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ABSTRACT
Although machine learning algorithms demonstrate impressive per-
formance, their trustworthiness remains a critical issue, particularly
concerning fairness when implemented in real-world applications.
Many notions of group fairness aim to minimize disparities in per-
formance across protected groups. However, it can inadvertently
reduce performance in certain groups, leading to sub-optimal out-
comes. In contrast, Min-max group fairness notion prioritizes the
improvement for the worst-performing group, thereby advocat-
ing a utility-promoting approach to fairness. However, it has been
proven that existing efforts to achieve Min-max fairness exhibit
limited effectiveness. In response to this challenge, we leverage
the recently proposed “Neural Collapse” framework to re-examine
Empirical Risk Minimization (ERM) training, specifically investigat-
ing the root causes of poor performance in minority groups. The
layer-peeled model is employed to decompose a network into two
parts: an encoder to learn latent representation, and a subsequent
classifier, with a systematic characterization of their training be-
haviors being conducted. Our analysis reveals that while classifiers
achieve maximum separation, the separability of representations
is insufficient, particularly for minority groups. This indicates the
sub-optimal performance in minority groups stems from less separa-
ble representations, rather than classifiers. To tackle this issue, we
introduce a novel strategy that incorporates a frozen classifier to
directly enhance representation. Furthermore, we introduce two
easily implemented loss functions to guide the learning process.
The experimental assessments carried out on real-world benchmark
datasets spanning the domains of Computer Vision, Natural Lan-
guage Processing, and Tabular data demonstrate that our approach
outperforms existing state-of-the-art methods in promoting the
Min-max fairness notion.
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1 INTRODUCTION
Machine learning models are trained with Empirical risk mini-
mization (ERM) objectives that aim to optimize the average perfor-
mance. Numerous studies [2, 5, 18] report unsatisfactory perfor-
mance across specific demographics from ERM training. This issue
is particularly critical in high-stakes fields such as loan approvals,
admissions processes, and facial recognition, where fairness across
diverse demographics is critical [7]. An unfair machine-learning
model can be extremely harmful. For example, when biased fa-
cial recognition technology is utilized in crime surveillance, it can
lead to unfair treatment and discrimination of certain demographic
groups. This, in turn, may result in serious consequences such as
false accusations and wrongful arrests [48].

Various fairness definitions have been introduced in the litera-
ture, which can generally be categorized into group fairness [13, 17]
and individual fairness [21, 24]. In this work, we focus on group
fairness. Existing criteria for group fairness concentrate on mit-
igating disparities in performance across different demographic
groups. Abernethy et al. [1] highlight a critical concern with this
equity criterion, noting that it may inadvertently compromise the
performance of majority groups in an attempt to achieve parity, po-
tentially diminishing overall system performance. Mittelstadt et al.
[31] illustrate the “leveling down” problem in fairness, noting that
efforts to achieve parity may unintentionally result in decreased
performance across all demographic groups. Zietlow et al. [57]
point out that when implementing fairness notions based on parity,
such as equalized odds, fairness methods lead to a decrease in ac-
curacy across all groups. This degradation in performance is more
pronounced in groups that originally exhibited better performance.

Contrary to the pursuit of parity across demographic groups, the
concept of Min-max fairness requires a model to optimize for the
minimum utility among protected groups [26]. Simply degrading
the performance of the majority group fails to fulfill the criteria of
Min-max fairness. Min-max fairness can be a preferable notion to
enforce when performance improvements for any group are more
desirable than achieving parity [41].

Awide range of algorithms have been proposed for fairness in the
Min-max framework [12, 18, 34, 40]. Hashimoto et al. [18] proposed
using distributionally robust optimization (DRO) to optimize for
the worst-case groups. Although it appealing that without using
demographics, it runs a risk of optimizing on outliers. Adversarially
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Reweighted Learning (ARL) addresses this issue through adversarial
training. However, this approach is reported to introduce instability
in the training process and necessitates an auxiliary network, which
complicates the optimization procedure. [1, 12, 40] proposed to
directly optimize the worst performing group to enhance Min-max
fairness. However, empirical studies assert that these works do not
consistently outperform ERM with regard to accuracy in the worst-
performing group [15, 35]. Singh et al. [41] conducted theoretical
analysis suggesting that directly optimizing for the worst-case
group is less effective in enhancing the worst-group performance.

In light of these challenges, there is a critical need for a new ap-
proach to address Min-max fairness from an alternative perspective.
Beyond attributing the poor performance of minority groups to the
ERM’s focus on average performance, it is crucial to investigate the
intrinsic causes of biased behavior in ERM training. The phenome-
non of “Neural Collapse” has been a groundbreaking revelation in
understanding the intricacies of ERM training [32]. We follow the
protocol established in neural collapse, utilizing the layer-peeled
model that decomposes a 𝐿 layer neural network 𝜙 into representa-
tion 𝒉 and a linear classifier𝑾 , which can be expressed as follows
[9, 14, 50]:

𝜙 (𝒙) = 𝑾︸︷︷︸
Classifier𝑾

𝜎 (𝑾𝐿−1 . . . 𝜎 (𝑾1𝒙 + 𝑏1) + 𝑏𝐿−1︸                                    ︷︷                                    ︸
Representation 𝒉

), (1)

Neural Collapse offers a compelling framework for analyzing
the behavior of classifiers and representations in neural networks.
However, the scope of existing research on neural collapse is in
the context of class imbalance [8, 14, 42]. Notably, network per-
formance varies significantly between class imbalance and group1
imbalance settings. Motivated by the compelling aspects of Neural
Collapse, our study pioneers the study of representation and classi-
fier characteristics in scenarios of group imbalance, a critical factor
contributing to unfairness.

We systematically re-examine the behavior of representation and
classifiers. Our findings reveal that the similarity of representations
from minority groups is consistently higher than that of majority
groups, indicating that the representations learned via ERM are
predominantly influenced by sensitive attributes. Furthermore, we
observe that the classifiers adhere to the simplex equiangular tight
frame, indicating maximal separation in the space. However, the
separation of the representations does not exhibit a comparable
level of separability. In other words, to solely attain the objective
of accurate classification, a well-separated classifier diminishes the
necessity for highly separable representations. Furthermore, we
examine a method that directly optimizes for the worst-performing
group, a common technique in addressing Min-max fairness. Our
analysis reveals that this approach results in marginal improve-
ments in the separability of representations, suggesting that such a
method is not optimal for effectively enhancing Min-max fairness.

Expanding upon these insights, we introduce a novel method that
does not directly optimize for the Min-max fairness objective. In-
stead, our method focuses on elevating the worst-case performance
by promoting the separability of the representations of minority

1We define a group as the combination of target label and sensitive attribute, detailed
discussion presented in section 3.1.

groups. To achieve this, we employ frozen classifiers, which are
aligned with the majority groups within each class. During the
training stage, the parameters of the classifier are not updated. We
further introduce two easily implementable loss functions: group
cross-entropy and group mean alignment loss. These objective func-
tions guide the training procedure, aiming to enhance the fairness
of the model and maintain its utility. We benchmark our method
across various domains, including computer vision, natural lan-
guage processing, and tabular data.

The contributions of this study are:

• We present a systematic study of neural collapse phenomena
in the context of group-imbalanced datasets, characterizing
the behavior of both representations and classifiers in this
setting.

• We embark on the application of neural collapse theory to
enhance debiased representation, developing a method that
effectively addresses fairness issues within the Min-max
fairness paradigm.

• We conduct extensive experiments that demonstrate the
superior performance of our method in comparison to state-
of-the-art approaches.

2 RELATED WORKS
2.1 Min-max Fairness
Min-max fairness is an important concept in group fairness which
aims to minimize the maximum error or harm experienced by a
group [30, 43]. It’s a crucial concept in scenarios where achieving
equality is a priority, but doing so without causing undue harm is
equally important. Methods on Min-max fairness generally focus
on optimizing over the maximum error rate over all the groups.
Diana et al. [12] proposed to relax the problem as a mini-max game,
where the empirical average of play converges to an optimal solu-
tion. Shekhar et al. [40] proposed an active sampling framework to
rectify the training process. Abernethy et al. [1] proposed a sam-
pling and reweighting framework to update the model based on
the worst-off group at each iteration. Yang et al. [51] formulated
the problem as a zero-sum game and introduce a stochastic gra-
dient method to approximate the solution. However, recent work
has demonstrated both empirically and theoretically the minor
difference between ERM and their specialized Min-max fairness
methods [41, 58], where both converge to the same optimum under
recoverable group information.

2.2 Robust optimization and spurious
correlation

Spurious correlation refers to the misleading heuristics that work
for training examples but do not generalize well to new, unseen
data [38]. It is typically formulated as the group-wise covariate
shift on testing data regarding spurious features. While the con-
text of spurious correlation and Min-max fairness differs, their
fundamental concepts, to minimize over the worst-group error,
appear to coincide with each other. Sagawa et al. [38] formulated
the task as a distributionally robust optimization problem with dy-
namical weight assignment during optimization. Idrissi et al. [20]
proposed to eliminate the spurious correlation in training data by
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subsampling and reweighting over groups. Error-based reweighting
methods have also been proposed as group-agnostic rectification of
spurious correlation [27, 56]. Yao et al. [52] proposed a mix-up tech-
nique for learning invariant predictors via selective augmentation.
More recently, last-layer retraining has been proposed to amend
biased representation [22, 25]. However, compared with represen-
tation learning, last-layer retraining has been shown to suffer from
inherent insufficiency in mitigating spurious correlations under
various scenarios [37, 53]. Our approach diverges from existing
methods that address spurious correlations, which predominantly
utilize techniques such as reweighting and sampling. Instead, our
method promotes the induction of neural collapse (NC) proper-
ties within the representation, recognized as an optimal state for
classification tasks [50].

2.3 Neural collapse
Papyan et al. [32] first uncovers a phenomenon known as “neural
collapse”, highlighting the distinct properties of representations
and classifiers in deep learning when training to the ending phase.
It is observed that networks trained on class-balanced datasets
exhibit an emergent simple and symmetric geometry in both the
representation and its corresponding classifiers [32]. The neural
collapse phenomenon (NC) can be described as:

• NC1: The representation of the same class collapses into
their class mean.

• NC2: Class mean vectors maximize their separability within
the representation space.

• NC3: The class mean vector aligns with its corresponding
classifier vector.

• NC4: The model’s predictions, based on logits, can be sim-
plified to the identification of the nearest class centers.

A follow-up study [14] extends the analysis of the neural collapse
phenomenon to scenarios with class imbalance. This research iden-
tifies a “minority collapse”, a distinct phenomenon where classifiers
for minority classes converge more closely as the level of imbalance
increases. Thrampoulidis et al. [42] introduced a novel asymmetric
geometric model to delineate the behavior of representations and
classifiers within the context of class imbalance regimes.

3 MOTIVATION
In this section, we investigate the reason for the suboptimal perfor-
mance in the minority groups. We first examine the characteristics
of the representations and classifiers within the regime of neural
collapse. We then investigate the potential limitation associated
with directly optimizing the Min-max fairness objective.

3.1 Preliminary
Setting. We consider the problem in a 𝐾− class classification

setting. A dataset is in the form of (𝒙, 𝑎,𝑦), where 𝒙 ∈ X is the
input feature, 𝑎 ∈ A is the binary sensitive attribute, and 𝑦 ∈ Y
is the target label. Define groups 𝑔𝑦,𝑎 ∈ G based on the Cartesian
product ofY andA. Within each class, we define two groups based
on the sensitive attribute 𝑎: the smaller group refers to the “minority
group” and is denoted by superscript𝑚𝑖𝑛 ; The larger group refers
to the “majority group” and is denoted by the superscript 𝑚𝑎𝑗 .
We denote 𝑾 = [𝒘0, ...,𝒘𝐾−1] ∈ R𝑑×𝐾 as the weight matrix of

classifiers for 𝐾 classes, 𝒉 ∈ R𝑑 denotes a representation vector,
𝒉𝑔𝑦,𝑎 denotes the mean representation vector for the group 𝑔𝑦,𝑎 .

We characterize the representation and the classifier based on
properties NC1 to NC3. We omit the discussion on NC4 as it is
inferred from NC1 to NC3 [50]. We consider the following metric
to delineate the corresponding NC property:

• For NC1, we compute group variance in each group:

𝑠𝑦,𝑎 = 𝑡𝑟 ( 1
|𝑔𝑦,𝑎 |

∑︁
𝑖

((𝒉𝑖 − 𝒉𝑔𝑦,𝑎 ) (𝒉𝑖 − 𝒉𝑔𝑦,𝑎 )⊤), 𝑠 .𝑡 .𝒉𝑖 ∈ 𝑔𝑦,𝑎

A small 𝑠𝑦,𝑎 indicates the representations within the same
group converge towards their corresponding group mean.

• For NC2, we compute cosine similarity in class vectors:

𝑑cls-sim = 𝑠𝑖𝑚(𝒉𝑔0,· ,𝒉𝑔1,· )

A small𝑑cls-sim indicates a high degree of separability among
class mean representations.

• For NC3, to characterize the unique scenario presented by
group imbalances, we calculate three key metrics: Majority
Cosine Similarity, Minority Cosine Similarity, and Classifier
Cosine Similarity.

𝑑maj-sim = 𝑠𝑖𝑚(𝒉𝑚𝑎𝑗𝑔0,· ,𝒉
𝑚𝑎𝑗
𝑔1,· )

𝑑min-sim = 𝑠𝑖𝑚(𝒉𝑚𝑖𝑛𝑔0,· ,𝒉
𝑚𝑖𝑛
𝑔1,· )

𝑤sim = 𝑠𝑖𝑚(𝒘0,𝒘1)

A small𝑑maj-sim value indicates enhanced separability within
the majority group’s mean representations. A small 𝑑min-sim
reflects increased separability within the minority group’s
mean representations. A small𝑤sim suggests high separabil-
ity among classifiers.

We first conduct experiments on the Waterbirds dataset [38], a
synthetic dataset created by combining images of birds [44] and
images of places [55]. The dataset is categorized into four distinct
groups: waterbirds on water background (𝑔0,0), waterbirds on land
background (𝑔0,1), landbirds on water background (𝑔1,0), and land-
birds on land background (𝑔1,1). The sizes of these groups are as
follows: 3498, 184, 56, and 133, respectively. According to the defi-
nition, the majority groups are 𝑔0,0 and 𝑔1,1, the minority groups
are 𝑔0,1 and 𝑔1,0. Following previous work [22, 25, 38], we employ
a ResNet-50 model pre-trained on ImageNet-1K and train to 100 %
accuracy on the training set.

3.2 Group imbalanced neural collapse
observation

3.2.1 Characteristics of ERM training. The test set results for the
Waterbirds dataset are presented in Fig 1. Specifically, Fig 1(a) illus-
trates the cosine similarity for representations and classifiers, Fig
1(b) shows the group variance.
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Figure 1: A characteristic plot depicting the behavior of rep-
resentations and classifiers within the Waterbirds dataset.

From Fig 1(b), we observe that as the number of training epochs
increases, there is a noticeable decrease in the within-group vari-
ability of the representations. We extend the concept of NC 1 to
scenarios with group imbalances, referring to it as the within-group
variability of the representation collapse.

From Fig 1(a), we observe a decreasing trend in 𝑤𝑠𝑖𝑚 , 𝑑cls-sim,
𝑑maj-sim, and 𝑑min-sim. This trend corresponds to an increase in
the angular separation among classifiers, as well as between the
mean vectors of different classes for both majority and minority
samples. An increase in angular separation is advantageous for
enhancing feature distinction. However, we find that𝒘𝑠𝑖𝑚 is much
smaller than 𝑑cls-sim. The𝒘𝑠𝑖𝑚 values approach −1, indicating the
classifier is progressivelymoving towards a state that maximizes the
pairwise angular separation between the two classes, i.e., a simplex
equiangular tight frame [32]. In contrast, the level of separation
of representations is much lower (as 𝑑cls-sim is much above −1). It
fails to satisfyNC2 andNC3. Importantly, we note that 𝑑maj-sim is
lower than 𝑑min-sim, suggesting that the separability of the minority
samples is less than that of the majority group. This indicates that
the representation is highly effected by the sensitive attribute.

To determine the prevalence of this phenomenon in settings
characterized by group imbalances, we performed identical tests on
both the CelebA [28] and UTK datasets [54]. Details on the datasets
used are provided in Appendix A. The results are presented in Fig
2 and 3.

Figure 2: A characteristic plot depicting the behavior of rep-
resentations and classifiers within the CelebA dataset.

From Fig 2 and Fig 3, we observe a trend consistent with that
identified in the Waterbirds dataset. We summarize our findings:

• Classifiers enhance their separability to effectively discrimi-
nate between classes.

Figure 3: A characteristic plot depicting the behavior of rep-
resentations and classifiers within the UTK dataset.

• Within the same class, the mean vectors of the majority and
minority groups are misaligned.

• Across different classes, the cosine similarity between the
mean vectors of the majority groups is lower compared to
that of the minority groups.

To elucidate our findings, we visualize the mean vectors of rep-
resentations and their corresponding classifiers in 3D space. We
reduce the dimensionality of the representation from R2048 to R3
in the learning stage. We compute the mean of representations and
classifiers in the test set. The resulting plot is presented in Fig 4. It is
observed that the similarity within minority groups is higher than
in the majority group, and the classifiers are distinctly separated.

Figure 4: Visualization of representations and classifiers in
Waterbirds dataset.

3.2.2 Examine Min-max fairness approach. We evaluate the effec-
tiveness of the existing Min-max fairness strategies in the context
of the neural collapse regime. We employ the Min-max Stochas-
tic Gradient Descent method [1] on the Waterbirds dataset. For
comprehensive details on the implementation, refer to Section 5.1.
We show the result in Fig 5. For clarity, we juxtapose the results
of [1] with those from ERM training on the same graph for direct
comparison. For ERM, the cosine similarity for the majority group
is depicted in red, and for the minority group in purple. Observa-
tions indicate that, despite [1] narrowing the gap between cosine
similarities within minority and majority groups, the curves for
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the Min-max fairness approach (representing 𝑑maj-sim, 𝑑min-sim)
largely coincide with the curve for the minority group under ERM
training (ERM 𝑑min-sim in Fig 5). This highlights a limitation in the
separability of representations achieved through Min-max training,
particularly compromising the majority groups’ separability.

Figure 5: A characteristic plot for the Min-max fairness ap-
proach [1].

4 METHOD
We now introduce our method to learn a debiased representation
to improve the worst performance group. We present an approach
inspired by the neural collapse, utilizing a frozen-classifier tech-
nique that emphasizes the separability of the minority group. Sub-
sequently, we propose two loss functions specifically designed to
optimize the network’s effectiveness.

4.1 Frozen classifiers
As illustrated in Section 3.2, the representation derived from ERM
does not exhibit the NC3 property, indicating a strong misalign-
ment between the classifier vectors and the mean vectors of the
representations. Furthermore, we observe that the optimization
process for linear classifiers converges more rapidly than that for
representation vectors. Based on these findings, we freeze the clas-
sifier parameters, thereby concentrating on the optimization of the
representation.

Following the definitions in section3.1, the majority group for
each class can be expressed as 𝑔𝑚𝑎𝑗𝑦 = 𝑔𝑦, 𝑠 .𝑡 . |𝑔𝑦 | = max𝑎 ( |𝑔𝑦,𝑎 |).
We compute the mean vector from each majority group:

𝒉𝑚𝑎𝑗𝑦 =
1

|𝑔𝑚𝑎𝑗𝑦,· |

∑︁
𝑖

𝒉𝑖 , 𝑠 .𝑡 . 𝒉𝑖 ∈ 𝑔𝑚𝑎𝑗𝑦,· , 𝑦 ∈ Y (2)

The frozen parameters of the classifier, 𝑾 = [𝒘0, ..,𝒘𝐾−1], are
assigned by:

𝒘𝑘 :=
𝒉𝑚𝑎𝑗
𝑘

| |𝒉𝑚𝑎𝑗
𝑘

| |2
, 𝑘 ∈ {0, .., 𝐾 − 1} (3)

Remark 1 (Focusing on the minority group): We consider the
cross entropy loss function:

L𝐶𝐸 (𝒉,𝑾 ) = − log(
exp(𝒉⊤𝒘𝑦)∑𝐾
𝑘=1 exp(𝒉⊤𝒘𝑘 )

) (4)

Assigning the classifier’s weights to align with the mean vector
of the majority group results in higher losses for minority groups,

compared with those for majority groups, due to their misalignment
with the classifier’s orientation, as illustrated in Fig 4. Consequently,
this misalignment guides the update process to concentrate on the
minority group primarily.
Remark 2 (Maintaining separability):We take the gradient of
CE loss w.r.t. 𝒉:

− 𝜕L𝐶𝐸
𝜕𝒉

= (1 −
exp(𝒉⊤𝒘𝑦)∑𝐾
𝑗=1 exp(𝒉⊤𝒘 𝑗 )

)𝒘𝑦 −
𝐾∑︁
𝑘≠𝑦

exp(𝒉⊤𝒘𝑘 )∑𝐾
𝑗=1 exp(𝒉⊤𝒘 𝑗 )

𝒘𝑘

(5)
Equation (5) shows the update direction of 𝒉, explicitly incor-

porating a negative sign in the gradient term for illustrative clar-
ity. In the first component, (1 − exp(𝒉⊤𝒘𝑦 )∑𝐾

𝑗=1 exp(𝒉⊤𝒘𝑗 )
)𝒘𝑦 , the coefficient

associated with 𝒘𝑦 is strictly positive, which directs the adapta-
tion of 𝒉 towards the classifier 𝒘𝑦 . For the second component,
−∑𝐾

𝑘≠𝑦

exp(𝒉⊤𝒘𝑘 )∑
𝑗 exp(𝒉⊤𝒘𝑗 )

𝒘𝑘 , the coefficients associated with each 𝒘𝑘
are strictly negative, thereby steering 𝒉 away from the correspond-
ing classifiers𝒘𝑘 .

Equation (3) defines each classifier𝒘 as the mean representation
of the majority group within its respective class. Consequently,
the representation vector 𝒉 will be oriented towards 𝒉𝑦 , the mean
vector of the majority group in class 𝑦, while pushing away itself
from 𝒉𝑘 , the mean vector of the majority group in any other class
𝑘 , where 𝑘 ≠ 𝑦. In other words, for each sample 𝒉, it will converge
within its class and separate from other classes. As a result, this
mechanism leads to closer representations within each class and
enhances the separation between different classes.

4.2 Group Cross Entropy
Given that ERM training primarily focuses on average performance,
we adopt a group-wise tracking approach to assess the optimization
progress within each group. We have formulated a group-wise loss,
defined as follows:

L𝑔𝑦,𝑎 =
1

|𝑔𝑦,𝑎 |
∑︁
𝑖

L(𝜙 (𝒙𝑖 ), 𝑦𝑖 ), 𝑠 .𝑡 .𝒙𝑖 ∈ 𝑔𝑦,𝑎, (6)

where 𝜙 (·) is a neural network with a backbone and a linear classi-
fier. We conducted experiments on the Waterbirds dataset utilizing
the ERM training objective to train ResNet50 models for 20 epochs.
We monitored the L𝑔𝑦,𝑎 in the training set and have depicted the
resulting trends in Fig 6.

Figure 6: Group-wise loss in the training stage.
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Analysis indicates that during ERM training, the loss function
for the majority group exhibits rapid convergence and stabilizes at
a notably lower magnitude in comparison to the minority group.
This phenomenon underscores the inherent challenges associated
with optimizing models to adequately address the needs of minority
groups.

In response to the challenges associated with optimizing perfor-
mance for minority groups, we propose the direct optimization of
the Group Cross Entropy (GCE) Loss to enhance the optimization
process by accommodating group-specific characteristics more ef-
fectively. The GCE Loss is formulated with the following objective:

L𝐺𝐶𝐸 =
∑︁

𝑔𝑦,𝑎∈G

1
|𝑔𝑦,𝑎 |

∑︁
𝑖

L𝐶𝐸 (𝜙 (𝒙𝑖 ), 𝑦𝑖 ), 𝒙𝑖 ∈ 𝑔𝑦,𝑎 (7)

where L𝐶𝐸 (·) is the cross-entropy loss. 𝜙 (𝒙) is the prediction
and 𝑦 is the label.

4.3 Group mean alignment
Alignment between the representation and the classifier leads to
improved task performance. In our approach, where the classifier
is fixed to favor majority groups, our goal is to promote the con-
vergence of the minority group’s mean vector towards that of the
majority group. This approach seeks to achieve a more balanced
representation, enhancing overall system performance. In align-
ment with this objective, we introduce the “group mean alignment
loss” defined as:

L𝑎𝑙𝑖𝑔𝑛 =

𝐾−1∑︁
𝑦=0

L𝑀𝑆𝐸 (𝒉𝑔𝑦,0 ,𝒉𝑔𝑦,1 ), (8)

4.4 Algorithm
We summarize our method in Algorithm 1 and 2.

Algorithm 1 Classifier weights assigning
Input: Input feature 𝒙 , label 𝑦, sensitive attribute 𝑎. Backbone
model 𝑓𝜃 (·).
Output: The frozen classifier 𝑞𝑤 (·).
1: Identify the majority groups: 𝑔𝑚𝑎𝑗𝑦 = 𝑔𝑦, 𝑠 .𝑡 . |𝑔𝑦 | =

max𝑎 ( |𝑔𝑦,𝑎 |).
2: Compute mean vectors from the majority groups:

𝒉𝑚𝑎𝑗𝑦 =
1

|𝑔𝑚𝑎𝑗𝑦,· |

∑︁
𝑖

𝑓𝜃 (𝒙𝑖 ), 𝑠 .𝑡 . 𝒙𝑖 ∈ 𝑔
𝑚𝑎𝑗
𝑦,· , 𝑦 ∈ Y

3: Assign the value to each classifier𝒘𝑘 :=
𝒉𝑚𝑎𝑗
𝑘

| |𝒉𝑚𝑎𝑗
𝑘

| |2
, 𝑘 ∈ {0, .., 𝐾−

1}.
return 𝑞𝑤 = [𝒘0, ...,𝒘𝐾−1]

Algorithm 2 De-biased representation learning
Input: Input feature 𝒙 , label 𝑦, sensitive attribute 𝑎 in the training
set, epochs 𝐸, learning rate 𝜂.
Output: The parameter of the backbone model 𝜃
1: Define 𝑔𝑦,𝑎 = {𝒙 |𝑦, 𝑎}, 𝑔𝑦,𝑎 ∈ G
2: for epoch to 𝐸 do:
3: Assigning the weight of classifier 𝑞𝑤 (·) by Algorithm 1.
4: Compute group cross-entropy loss:

L𝐺𝐶𝐸 =
∑︁

𝑔𝑦,𝑎∈G

1
|𝑔𝑦,𝑎 |

∑︁
𝑖

L𝐶𝐸 (𝑞𝑤 (𝑓𝜃 (𝒙𝑖 )), 𝑦𝑖 ), 𝒙𝑖 ∈ 𝑔𝑦,𝑎

5: Compute mean alignment loss:

L𝑎𝑙𝑖𝑔𝑛 =

𝐾−1∑︁
𝑦=0

L𝑀𝑆𝐸 (𝒉𝑔𝑦,0 ,𝒉𝑔𝑦,1 ),

where 𝒉𝑔𝑦,𝑎 = 1
|𝑔𝑦,𝑎 |

∑
𝑖 𝑓𝜃 (𝒙𝑖 ), 𝒙𝑖 ∈ 𝑔𝑦,𝑎 .

6: Total loss: L = L𝐺𝐶𝐸 + L𝑎𝑙𝑖𝑔𝑛
7: Update 𝜃 by gradient descent:

𝜃 = 𝜃 − 𝜂 𝜕L
𝜕𝜃

8: end for
return 𝜃

5 EXPERIMENT
In this section, we evaluate our method’s performance on bench-
mark datasets. We delineate the experimental setup, followed by a
comprehensive presentation of the results. Subsequently, we pro-
vide a GradCam visualization to compare our method with ERM
training. We conduct an ablation study to show the effectiveness
of each component within our method. Lastly, we examine the
optimization process for each group during the training phase
and evaluate the quality of the learned representations. Our code
is available at https://github.com/lu876/Neural-collapse-inspired-
debiased-representation-learning-for-Min-max-fairness

5.1 Experiment setup
Datasets. We study the following five datasets which are well-

established as benchmarks for fairness research:Waterbirds [23, 38],
CelebA [28], ISIC [6], MultiNLI [45], the UCI Adult [3].

• Waterbirds dataset [23, 38] comprises images where the pri-
mary task (𝑦) is to classify the bird type (Landbird or Water-
bird), with the sensitive attribute (𝑎) being the habitat (Water
or Land background).

• CelebA [28] is a dataset containing 200𝐾 celebrity faces.
Guided by a recent study [16] that identifies datasets suitable
for group fairness research, we have adopted their recom-
mendations and, in accordance with established protocols
[4, 33, 36], selected ’attractiveness’ as the task label (𝑦) and
’male’ as the sensitive attribute (𝑎) in our use of the CelebA
dataset. An ethical statement on the use of this task is pro-
vided in a subsequent section of our paper.

• ISIC [6] is a skin cancer diagnosis dataset. We follow [47],
employing the version of the dataset released in 2018. The
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task is to predict 𝑦 = {Benign,Malignant} and sensitive
attribute 𝑎 = {patch,without patch}.

• MultiNLI [45] is a text multi-class classification dataset that
the task is to predict𝑦 = {entailment, neutral, contradiction}.
The sensitive attribute 𝑎 = {negation, no negation}.

• The UCI Adult [3] dataset is a tabular dataset comprising
48842 samples. Its primary task (𝑦) is to predict whether an
individual’s income exceeds 50𝐾 per year. We select 𝑎 =

gender as the sensitive attribute.

Metrics. We evaluate all methods from two perspectives: Utility
and Fairness. For utility, we compute the average accuracy (Acc).
For fairness, we use the Min-max fairness criteria to report the
worst group accuracy (WGA). To ensure a comprehensive evalua-
tion, the Best Group Accuracy (BGA) is also reported. Additionally,
we show the disparity between the highest and the lowest group ac-
curacies to emphasize fairness considerations. This is quantified by
ΔAcc = |max𝑔∈𝐺 𝐴𝑐𝑐𝑔 −min𝑔∈𝐺 𝐴𝑐𝑐𝑔 |, offering an understanding
of performance gaps among different groups. For the ISIC dataset,
the test set is significantly imbalanced, with a deficiency in sam-
ples that are both malignant and exhibit a patch. We follow [47] to
utilize ROC AUC as the metric for performance evaluation.

Baselines. We compare our proposed algorithm against several
state-of-the-art methods for Min-max fairness. Apart from ERM,
these methods employ diverse strategies to address fairness con-
cerns. Specifically:

• Min-max Stochastic gradient descent (MMSGD) [1] employs
active sampling to optimize min-max fairness. At each it-
eration, it specifically targets optimization for the worst-
performing group.

• MinimaxFair (MMF) [12] employs a method based on multi-
plicative weights update to achieve Min-max fairness. The
weights are determined using an exponential weights algo-
rithm, with respect to the errors of each group.

• Hilbert-Schmidt Independence Criterion (HSIC) [16] is de-
signed to learn a representation that minimizes the HSIC
between the representation itself and the sensitive attributes.

• Subsampling large groups (SUBG) [20] involves equalizing
group sizes by subsampling each group to match the size of
the smallest group.

• Group DRO (GDRO) [38]: By leveraging group informa-
tion, GDRO employs the distributionally robust optimization,
which allows for the dynamic amplification of the weight
assigned to the worst-group loss during the optimization
process.

Implementations. We implement all methods on a single NVIDIA
RTX-3090 GPU. Each method is independently trained three times,
and we report the mean and standard deviation of the results.

For the Waterbirds, CelebA, and ISIC datasets, we employ a
ResNet-50 model [19] pre-trained on ImageNet [10], as provided in
the torchvision library [29]. TheMultiNLI dataset is processed using
a pre-trained BERT base model [11], sourced from Huggingface
[46]. For the UCI Adult dataset, we utilize a two-layer multilayer
perceptron with hidden layers configured to {32, 64} nodes and
employing ReLU activation functions.

A consistent figuration of hyperparameters is adopted across
all evaluated methods. Specifically, for the CelebA and Waterbirds
datasets, we employ the SGD optimizer with a learning rate and
weight decay both set to 10−3, training with a batch size of 32 over
50 epochs [22]. The ISIC dataset was also trained with SGD, but
with training extended to 100 epochs. For the MultiNLI, the AdamW
optimizer is utilized with a learning rate of 3 × 10−5 and no weight
decay, fine-tuning for 10 epochs with a batch size of 64. For the
Adult dataset, the Adam optimizer is applied with a learning rate
of 10−3, a batch size of 256, and training for 50 epochs.

Model-specific hyperparameters are selected based on configu-
rations reported in the literature or officially released code for each
dataset. In cases where specific implementations for a dataset are
absent, we tune the hyperparameters to optimize the accuracy of
the worst-performing group within the validation set, ensuring a
consistent comparison standard across all methods evaluated.

5.2 Results
We report the results within the computer vision domain in Tables
1 2, 3, within the NLP domain in Table 4, and within the tabular
domain in Table 5. The best results are highlighted in bold and the
second best are underlined for clarity.

Table 1: Results of WaterBirds Dataset.

WGA↑ BGA↑ Δ Acc ↓ ACC ↑
ERM 81.41 ± 0.51 99.44 ± 0.17 18.03 91.84 ± 0.49
HSIC 80.53 ± 1.11 99.41 ± 0.23 18.88 90.76 ± 1.31
SUBG 88.99 ± 0.85 92.43 ± 0.95 3.44 91.15 ± 0.72
MMSGD 87.92 ± 1.25 93.57 ± 1.93 5.65 90.16 ± 0.36
MMF 84.84 ± 0.70 93.57 ± 0.98 8.73 90.25 ± 0.80
GDRO 88.61 ± 0.60 94.15 ± 0.50 5.54 91.13 ± 0.24
Ours 90.14 ± 0.08 94.66 ± 0.35 4.52 92.04 ± 0.20

Table 2: Results of CelebA Dataset.

WGA↑ BGA↑ Δ Acc ↓ ACC ↑
ERM 70.05 ± 0.85 87.34 ± 1.37 17.29 81.94 ± 0.94
HSIC 64.41 ± 5.99 88.93 ± 1.92 24.52 79.93 ± 1.40
SUBG 74.13 ± 3.38 83.37 ± 2.24 9.24 79.63 ± 0.32
MMSGD 75.01 ± 1.01 86.01 ± 0.50 11.00 80.45 ± 0.23
MMF 77.19 ± 0.65 81.40 ± 0.94 4.21 79.58 ± 0.35
GDRO 76.40 ± 1.53 82.27 ± 0.55 5.87 79.17 ± 1.11
Ours 78.26 ± 1.25 83.23 ± 1.12 4.97 80.19 ± 0.36

In our evaluation of vision tasks, we observed that our method
consistently outperforms benchmarked methods in terms of worst-
group accuracy, while maintaining comparable average accuracy.
Although reweighting techniques like GDRO and MMF improve
worst-group accuracy, our method outperforms these in both worst-
group accuracy (WGA) and best-group accuracy (BGA), thereby
providing a more comprehensive enhancement in performance
relative to these reweighting strategies.
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Table 3: Results of ISIC Dataset.

WGA ↑ BGA ↑ Δ Acc ↓ ROC AUC ↑
ERM 27.97 ± 2.15 97.89 ± 1.54 69.92 59.18 ± 4.06
HSIC 28.17 ± 2.78 96.36 ± 0.05 68.19 58.44 ± 5.09
SUBG 44.71 ± 6.36 97.58 ± 0.86 52.87 66.42 ± 4.13
MMSGD 29.10 ± 2.62 95.76 ± 0.86 66.66 59.30 ± 3.17
MMF 26.72 ± 2.70 98.79 ± 0.86 72.07 61.46 ± 4.37
GDRO 35.23 ± 4.98 92.73 ± 2.97 57.50 62.00 ± 2.03
Ours 61.23 ± 11.32 94.58 ± 2.54 33.35 83.77 ± 7.82

Although Han et al. [16] demonstrate that HSIC achieves an op-
timal balance between utility and fairness in their benchmark tests,
we observe that it falls short in enhancing the performance of the
worst-performing group. It is important to note that the benchmark-
ing [16] focuses on parity-based notions of fairness (e.g. Equalized
odds). This approach does not necessarily lead to practical improve-
ments in Min-max fairness. MMSGD, which explicitly targets the
Min-max fairness objective, yields enhancements in worst-group
accuracy. Nonetheless, its level of improvement is relatively modest
when compared to other methods.

On the ISIC dataset, our method achieves a substantial improve-
ment in performance margin compared to other methods. The ISIC
dataset presents two significant challenges: the existence of excep-
tionally small-sized groups and class imbalance within the train-
ing set. These issues often result in the suboptimal performance
of most existing methods, particularly in terms of enhancing the
worst-performing groups. While reweighting methods like SUBG
and GDRO show some improvement, their impact is limited, high-
lighting their substantial limitations in effectively addressing rare
instances in the training set. In contrast, our approach emphasizes
the direct optimization of representations, leading to a significant
enhancement in performance across a range of data skewness sce-
narios.

Table 4: Results of MultiNLI Dataset.

WGA↑ BGA ↑ Δ Acc ↓ ACC ↑
ERM 64.40 ± 2.35 95.13 ± 0.36 30.73 81.14 ± 0.49
HSIC 64.40 ± 4.03 95.47 ± 0.68 31.07 81.34 ± 0.59
SUBG 67.78 ± 0.49 79.76 ± 2.78 11.98 71.37 ± 0.60
MMSGD 68.80 ± 1.68 92.32 ± 1.49 23.52 80.82 ± 0.32
MMF 70.94 ± 0.23 86.24 ± 4.43 15.30 77.08 ± 1.14
GDRO 76.02 ± 2.16 86.40 ± 2.86 10.38 80.53 ± 0.10
Ours 77.90 ± 0.58 85.08 ± 0.99 7.18 80.96 ± 0.23

For the NLP task, our method achieves the optimal worst group
accuracy and exhibits a balanced group performance as indicated
by the Δ𝐴𝑐𝑐 metric, outperforming other comparative methods.
Our method preserves competitive average accuracy, with a slight
decrease of only 0.38 % compared to the highest observed perfor-
mance. While SUBG improves the worst group accuracy, it sig-
nificantly reduces the best group accuracy compared to the ERM
model, highlighting that simple down-sampling of the training set
is a sub-optimal solution.

However, it is important to note a reduction in the best group
accuracy within our method. This can potentially be attributed
to the alignment of the mean vector. While this alignment offers
certain advantages, it may inadvertently impact the performance
of the highest-performing group, suggesting a trade-off between
overall alignment benefits and the best group performance.

Table 5: Results of Adult Dataset.

WGA ↑ BGA ↑ Δ Acc ↓ ACC ↑
ERM 57.93 ± 1.18 95.98 ± 0.35 38.05 84.34 ± 0.12
HSIC 61.10 ± 0.51 95.19 ± 0.46 34.09 84.11 ± 0.24
SUBG 77.67 ± 0.26 86.98 ± 0.15 9.31 80.62 ± 0.03
MMSGD 67.26 ± 0.39 92.79 ± 0.69 25.53 83.74 ± 0.22
MMF 77.22 ± 0.66 86.56 ± 0.40 9.34 80.48 ± 0.11
GDRO 77.73 ± 0.06 87.79 ± 0.04 10.06 81.16 ± 0.02
Ours 78.00 ± 0.30 87.57 ± 0.38 9.57 81.00 ± 0.14

For the tabular dataset, our analysis reveals that while methods
such as GDRO, MMF, and SUBG produce comparable results, our
method achieves the optimal worst group accuracy. However, the
marginal improvement of less than 1% suggests that our method
does not significantly surpass the baseline methods in the tabular
setting. This limited enhancement could be partially attributed
to the inherent structure of tabular data, which already encodes
semantic information in its input features, potentially diminishing
the impact of advanced representation learning.

5.3 Visualization
We present visualization results from the test set of the Waterbirds
dataset. We employ Grad-CAM [39] to identify and highlight the
regions of interest that our model prioritizes. We provide visual
comparisons between the standard ERM training approach and our
proposed training strategy. For the implementation of Grad-CAM,
we utilize the OmniX AI package [49]. The comparative results are
illustrated in Fig 7. To provide a more comprehensive evaluation,
we include visualization results for the ISIC dataset, which can be
found in Appendix C.

Fig 7 illustrates that our approach more accurately focuses on the
target object in an image, unlike ERM training, which erroneously
emphasizes background features.

5.4 Ablation Study
We investigate the efficacy of two key components within our
methodology: the Frozen Classifier and Group Mean Alignment.
As the primary objective of optimization, we establish a baseline
that utilizes solely the group cross-entropy loss. Subsequently, we
conduct a series of ablation studies by removing one or both com-
ponents to assess their contributions to performance. On removing
the frozen classifier, we replace it with a trainable classifier. The
results are shown in Tab 6.

From Table 6, we draw the following conclusions: utilizing a
frozen classifier contributes to improving the accuracy of the worst-
performing group. This is evidenced by a notable decrease in worst
group accuracy of 2.03 % when a trainable classifier is employed
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Figure 7: Grad-CAM visualization for exemplary test images.

Table 6: Ablation study to investigate the effects of the major
components in our methods. ‘FC’ denotes Frozen Classifiers,
‘GMA’ denotes group mean alignment.

WGA↑ BGA↑ Δ Acc ↓ ACC ↑
w/o FC 88.16 97.73 9.57 93.56
w/o GMA 89.56 94.41 4.85 91.94
w/o FC,GMA 87.53 97.52 9.99 93.68
Full version 90.19 94.28 4.09 91.85

in the full model. Additionally, the incorporation of Group mean
alignment loss further increases the performance of the worst-
performing group, underscoring the effectiveness of our proposed
method in enhancing the worst group performance.

5.5 Optimization and Representations
Performing on GCE. In section 4.2, we delineate the challenges

associated with optimizing for minority groups. To address these
difficulties, we introduce the GCE loss, which simplifies the opti-
mization process concerning minority groups. This section presents
an experimental analysis to illustrate the trend of group loss across
training epochs. We monitor the group-wise loss (introduced in
section 4.2) during the training using the GCE loss.

As illustrated in Fig 8, the application of GCE loss leads to more
effective and rapid optimization of minority groups compared to
traditional cross entropy loss. Furthermore, the relatively balanced
loss across each group suggests that GCE loss optimizes all groups
uniformly, avoiding an overemphasis on a single group.

Performing on representations. Following Section 3.2, we evaluate
our method’s quality of representations by comparing the cosine
similarity within majority and minority groups after attaining of
100 % training accuracy. Fig 9 presents results using our training
method alongside comparative data from ERM training, as sourced

Figure 8: Group-wise loss in the training stage by using ours
method.

from Fig 1. It indicates that our method significantly enhances
separability in majority groups compared to ERM. We still observe
that there is a gap between the curves from the majority group
and the minority group. However, the separability of the minority
group is close to that of the majority under ERM training. This
highlights the effectiveness of our approach in enhancing minority
group differentiation.

Figure 9: Comparison of representations Learned from Our
method versus ERM.

6 CONCLUSION
Min-max fairness is a critical yet challenging aspect of fairness in
machine learning, with existing methods achieving only incremen-
tal improvements. In this study, we leverage the concept of neural
collapse to analyze the behavior of representations and classifiers
learned via ERM models. Our analysis reveals that the suboptimal
performance for minority groups can be attributed to low sep-
arability in their representations. Furthermore, we observe that
traditional min-max fairness approaches often yield high similarity
across groups, compromising their effectiveness. To address these
issues, we leverage the neural collapse property, aligning classifiers
with the majority group within each class to facilitate the learn-
ing of debiased representations. Additionally, we introduce two
simple and efficient loss functions designed to guide the learning
process more effectively. We conduct an extensive experiment on
five datasets spanning from the Vision, NLP, and tabular data. Our
methods effectively improve the worst group accuracy among all
datasets and achieve a comparable average accuracy.
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A DATASETS USED IN SECTION 3.2
The UTKFace dataset [54] is a comprehensive facial dataset an-
notated with age (0 to 116 years), gender (male and female), and
ethnicity (White, Black, Asian, Indian, and Others). For our analysis,
we concentrate on gender classification (𝑦 = gender) and simplify
ethnicity (𝑎 = race) by consolidating it into binary categories: White
and non-White. We then categorize the data into four groups based
on these attributes: White males (𝑔0,0), White females (𝑔0,1), non-
White males (𝑔1,0), and non-White females (𝑔1,1), with respective
sizes of 3801, 651, 482, and 4723. The majority groups are 𝑔0,0 and
𝑔1,1, the minority groups are 𝑔0,1 and 𝑔1,0.

In the CelebA dataset, the objective is to predict attractiveness
with gender as the sensitive attribute, paralleling the task outlined in
section 5.1. The dataset is segmented into four groups based on these
criteria: non-attractive females (𝑔0,0), non-attractive males (𝑔0,1),
attractive females (𝑔1,0), and attractive males (𝑔1,1), comprising
29916, 49242, 64581, and 19013 instances, respectively. The majority
groups are 𝑔0,1 and 𝑔1,0, the minority groups are 𝑔0,0 and 𝑔1,1.

B COMPUTATIONAL COST
For a comprehensive evaluation of our methods, we assess perfor-
mance and training time for the Waterbirds dataset. Experiments
are performed on a single NVIDIA RTX 3090 GPU, with precautions
taken to ensure no external processes interfere with GPU perfor-
mance. As shown in Table 7, our method increases training time
by 4.8 % but enhances Min-max fairness by a significant margin.

Table 7: Training time in the Waterbirds dataset.

Training time (s)

ERM 2481.8
Ours 2601.8

C ADDITIONAL VISUALIZATION RESULTS
Additional GradCam visualization results are presented in Fig 10.
Our method exhibits a targeted effectiveness on the objective, a
distinct advantage not achieved by ERM training. This capability is
particularly critical in biomedical and healthcare contexts, where
nuanced distinctions can have significant implications.

Figure 10: Grad-CAM visualization for exemplary test images
in ISIC dataset.

D EVALUATION USING PARITY NOTION
FAIRNESS METRICS.

For a comprehensive evaluation, we conducted experiments utiliz-
ing a variety of fairness metrics to assess the performance of each
method. For the ISIC dataset, due to the lack of sufficient samples of
malignant diagnostics with color patches, we are unable to compute
the parity notion fairness criterion on this dataset.

In our experiments, we incorporate several fundamental fairness
notions: Demographic Parity (DP) [13], Equal Opportunity (EOp)
[17], and Equalized Odds (EOd) [17]. The results are presented in
Tables 8, 9, 10, and 11. Observations indicate that although our
method is primarily designed to optimize for min-max fairness, it
also demonstrates enhanced performance under the parity notion
fairness criterion.

Table 8: Fairness evaluation in the Waterbirds dataset.

DP↓ EOp↓ EOd ↓ ACC ↑
ERM 15.87 ± 0.79 15.06 ± 0.26 15.58 ± 0.51 91.84 ± 0.49
HSIC 15.98 ± 2.33 15.94 ± 0.96 15.97 ± 1.83 90.76 ± 1.31
SUBG 1.06 ± 0.24 0.16 ± 0.01 0.77 ± 0.14 91.15 ± 0.72
MMSGD 2.61 ± 1.25 1.56 ± 1.40 2.05 ± 1.28 90.16 ± 0.36
MMF 4.03 ± 1.94 3.01 ± 1.85 3.71 ± 1.82 90.25 ± 0.80
GDRO 5.28 ± 0.58 2.86 ± 1.09 4.41 ± 0.75 91.13 ± 0.24
Ours 3.60 ± 0.27 0.62 ± 0.01 2.54 ± 0.16 92.04 ± 0.20
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Table 9: Fairness evaluation in the CelebA dataset.

DP↓ EOp↓ EOd ↓ ACC ↑
ERM 38.53 ± 4.02 15.10 ± 2.97 15.06 ± 3.71 81.94 ± 0.94
HSIC 32.92 ± 4.26 12.44 ± 2.82 10.77 ± 3.50 79.93 ± 1.39
SUBG 26.22 ± 2.77 2.97 ± 2.58 3.38 ± 2.16 79.63 ± 0.32
MMSGD 30.69 ± 0.88 4.51 ± 1.43 6.72 ± 0.94 80.45 ± 0.23
MMF 24.03 ± 1.57 2.47 ± 1.93 2.62 ± 0.53 79.58 ± 0.35
GDRO 21.83 ± 2.11 2.79 ± 1.83 2.17 ± 1.62 79.17 ± 1.11
Ours 24.16 ± 0.41 1.68 ± 1.09 1.14 ± 0.41 80.19 ± 0.36

Table 10: Fairness evaluation in the MultiNLI Dataset.

DP↓ EOp↓ EOd ↓ ACC ↑
ERM 47.66 ± 0.43 15.43 ± 0.77 12.93 ± 0.76 81.14 ± 0.49
HSIC 47.97 ± 0.43 16.04 ± 1.70 13.11 ± 0.75 81.34 ± 0.59
SUBG 32.87 ± 3.28 10.19 ± 3.20 6.43 ± 0.83 71.37 ± 0.60
MMSGD 46.82 ± 1.11 14.41 ± 1.24 12.45 ± 1.12 80.82 ± 0.32
MMF 40.52 ± 4.07 11.91 ± 3.23 8.37 ± 2.97 77.08 ± 1.14
GDRO 39.36 ± 1.74 6.62 ± 1.46 5.56 ± 0.97 80.53 ± 0.10
Ours 38.37 ± 0.54 6.29 ± 0.40 4.95 ± 0.74 80.96 ± 0.23

Table 11: Fairness evaluation in the Adults dataset.

DP↓ EOp↓ EOd ↓ ACC ↑
ERM 19.71 ± 0.69 9.23 ± 0.77 9.15 ± 0.63 84.34 ± 0.12
HSIC 19.62 ± 0.18 7.34 ± 0.22 8.22 ± 0.15 84.11 ± 0.24
SUBG 18.54 ± 0.20 3.52 ± 0.42 6.28 ± 0.12 80.62 ± 0.03
MMSGD 16.05 ± 0.85 1.73 ± 0.92 3.98 ± 0.22 83.74 ± 0.22
MMF 19.19 ± 0.74 1.55 ± 0.80 5.44 ± 0.21 80.48 ± 0.11
GDRO 20.50 ± 0.11 1.89 ± 0.14 5.97 ± 0.11 81.16 ± 0.02
Ours 19.44 ± 0.10 1.57 ± 0.48 5.57 ± 0.22 81.00 ± 0.14

E ETHICAL STATEMENT
In our use of the CelebA dataset, the "attractiveness" label serves
only as a benchmark for assessing and contrasting the efficacy
of existing methods. According to [16], employing this task for
evaluating algorithmic fairness is deemed appropriate. We want to
emphasize that our objective is not to assess or define individual
attractiveness through this dataset. Instead, our goal is to advance
the development of machine learning algorithms that are imposed
with an awareness of fairness.
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