tα − T )ξ|| → 0 for all ξ ∈ H.

In 1926 von Neumann made the stunning discovery that if M ⊆ B(H)
is an algebra that is closed under the adjoint operation and contains the
identity operator I, then M is closed under the Strong Operator Topology
if and only if M is equal to its own double commutant M′′. (Here for
a set X ⊆ B(H) we define its commutant by X ′ = {T ∈ B(H) : Tx =
xT for all x ∈ X}). A unital, ∗-closed subalgebra of B(H) will be called a

von Neumann algebra if M =M′′, or equivalently if M =MSOT
.

2.2 Group von Neumann algebras

Let Γ be a countable, discrete group. The left regular representation of Γ,
λ : Γ→ U(`2(Γ)) is defined as

λg(δh) = δgh, for all g, h ∈ Γ.

Here δx denotes the function δx(y) = 1 if x 6= y, and δx(x) = 1. Note that
{δg}g∈Γ forms a basis of the Hilbert space `2(Γ).

We will need to consider a topology of ”pointwise convergence” for
bounded operators on `2(Γ), called the strong operator topology (denoted
SOT). Given a net of bounded operators {Tα} ⊆ B(`2(Γ)), we say that Tα
converges in SOT to a bounded operator T ∈ B(`2(Γ)), if ||(Tα − T )ξ|| → 0
for each ξ ∈ `2(Γ).

The group von Neumann algebra of Γ, denoted by L(Γ), is defined as
[MvN43]

L(Γ) = span{λg : g ∈ Γ}SOT .
So, the group von Neumann algebra is just the closure of the complex group
ring C[Γ] in the strong operator topology inside B(`2(Γ)).

We say that Γ is i.c.c. (or that Γ has the infinite conjugacy class prop-
erty) if every nontrivial group element of Γ has infinitely many (distinct)
conjugates. That is, for all g ∈ Γ \ {e}, the set {hgh−1 : h ∈ Γ} is infinite.
Examples of i.c.c. groups include F2, SL3(Z), the infinite symmetric group
S∞ etc. If Γ is i.c.c., then L(Γ) is highly noncommutative; infact the center
of L(Γ) is trivial, i.e., Z(L(Γ)) = C.

.
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2.3 Group measure space

Let Γ be a countable, discrete group, and let (X, ν) be a probability measure
space. Assume that we have a group action Γ yα X preserving null sets,
i.e., if ν(A) = 0 then ν(αg(A)) = 0. Given such an action, Murray and von
Neumann found a natural way to associate an algebra of operators, denoted
by L∞(X) o Γ that captures the group action [MvN37]. This is called the
group measure space construction. As a von Neumann algebra, L∞(X)oΓ is
generated by a copy of L∞(X), and the unitary operators {λg}g∈Γ (acting on
the Hilbert space L2(X)⊗ `2(Γ)) such that λgfλ

∗
g = αg(f), for all g ∈ Γ and

for all f ∈ L∞(X). There exists a canonical projection EL∞ : L∞(X)oΓ→
L∞(X), called the conditional expectation.

If X is just a single point, then we recover the group von Neumann alge-
bra, as defined above. In fact, the group measure space construction always
contains a canonical copy of L(Γ), generated by the operators {λg}g∈Γ. It
turns out that every element x ∈ L∞(X)oΓ can be uniquely represented in
a ”Fourier series” as x =

∑
g∈Γ

fgλg, where fg ∈ L∞(X). This description is

often useful in working with the group measure space construction- though
we will not need it in this article, and hence we do not elaborate it further.

2.4 Noncommutative Poisson boundaries

Let (B, ν) denote the (classical) Poisson boundary of (Γ, µ), as in the Intro-
duction. We define Bµ = L∞(B, ν) o Γ to be the noncommutative Poisson
boundary.

Let us now describe the notion of Harmonic functions in this context.
The noncommutative Markov operator Pµ : B(`2(Γ))→ B(`2(Γ)) is defined
as

Pµ(x) =
∑
g∈Γ

µ(g)ρgxρ
∗
g, where x ∈ B(`2(Γ)).

In the above equation, ρ denotes the right regular representation of Γ (i.e.,
ρg(δh) = δhg−1).

If f ∈ `∞(γ), then we can think of f as a multiplication operator on
`2(Γ). It turns out that Pµ(f) = f ∗ µ under the above identification. So,
the noncommutative Markov operator is a generalization of the classical
Markov operator.

We define the space of Harmonic operators as

Har(Pµ) = {T ∈ B(`2(Γ)) : Pµ(T ) = T}.

Once again, the space of harmonic operators is not closed under multiplica-
tion. Just like in the commutative case, we again have Bµ ∼= Har(Pµ), where

.
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the isomorphism is in the sense of operator systems. We do not elaborate
this point further here, but refer the interested reader to [DP22].

We also introduce the conjugate map, which generalizes the notion of
left convolution. The conjugate Markov operator Poµ : B(`2(Γ))→ B(`2(Γ))
is defined as

Poµ(x) =
∑
g∈Γ

µ(g)λgxλ
∗
g, where x ∈ B(`2(Γ)).

In the above equation, λ denotes the left regular representation of Γ. If
f ∈ `∞(γ), then Poµ(f) = µ ∗ f.

We let ζ denote the state on Bµ given by ζ(b) =
∫
B EL∞(B)(b)dν, for

b ∈ Bµ. The measure ν is µ-stationary, i.e., µ ∗ ν = ν. This fact in the
noncommutative regime translates to ζ ◦ P oµ = ζ.

The classical Poisson transform P : L∞(B, ν) → Har(µ) ⊆ `∞(Γ) is
given by

P (f)(g) =

∫
B

f(gx)dν(x).

It is well known that the classical Poisson transform is an isometry (see for
example [Jaw94]). We will now define the extension of the classical Poisson
to the noncommutative Poisson boundary as follows.

Following [DP22] we define the Poisson transform P̃ : L∞(B, ν) o Γ →
B(`2(Γ)) by the equation

〈P̃(b)δg, δh〉 = ζ(λ∗hbλg) for all b ∈ L∞(B, ν) o Γ.

It can be shown that P̃|L∞(B) = P, i.e., P̃ is indeed an extension of the

classical Poisson transform. Hence, we will be lazy, and denote P̃ by P in
the future, and call this map the Poisson transform. We summarize the
crucial properties of the Poisson transform which were proved in [DP22] in
the next proposition.

Proposition 2.1. Let P : L∞(B, ν) o Γ → B(`2(Γ)) denote the Poisson
transform as above. Then we have:

i) The Poisson transform is L(Γ)-bimodular, i.e., P(xby) = xP(b)y for
all x, y ∈ L(Γ) and for all b ∈ Bµ. In particular, P(λ∗gbλh) = λ∗gP(b)λh for
all g, h ∈ Γ and b ∈ Bµ.

ii) The Poisson transform is an isometry, i.e., ||P(b)|| = ||b|| for all
b ∈ Bµ.

Finally, we mention a remarkable rigidity result that bi-harmonic func-
tions are constant [DP22, Theorem 3.1].
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Theorem 2.2 (Double Ergodicity Theorem). Let T ∈ B(`2(Γ)), with
Pµ(T ) = Poµ(T ) = T (i.e. T is bi-harmonic). Then T ∈ Z(L(Γ)). In
particular, if Γ is a i.c.c, then T is a constant.

3 Singularity of the Poisson boundary inclusion

Throughout this section Γ denotes a countable, discrete i.c.c. group. Let µ
be a symmetric, generating probability measure on Γ, i.e., µ(g) = µ(g−1)
for all g ∈ Γ and 〈 support(µ)〉 = Γ. Let (B, ν) denote the classical Poisson
boundary. We denote the corresponding noncommutative Poisson boundary
by Bµ = L∞(B, ν)oΓ. We will denote by ζ the faithful normal state on Bµ
given by ζ(x) =

∫
B EL∞(B)(x)dν.

Let NBµ(M) denote the normalizer of M inside the Poisson boundary
Bϕ. We will show that the inclusion M ⊂ NBµ(M) is a singular inclusion.
For convenience, we will denote NBµ(M) simply by N (M).

Theorem 3.1. NBµ(M) =M.

Proof. Let Poµ(x) =
∑

g µ(g)λgxλ
∗
g for all x ∈ Bµ. Let u ∈ N (M). Then

Poµ(u)u∗ =
∑

i µ(g)λ(g)(uλ∗gu
∗) ∈M, as u normalizes M.

A similar proof shows that

(Poµ)n(u)u∗ ∈M for all u ∈ N (M), which implies that

1

N

N∑
n=1

(Poµ)n(u)u∗ ∈M for all u ∈ N (M) where N ∈ N.

Fix u ∈ N (M) and let z be a WOT-limit point of { 1

N

N∑
n=1

(Poµ)n(u)u∗}N .

By the double ergodicity theorem 2.2, we conclude that z ∈ Z(M) = C, as
M = L(Γ) is a factor, since Γ is i.c.c. Hence we have

z = ζ(z) = lim
N→∞

ζ(
1

N

N∑
n=1

(Poµ)n(u)) = lim
N→∞

1

N

N∑
n=1

ζ((Poµ)n(u))

= ζ(u), as ζ ◦ Poµ = ζ.

Since
1

N

N∑
n=1

(Poµ)n(u)u∗ ∈M for all u ∈ N (M), we conclude that

ζ(u)u∗ ∈M. (1)

.
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If ζ(u) 6= 0, then equation 1 implies that u ∈ M. Thus, we conclude, if
u ∈ N (M)\M then ζ(u) = 0. Let g, h ∈ Γ. Note that λ∗guλh ∈ N (M)\M
as well. Thus,

ζ(λ∗guλh) = 0 for all g, h ∈ Γ. (2)

Recall that for z ∈ Bµ, ζ(z) = 〈P(z)δe, δe〉, where P : Bµ :→ B(`2(Γ))
denotes the Poisson transform. Also recall that P is M-bimodular. Hence
for all g, h ∈ Γ we have

0 = ζ(λ∗guλh) = 〈P(λ∗guλh)δe, δe〉 = 〈λ∗gP (u)λhδe, δe〉 by bimodularity of P
= 〈P(u)δh, δg〉 for all g, h ∈ Γ.

This implies P(u) = 0, as {δg}g∈Γ is dense in `2(Γ). However, that is a
contradiction, as ‖P(u)‖ = ‖u‖ = 1, since P is an isometry. Hence we
conclude u ∈M, which shows NBµ(M) =M.
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 On the other hand, the example below shows that the ring S is WFP, but not an AFP ring: 

  

     

{ }4 , 0, 2 .

, .
0

,
0

R I

a i
S a R i I

a

a i
M a I i I

a

= =

   = ∈ ∈  
   
   = ∈ ∈  
   



 

Notice that 1 2

0 0
,  and 

0 0 0
i j

L i I L j I
j

         = ∈ = ∈      
         

are not prime but weakly prime. 

 

Proposition 1: Both AFP rings and WFP rings have at most two maximal ideals. 

Proof:  Suppose there are three maximal ideals M, N, L.  If 0,MN = then ,MN L⊆ a 

contradiction. On the other hand, 0 MN M N≠ ⊆ ∩ also gives a contradiction. 

 

Proposition 2: If a ring R has exactly two maximal ideals, then R is AFP if and only if R is WFP. 

In this case, R is isomorphic to a direct sum of two simple rings. 

Proof:  Suppose R has exactly two maximal ideals N and L. If R is WFP, then 0.MN NM= =  

But ( )( ) .M N M N M N MN∩ ⊆ ∩ + ⊆  Hence / / .R R M R N≈ ⊕  

 

We refer to the proofs of Theorem 1 and Theorem 2 in Hirano-Poon-Tsutsui [1]. 

 
Theorem 1: A ring R is WFP if and only if every ideals I and J, either IJ = I , IJ = J, or IJ = 0. 

 

Theorem 2: Every ideal of a WFP rings is either idempotent or square zero, and every non-

trivial idempotent ideal is prime. 

 

We refer to the proofs of Theorem 3 and Theorem 4 in Tsutsui [2]. 

1 2

    

   

    

    0

S

M

L L  

.
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For AFP rings whose set of ideals is not linearly ordered, we have: 

Theorem 3:  A ring R is AFP if and only if 

(a) R is a fully idempotent ring that has exactly two minimal ideals, 

(b) each minimal ideal of R is contained in every nonminimal ideal of R, and 

(c) the set of all nonminimal ideals of R is linearly ordered. 

 

For AFP rings whose set of ideals is linearly ordered, we have: 

Theorem 4: A ring R is AFP if and only if R has a square zero minimal (nonzero) ideal and 

every ideal of R except the minimal one is idempotent. 

 

Theorem 5: Let R be a ring whose prime radical is zero.  Then R is AFP if and only if R is WFP.    

 

Theorem 6: Suppose that a ring R is commutative with exactly one maximal ideal and it is 

idempotent. Then  

1. R is AFP. 

2. R is WFP. 

3. R is fully prime. 

4, R is a field. 

  

By the structure of ideals of AFP rings described in Theorem 2 and 3, we have: 

Theorem 7: Suppose that a ring R is commutative with exactly one maximal ideal M and
2 0.M =  Then R is AFP if and only if R is a field or a ring with exactly one nonzero proper ideal 

M. 

 

Unlike the case of AFP stated in Theorem 7, we have shown that such a WFP ring may have 

more than one nonzero proper ideals. We refer to the proof of Theorem 8 in Hirano-Poon-Tsutsui 

[1]. 

Theorem 8: Let R be a commutative ring with a square zero ideal M. If ch(R/M) = 0, then R is 

isomorphic to ( ) { }/ * ( , ) | ,R M M r M m r R m M= + ∈ ∈ whose multiplication defined as 

1 1 2 2 1 2 1 2 2 1( , ) ( , ) ( , ).r M m r M m r r M r m m r+ + = + +  

 

.
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