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FOREWORD

The International Conference for the Exchange of Mathematical Ideas was started by three
founding organizers: Douglas Mupasiri of University of Northern lowa, Keith Mellinger of
University of Mary Washington, and Hisaya Tsutsui of Embry-Riddle Aero-nautical University.
The first conference took place at Embry-Riddle Aeronautical University’s Prescott campus on
May 26, 2012. It had an international audience of 21 participants representing diverse
mathematical specialties ranging from noncommutative ring theory to computability theory,
cryptography to topology, algebraic number theory to operator theory.

The ethos of the conference is grounded on recognition of the surprising connections that arise
between distant fields. That by getting together to describe their research to an audience of non-
specialists, researchers often gain new perspective on their own work and find inspiration in the
work of others. The EMI is intended to provide a venue for mathematicians to interact in this
way. Indeed, collaborations across disciplines sparked at the Exchange have resulted in research
productivity, including peer-review journal publications.

Most of all, even though mathematics can be done alone, and often is the product of individual
effort, it gains meaning only when shared. We gather to pay homage to this communal aspect of
mathematics. We dedicate these proceedings to those who have been with us in the past and
those who will join us in the future.

Participants of the 2024 meeting were invited to submit papers to the proceedings. The four
selected submissions are published here.
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On singularity of the Poisson boundary inclusion

Sayan Das

1 Introduction

In early 1960’s, H. Furstenberg introduced the notion of Poisson boundaries
of groups, as a tool to study harmonic analysis on Lie groups and their
lattices. Roughly speaking, the Poisson boundary captures asymptotic be-
havior of random walks on groups (with respect to a probability measure
on the group). It was soon realized that the Poisson boundary can play a
crucial role in uncovering many secrets of groups. For instance, a surprising
result of Margulis [Mar75] states that if NV is a nontrivial normal subgroup
of SL3(Z), the group of 3 x 3 matrices with integer entries and determinant
1, then N must have finite index in SL3(Z)! Margulis’ proof relied on look-
ing at the Poisson boundary of SL3(Z). In fact, Margulis’ theorem holds
more generally (for certain lattices in higher rank lie groups), though the
proof strategy remains similar! This result illustrates the power of Poisson
boundaries in understanding various rigidity phenomenon involving groups
and their actions, and inspired many beautiful results.

Let us now formally introduce the notion of Poisson boundaries. Through-
out this article, we will only deal with countable, discrete groups for sim-
plicity.

Let T be a countable discrete group, and let p be a probability measure on
the group I'. We will assume that the measure y is symmetric (u(g) = pu(g™?)
for all g € T'), and that the support of the measure generates the whole group
.

We say that a bounded function f € ¢°°(T") is (right) p-harmonic if
f*xmu = f. Recall that

(f = 1)(g) = > _ n(h)f(gh).

heG

The set of all u-harmonic functions are denoted by Har(u). Unfortunately,
product of mu-harmonic functions need not be mu-harmonic, and hence
we do not get an algebra. However, Furstenberg proved in [Fur63b] that
there exists a probability measure space (B, v), which admits an action of
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the group T, such that L*>°(B,r) & Har(u) via a map, called the Poisson
transform. More precisely, Furstenberg proved that if we define P(f)(g) =
I flgz)dv(z), for f € L>°(B,v), then P(f) is a y-harmonic function. More-
over, every p-harmonic function arises this way. Furthermore, P is an isom-
etry, and I'-equivariant, i.e., P(g- f) = g - P(f) for all g € T, and for all
f € L*=(B,v). Furstenberg also showed that the above probability space is
unique (upto isomorphism of I'-spaces), and called it the Poisson boundary

of (T, ).

Let us provide a bit more technical context by invoking the language
of random walks, and operator spaces. Given a countable, discrete group
G and a probability measure p € Prob(G), the associated random walk
on (G is the Markov chain on G whose transition probabilities are given by
the measures p * d,. The Markov operator associated to this random walk
is given by P,f(9) = > ,cqm(z)f(9x), where f € £°°(G). The Markov
operator is unital and (completely) positive. A function f € ¢*°(G) is p-
harmonic if P,(f) = f. We let Har(G, 1) denote the Banach space of pu-
harmonic functions. The Poisson boundary [Fur63b] of G with respect to
i is a G-probability space (B,v), such that we have a natural positivity
preserving isometric G-equivariant identification of L>°(B, v) with Har(G, p)
via a Poisson transform. Up to isomorphisms of G-spaces, it is the unique G-
probability space such that L>°(B,v) is isomorphic, as an operator G-space,
to Har(G, ).

Under natural conditions on the measure p, the boundary (B,v) pos-
sesses a number of remarkable properties. It is an amenable G-space [Zim78],
it is doubly ergodic with isometric coefficients [GW16], and it is strongly
asymptotically transitive [Jaw94]. The boundary has therefore become a
powerful tool for studying rigidity properties for groups and their probabil-
ity measure preserving actions [Mar75, Zim80, BS06, BM02, BF20].

In light of the aforementioned successful application of the Poisson bound-
ary to rigidity properties in group theory, Alain Connes suggested (see [Jo00,
Section 4]) that developing a theory of the Poisson boundary in the set-
ting of operator algebras would be the first step toward studying rigidity
phenomenons associated with group von Neumann algebras. We refer the
readers to the Preliminaries section for a definition of group von Neumann
algebras. Roughly speaking, given a countable discrete group I', there is
a natural algebra of operators (on the Hilbert space ¢?(T')), denoted by
L(T"). It turns out that non isomorphic groups can give rise to isomor-
phic group von Neumann algebras. However, Connes conjectured in [Co82]
that if I' = SL3(Z), and if A is any group, such that L(I') = L(A), then
I' 2 A! This problem, called Connes’ rigidity conjecture, has so far been
intractable. As emphasized by C. Houdayer in his ICM survey [Ho22, Sec-



tion 5], the study of (noncommutative) Poisson boundaries is expected to be
particularly relevant for approaching Connes’ rigidity conjecture. Further
evidence for this is witnessed by the significant role that Poisson boundaries
play in [CP13, CP17, Pet15], where a related rigidity conjecture of Connes
was investigated.

Motivated by this, the author and Prof. Peterson initiated the study
of noncommutative Poisson boundaries in [DP22]. Roughly speaking, since
the group I' acts on the boundary (B, v), we can form a ”larger” von Neu-
mann algebra, denoted by L>*°(B,v) x I', called the group measure space
construction. We refer the readers to the Preliminaries section for a short
introduction to the group measure space construction. Our starting point
was to investigate the properties of the inclusion L(I') C L*>°(B,v) x T.

The study of the Poisson boundary inclusion L(I') C L*°(B,v)xI' := B,,
proved to be quite fruitful in unlocking several properties of the von Neu-
mann algebra L(T") in [DP22]. For instance, using this inclusion, we provided
a new proof of Ge’s theorem that every continuous derivation on L(T') is in-
ner. We also answered a question of Popa by utilizing this inclusion. Hence,
it is imperative to understand this inclusion better, for further future ap-
plications of Poisson boundaries to the study of von Neumann algebras. In
particular, a natural question is what is the normalizer of L(I") inside B,,,?
In this short article, we will show that the Poisson boundary inclusion is

singular, i.e., if a unitary element of B, normalizes L(I'), then it must lie
inside L(T").

2 Preliminaries

2.1 von Neumann algebras

The study of algebra of operators on a Hilbert space H was initiated by
John von Neumann in the mid 1920’s to provide a mathematical founda-
tion of quantum mechanics. Indeed, Stone and von Neumann’s work in the
mid 1920’s and early 1930’s showed that Heisenberg’s matrix mechanics was
equivalent to Schrodinger’s wave mechanics. This pivotal work, which was
based on the study of self-adjoint operators on a Hilbert space, provided a
coherent mathematical description of quantum mechanics.

Recall that a linear map (operator) 7' : H — H is continuous if and
only if T is bounded; i.e., ||T||s = sup||T¢||n < oo, where the supremum
is taken over all units vectors £ € H. Exploiting the self-duality of Hilbert
spaces, one defines the adjoint of a bounded linear operator T to be the
unique linear operator T* satisfying (T*¢,n) = (¢,Tn) for all &,n € H. A
bounded linear operator T is called self-adjoint if T = T™. The set of all
bounded linear operators on a Hilbert space ‘H will be denoted by B(#H). If



H is finite dimensional, then B(#) is just the algebra of n x n matrices over
C, where n is the dimension of H.

For his applications to quantum mechanics, von Neumann needed to
consider the “topology of pointwise convergence” (as opposed to the topol-
ogy of uniform convergence afforded by the norm || - ||), called the Strong
Operator Topology, henceforth abbreviated as SOT. A net of bounded linear
operators {1, } converges in SOT to a bounded linear operator T if and only
if ||[(To, — T)E|| — 0 for all £ € H.

In 1926 von Neumann made the stunning discovery that if M C B(H)
is an algebra that is closed under the adjoint operation and contains the
identity operator I, then M is closed under the Strong Operator Topology
if and only if M is equal to its own double commutant M”. (Here for
a set X C B(H) we define its commutant by X' = {T € B(H) : Tz =

aT for all z € X}). A unital, *-closed subalgebra of B(#H) will be called a

von Neumann algebra if M = M” | or equivalently if M = MT

2.2 Group von Neumann algebras

Let I" be a countable, discrete group. The left regular representation of I,

A:T — U(F(T)) is defined as
Ag(0p) = dgp, for all g,h €T

Here ¢, denotes the function 0,(y) = 1 if  # y, and 0,(z) = 1. Note that
{84}ger forms a basis of the Hilbert space ¢?(T).

We will need to consider a topology of ”pointwise convergence” for
bounded operators on £2(I"), called the strong operator topology (denoted
SOT). Given a net of bounded operators {T,} C B(¢*(T)), we say that T,
converges in SOT to a bounded operator T' € B(¢2(T)), if ||(Tn — T)&|| — 0
for each ¢ € ¢2(T).

The group von Neumann algebra of I, denoted by L(T'), is defined as
[MvN43]

L(I") =span{); : g € F}SOT.

So, the group von Neumann algebra is just the closure of the complex group
ring C[I'] in the strong operator topology inside B(¢?(T)).

We say that I' is i.c.c. (or that I' has the infinite conjugacy class prop-
erty) if every nontrivial group element of T' has infinitely many (distinct)
conjugates. That is, for all g € T'\ {e}, the set {hgh~! : h € T'} is infinite.
Examples of i.c.c. groups include Fa, SL3(Z), the infinite symmetric group
Seo ete. If T' is i.c.c., then L(T) is highly noncommutative; infact the center
of L(I') is trivial, i.e., Z(L(T")) = C.



2.3 Group measure space

Let I" be a countable, discrete group, and let (X, v) be a probability measure
space. Assume that we have a group action I' % X preserving null sets,
i.e., if ¥(A) = 0 then v(ay(A)) = 0. Given such an action, Murray and von
Neumann found a natural way to associate an algebra of operators, denoted
by L>®(X) x T that captures the group action [MvN37]. This is called the
group measure space construction. As a von Neumann algebra, L>°(X)xT is
generated by a copy of L>(X), and the unitary operators {\g}¢er (acting on
the Hilbert space L?(X)®¢?(T)) such that AgfAy = ay(f), forall g € " and
for all f € L°°(X). There exists a canonical projection Efe : L*°(X)x T —
L*>°(X), called the conditional expectation.

If X is just a single point, then we recover the group von Neumann alge-
bra, as defined above. In fact, the group measure space construction always
contains a canonical copy of L(I"), generated by the operators {Ag}ger. It
turns out that every element z € L*°(X) x I can be uniquely represented in
a "Fourier series” as x = ) fy\g, where f, € L°°(X). This description is

gel’
often useful in working with the group measure space construction- though
we will not need it in this article, and hence we do not elaborate it further.

2.4 Noncommutative Poisson boundaries

Let (B, v) denote the (classical) Poisson boundary of (I', i), as in the Intro-
duction. We define B,, = L*>(B,v) x I to be the noncommutative Poisson
boundary.

Let us now describe the notion of Harmonic functions in this context.
The noncommutative Markov operator P, : B(¢2(I')) — B(¢?(T')) is defined
as

Pu(x) =Y 1(g)pgrp}y, where z € B(*(I)).
gel
In the above equation, p denotes the right regular representation of T" (i.e.,
pg((sh) = 6hg*1)'
If f € £°°(y), then we can think of f as a multiplication operator on
¢2(T'). It turns out that P,(f) = f * p under the above identification. So,

the noncommutative Markov operator is a generalization of the classical
Markov operator.

We define the space of Harmonic operators as
Har(P,) = {T € B(*(T")) : Pu.(T)=T}.

Once again, the space of harmonic operators is not closed under multiplica-
tion. Just like in the commutative case, we again have B, = Har(P,), where



the isomorphism is in the sense of operator systems. We do not elaborate
this point further here, but refer the interested reader to [DP22].

We also introduce the conjugate map, which generalizes the notion of
left convolution. The conjugate Markov operator Pg : B(¢*(T')) — B(¢*(I"))
is defined as

Pu(x) = Zu(g))\gx/\;, where = € B(¢*(T)).
gel

In the above equation, A denotes the left regular representation of I'. If
f € £2°(y), then Pi(f) = p* f.

We let ¢ denote the state on By, given by ((b) = [ Epec(p)(b)dv, for
b € B,. The measure v is p-stationary, i.e., u* v = v. This fact in the
noncommutative regime translates to ¢ o Py = (.

The classical Poisson transform P : L>°(B,v) — Har(u) C ¢>°(T) is
given by

P(f)(g) = / f(g)dv(z).
B

It is well known that the classical Poisson transform is an isometry (see for
example [Jaw94]). We will now define the extension of the classical Poisson
to the noncommutative Poisson boundary as follows.

Following [DP22] we define the Poisson transform P : L>°(B,v) x ' —
B(¢%(T")) by the equation

(P(b)dg,n) = C(AbAg) for all b e L>®(B,v) x T

It can be shown that 75\,;00(3) = P, ie., P is indeed an extension of the

classical Poisson transform. Hence, we will be lazy, and denote P by P in
the future, and call this map the Poisson transform. We summarize the
crucial properties of the Poisson transform which were proved in [DP22] in
the next proposition.

Proposition 2.1. Let P : L=¥(B,v) x I' — B({*(T")) denote the Poisson
transform as above. Then we have:

i) The Poisson transform is L(T')-bimodular, i.e., P(xzby) = P (b)y for
all z,y € L(I') and for all b € B,. In particular, P(A;bAy) = AjP(b)Ay for
all g,h €' and b € B,,.

it) The Poisson transform is an isometry, i.e., ||P(b)|| = ||b]| for all
be B,.

Finally, we mention a remarkable rigidity result that bi-harmonic func-
tions are constant [DP22, Theorem 3.1].



Theorem 2.2 (Double Ergodicity Theorem). Let T € B(¢%(T)), with
Pu(T) = P(T) = T (i.e. T is bi-harmonic). Then T € Z(L(I')). In
particular, if I' is a i.c.c, then T is a constant.

3 Singularity of the Poisson boundary inclusion

Throughout this section I' denotes a countable, discrete i.c.c. group. Let
be a symmetric, generating probability measure on T, i.e., u(g) = u(g™!)
for all g € I" and ( support(p)) =T'. Let (B, v) denote the classical Poisson
boundary. We denote the corresponding noncommutative Poisson boundary
by B, = L°°(B v) xI'. We will denote by ¢ the faithful normal state on B,

given by ((z) = [z Epe(p)(z)dv

Let N Bu( ) denote the normalizer of M inside the Poisson boundary
B,. We will show that the inclusion M C Np,(M) is a singular inclusion.
For convenience, we will denote N, (M) simply by N (M).

Theorem 3.1. Np, (M) = M.

Proof. Let Py(x) = Y-, u(g)A\gzA; for all z € By,. Let u € N(M). Then
Po(u)u* =37, p(g)A(g)(urju™) € M, as u normalizes M.

A similar proof shows that

(P)"(w)u* € M for all u € N(M), which implies that

N
1
NZ "(u)u* € M for all u € N (M) where N € N.

Fix u € N (M) and let z be a WOT-limit point of { Z (Po)™ (w)u*f N

By the double ergodicity theorem 2.2, we conclude that z 6 Z (M) =C, as
M = L(T) is a factor, since T is i.c.c. Hence we have

N

1 o n
=gt = g ok S = A S
= ((u), as (o Py, = (.
1 N
Since N > (P)"(w)u* € M for all u € N (M), we conclude that
n=1
C(u)u* € M. (1)



If {(u) # 0, then equation 1 implies that u € M. Thus, we conclude, if
u € N(M)\ M then ((u) = 0. Let g,h € T'. Note that \jul, € N (M)\ M
as well. Thus,

C(AyuAp) =0 for all g,h € T (2)

Recall that for z € B, ((2) = (P(2)d¢,0), where P : B, :— B({*(I))
denotes the Poisson transform. Also recall that P is M-bimodular. Hence
for all g,h € I we have

0 = ((A\guAn) = (P(Ajup)de, 0e) = (AyP(u)Ande, be) by bimodularity of P
= (P(u)dp, dy) for all g,h € T.

This implies P(u) = 0, as {y}ger is dense in ¢*(T'). However, that is a

contradiction, as [|[P(u)|| = |ju|]| = 1, since P is an isometry. Hence we
conclude u € M, which shows Np, (M) = M. O
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WEFP and AFP Rings

Hisaya Tsutsui
Department of Mathematics
Embry-Riddle Aeronautical University
Prescott, AZ USA
Hisaya.tsutsui(@erau.edu

A proper ideal L of a ring R is called weakly prime if for ideals / and J of R, 0 # IJ < L implies
I c L,or J c L. Rings in which every proper ideal is weakly prime is called fully weakly prime
rings (WFP). Rings in which every nonzero proper ideal is prime is called almost fully prime
rings (AFP). Necessary and sufficient conditions for a ring to be WFP /AFP are discussed and

the relation between those classes of rings are considered.

AFP was introduced in Tsutsui [2], and WFP was introduced in Hirano-Poon-Tsutsui [1]. In this
paper, we briefly summarize the two papers and consider the relation between two classes of the
rings. A part of the contents with further details may be submitted to elsewhere as a part of our

on-going work.

Examples: It is evident that AFP rings are WFP. Perhaps the simplest but non-simple two

examples of AFP rings are a direct sum of two fields F and F,; and the ring with exactly one

nonzero proper ideal which is square zero (e.g., (Z,, +, -)):

F®F,
/\ Rz,
|
0®F, F®0 1={0,2}
|
0
0®0

11
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On the other hand, the example below shows that the ring S is WFP, but not an AFP ring:

S
|
M

aeR,ieI} /

/

. 0 i, Jj 0
Notice that L, = iely,and L, =
0 0 0 j

Proposition 1: Both AFP rings and WFP rings have at most two maximal ideals.

jel } are not prime but weakly prime.

Proof: Suppose there are three maximal ideals M, N, L. If MN =0,then MN c L,a

contradiction. On the other hand, 0 # MN < M N N also gives a contradiction.

Proposition 2: If a ring R has exactly two maximal ideals, then R is AFP if and only if R is WFP.
In this case, R is isomorphic to a direct sum of two simple rings.

Proof: Suppose R has exactly two maximal ideals N and L. If R is WFP, then MN = NM =0.
But MANc(MNN)M+N)c MN. Hence R~R/M @R/ N.

We refer to the proofs of Theorem 1 and Theorem 2 in Hirano-Poon-Tsutsui [1].

Theorem 1: A ring R is WFP if and only if every ideals 7 and J, either IJ =1, 1J=J, or IJ= 0.

Theorem 2: Every ideal of a WFP rings is either idempotent or square zero, and every non-

trivial idempotent ideal is prime.

We refer to the proofs of Theorem 3 and Theorem 4 in Tsutsui [2].

12



For AFP rings whose set of ideals is not linearly ordered, we have:
Theorem 3: A ring R is AFP if and only if

(a) R is a fully idempotent ring that has exactly two minimal ideals,

(b) each minimal ideal of R is contained in every nonminimal ideal of R, and

(c) the set of all nonminimal ideals of R is linearly ordered.

For AFP rings whose set of ideals is linearly ordered, we have:
Theorem 4: A ring R is AFP if and only if R has a square zero minimal (nonzero) ideal and

every ideal of R except the minimal one is idempotent.
Theorem 5: Let R be a ring whose prime radical is zero. Then R is AFP if and only if R is WFP.

Theorem 6: Suppose that a ring R is commutative with exactly one maximal ideal and it is
idempotent. Then

1. R is AFP.

2. R is WFP.

3. R is fully prime.

4, R is a field.

By the structure of ideals of AFP rings described in Theorem 2 and 3, we have:

Theorem 7: Suppose that a ring R is commutative with exactly one maximal ideal M and

M? =0. Then R is AFP if and only if R is a field or a ring with exactly one nonzero proper ideal
M.

Unlike the case of AFP stated in Theorem 7, we have shown that such a WFP ring may have

more than one nonzero proper ideals. We refer to the proof of Theorem 8 in Hirano-Poon-Tsutsui

[1].
Theorem 8: Let R be a commutative ring with a square zero ideal M. If ch(R/M) = 0, then R is

isomorphic to (R/M )*M ={(r+M,m)|r € R,m € M } whose multiplication defined as

(rn+M,m)(r,+M,m,) = (rr,+ M,nm, + myn).
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ON THE HYPERELLIPTIC BIRMAN EXACT SEQUENCE
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ABSTRACT. This survey presents key results on the hyperelliptic Birman exact sequence
associated with the hyperelliptic mapping class group. We use the relative completion of
these groups and show that the sequence does not split for genus g > 3, utilizing the graded
Lie algebras arising from the relative completions.

1. INTRODUCTION

In this survey paper, we present a key result concerning the hyperelliptic mapping class
group and introduce an important tool, the relative completion of a discrete group. The full
details of the result and its complete proof can be found in the author’s work [6]. Let S, ,
denote an oriented topological surface of genus g with n punctures. The mapping class group
Iy of Sy, consists of the isotopy classes of orientation-preserving diffeomorphisms of Sy,
that fix the punctures pointwise. Let 71 (Sg ) be the fundamental group of S ,,.

Let o represent a hyperelliptic involution of Sy := S; 0. The hyperelliptic mapping class
group Ay is defined as the centralizer of the isotopy class of [o] in T'y := T'y 0. Moreover, let
Ay denote the fiber product Ay xr, I'y . Then, we have the following short exact sequence:

(1) 1= m(Sy) = Ag1 — Ay — 1.

This sequence is called the hyperelliptic Birman exact sequence, and it is an analogue of the
Birman exact sequence for I'y.

Sssume 29 — 2 +n > 0. As an orbifold, the moduli space of curves of type (g,n) is denoted
by M, , with its hyperelliptic locus H,,, being a closed smooth substack. Let Cg,, = Mg,
be the universal complete curve, and 7 : Cy,, — Hgn its restriction to Hy,, the universal
hyperelliptic curve. This curve admits the hyperelliptic involution J, with tautological sections
Z1,...,Zy and their hyperelliptic conjugates J o s1,...,J 0 s,.

The universal punctured hyperelliptic curve 7° : Hg n41 —+ Hgyn is the complement of the
tautological sections in Cg,. The homotopy exact sequence of its orbifold fundamental group
is:

(2) 1= 7 (C°) = 7™ (Hgmi1) = 752 (Hygn) — 1,

E-mail address: watanabt@erau.edu.
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ON THE HYPERELLIPTIC BIRMAN EXACT SEQUENCE

where C? is an n-punctured complex curve.

Theorem 1. For g > 3 and n > 0, the sequence (2) does not split.

As a consequence, the hyperelliptic Birman exact sequence does not split:
Corollary 2. For g > 3 and n > 0, the sequence
1= m(Sgn) = ADgny1 = By p —1

does not split.

The readers can find the detail of the result and its complete proof in the author’s work [6].

2. THE SURFACE GROUP m1(Sg )

Let S, be a compact oriented topological surface of genus g, and let P be a set of n distinct
points in Sy. Define S, ,, = S, — P, an oriented surface of genus g with n punctures. The fun-
damental group m1(Sy. ., p), based at p, consists of homotopy classes of loops in Sy ,,. Changing
the base point to ¢ induces a natural isomorphism:

1 (Sg,m p) =m (Sg,ny Q)7

unique up to conjugation by an element of m(Sy ,,p), so we omit the base point from the
notation.

Let a1, ..., a4, 01, .., Bqg be the standard generators of 7 (S,), and ~1, . .., ¥, the homotopy
classes of loops around the punctures. The minimal presentation of 71(Sg.,,) is:

7Tl(Sg,n) = <a17"'70‘gaﬁ17"'7ﬁg’71,'"aVﬂ'[alaﬁl]"‘ [agvﬁg]’yl ot Yn = 1> .

For n > 0, m1(Sy,n) is free on 2g + n — 1 generators.

By the Hurewicz theorem, the natural map m1(Sg,n) = H1(Sg,n,Z) induces an isomorphism
between the abelianization of 7 (Sy ,,) and the homology group Hi(Sy,n,Z). Denote the images
of a; and B in H1(Sy,Z) by aj and b; for j =1,...,g. The abelianization H;(Sy,Z) is free of
rank 2g.

2.1. Symplectic group. The symplectic group Sp(2g;Z) is defined as
Sp(2¢;Z) = {M € GL(2¢;Z) | M"JM = J},

0 I
-1, 0
The homology group H := H;(S4,Z) is a symplectic space of rank 2g, equipped with the
non-degenerate bilinear alternating intersection pairing ( , ). A symplectic basis for H is given
by ai,...,aq,b1,...,by, and the automorphism group of H preserving ( , ) is isomorphic to

Sp(29; Z):

where J = and I, is the g x g identity matrix.

Aut(H,(, )) = Sp(2g;7Z).
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ON THE HYPERELLIPTIC BIRMAN EXACT SEQUENCE

3. MAPPING CLASS GROUPS

Assume 2g—24n > 0. The mapping class group of Sy ,,, denoted Iy ,,, is the group of isotopy
classes of orientation-preserving diffeomorphisms of S ,, that fix the punctures pointwise:

Lo = Diff+(Sg,n)/ ~,

where ~ denotes isotopy. By the classification of surfaces, I'y 5, is independent of the choice of
the punctures P. For n = 0, we write I'y := I'g ¢. Filling in a puncture induces a surjective
“forgetful map” Forget : I'y ,41 — I'gn. Composing n such maps gives a surjection I'g ,, = I'y.

3.1. Dehn twists. The group I'y is finitely generated by mapping class elements known as
Dehn twists. Let d be a simple closed curve in S, with a tubular neighborhood N. A Dehn
twist Ty is a left-handed twist around d, fixing the boundary of N. The isotopy class of Ty is
independent of the choice of NV or the representative of d within its isotopy class, so we denote
its isotopy class in 'y by Tj.

A simple closed curve d is called separating if cutting S, along d disconnects the surface;
otherwise, d is nonseparating. For g = 1, I'y is generated by the Dehn twists about two
nonseparating curves on the torus. For g > 2, Iy is generated by the isotopy classes of Dehn
twists around 2¢ + 1 nonseparating curves on S, [3, Thm. 4.14]. Moreover, I'y is finitely
presented [3, Thm. 5.3].

3.2. Symplectic representation of Iy ,,. Each mapping class [¢] in T'y induces an automor-
phism ¢, : H — H that is independent of the representative chosen. This automorphism
preserves the intersection pairing ( , ), leading to the representation

pg : g — Sp(2¢;Z).

For g > 1, pg is surjective [3, Thm. 6.4]. Composing with the forgetful map I'y,, — Ty, we
obtain the symplectic representation of I'g ,,:

Pgm i Lgn — Sp(2¢;Z).

3.3. Torelli groups. The Torelli group, denoted Ty ,, is defined as the kernel of the symplectic
representation pg ,:

Tyn :=kerpgp.
This leads to the following exact sequence:
1= Ty, — Ty "5 Sp(2g;Z) — 1.

The Torelli group is a subgroup of I'y ,, with infinite index, implying that it does not necessarily
share the basic properties of I'y .

3.4. The Birman exact sequences. There is a natural injection Push : 71 (S,) < T'y 1 called
the push map. Combining with the surjection Forget : I'; ; — I'y, we obtain the sequence

(3) 1— 7T1(Sg) — Fg,l — Fg — 1.

This sequence is exact and it is called the Birman exact sequence.
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ON THE HYPERELLIPTIC BIRMAN EXACT SEQUENCE

4. HYPERELLIPTIC MAPPING CLASS GROUPS

We study a particular subgroup of the mapping class group that preserves a symmetry on
Sg. This symmetry is induced by an orientation-preserving diffeomorphism o of order 2 on S,
which fixes exactly 2g + 2 points. We refer to o as a hyperelliptic involution of Sy, and it can
be visualized as shown in Figure 1.

FIGURE 1. A hyperelliptic involution of Sy, rotation by 7

Fix a hyperelliptic involution o of §j.

Definition 4.1. The hyperelliptic mapping class group A, of S is defined as:
A, := the centralizer of the isotopy class of ¢ in I'y.

We define the hyperelliptic mapping class group A, ,, as the fiber product of A, and Iy ,, over
Ly
Ag,n = Ag Xrg Fg,na

where the surjection I'y ,, = I'g is the forgetful map and Ay — I'y is the natural inclusion.

4.1. The moduli space of hyperelliptic curves. We refer to a compact Riemann surface as
a complex curve. Assume that 2g —2+n > 0. The pair (S, P) represents an n-pointed smooth
compact oriented surface S of genus g. The Teichmiiller space of (S, P) is denoted by X, .
When n = 0, we denote X, ¢ as X , which is the set of isotopy classes of orientation-preserving
diffeomorphisms h : S — C from S to a complex curve C. This space is a contractible complex
analytic manifold of dimension 3g — 3 + n.

The mapping class group I'y,, acts on X, via biholomorphisms, defined by its action on
the markings:

Aih=shoXN NeT,,, he€X, .
It is well known that this action is properly discontinuous and virtually free. As an orbifold,
the moduli space of n-pointed smooth projective curves of genus g is defined as the orbifold
quotient of X, , by I'g :
Mgn = (Fg,n\xg,n)orb-

It is a basic fact that the orbifold fundamental group W‘frb(ngn) is isomorphic to I'y .

Now, let 0 : S — S be a fixed hyperelliptic involution of S. Define 2), as the set of points
in X, that are fixed by o:

Y, = X3

This set consists of markings [h : S — C] such that hoh™! € Aut(C). According to a result
by Earle [2], 9, is biholomorphic to the Teichmiiller space X 24+2, making it connected and
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contractible with dimension 2¢g — 1.

Note that the stabilizer of ), is the hyperelliptic mapping class group A,. Since there is a
unique conjugacy class of hyperelliptic involutions in Iy, it follows that the hyperelliptic locus
.’{gyp within X, is given by:

xgyp — U /\(@q) — U x;a)\_l'

AET, /A, AET, /A,

As an orbifold, the moduli space of smooth projective hyperelliptic curves of genus g is given
by the orbifold quotient of ), by Ag:

Hy = (Ag\@g)orb-

The orbifold fundamental group 7™ (H,) is isomorphic to A,.

4.2. The hyperelliptic Birman exact sequence. By pulling back the Birman exact se-
quence for I'y (see (3)) along the natural inclusion A, < I'y, we obtain the exact sequence:

(4) 1= m(Sy) = Ag1 — Ay — 1,

which gives the following commutative diagram:

1 —>7T1(Sg) Ag,l Ag 1
1—>7T1(Sg) Fg,l Fg 1.

Theorem 4.2 ([6, Cor. 4]). If g > 3, the hyperelliptic Birman exact sequence (4) does not
split.

4.3. Hyperelliptic Torelli group. The obstruction to the splitting of the hyperelliptic Bir-
man exact sequence arises from the intersection of Ay and Tj.
Definition 4.3. The hyperelliptic Torelli group T'A, is defined as:
TAy :=AyNTy.
It remains unknown whether T'A, is finitely generated. However, the following significant
result by Brendle, Margalit, and Putman provides insight into its structure.

Theorem 4.4 ([1, Brendle-Margalit-Putman]). For g > 2, the group TA, is generated by Dehn
twists about symmetric separating curves.

Remark 4.5. When g = 2, any two simple separating curves intersect at least 4 times (see
Figure 2). However, for g > 3, there exist disjoint symmetric separating curves, as illustrated
in Figure 3, which give rise to commuting Dehn twists within T'A,.
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FIGURE 2. Symmetric separating curves in S

FIGURE 3. Symmetric separating curves in S3

5. RELATIVE COMPLETION OF A,

Relative completion of a discrete group can be viewed as a linearization. It is controlled by
cohomology and thus computable to some extent. The readers can find a detailed introduction
of relative completion in [4].

Definition 5.1. Let G be a group and R a reductive group over Q. Suppose that p: G — R
is a representation with Zariski-dense image. The relative completion of G with respect to p
is an extension of R by a prounipotent Q-group U. This fits into the following commutative
diagram:

ker(p) — G

|

1 u G R 1,

satisfying the following universal property: if G’ is a proalgebraic Q-group that is also an
extension of R by a prounipotent Q-group U’, such that p factors through G’ — R with
Zariski-dense image in G’, then there exists a unique morphism ¢ : G — G’ of proalgebraic
groups over QQ such that the diagram

™
/

Q

I,

<

Q<

commutes.

By Levi’s theorem, the exact sequence

1-U—-G—R—1
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splits, and hence there is an isomorphism G =2 U x R.
Let Dy, denote the relative completion of A, with respect to the representation A, , —
SpQQ(Q), and let V, ,, be the prounipotent radical of D, ,,. This gives rise to the exact sequence:

1=VYyn—=Dygn— szg((@) — 1.

5.1. The Key Exact Sequences of Completions. Let P be the unipotent completion of
71(Sy) over Q. There is a commutative diagram:

VR
1—— T (Sg) AgJ Ag 1
| N T
1 P Dy D, 1
|
J—
1 P Vg1 Vg 1,

where all rows are exact.

Key Property of Relative Completion: A splitting of Ay ; — A, induces a splitting of
Dy,1 — Dy and, consequently, a splitting of Vg1 — V.

The Lie algebra v, , of V,, admits a weight filtration W,v,,, arising from Hodge theory.
Using the Lie algebra structure of the associated graded Lie algebra Gr? vy, We can show
that the Lie algebra surjection

Gr¥ vy 1 — GV v,
does not admit any Spy -equivariant Lie algebra section. If V,1 — V; admits a section, it
would induce such a Lie algebra section. Therefore, the projection Ay, — A, does not split.
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Abstract

The Four Color Theorem was first posed by Francis Guthrie in 1852, which
indicates that any planar graph can be colored with four or fewer such that
no two adjacent regions have the same color. Both proving this claim and
obtaining a four coloring for an arbitrary graph are nontrivial tasks. We have
developed several algorithms based on a systematic rotation method that are
entirely deterministic which we have demonstrated to work on a very large
number of diverse graphs (over 280 million).

Key Words: Four Color Problem, cubic map, Kempe chains, deterministic rotation
method, coloring algorithms

AMS Subject Classification: 05C15.
1 Introduction

The Four Color Problem was first introduced by Francis Guthrie in 1852 (see [9]), which
states that the regions of any plane graph can be colored with four colors such that no
two regions sharing a boundary line have the same color. Although despite the best efforts
of many mathematicians, a proof did not materialize for over a century. There are also
some researchers who used computer technology to assist their work effort such as in 1976
made by Wolfgang Haken and Kenneth Appel [1], and later by Neil Robertson, Daniel
Sanders, Paul Seymour, and Robin Thomas to pursue their own proof [8]. However, they
were “machine-checkable proof”, which were less practical to check by human readers. It
would still be very satisfying to obtain a proof that does not use computers. Therefore, we
will continue a study of the Four Color Theorem in an effort to gain further insight that

may lead to such a proof.
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In addition to proving the Four Color Theorem, we are also interested in algorithms to
obtain four colorings. While the methods in [1, 8] can be converted into polynomial time
algorithms for four-coloring plane graphs, the algorithms take a very long time in prac-
tice. Algorithms for efficiently coloring plane graphs have been explored in [7], reaching a
practical efficiency of nearly linear time. However, these algorithms make use of random-
ness, and furthermore cannot be proven to color any map. Here we will examine several
deterministic algorithms for coloring planar graphs which have been previously studied in
[10, 11, 12, 13, 14, 15, 16]. We will present several new results and conjectures on these

algorithms.

2 Definitions

One of the first notable attempts to prove the Four Color Theorem is due to Alfred Kempe
in [5]. Kempe made use of what are now called Kempe chains to replace one proper coloring
with another. An AB Kempe chain is a maximal connected set of regions of G such that
every region has color either A or B. Kempe chains have the property that given a proper
region coloring (or a proper partial region coloring), exchanging the colors A and B on an
AB Kempe chain results in a new proper (partial) region coloring. While Kempe’s proof
utilizing Kempe chains was incorrect, the ideas behind it have been used in the study of

the Four Color Theorem ever since.

The terminology we present next is motivated by [6], with some alterations based on
further work in [12, 15, 16]. In the following definitions, the exterior region ER is the
region we are attempting to assign a color. In addition, we assume that only five neighbors
of ER are colored. We will also assume that all four colors are on regions adjacent with
ER with no two consecutive regions (ignoring uncolored regions) having the same color.
We will refer to the colored regions adjacent to FR as boundary regions. Figure 1 will be

used for reference.

e The boundary region situated between two boundary regions of the same color is

called the top region. In Figure 1, this is the boundary region labeled R.
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Figure 1: A partially colored graph where the exterior region has 5 colored neighbors, with
no two consecutive colored regions of the same color. The label R refers to red color, the
label B for blue color, the label G for green color, and the label Y for yellow color. Some
of the unmarked regions may be colored, but not those adjacent to the exterior region.

A Kempe chain containing both the top region and the boundary region two spaces
counterclockwise from the top region is called the left-hand circuit. If such a Kempe
chain does not exist, we will refer to the Kempe chain using these colors and starting
at the top region as a broken left-hand circuit. In Figure 1, this will be an RG Kempe

chain.

Similarly, a Kempe chain containing both the top region and the boundary region
two spaces clockwise from the top region is called the right-hand circuit (analagously,

broken right-hand circuit).

A Kempe chain beginning at the boundary region counterclockwise to the top region
and whose other color is that of the region two spaces clockwise from the top region

(in Figure 1, B and Y') is called the left-hand chain.

A Kempe chain beginning at the boundary region clockwise to the top region and
whose other color is that of the region two spaces counterclockwise from the top

region is called the right-hand chain.

The Kempe chain containing the two boundary regions not directly clockwise or
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counterclockwise to the top region is called the end tangent chain. In this case, this
would be a GY Kempe chain. It is possible that these two regions are not connected
by a Kempe chain; in this case, we arbitrarily choose a chain using these two colors

and containing one of these regions as the end tangent chain.

We will use the following operations. Each operation is a function mapping one partial

coloring to another partial coloring of the same regions.

e /: Exchange colors on the left-hand chain

e 7: Exchange colors on the right-hand chain

te: Exchange colors on the left-hand circuit (or the broken left-hand circuit)

t,: Exchange colors on the right-hand circuit (or the broken right-hand circuit)

e: Exchange colors on the end tangent chain

For simplicity, we indicate function composition by concatenation. Therefore, for opera-

tions o1, 02, we use 0201 (c) to indicate applying o1 to ¢, followed by o3.

We follow the conventions established in [16] and say a coloring c is at impasse if ¢, £(c),
and r(c) each have a left-hand and right-hand circuit. If a coloring is not at impasse, it can
easily be used to obtain a color for the exterior region. We also require that ¢ is only be
applied to colorings having a left-hand circuit, and similarly r is only applied to colorings
having a right-hand circuit. Having established this terminology, we are now ready to give

precise definitions of our various algorithms.

3 Algorithms and New Results

In order to simplify the generation of graphs and application of these operations, we found
it easier to work with vertex colorings of mazimal planar graphs, or plane graphs where
each region is bounded by a triangle. Since the plane dual of a maximal planar graph is
a cubic map, this is an equivalent problem. Here we will predominantly use the region

coloring terminology.
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The following algorithms will describe approaches to coloring regions with exactly five
colored neighbors as in Figure 1. As such, we must ensure that each region has a maxi-
mum of five colored neighbors when we attempt to color it. Therefore, we always begin
by obtaining a smallest-last ordering of the regions graph as described in [7] (where the
discussion is in terms of vertices). This ordering attains the property that when regions
are colored in this order, no more than 5 colored neighbors will be adjacent to each region
as we attempt to color it. If the region has at most 4 colored neighbors, or otherwise if
it has 5 colored neighbors with an arrangement of colors different from that in Figure 1,
we use methods such as those in [3] to color the region. To color regions with 5 colored

neighbors situatated as in Figure 1, we use the algorithms described in this section.

Alogirthm 0: The Basic Rotation Algorithm. Algorithm 0 is the primary algo-
rithm studied in [10, 11, 14]. In terms of the operations described here, Algorithm 0 uses
only operations ¢ and t,. We begin with a coloring cqg. If the coloring ¢; has a left-hand
circuit, we obtain ¢;4+1 = ¢(¢;). Otherwise, we apply ¢y to ¢; and return this coloring, as this
results in a coloring where the boundary regions only use 3 different colors. This algorithm
can be summarized as ¢; = £*(cp). Algorithm 0 terminates if and only if £*(cy) has no

left-hand circuit for some 3.

In practice, Algorithm 0 has been quite effective. We have now tested over 280, 000, 000
graphs having up to 34,110 regions generated using the methods described in [7]. Of the
graphs tested, over 99.998% of graphs were successfully 4-colored using Algorithm 0. In
addition, the following result on Heawood’s historical counterexample in [4] to Kempe’s
color-swapping argument, here referred to as the Heawood map, has been previously proven
by Wieguo Xie in [11, 14]:

Theorem 3.1. The Heawood map can be 4-colored by Algorithm 0.
However, there is a historical map and coloring ¢y for which Algorithm 0 does not

terminate. This map is the Errera map, introduced by Alfred Errera in [2]. As reported
by Kittell in [6], £2°(co) = co. The coloring cy is illustrated in Figure 2 as presented in [6].

In addition, certain maps related to the Errera map cannot be colored by Algorithm 0.

The remaining algorithms will all explore distinct ways to modify Algorithm 0 to account
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Co: equivalently:

g0

Figure 2: A coloring of the Errera map for which Algorithm 0 does not terminate, with the
uncolored region drawn as the exterior region. An equivalent drawing with the uncolored
region as the pentagon at the center is also drawn.

for the Errera map and related maps.

Alogrithm 1: Rotation with Errera Fix. Since Algorithm 0 is simple and works
for many maps, we would like to use it when possible, and only resort to other methods
when necessary. Therefore, in Algorithm 1, we run Algorithm 0 for a large number of times.
If the algorithm does not successfully terminate, or if we detect that we have returned to

our original coloring, we use the additional operations e and ef.

It was shown in [16] that for the Errera map and certain variations that this successfully
resolves impasse and allows for a coloring of the given region. In fact, of the graphs for
which Algorithm 0 failed, all but 25 graphs were 4-colorable by Algorithm 1. An example

of a graph for which Algorithm 1 does not resolve impasse is given in Figure 3.

Algorithm 2: Rotation with Multistart. For Algorithm 2, we use multistart to
find a region with 5 colored neighbors that can be more easily colored by Algorithm 0. Let
R; be the region we are attempting to color. We use ¢ up to 20 times to color R;. If this
fails, then we apply ¢ until the top region has at most 4 colored neighbors. We call the top
region Rs. We assign to R; the color of Rs, and then uncolor Rsy. Finally, we use up to 20

applications of ¢ to color Ry. If we either cannot find a neighbor of R; that has only four
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Figure 3: A graph for which Algorithm 1 does not resolve impasse.

colored neighbors or cannot color Ry after this exchange, then Algorithm 2 does not find

a coloring.

Every graph in our testing suite was able to be successfully colored using Algorithm 2.

In particular we have the following result, which was also presented in [13]:

Theorem 3.2. The Errera map can be 4-colored by Algorithm 2.

In addition, we have the following:

Theorem 3.3. The graph in Figure 3 can be 4-colored by Algorithm 2.

In addition to the multistart algorithm described above, we have also designed and
implemented a more general multistart algorithm that can change the region to be colored

to any other region with at most 5 colored neighbors. However, this necessitates obtaining
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a new smallest-last ordering and restarting the coloring process each time we run into an

obstacle, reducing the efficiency of this algorithm.

Algorithm 3: Alternating e and /. This last approach is motivated by Algorithm
1. In Algorithm 1, we use £ many times; if this fails we try either e or ef. In both
cases the final colorings are ef™(cg) for some n. Algorithm 3 applies color exchanges in
order {e,l,r,e,l,e, l,r e L, ...}. This systematically tests whether each coloring ¢ (cy) and
el(cp) is at impasse. More simply, we apply ¢ repeatedly, checking whether e resolves
impasse each time. When a coloring that is not at impasse is encountered, a coloring of

the exterior region is produced.
This has also not failed to color any of the graphs in our testing suite. In particular,

Theorem 3.4. The graph in Figure 3 can be 4-colored by Algorithm 3.

4 Concluding Remarks

As stated above, neither Algorithm 2 nor Algorithm 3 have failed to color a graph in our
simulations. This leads us to some conjectures. The first conjecture is based on the success

in the more general version of Algorithm 2.

Conjecture 4.1. Let M be a cubic map. Then for some smallest-last ordering o of the
regions, Algorithm 0 can be used to resolve impasse in each region with 5 colored neighbors

as in Figure 1.

It should be noted that by the Four Color Theorem there exists a four-coloring of the
regions, which can be used to determine a region order that can be greedily four-colored.
Whether this ordering can be restricted to a smallet-last ordering is unknown, hence the

conjecture. Our next conjecture is based on the success of Algorithm 3.
Conjecture 4.2. Let ¢ be a coloring like that in Figure 1. Then for some n, the coloring

" (c) or el™(c) is not at impasse.

A proof of this fact would be a proof of the Four Color Theorem; therefore, we would
anticipate such a proof to be quite challenging. Even if this conjecture is false, it would

could be quite enlightening to study a counterexample.
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