
Integrating Post-Quantum TLS into the Control Plane

of 5G Networks

Yacoub Hanna∗, Diana Pineda∗, Maryna Veksler∗, Manish Paudel∗, Kemal Akkaya∗,

Mila Anastasova†, and Reza Azarderakhsh†

∗Advanced Wireless and Security Lab, Florida International University, Miami, FL USA 33174

Email: {yhann002, dpine033, mveks001, mpaud002, kakkaya}@fiu.edu

†Dept. of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL USA 33431

Email: {manastasova2017, razarderakhsh}@fau.edu

Abstract—Significant performance improvements in bandwidth
and latency make 5G a suitable candidate for a wide range of
applications, particularly those requiring real-time communication,
such as Industrial Control Systems (ICS) and autonomous vehicles.
However, today’s security, including modern cryptographic systems,
is prone to different attacks caused by the high computational
power of quantum computing, emphasizing the requirements for
including quantum-resistant security measures. To accommodate
attacks targeted at 5G networks, there are efforts to move towards
TLS-based security, which is the widely accepted standard on
other networks. However, integrating post-quantum algorithms
must also be considered in such a transition. Thus, this paper is
the first to perform the integration of Post-quantum TLS (PQ-
TLS) protocols into 5G networks and offer a realistic performance
evaluation. Our approach focuses on bringing PQ-TLS within
the 5G control plane (CP) without needing a major overhaul,
thus ensuring communications’ interoperability even with legacy
components of 5G, which may not support TLS. Specifically, we
have transitioned the registration and authentication protocols
for the core network functions and the user equipment (UE) by
following a TLS tunneling approach using virtualization. We then
evaluate the performance and feasibility of PQ-TLS in enhancing
the security of 5G communications on an actual testbed. Our results
demonstrate that while PQ algorithms introduce some overhead,
they remain viable for 5G applications, particularly for protocols
that can run on the core network.

Index Terms—5G, AKA, TLS, Tunneling, Post Quantum Cryp-
tography, Edge computing, Interoperability, Performance.

I. INTRODUCTION

5G mobile technology provides anywhere, anytime connection

across billions of devices. The faster speeds, reduced latency, and

enhanced coverage of this technology introduced new classes

of applications, such as Enhanced Mobile Broadband (eMBB),

Ultra-Reliable and Low-Latency Communications (URLLC), and

massive machine-type communications (mMTC). With the vision

of 6G, there is now a push toward the integration of more

intelligence and automation capabilities. Nevertheless, while 5G

technology and network applications are rapidly expanding, new

security threats and attacks emerge, requiring a thorough analysis

of the existing security specifications.

The Authentication and Key Agreement (AKA) Protocol [1]

is one of the crucial security mechanisms in 5G that ensures

the initialization of a secure communication channel between

subscribers and carriers. Nonetheless, the current AKA standard

created and approved by 3GPP has shown to underspecify the

security requirements of the protocol, resulting in the vulnerable

5G connections [2]. Therefore, more advanced security features

are required to strengthen the security of 5G protocols. Moreover,

since 5G often serves as an enabler for real-world solutions

that support time-sensitive applications [3] across a variety of

domains such as the Industrial Internet of Things (IIoT), Cyber-

Physical Systems (CPS), and Metaverse [4], these protocols

should be both secure and efficient.

Consequently, the Transport Layer Security (TLS) protocol has

been touted as a more secure alternative to be used in 5G systems

since it provides a state-of-the-art security mechanism across a

wide range of networks. In particular, Since TLS allows easy

termination security directly in the network functions instead of

gateways, it becomes an ideal candidate for 5G deployment with

multi-tenancy. However, despite TLS being secured against the

majority of classic attacks, its asymmetric cryptography is vulner-

able to attacks from quantum computers [5]. For example, Shor’s

algorithm solves prime factorization and discrete logarithms in

polynomial time, posing a significant threat to most of the

widely used public key cryptosystems [6], with its implications

demonstrated on a smaller scale. To address these challenges,

various Post-Quantum Cryptography (PQC) algorithms are being

actively designed and are currently in the testing stages. One

such open-source PQC library is provided by the Open Quantum

Safe (OQS) project, which claims to provide the security levels

specified by the National Institute of Standards and Technology

(NIST) [7].

While there have been multiple attempts to incorporate TLS

protocol for 5G communications [8], [9], they are limited to the

implementations within the core network of 5G and lack any

PQ support. Thus, in this paper, we propose integrating PQ-

TLS into 5G using existing open-source implementations without

requiring a major overhaul of their implementations. This is

particularly critical since any changes to the protocols would

raise interoperability challenges among different components of

5G as well as among different telecom operators in case of

roaming needs. We target control plane (CP) communications as



there are many control protocols within 5G ecosystem that utilize

secure connection establishment among different components.

Note that in the data plane, once a symmetric key is created,

data can be encrypted using existing standards such as AES-256

to be PQ-compliant. Another goal of this work is to examine

PQ-TLS performance and feasibility for use in specific 5G ap-

plications. This is because 5G systems allow rapid and dynamic

deployment/disposal of a large number of network slices that

can serve different users’ needs, and thus, scalability becomes a

concern with more stringent security protocols.

Integrating PQ-TLS across 5G communications is not an

easy task due to the network complexity. Therefore, we opt

to utilize a tunneling-based TLS approach to secure end-to-

end Control Plane (CP) communications. Specifically, tunneling

should be implemented as a client-server architecture across four

primary components of 5G systems: User Equipment (UE), the

Next Generation Node B (gNB), Network Registration Function

(NRF), and specific core network functions such as Service

Communication Proxy (SCP) and Access and Mobility Manage-

ment Function (AMF). We identify three distinct pairs of server-

client pairs to create TLS tunnels in the CP as follows: NRF-

SCP, AMF-gNB, and gNB-UE. As a result, we create a chain

of the PQ-TLS tunnels across 5G connections to achieve fully

secure end-to-end communications in 5G. Our approach does

not require any direct modification of existing 5G components

or infrastructure. We rely on virtualized interfaces that can host

the TLS tunnel on the client and server.

We implemented the proposed approach into two testbed

setups using 5G network functions deployed at Florida Inter-

national University (FIU) and the Google Cloud environment.

We consider multiple PQ algorithms to assess their implications

on the performance of 5G connections between different network

components. We compared the performance of our proposed PQ-

TLS approach against traditional and TLS-based services and

discussed the potential trade-off between security and communi-

cations overhead. The results indicate that bringing TLS to 5G CP

comes with some overhead, but the right choice of PQ algorithms

can maintain the performance of existing TLS solutions based on

classical algorithms such as RSA or ECDSA.

The remainder of the paper is organized as follows. First, we

present state-of-the-art works on secure communications in 5G

networks in Section II. In Section III, we present the background

on TLS, 5G, and PQ algorithms We present our approach in

Section IV. In Section V, we evaluate the performance of our

method in various settings and discuss the results. Finally, we

present the conclusions in Section VI.

II. RELATED WORK

Open-source 5G deployment lacks an efficient implementation

and analysis of TLS protocol. Authors in [8] implemented a

TLS communication within the core network and evaluated the

impact of different cipher suites on the network performance.

Their results indicate that the communication delay increases

proportionally to the cipher size, while TLS 1.3 is indicated to

outperform TLS 1.2 in terms of overhead and the number of

messages required to establish a secure connection between NFs.

However, their implementation details and tools are missing.

Later, Linh et al. [9] analyzed the vulnerabilities and 3GPP

compliance of TLS implementations within three major open-

source 5G networks, namely free5GC, open5GS, and OAU 5G

CN. They determined that while both free5GC and open5GS

provide TLS support for core network communications, neither

of them is fully compliant with 3GPP requirements except for

the key exchange algorithm and recommended TLS version.

3GPP defines EAP-TLS as a standard security protocol for 5G

communications. Specifically, it is used for UE authentication in

limited use cases such as IoT environments or private networks.

Subsequently, the authors in [2] attempted to analyze and verify

the security of 5G EAP-TLS. They designed a ProVerif model

checker that revealed multiple weaknesses and design flaws,

which can break indented security. However, this work does not

provide a practical implementation and evaluation of EAP-TLS

for 5G communications.

Unlike the existing works for TLS in 5G, which focus either on

the core network or UE authentication, we integrate TLS across

all components of the 5G network within the CP. Furthermore,

we implement a tunneling TLS approach that does not require

direct modification of existing 5G components or infrastructure.

Thus, our framework can be applied across various existing

5G implementations. To the best of our knowledge, this is the

first work to successfully combine PQ and TLS technologies

to secure end-to-end 5G communications within a real testbed

environment.

III. BACKGROUND

In this section, we describe briefly the fundamental concepts

and technologies we use in our work.

A. Transport Layer Security (TLS) Handshake

The TLS handshake is a crucial component of the TLS

protocol. It establishes trust between two parties, a client and

a server, via a series of messages that define a shared key to

encrypt their communications. The complete process of the TLS

handshake is shown in Figure 1. Eventually, a TLS session offers

a symmetric key to be used for the confidentiality and integrity of

the data. Moreover, TLS relies on certificates for authentication

of the server and the client. As can be seen in Fig. 1, the server

responds with a Server Hello message, which is responsible for

transmitting a certificate to the client for the purpose of validating

its identity. These certificates are based on the existing standard

signature algorithms (e.g., RSA or ECDSA).

B. Extensible Authentication Protocol-Transport Layer Security

(EAP-TLS)

EAP-TLS is a mutual authentication method that an EAP

peer and server can use to authenticate each other. The Au-

thenticator(entity initiating EAP authentication) and the peer first

negotiate EAP by exchanging EAP-Request/Identity and EAP-

Response/Identity packets in EAP-TLS. Later on, the authen-

ticator will repeat all EAP packets to a backend EAP server,



Client

Server

C
lie

nt
 H

el
lo

Se
rv

er
 H

el
lo

C
ha

ng
eC

ip
he

rS
pe

c
Se

rv
er

 C
er

t
C

er
tif

ic
at

e 
Ve

rif
y

FI
ni

sh
es

C
ha

ng
eC

ip
he

rS
pe

c
Fi

ni
sh

ed

Ap
pl

ic
at

io
n 

D
at

a

TLS Handshake
Encrypted

Communications

Fig. 1: TLS Handshake Messages

whose response to the peer’s identity is to send an EAP-

TLS/Start packet to start up the EAP-TLS conversation [10]. For

implementation within 3GPP networks, the specific requirements

regarding supported TLS versions and cipher suites are detailed

in the 3GPP TS 33.310 [11] standard, which should be followed

to ensure compliance and security.

In 5G architecture, the EAP framework involves the UE as the

Client, the Session Management Function (SMF) as the Authen-

ticator, and a RADIUS Server or AAA Server as the Authen-

tication Server. The SMF initiates the authentication procedure,

sending start messages to the AAA server and establishing an

authentication channel with the UE. Then they authenticate each

other by one of the protocols like EAP-TLS or EAP-PEAP [12].

C. Post-Quantum Algorithms

The advancement of quantum computing uncovered the weak-

nesses of standard algorithms used for encryption. For example,

Shor’s algorithm is capable of breaking the commonly used

discrete logarithm and integer factorization problems. Thus, post-

quantum cryptography provides methods to design public-key

cryptosystems resistant to quantum computers [6]. In this paper,

we use the three signature scheme families, namely Dilithium,

Falcon, and SPHINCS (S+SHA), that US NIST has selected as

the first three post-quantum signature algorithms to be standard-

ized [13].

D. 5G Background

5G provides multiple advantages over traditional cellular com-

munications, including enhanced connectivity, reduced latency,

and improved coverage. This is achieved by completely transi-

tioning to a service-based architecture using virtualization and

software-defined networking (SDN). 5G network slicing technol-

ogy can create sub-networks tailored to specific requirements that

enable prioritization of the emergency connection and prevention

of network overloads.

As shown in Fig. 2, different from 4G/LTE, the architecture

of 5G Core (5GC) is divided into two separate planes: the

Control Plane (CP) and the User Plane (UP). This division is

commonly referred to as Control User Plane Separation (CUPS).

The primary purpose behind separating the CP and the UP is

to enable the centralization of CP Functions while concurrently

facilitating the placement of UP devices closer to end-users.

Consequently, this arrangement leads to reduced latency and

enhanced data transmission speed, thus resulting in an overall

improvement in user experience [14]. Moreover, within the 5GC,

there are various Network Functions (NFs), each designed with

specific roles and responsibilities. Some of these functions that

relate to our work are as follows:

SCP AUSF SMF

UPF

AMF UDMNRF

PCF

NSSF

5G Core Network
(5G CN)

N1

N2

N3

N4

Control Plane (CP)

User Plane (UP)

N65G 

gNB

Internet

User

Equipment
(UE)

Fig. 2: 5G Core Architecture

• Access and Mobility Management Function (AMF): The

primary operations of the AMF are registration, connection,

as well as mobility management of UE devices [15].

• User Plane Function (UPF): UPF is used to connect the

user, data coming from the gNB to the Data Network (DN),

which is referred to as an internet service provider.

• NF Repository Function (NRF): NRF has a significant

impact on the network by overseeing various network func-

tions and enabling the storage and transmission of their data

within the 5G core network [16].

• Authentication Server Function (AUSF): During the reg-

istration, the AMF communicates with the AUSF to verify

the identity of the UE.

• Service Communication Proxy (SCP): This function is re-

sponsible for managing and optimizing the communication

between network functions within the 5G Core [17].

IV. PROPOSED APPROACH

A. Problem and Motivation

The 5G core network oversees comprehensive network opera-

tions, including data routing and mobility management. However,

due to their advanced capabilities and increased connectivity, 5G

networks introduce security challenges. Thus, securing commu-

nication within this highly interconnected network is critical.

To this end, 3GPP standards recommended the deployment of

TLS within the 5G core and the other control operations related

to UEs. By incorporating TLS into the infrastructure, the 5G core

network can efficiently reduce the threats linked to unauthorized

entry and data leaks, thereby enhancing the network’s overall

security. The other benefit is that TLS can be configured to

support PQ algorithms, guaranteeing resilience against any attack

from future quantum computers.

Nevertheless, many open-source 5G implementations still lack

universal TLS support across all CP components, impacting

comprehensive testing of this infrastructure with respect to the

evaluation of TLS performance. This limitation also restricts

the adoption and evaluation of PQ algorithms, which is crucial

for future security. Indeed, even if these implementations start

offering TLS capabilities, there will still be a transition period

where there is a need to support legacy security protocols of 5G



and TLS simultaneously to eliminate any interoperability issues.

Therefore, there is an urgent need to bring comprehensive TLS

support to 5G CP and enable convenient performance testing

under various conditions, including PQ capabilities.

Note that 3GPP recommends using EAP-TLS as a security

protocol for 5G communications. However, EAP-TLS has some

security concerns that have been exposed recently: 1) For in-

stance, EAP-TLS integrity protection does not include EAP

header fields, Code, Identifier, Length, Type, and Flags, which

an attacker can modify [18]. Such a vulnerability could result

in denial-of-service (DoS) attacks by modifications in the Type

fields, enabling attackers to change the TLS-based EAP method,

potentially enabling them to complete sessions undetected. 2)

The RFC [10] does not specify whether clients using EAP should

verify a Message-Authenticator in an Access-Accept without

an EAP-Message. Clients that skip this check are vulnerable

to attacks from colliding packets without an EAP message or

Message-Authenticator. This will allow unauthorized access [19].

3) During the initiation of protocol interaction, an attacker can

intercept initial information from the UE to the Home Network

and Server Network without a Subscription Permanent Identifier

(SUPI) and establish a TLS handshake. This might enable the

intruder to act as a man-in-the-middle attack, modifying the

interactions between UE and Network [20].

Due to such issues in EAP-TLS, we opt for a solution that also

prevents such security concerns while enabling PQ integration,

as detailed next.

B. Integration of VPN TLS Tunnel

Our approach is based on an open-source TLS Tunnel inte-

gration into 5G without re-hauling the existing implementation

codes. For tunneling, we utilize a Virtual Private Network (VPN),

which is a networking feature that establishes a secure and

protected virtual communication pathway that overlays existing

physical data transmissions. Therefore, data packets flow through

encrypted tunnels that wrap payloads over unsecured public

networks [21].

In our approach, we establish TLS tunnels by modifying

the client and server through network virtualization to serve as

pathways linking two defined devices to encrypt data and verify

transfers to guarantee the integrity of the data. Note that when

using EAP-TLS, the data transmission may continue without

further encryption once authenticated. On the other hand, VPN

over TLS establishes a secure private tunnel that encrypts every

traffic between the client and server for the entire session and

not just for the authentication phase.

The tunnel creation consists of two main steps: the setup phase

(performed only once) and the TLS handshake. During the setup

phase, the server and client load their respective configurations

and set up necessary parameters such as network addresses,

port numbers, and certificates. Both the server and the client

create SSL contexts to encrypt their communication. The client

sends an authentication packet containing its credentials to the

server. The server verifies these credentials against its protected

and hashed database as part of the TLS initiation process.

After successful authentication the server sends a configuration

packet to the client, including the IP address, Netmask, and

Maximum Transmission Unit (MTU) for the client’s Tunnel

(TUN) interface. This IP address is assigned from a pool of

available addresses maintained by the server, ensuring that each

client receives a unique address for the duration of the session.

VPN

Data Data

NAT NAT

tun1

Client Server

tun0

TLS Tunnel TLS Tunnel

Fig. 3: VPN Over TLS (TLS tunneling).

As shown in Fig. 3, the TUN interface is a virtual network

device used by both the server and client to handle network

traffic, acting as a bridge between the client’s virtual network

and the server’s network. On the server side, Network Address

Translation (NAT) is used to forward traffic from the TUN inter-

face (tun0) to the outside (tun1) and vice versa. Meanwhile, the

client reads and writes data from its TUN interface. Specifically,

the TUN interface is set as the default gateway.

After establishing a connection between the client and server,

the second phase in the procedure is the execution of a TLS

handshake as described in Section III-A.

We would like to note that VPN Over TLS can be implemented

in UE devices, whether they are IoT or Mobile Devices, such as

iOS and Android, through dedicated applications. For iOS, the

Network Extension framework provides APIs to manage VPN

connections and configure the virtual network [22]. On Android,

the VpnService API allows the creation of VPN applications that

manage virtual network interfaces [23]. IoT devices may have

constrained resources, and implementing VPN over TLS involves

integrating or developing lightweight VPN clients that support

TUN interfaces. Many IoT devices run Linux-based systems,

making using tools like OpenVPN [24] or strongSwan [25] to

establish secure connections feasible.

C. TLS Integration into NF Registration

5G has the advantage over prior generations in supporting

a service-based architecture where all network functions can

register themselves and their supported services with the NRF

without introducing new protocols or interfaces. The registration

procedure involves any network function (NF) in the core sending

the necessary profile registration information to the NRF, which

then replies whether the NF has been registered successfully [26].

Since NFs send the required information during this process,

as shown in Fig. 4, there is a concern about unauthorized

parties intercepting these messages and impersonating NFs or



altering the transmitted data. Therefore, integrating TLS into the

communication between NFs within the 5G Core Network is

crucial. Note that when TLS communication is integrated, the

NF must establish a TLS connection before authenticating with

another CP function.

NRF SCP NFs

Secure Message Communication

TLS Tunnel 1

TCP

NFRegister

201 Created

NFDiscovery

200 OK

AccessToken

200 OK

TCP

TLS Tunnel 2

Fig. 4: NF Registration proto-

col and exchanged messages.

As shown in Fig. 4, to in-

tegrate TLS between NFs, we

utilize VPN over TLS. In this

setup, the NRF behaves as a

server waiting for the SCP to

establish a TLS tunnel. The

SCP acts as an intermediary,

facilitating secure communica-

tion between NFs by encrypt-

ing the data transmitted over

the TLS tunnel. Any NF that

uses the SCP to communicate

with the NRF or other NFs will

have its data encrypted, ensur-

ing that sensitive information

remains protected from poten-

tial security threats such as in-

terception, impersonation, and data manipulation. VPN tunnels

will help maintain a continuous connection during the commu-

nication session.

D. TLS Integration to UE Registration

During the UE registration phase in 5G networks, all the

NFs have already registered themselves with the NRF and are

prepared to handle UE CP messages. When a UE initiates a

connection to the 5G network, it begins the registration process

to gain access. The UE registration protocol in 5G involves initial

communication with the gNB, followed by interaction with AMF,

which then triggers the authentication procedure with the AUSF

and other NFs in the control plane [27].

SCP-NFs

TLS

Tunnel 1

TLS 

Tunnel 2

TLS

Tunnel 3

UE gNB AMF

TCP TCP TCP

Secure Message Communication

Register Request

UECM Reg

SDM Get

SDM Sub

Registration Accept

UE Authentication

Registration Complete

Fig. 5: UE registration and authentication protocol elements.

Integrating TLS into this registration process follows a similar

concept as discussed in the earlier subsection (IV-C), where

VPN over TLS is utilized. However, due to the involvement of

multiple components, maintaining a continuous TLS connection

for communication between all these entities becomes challeng-

ing. Therefore, our approach divides the communication into

three distinct tunnels, as illustrated in Fig. 5. In the VPN over

TLS setup, the communication pairs are defined as follows: the

gNB acts as the server, waiting for the UE’s TLS connection

initiation; the AMF serves as the server for interactions with the

gNB; and the SCP functions as the server for communications

with other NFs. Using this segmented approach, we ensure that

each communication segment is secured through TLS encryption

across the UE registration process in the 5G network. The

handoff process between these tunnels is facilitated by the 5G

component (e.g., UE, gNB, AMF) deploying them. Specifically,

each tunnel is identified by the IP address assigned during

the initial setup phase, which helps the hosting components

accurately direct traffic between the tunnels.

V. PERFORMANCE EVALUATION

This section summarizes the experiment setup, metrics, and

performance evaluation results.

A. Setting up the 5G Testbed Environment

The proposed approach has been deployed and tested in the

5G open-source testbed, based on the work in [28]. This experi-

mental setup includes various open-source projects that emulate

the CP, User Plane (UP), gNB, and UE components of the 5G

infrastructure. We utilize the open-source Open5GS project1 to

implement the 5G Network Core, while UERANSIM is used to

realize UE and gNB. To test the efficiency of our approach, we set

up two testbeds hosted by physical devices and cloud as indicated

in Figure 6. The motivation behind these two setups is to discern

the impact of computation and communication overhead. Cloud

Testbed is more realistic as, typically, the core network functions

will stay in remote locations, potentially on the private clouds of

the telecom operators. At the same time, UE and gNBs will be

much closer geographically.

g
N

B
 V

M

UE

U
E

 V
M

gNB

SCPNRF AMF PCF

AUSF UDMUDR

SMF

NSSF
10.0.0.1

TLS 
Tunnel 1

10.0.0.2

TLS 

Tunnel 2

10.0.1.1

C
P

U
P

10.0.1.2

TLS 

Tunnel 3

N
R

F
 V

M

C
P

/U
P

 V
M

UPF

1
0
.0

.2
.1

1
0
.0

.2
.2

Fig. 6: 5G Testbed with TLS capabilities.

In our Local Testbed, the NRF runs as a standalone function on

the Dell Precision Workstation Intel i7 10th generation processor.

We use three laptops running Ubuntu 20.04, 8GB RAM, and a

3.4GHZ Intel i5 8th generation processor to deploy CP func-

tions, gNB, and UE. The connection was established among the

1https://github.com/open5gs/open5gs



machines by setting up a Hotspot network in which one device

acts as an access point, creating a wireless network that other

devices may connect to and communicate locally over Wi-Fi. We

use the proposed approach to establish TLS tunneling between

four devices (which are shown as VMs in Fig. 6). For our Cloud

Testbed, we duplicated this setup on the Google Cloud Platform

(GCP) using four distinct virtual machines (VMs) in the East

and Central US regions.

We utilized the OQS-OpenSSL library [29] to implement

PQ-TLS on each machine within our testbed. We make the

complete code for our setup available under GitHub2. We used

Wireshark to capture and analyze the traffic generated by both

testbeds. Moreover, we examine various PQ algorithms in order

to evaluate their impact on the efficiency of 5G connections

across diverse network elements. The PQ signature algorithms

have been applied in our experiments to create a certificate that

the root CA verifies. These PQ certificates verify the identity of

the server. We assume that the PQ public key of the CA will be

available at the client of each machine.

B. Metrics and Benchmarks

We assess the performance of our approach using four over-

head metrics: latency, packet size, number of messages, and

energy consumption. The latency measures the time required

to establish a secure connection between the 5G network com-

ponents. The number of messages and packet size correspond

to the total number of messages exchanged during connection

establishment and the size of each packet, respectively. Energy

consumption is the total amount of electrical power the clients

use while performing tasks under the different cryptographic

algorithms.

We use these metrics to evaluate the efficiency of PQ-TLS

for 1) NRF initialization with the 5G core network and 2) UE

registration to the 5G core network.

In the experiments, we tested five different certificates:

ECDSA, RSA, Falcon512 (Fal512), Dilithium2 (Dil2), and

SPHINCS SHA (S+SHA). We selected two primary benchmark

approaches. First, we consider cases where TLS is not employed

or existing 4/5G security solutions are used. For instance, for UE

registration, we compare a traditional 4/5G AKA implementation

without TLS against our case when TLS tunneling is applied. In

the case of NRF function registration, we use an approach where

there is no TLS and security. These approaches are depicted as

noTLS in the figures. As another benchmarking, we compare the

PQ algorithms to the RSA/ECDSA implementation of TLS.

C. Performance Results

This section presents the performance evaluation of 5G net-

works utilizing TLS by measuring latency in various experiment

setups in local and cloud testbeds.

1) NRF Registration with the 5G Core Network:

2https://github.com/adwise-fiu/5G-PQ-TLS-Tunnel

a) NRF Registration at Local Testbed: We first conducted

experiments in our Local Testbed to measure the overhead of

TLS integration. We looked at two cases: 1) NRF-SCP, which

measures the TLS overhead when NRF authenticates SCP only;

2) NRF-CP, which measures the TLS overhead when all the

remaining CP functions are registered.

As shown in Table I, the results indicated that TLS brings

in certain overhead in packet sizes and latency. For instance,

registering the SCP function to the NRF without TLS takes 0.072

seconds, while using TLS with ECDSA increases the value to

0.143 seconds and RSA to 0.155 seconds. Also, message size

increases from 32 to 53 bytes when TLS with ECDSA and RSA

are used. These increases are due to the introduction of TLS

handshakes in the process. Note that NRF-CP takes longer as it

waits for all the NFs to register using TLS sequentially.

TABLE I: Average TLS Overhead for NRF Registration under

Different Traditional Signatures in the Local Testbed

noTLS ECDSA RSA

Delay (sec)
NRF-SCP 0.072 0.143 0.155
NRF-CP 0.124 0.378 0.39

Packet Size

(Byte)

NRF-SCP 6351 15581 15778
NRF-CP 16kB 50kB 52kB

No of msgs
NRF-SCP 32 53 53
NRF-CP 81 93.7 95.1

When we check the impact of PQ overhead, we see that the

additional overhead depends on the type of PQ certificate used,

as shown in Table II. For instance, when NRF registers the CP

functions, the increase in latency compared to existing RSA-

based TLS to PQ-based Falcon512 is 7.94%. For others, such as

Dilithium2 and S+SHA, there is a significant increase in delay.

Therefore, Falcon512 is a viable alternative to RSA, while others

should not be used if performance concerns exist for specific

applications. For the packet size and number of messages, the

increase compared to RSA is not significant except for S+SHA.

TABLE II: Average TLS Overhead for NRF Registration under

Different PQ Signatures in the Local Testbed

RSA Fal512 Dil2 S+SHA

Delay (sec)
NRF-SCP 0.155 0.186 0.341 0.838
NRF-CP 0.390 0.421 0.576 1.073

Packet Size

(Byte)

NRF-SCP 15778 16851 21801 59392
NRF-CP 52kB 53kB 56kB 82kB

No of msgs
NRF-SCP 53 56 60 84
NRF-CP 96.2 99 106.8 130.8

b) NRF Registration on the Cloud Testbed: In our cloud

testbed experiment, as shown in Fig.7, the NRF function and CP

are located in Ohio and South Carolina, respectively. Looking at

the Tables III and IV, the results reflect slightly higher values

compared to the Local Testbed due to additional propagation

delay in the cloud environment.

For example, when comparing Dilithium2 on local and

cloud testbeds for NRF registration to CP, we find mini-

mal variation; it is 0.421 seconds in the local and 0.48

seconds in the cloud testbed, resulting in an acceptable

overhead increase of only 14.27%. S+SHA benefits the

most from the cloud testbed as the latency goes down.



ames

CP

NRF

Fig. 7: NRF and

CP locations on

the Cloud Testbed.

These results suggest that Falcon512 is still

the best option in realistic deployments.

Other alternatives, such as Dilithium and

S+SHA, can also be considered as they

do not significantly increase the latency.

Indeed, given its implementation simplicity

due to being stateless, S+SHA can be at-

tractive for large-scale 5G systems. One in-

teresting observation is that both Dilithium

and S+SHA perform better in latency com-

pared to the Local Testbed. This indicates

that these algorithms are advantageous re-

garding message size and count. We will

discuss this in Section VI.

TABLE III: Average TLS Overhead for NRF Registration with

Different Traditional Signatures in the Cloud Testbed

noTLS ECDSA RSA

Delay (sec)
NRF-SCP 0.107 0.26 0.281
NRF-CP 0.110 0.431 0.452

Packet Size

(Byte)

NRF-SCP 6kB 14kB 15kB
NRF-CP 14kB 62kB 64kB

No of msgs
NRF-SCP 34 48 50
NRF-CP 64 78 80

TABLE IV: Average TLS Overhead for NRF Registration with

Different PQ Signatures in the Cloud Testbed

RSA Fal512 Dil2 S+SHA

Delay (sec)
NRF-SCP 0.281 0.291 0.312 0.385
NRF-CP 0.452 0.481 0.529 0.653

Packet Size

(Byte)

NRF-SCP 15kB 16.5kB 20kB 50kB
NRF-CP 64kB 64.4kB 68.48kB 97kB

No of msgs
NRF-SCP 50 54 58 82
NRF-CP 80 84 88 112

2) UE Registration with the 5G Core Network: Using the

same setups, we conducted experiments to measure the overhead

of bringing TLS to the UE registration protocol.
a) UE Registration in the Local Testbed: Table V and VI

shows the average overhead during registration of UE to AMF.

For the traditional signature algorithm, there is a delay overhead

of 8.24% with ECDSA and 11.65% for RSA when compared

with no TLS. On the other hand, Falcon512 and Dilithium2

have an overhead of 7.61% and 45.45% compared to RSA,

respectively.

Also, the UE-AMF message count shows a similar trend:

Falcon512 and Dilithium2 have 9.048% and 18.09% more mes-

sages compared to RSA, respectively. Consequently, based on

these results, Falcon512 is again a viable alternative for UE

registration.

We note that since UE registration suffers from a higher base-

line delay and happens more frequently than NRF registration,

this results in a more significant impact on the overall system

performance.
b) UE Registration in the Cloud Testbed: We have deployed

the cloud setup shown in Fig. 8 for UE registration where the

NRF-CP (i.e., core network) is located in Iowa, while both gNB

and UE are located in South Carolina.

TABLE V: Average TLS Overhead for UE Registration with

Different Traditional Signatures in the Local Testbed

noTLS ECDSA RSA

UE-AMF

Delay (sec) 0.365 0.3951 0.4075
Packet Size (Byte) 13kB 21kB 25kB

No of msgs 30 43 43.1

TABLE VI: Average TLS Overhead for UE Registration with

Different PQ Signatures in the Local Testbed

RSA Fal512 Dil2 S+SHA

UE-AMF

Delay (sec) 0.407 0.438 0.592 1.09
Packet Size (Byte) 25kB 29kB 32kB 67kB

No of msgs 43.1 47 50.9 75

gNB-UE

NRF-CP

Fig. 8: UE, gNB, and CP lo-

cations on the Cloud Testbed.

Table VII and VIII show the

UE registration overhead. There

is a noticeable increase when

using RSA, with 0.624 sec-

onds compared to 0.521 sec-

onds when using noTLS. More-

over, ECDSA and RSA require

37 messages, whereas noTLS re-

quires only 21. On the other

hand, Falcon512 and Dilithium2

show an increase in the latency

overhead of 2.88% and 4.65%, compared to RSA. Additionally,

the packet size of Falcon512 increases by 8.11%.

Although S+SHA contains 69 messages compared to Fal-

con512’s 41 in cloud environments, the delays remain com-

parable. This is because the cloud has optimized CPU usage

and faster transmission speeds, which better accommodate the

large signature size and computationally demanding certificates,

like Dilithium2 and S+SHA, over smaller and less demanding

certificates like RSA and Falcon512.

TABLE VII: Average TLS Overhead with Different Traditional

Signatures on the Cloud Testbed.

noTLS ECDSA RSA

UE-AMF

Delay (sec) 0.521 0.611 0.624
Packet Size (Byte) 2kB 4.4kB 4.44kB

No of msgs 21 37 37

TABLE VIII: Average TLS Overhead with Different PQ Signa-

tures on the Cloud Testbed.

RSA Fal512 Dil2 S+SHA

UE-AMF

Delay (sec) 0.624 0.642 0.653 0.686
Packet Size (Byte) 4.44kB 4.8kB 12.4kB 39kB

No of msgs 37 41 45 69

D. Comparing EAP-TLS and TLS Tunneling

We also wanted to evaluate how much, if any, overhead TLS

tunneling brings compared to regular EAP-TLS as we advocate

for it. To this end, we performed a different experiment. We

deployed a Raspberry PI 4 as the client UE and the server in

the cloud. We measured the energy consumption from the UE

perspective and latency for the whole TLS handshake.



Table IX shows the additional energy overhead compared to a

noTLS approach for both approaches under different signatures.

Note that the local setup also offered the same results, so we

did not include them separately. As can be seen, the energy

burden it brings to the client side, even on an RPi, is minimal.

Most importantly, the energy consumption for EAP-TLS and TLS

tunneling is the same.

TABLE IX: Energy Consumption Comparison of EAP-TLS and

TLS Tunnel (Watts) in the Cloud Testbed.

TLS TLS Tunneling

ECDSA 0.4084 0.4090

RSA 0.4378 0.4394

Fal512 0.4706 0.4738

Dil2 0.4789 0.4794

S+SHA 0.4864 0.4880

We then looked at the latency of the TLS handshake for both

cases, which are reported in Table X. In both setups, the latency

difference is negligible. These results suggest that utilizing TLS

tunneling does not bring any additional overhead with respect to

regular EAP-TLS.

TABLE X: Latency comparison of EAP-TLS with TLS Tunnel-

ing in Local and Cloud Testbeds

Latency in Local (sec) Latency in Cloud (sec)

EAP-TLS TLS Tunneling EAP-TLS TLS Tunneling

ECDSA 0.065 0.066 0.180 0.179

RSA 0.079 0.0793 0.200 0.201

Fal512 0.110 0.109 0.234 0.245

Dil2 0.2649 0.2649 0.266 0.281

S+SHA 0.762 0.762 0.328 0.351

E. Discussion

Analyzing the Local and Cloud Testbeds, we find a dis-

crepancy, with a significant increase in latency moving from

Falcon512 to S+SHA in the Local Testbed, while this increase

is not significant in the Cloud Testbed. For instance, analyzing

Table II and Table IV, there is a notable increase in latency when

moving from Falcon512 with 0.186 seconds to S+SHA with

0.838 seconds for registering NRF to CP in the Local Testbed. On

the other hand, the cloud environment shows a smaller difference

in latency between RSA at 0.481 seconds and S+SHA at 0.653

seconds.

This difference is due to the variance in cloud infrastructure

as well as in key and signature sizes between Falcon512 and

S+SHA. When comparing Falcon512 and S+SHA in terms of

their key and signature sizes, we observe the following: Fal-

con512 has a public key size of 897 bytes, a secret key size of

1281 bytes, and a signature size of 752 bytes, while S+SHA has

a significantly smaller public and secret key sizes at 32 and 64

bytes, but much larger signature size of 17088 bytes.

The overall latency consists of propagation delay, transmission

of packets, and computational delay of certificates. Locally,

transmission and computational delay are dominant factors, as

propagation delay is negligible. Although the cloud introduces

some propagation delay, it manages the overall latency effectively

with better CPU utilization and faster transmission speeds. We

find that the smaller certificates with low computational demands

perform efficiently in local environments, while the cloud en-

vironment performs significantly better when the signature size

and computational demands are larger. Therefore, certificates like

Dilithium2 and S+SHA perform better in cloud environments

than in local setups. Finally, using TLS tunneling instead of EAP-

TLS is more suitable as it adds comprehensive security without

any additional delay or energy overheads.

To conclude our findings, across all setups, Falcon512 stands

out as the most practical choice when compared to traditional

RSA certificates due to its modest overhead increase. In the Local

Testbed, we observed that Dilithium2 and S+SHA exhibited a

substantial spike in latency. At the same time, only Falcon512

maintained an acceptable level of latency, indicating it as the

only feasible option for implementation. However, when real-life

and closely configured Cloud Testbeds are used, the impact of

latency overhead becomes less relevant for Dilithium2 and even

for S+SHA compared to the Local Testbed, making Dilithium2 a

viable alternative. Additionally, S+SHA also remains an option

for cloud implementation since its algorithm is stateless and can

be easier to implement in complex systems.

VI. CONCLUSION

In this paper, we designed an end-to-end TLS integrated

into 5G communications. We applied a tunneling approach,

ensuring all network components can establish a reliable TLS

connection using a VPN. In addition, we integrated PQ algo-

rithms, Falcon512, Dilithium2, and S+SHA, with TLS to further

secure 5G communications against emerging threats of quantum

computing. We implemented the proposed approach on two test

beds consisting of real physical devices and cloud-based virtual

machines and conducted a series of experiments to assess its

feasibility. Our results indicate that while PQ-TLS approaches

introduce slight overhead for communications, some of them

match the performance of classical TLS approaches. For instance,

we identified PQ-TLS using Falcon512 as the most efficient

implementation, combining both security and minimized delays.

Finally, TLS tunneling also matched the performance of a regular

EAP-TLS implementation.

ACKNOWLEDGMENT

This research was funded by US NSF under the grant No.

2147196.

REFERENCES

[1] T. Liu, F. Wu, X. Li, and C. Chen, “A new authentication and key agreement
protocol for 5g wireless networks,” Telecommunication Systems, vol. 78,
pp. 317–329, 2021.

[2] J. Zhang, L. Yang, W. Cao, and Q. Wang, “Formal analysis of 5g eap-tls
authentication protocol using proverif,” IEEE access, vol. 8, pp. 23 674–
23 688, 2020.

[3] S. K. Rao and R. Prasad, “Impact of 5G technologies on industry 4.0,”
Wireless personal communications, vol. 100, pp. 145–159, 2018.

[4] Z. Huang, C. Xiong, H. Ni, D. Wang, Y. Tao, and T. Sun, “Standard
evolution of 5g-advanced and future mobile network for extended reality
and metaverse,” IEEE Internet of Things Magazine, vol. 6, no. 1, pp. 20–25,
2023.



[5] H. T. Larasati and H. Kim, “Quantum cryptanalysis landscape of shor’s
algorithm for elliptic curve discrete logarithm problem,” in Information
Security Applications: 22nd International Conference, WISA 2021, Jeju
Island, South Korea, August 11–13, 2021, Revised Selected Papers 22.
Springer, 2021, pp. 91–104.

[6] D. Stebila and M. Mosca, “Post-quantum key exchange for the internet and
the open quantum safe project,” in International Conference on Selected
Areas in Cryptography. Springer, 2016, pp. 14–37.

[7] National Institute of Standards & Technology, “Post-quantum
cryptography,” Jul. 22, 2022. [Online]. Available: https://csrc.nist.gov/
Projects/post-quantum-cryptography

[8] A. Hosseini Vasoukolaei, “Tls performance evaluation in the control plane
of a 5g core network slice,” Ph.D. dissertation, Carleton University, 2021.

[9] A. B. N. Linh, D. Rupprecht, E. Poll, and K. Kohls, “Analysing open-source
5g core networks for tls vulnerabilities and 3gpp compliance,” 2023.

[10] D. Simon, R. Hurst, and D. B. D. Aboba, “The EAP-TLS Authentication
Protocol,” RFC 5216, Mar. 2008. [Online]. Available: https://www.
rfc-editor.org/info/rfc5216

[11] Tech Invite. (2023) Ts 33.310 - 3gpp specification. Accessed: 2024-07-22.
[Online]. Available: https://www.tech-invite.com/3m33/tinv-3gpp-33-310.
html

[12] Q. Hao, L. Sun, S. Guo, R. Dou, H. Liu, and D. Qian, “5g secondary
authentication based on eap-tls protocol,” in 2021 International Conference
on Computer Technology and Media Convergence Design (CTMCD), 2021,
pp. 296–300.

[13] National Institute of Standards & Technology, “Nist announces
first four quantum-resistant cryptographic algorithms,” Jul. 5,
2022. [Online]. Available: https://www.nist.gov/news-events/news/2022/
07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms

[14] “Control and user plane separation of epc nodes (cups),” 2017. [Online].
Available: https://www.3gpp.org/news-events/3gpp-news/cups

[15] “5g access and mobility management func-
tion (amf),” 2023. [Online]. Available: https:
//techcommunity.microsoft.com/t5/azure-for-operators-blog/
what-is-the-5g-access-and-mobility-management-function-amf/ba-p/
3707685

[16] “5g system;network function repository services;stage 3(3gpp ts 29.510
version 15.3.0 release 15),” 2019. [Online]. Available: https://www.etsi.
org/deliver/etsi_ts/129500_129599/129510/

[17] M. Toy and A. Toy, “Overall network and service architecture,” Future
Networks, Services and Management: Underlay and Overlay, Edge,
Applications, Slicing, Cloud, Space, AI/ML, and Quantum Computing, pp.
93–155, 2021.

[18] D. Simon, R. Hurst, and D. B. D. Aboba, “Rfc 5216: The eap-
tls authentication protocol,” Mar 2008. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc5216#page-28

[19] Radius/udp considered harmful. [Online]. Available: https://www.
blastradius.fail/pdf/radius.pdf

[20] J. Zhang, Q. Wang, L. Yang, and T. Feng, “Formal verification of 5g-eap-tls
authentication protocol,” in 2019 IEEE Fourth International Conference on
Data Science in Cyberspace (DSC), 2019, pp. 503–509.

[21] H. Akter, S. Jahan, S. Saha, R. H. Faisal, and S. Islam, “Evaluating per-
formances of vpn tunneling protocols based on application service require-
ments,” in Proceedings of the Third International Conference on Trends in
Computational and Cognitive Engineering: TCCE 2021. Springer, 2022,
pp. 433–444.

[22] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou, and
M. Grace, “Hanguard: Sdn-driven protection of smart home wifi devices
from malicious mobile apps,” in Proceedings of the 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2017, pp. 122–
133.

[23] Y. Song and U. Hengartner, “Privacyguard: A vpn-based platform to detect
information leakage on android devices,” in Proceedings of the 5th Annual
ACM CCS Workshop on Security and Privacy in Smartphones and Mobile
Devices, 2015, pp. 15–26.

[24] A. Alshalan, S. Pisharody, and D. Huang, “A survey of mobile vpn
technologies,” IEEE Communications Surveys Tutorials, vol. 18, no. 2,
pp. 1177–1196, 2016.

[25] A. Mense, S. Steger, D. Jukic-Sunaric, A. Mészáros, and M. Sulek, “Open
source based privacy-proxy to restrain connectivity of mobile apps,” in
Proceedings of the 14th International Conference on Advances in Mobile
Computing and Multi Media, 2016, pp. 284–287.

[26] D. Chandramouli, R. Liebhart, and J. Pirskanen, 5G for the Connected
World. John Wiley & Sons, 2019.

[27] 3rd Generation Partnership Project (3GPP), “Technical Specification Group
Services and System Aspects and Procedures for the 5G System (5GS);
Stage 2; (R16),” 3GPP, Tech. Rep. TS 23.502, September 2020.

[28] D. Pineda, R. Harrilal-Parchment, K. Akkaya, A. Ibrahim, and A. Perez-
Pons, “Design and analysis of an open-source sdn-based 5g stan-
dalone testbed,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2023, pp.
1–6.

[29] “Oqs-openssl,” Feb 2022. [Online]. Available: https:
//github.com/open-quantum-safe/openssl/blob/OQS-OpenSSL_1_1_
1-stable/README.md


	Introduction
	Related Work
	Background
	Transport Layer Security (TLS) Handshake
	Extensible Authentication Protocol-Transport Layer Security (EAP-TLS)
	Post-Quantum Algorithms
	5G Background

	Proposed Approach
	Problem and Motivation
	Integration of VPN TLS Tunnel
	TLS Integration into NF Registration
	TLS Integration to UE Registration

	Performance Evaluation
	Setting up the 5G Testbed Environment
	Metrics and Benchmarks
	Performance Results
	NRF Registration with the 5G Core Network
	UE Registration with the 5G Core Network

	Comparing EAP-TLS and TLS Tunneling
	Discussion

	Conclusion
	References

