Integrating Post-Quantum TLS into the Control Plane
of 5G Networks

Yacoub Hanna*, Diana Pineda*, Maryna Veksler*, Manish Paudel*, Kemal Akkaya*,
Mila Anastasoval, and Reza Azarderakhshf

*Advanced Wireless and Security Lab, Florida International University, Miami, FL. USA 33174
Email: {yhann002, dpine033, mveks001, mpaud002, kakkaya} @fiu.edu

TDept. of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL. USA 33431
Email: {manastasova2017, razarderakhsh} @fau.edu

Abstract—Significant performance improvements in bandwidth
and latency make 5G a suitable candidate for a wide range of
applications, particularly those requiring real-time communication,
such as Industrial Control Systems (ICS) and autonomous vehicles.
However, today’s security, including modern cryptographic systems,
is prone to different attacks caused by the high computational
power of quantum computing, emphasizing the requirements for
including quantum-resistant security measures. To accommodate
attacks targeted at SG networks, there are efforts to move towards
TLS-based security, which is the widely accepted standard on
other networks. However, integrating post-quantum algorithms
must also be considered in such a transition. Thus, this paper is
the first to perform the integration of Post-quantum TLS (PQ-
TLS) protocols into 5G networks and offer a realistic performance
evaluation. OQur approach focuses on bringing PQ-TLS within
the 5G control plane (CP) without needing a major overhaul,
thus ensuring communications’ interoperability even with legacy
components of 5G, which may not support TLS. Specifically, we
have transitioned the registration and authentication protocols
for the core network functions and the user equipment (UE) by
following a TLS tunneling approach using virtualization. We then
evaluate the performance and feasibility of PQ-TLS in enhancing
the security of 5G communications on an actual testbed. Our results
demonstrate that while PQ algorithms introduce some overhead,
they remain viable for 5G applications, particularly for protocols
that can run on the core network.

Index Terms—5G, AKA, TLS, Tunneling, Post Quantum Cryp-
tography, Edge computing, Interoperability, Performance.

I. INTRODUCTION

5G mobile technology provides anywhere, anytime connection
across billions of devices. The faster speeds, reduced latency, and
enhanced coverage of this technology introduced new classes
of applications, such as Enhanced Mobile Broadband (eMBB),
Ultra-Reliable and Low-Latency Communications (URLLC), and
massive machine-type communications (mMTC). With the vision
of 6G, there is now a push toward the integration of more
intelligence and automation capabilities. Nevertheless, while 5G
technology and network applications are rapidly expanding, new
security threats and attacks emerge, requiring a thorough analysis
of the existing security specifications.

The Authentication and Key Agreement (AKA) Protocol [1]
is one of the crucial security mechanisms in 5G that ensures
the initialization of a secure communication channel between

subscribers and carriers. Nonetheless, the current AKA standard
created and approved by 3GPP has shown to underspecify the
security requirements of the protocol, resulting in the vulnerable
5G connections [2]. Therefore, more advanced security features
are required to strengthen the security of 5G protocols. Moreover,
since 5G often serves as an enabler for real-world solutions
that support time-sensitive applications [3] across a variety of
domains such as the Industrial Internet of Things (IloT), Cyber-
Physical Systems (CPS), and Metaverse [4], these protocols
should be both secure and efficient.

Consequently, the Transport Layer Security (TLS) protocol has
been touted as a more secure alternative to be used in 5G systems
since it provides a state-of-the-art security mechanism across a
wide range of networks. In particular, Since TLS allows easy
termination security directly in the network functions instead of
gateways, it becomes an ideal candidate for 5G deployment with
multi-tenancy. However, despite TLS being secured against the
majority of classic attacks, its asymmetric cryptography is vulner-
able to attacks from quantum computers [5]. For example, Shor’s
algorithm solves prime factorization and discrete logarithms in
polynomial time, posing a significant threat to most of the
widely used public key cryptosystems [6], with its implications
demonstrated on a smaller scale. To address these challenges,
various Post-Quantum Cryptography (PQC) algorithms are being
actively designed and are currently in the testing stages. One
such open-source PQC library is provided by the Open Quantum
Safe (OQS) project, which claims to provide the security levels
specified by the National Institute of Standards and Technology
(NIST) [7].

While there have been multiple attempts to incorporate TLS
protocol for 5G communications [8], [9], they are limited to the
implementations within the core network of 5G and lack any
PQ support. Thus, in this paper, we propose integrating PQ-
TLS into 5G using existing open-source implementations without
requiring a major overhaul of their implementations. This is
particularly critical since any changes to the protocols would
raise interoperability challenges among different components of
5G as well as among different telecom operators in case of
roaming needs. We target control plane (CP) communications as

there are many control protocols within 5G ecosystem that utilize
secure connection establishment among different components.
Note that in the data plane, once a symmetric key is created,
data can be encrypted using existing standards such as AES-256
to be PQ-compliant. Another goal of this work is to examine
PQ-TLS performance and feasibility for use in specific 5G ap-
plications. This is because 5G systems allow rapid and dynamic
deployment/disposal of a large number of network slices that
can serve different users’ needs, and thus, scalability becomes a
concern with more stringent security protocols.

Integrating PQ-TLS across 5G communications is not an
easy task due to the network complexity. Therefore, we opt
to utilize a tunneling-based TLS approach to secure end-to-
end Control Plane (CP) communications. Specifically, tunneling
should be implemented as a client-server architecture across four
primary components of 5G systems: User Equipment (UE), the
Next Generation Node B (gNB), Network Registration Function
(NRF), and specific core network functions such as Service
Communication Proxy (SCP) and Access and Mobility Manage-
ment Function (AMF). We identify three distinct pairs of server-
client pairs to create TLS tunnels in the CP as follows: NRF-
SCP, AMF-gNB, and gNB-UE. As a result, we create a chain
of the PQ-TLS tunnels across 5G connections to achieve fully
secure end-to-end communications in 5G. Our approach does
not require any direct modification of existing 5G components
or infrastructure. We rely on virtualized interfaces that can host
the TLS tunnel on the client and server.

We implemented the proposed approach into two testbed
setups using 5G network functions deployed at Florida Inter-
national University (FIU) and the Google Cloud environment.
We consider multiple PQ algorithms to assess their implications
on the performance of 5G connections between different network
components. We compared the performance of our proposed PQ-
TLS approach against traditional and TLS-based services and
discussed the potential trade-off between security and communi-
cations overhead. The results indicate that bringing TLS to 5G CP
comes with some overhead, but the right choice of PQ algorithms
can maintain the performance of existing TLS solutions based on
classical algorithms such as RSA or ECDSA.

The remainder of the paper is organized as follows. First, we
present state-of-the-art works on secure communications in 5G
networks in Section II. In Section III, we present the background
on TLS, 5G, and PQ algorithms We present our approach in
Section IV. In Section V, we evaluate the performance of our
method in various settings and discuss the results. Finally, we
present the conclusions in Section VI.

II. RELATED WORK

Open-source 5G deployment lacks an efficient implementation
and analysis of TLS protocol. Authors in [8] implemented a
TLS communication within the core network and evaluated the
impact of different cipher suites on the network performance.
Their results indicate that the communication delay increases
proportionally to the cipher size, while TLS 1.3 is indicated to
outperform TLS 1.2 in terms of overhead and the number of

messages required to establish a secure connection between NFs.
However, their implementation details and tools are missing.
Later, Linh et al. [9] analyzed the vulnerabilities and 3GPP
compliance of TLS implementations within three major open-
source 5G networks, namely freeSGC, open5GS, and OAU 5G
CN. They determined that while both freeSGC and open5GS
provide TLS support for core network communications, neither
of them is fully compliant with 3GPP requirements except for
the key exchange algorithm and recommended TLS version.

3GPP defines EAP-TLS as a standard security protocol for 5G
communications. Specifically, it is used for UE authentication in
limited use cases such as IoT environments or private networks.
Subsequently, the authors in [2] attempted to analyze and verify
the security of 5G EAP-TLS. They designed a ProVerif model
checker that revealed multiple weaknesses and design flaws,
which can break indented security. However, this work does not
provide a practical implementation and evaluation of EAP-TLS
for 5G communications.

Unlike the existing works for TLS in 5G, which focus either on
the core network or UE authentication, we integrate TLS across
all components of the 5G network within the CP. Furthermore,
we implement a tunneling TLS approach that does not require
direct modification of existing 5G components or infrastructure.
Thus, our framework can be applied across various existing
5G implementations. To the best of our knowledge, this is the
first work to successfully combine PQ and TLS technologies
to secure end-to-end 5G communications within a real testbed
environment.

III. BACKGROUND

In this section, we describe briefly the fundamental concepts
and technologies we use in our work.

A. Transport Layer Security (TLS) Handshake

The TLS handshake is a crucial component of the TLS
protocol. It establishes trust between two parties, a client and
a server, via a series of messages that define a shared key to
encrypt their communications. The complete process of the TLS
handshake is shown in Figure 1. Eventually, a TLS session offers
a symmetric key to be used for the confidentiality and integrity of
the data. Moreover, TLS relies on certificates for authentication
of the server and the client. As can be seen in Fig. 1, the server
responds with a Server Hello message, which is responsible for
transmitting a certificate to the client for the purpose of validating
its identity. These certificates are based on the existing standard
signature algorithms (e.g., RSA or ECDSA).

B. Extensible Authentication Protocol-Transport Layer Security
(EAP-TLS)

EAP-TLS is a mutual authentication method that an EAP
peer and server can use to authenticate each other. The Au-
thenticator(entity initiating EAP authentication) and the peer first
negotiate EAP by exchanging EAP-Request/Identity and EAP-
Response/Identity packets in EAP-TLS. Later on, the authen-
ticator will repeat all EAP packets to a backend EAP server,

Encrypted
TLS Handshake Communications

r - N

3
o) | 8%
5 | 58%¢g
T £0, 2 c
B []
@ '60)89 =
c o2 eE 8
S o0 5L =
» cn g o
& o <
O

Fig. 1: TLS Handshake Messages

whose response to the peer’s identity is to send an EAP-
TLS/Start packet to start up the EAP-TLS conversation [10]. For
implementation within 3GPP networks, the specific requirements
regarding supported TLS versions and cipher suites are detailed
in the 3GPP TS 33.310 [11] standard, which should be followed
to ensure compliance and security.

In 5G architecture, the EAP framework involves the UE as the
Client, the Session Management Function (SMF) as the Authen-
ticator, and a RADIUS Server or AAA Server as the Authen-
tication Server. The SMF initiates the authentication procedure,
sending start messages to the AAA server and establishing an
authentication channel with the UE. Then they authenticate each
other by one of the protocols like EAP-TLS or EAP-PEAP [12].

C. Post-Quantum Algorithms

The advancement of quantum computing uncovered the weak-
nesses of standard algorithms used for encryption. For example,
Shor’s algorithm is capable of breaking the commonly used
discrete logarithm and integer factorization problems. Thus, post-
quantum cryptography provides methods to design public-key
cryptosystems resistant to quantum computers [6]. In this paper,
we use the three signature scheme families, namely Dilithium,
Falcon, and SPHINCS (S+SHA), that US NIST has selected as
the first three post-quantum signature algorithms to be standard-
ized [13].

D. 5G Background

5G provides multiple advantages over traditional cellular com-
munications, including enhanced connectivity, reduced latency,
and improved coverage. This is achieved by completely transi-
tioning to a service-based architecture using virtualization and
software-defined networking (SDN). 5G network slicing technol-
ogy can create sub-networks tailored to specific requirements that
enable prioritization of the emergency connection and prevention
of network overloads.

As shown in Fig. 2, different from 4G/LTE, the architecture
of 5G Core (5GC) is divided into two separate planes: the
Control Plane (CP) and the User Plane (UP). This division is
commonly referred to as Control User Plane Separation (CUPS).
The primary purpose behind separating the CP and the UP is
to enable the centralization of CP Functions while concurrently
facilitating the placement of UP devices closer to end-users.
Consequently, this arrangement leads to reduced latency and
enhanced data transmission speed, thus resulting in an overall

improvement in user experience [14]. Moreover, within the 5SGC,
there are various Network Functions (NFs), each designed with
specific roles and responsibilities. Some of these functions that
relate to our work are as follows:

AMF} [NRF } [UDM} {NSSF}

[T
I el EEEETES
J A

5G Core Network
(5G CN)

Internet

Equipment
(UE)

(O control Plane (CP)
(O User Plane (UP)

o Access and Mobility Management Function (AMF): The
primary operations of the AMF are registration, connection,
as well as mobility management of UE devices [15].

o User Plane Function (UPF): UPF is used to connect the
user, data coming from the gNB to the Data Network (DN),
which is referred to as an internet service provider.

o NF Repository Function (NRF): NRF has a significant
impact on the network by overseeing various network func-
tions and enabling the storage and transmission of their data
within the 5G core network [16].

o Authentication Server Function (AUSF): During the reg-
istration, the AMF communicates with the AUSF to verify
the identity of the UE.

o Service Communication Proxy (SCP): This function is re-
sponsible for managing and optimizing the communication
between network functions within the 5G Core [17].

gNB

Fig. 2: 5G Core Architecture

IV. PROPOSED APPROACH
A. Problem and Motivation

The 5G core network oversees comprehensive network opera-
tions, including data routing and mobility management. However,
due to their advanced capabilities and increased connectivity, 5G
networks introduce security challenges. Thus, securing commu-
nication within this highly interconnected network is critical.

To this end, 3GPP standards recommended the deployment of
TLS within the 5G core and the other control operations related
to UEs. By incorporating TLS into the infrastructure, the 5G core
network can efficiently reduce the threats linked to unauthorized
entry and data leaks, thereby enhancing the network’s overall
security. The other benefit is that TLS can be configured to
support PQ algorithms, guaranteeing resilience against any attack
from future quantum computers.

Nevertheless, many open-source 5G implementations still lack
universal TLS support across all CP components, impacting
comprehensive testing of this infrastructure with respect to the
evaluation of TLS performance. This limitation also restricts
the adoption and evaluation of PQ algorithms, which is crucial
for future security. Indeed, even if these implementations start
offering TLS capabilities, there will still be a transition period
where there is a need to support legacy security protocols of 5G

and TLS simultaneously to eliminate any interoperability issues.
Therefore, there is an urgent need to bring comprehensive TLS
support to 5G CP and enable convenient performance testing
under various conditions, including PQ capabilities.

Note that 3GPP recommends using EAP-TLS as a security
protocol for 5G communications. However, EAP-TLS has some
security concerns that have been exposed recently: 1) For in-
stance, EAP-TLS integrity protection does not include EAP
header fields, Code, Identifier, Length, Type, and Flags, which
an attacker can modify [18]. Such a vulnerability could result
in denial-of-service (DoS) attacks by modifications in the Type
fields, enabling attackers to change the TLS-based EAP method,
potentially enabling them to complete sessions undetected. 2)
The RFC [10] does not specify whether clients using EAP should
verify a Message-Authenticator in an Access-Accept without
an EAP-Message. Clients that skip this check are vulnerable
to attacks from colliding packets without an EAP message or
Message-Authenticator. This will allow unauthorized access [19].
3) During the initiation of protocol interaction, an attacker can
intercept initial information from the UE to the Home Network
and Server Network without a Subscription Permanent Identifier
(SUPI) and establish a TLS handshake. This might enable the
intruder to act as a man-in-the-middle attack, modifying the
interactions between UE and Network [20].

Due to such issues in EAP-TLS, we opt for a solution that also
prevents such security concerns while enabling PQ integration,
as detailed next.

B. Integration of VPN TLS Tunnel

Our approach is based on an open-source TLS Tunnel inte-
gration into 5G without re-hauling the existing implementation
codes. For tunneling, we utilize a Virtual Private Network (VPN),
which is a networking feature that establishes a secure and
protected virtual communication pathway that overlays existing
physical data transmissions. Therefore, data packets flow through
encrypted tunnels that wrap payloads over unsecured public
networks [21].

In our approach, we establish TLS tunnels by modifying
the client and server through network virtualization to serve as
pathways linking two defined devices to encrypt data and verify
transfers to guarantee the integrity of the data. Note that when
using EAP-TLS, the data transmission may continue without
further encryption once authenticated. On the other hand, VPN
over TLS establishes a secure private tunnel that encrypts every
traffic between the client and server for the entire session and
not just for the authentication phase.

The tunnel creation consists of two main steps: the setup phase
(performed only once) and the TLS handshake. During the setup
phase, the server and client load their respective configurations
and set up necessary parameters such as network addresses,
port numbers, and certificates. Both the server and the client
create SSL contexts to encrypt their communication. The client
sends an authentication packet containing its credentials to the
server. The server verifies these credentials against its protected
and hashed database as part of the TLS initiation process.

After successful authentication the server sends a configuration
packet to the client, including the IP address, Netmask, and
Maximum Transmission Unit (MTU) for the client’s Tunnel
(TUN) interface. This IP address is assigned from a pool of
available addresses maintained by the server, ensuring that each
client receives a unique address for the duration of the session.

o b
| |
| |
| Sl |
| TLS Tunnel TLS Tunnel |
| |
W VPN_____ | J
Data Data
tunl tun0
Client Server

Fig. 3: VPN Over TLS (TLS tunneling).

As shown in Fig. 3, the TUN interface is a virtual network
device used by both the server and client to handle network
traffic, acting as a bridge between the client’s virtual network
and the server’s network. On the server side, Network Address
Translation (NAT) is used to forward traffic from the TUN inter-
face (tun0) to the outside (tunl) and vice versa. Meanwhile, the
client reads and writes data from its TUN interface. Specifically,
the TUN interface is set as the default gateway.

After establishing a connection between the client and server,
the second phase in the procedure is the execution of a TLS
handshake as described in Section III-A.

We would like to note that VPN Over TLS can be implemented
in UE devices, whether they are IoT or Mobile Devices, such as
iOS and Android, through dedicated applications. For iOS, the
Network Extension framework provides APIs to manage VPN
connections and configure the virtual network [22]. On Android,
the VpnService API allows the creation of VPN applications that
manage virtual network interfaces [23]. IoT devices may have
constrained resources, and implementing VPN over TLS involves
integrating or developing lightweight VPN clients that support
TUN interfaces. Many IoT devices run Linux-based systems,
making using tools like OpenVPN [24] or strongSwan [25] to
establish secure connections feasible.

C. TLS Integration into NF Registration

5G has the advantage over prior generations in supporting
a service-based architecture where all network functions can
register themselves and their supported services with the NRF
without introducing new protocols or interfaces. The registration
procedure involves any network function (NF) in the core sending
the necessary profile registration information to the NRF, which
then replies whether the NF has been registered successfully [26].

Since NFs send the required information during this process,
as shown in Fig. 4, there is a concern about unauthorized
parties intercepting these messages and impersonating NFs or

altering the transmitted data. Therefore, integrating TLS into the
communication between NFs within the 5G Core Network is
crucial. Note that when TLS communication is integrated, the
NF must establish a TLS connection before authenticating with
another CP function.

As shown in Fig. 4, to in-
tegrate TLS between NFs, we
utilize VPN over TLS. In this
setup, the NRF behaves as a [NRF] [NFs]
server waiting for the SCP to [m—)
establish a TLS tunnel. The B
SCP acts as an intermediary, \TLS Tunnel 1 A TLS Tunnel 2)
facilitating secure communica-
tion between NFs by encrypt-
ing the data transmitted over
the TLS tunnel. Any NF that
uses the SCP to communicate
with the NRF or other NFs will
have its data encrypted, ensur-
ing that sensitive information
remains protected from poten-
tial security threats such as in-
terception, impersonation, and data manipulation. VPN tunnels
will help maintain a continuous connection during the commu-
nication session.

[:) Secure Message Communication]

[sce)|

TCP

NFRegister:

201 Created

NFDlsIcovery
200| OK:

AccessToken:

1
200 OK.

Fig. 4: NF Registration proto-
col and exchanged messages.

D. TLS Integration to UE Registration

During the UE registration phase in 5G networks, all the
NFs have already registered themselves with the NRF and are
prepared to handle UE CP messages. When a UE initiates a
connection to the 5G network, it begins the registration process
to gain access. The UE registration protocol in 5G involves initial
communication with the gNB, followed by interaction with AMF,
which then triggers the authentication procedure with the AUSF
and other NFs in the control plane [27].

(D securem
[ue] Lone | | ame] [scp-nrs

ge Communication]

(TCP TCP ;(TCP)
 TLs s Y TS

Tunnel 1 Tunnel 2 Tunnel 3
- e

Register Request:
IUE Authentication|

UECM Reg

SDM Get
SDM Sub:

Registration Accept:

Registration Complete:

Fig. 5: UE registration and authentication protocol elements.

Integrating TLS into this registration process follows a similar
concept as discussed in the earlier subsection (IV-C), where
VPN over TLS is utilized. However, due to the involvement of

multiple components, maintaining a continuous TLS connection
for communication between all these entities becomes challeng-
ing. Therefore, our approach divides the communication into
three distinct tunnels, as illustrated in Fig. 5. In the VPN over
TLS setup, the communication pairs are defined as follows: the
gNB acts as the server, waiting for the UE’s TLS connection
initiation; the AMF serves as the server for interactions with the
gNB; and the SCP functions as the server for communications
with other NFs. Using this segmented approach, we ensure that
each communication segment is secured through TLS encryption
across the UE registration process in the 5G network. The
handoff process between these tunnels is facilitated by the 5G
component (e.g., UE, gNB, AMF) deploying them. Specifically,
each tunnel is identified by the IP address assigned during
the initial setup phase, which helps the hosting components
accurately direct traffic between the tunnels.

V. PERFORMANCE EVALUATION

This section summarizes the experiment setup, metrics, and
performance evaluation results.

A. Setting up the 5G Testbed Environment

The proposed approach has been deployed and tested in the
5G open-source testbed, based on the work in [28]. This experi-
mental setup includes various open-source projects that emulate
the CP, User Plane (UP), gNB, and UE components of the 5G
infrastructure. We utilize the open-source Open5GS project! to
implement the 5G Network Core, while UERANSIM is used to
realize UE and gNB. To test the efficiency of our approach, we set
up two testbeds hosted by physical devices and cloud as indicated
in Figure 6. The motivation behind these two setups is to discern
the impact of computation and communication overhead. Cloud
Testbed is more realistic as, typically, the core network functions
will stay in remote locations, potentially on the private clouds of
the telecom operators. At the same time, UE and gNBs will be
much closer geographically.

s AUSF [UDR} UDM NSSF} alQ
x Tunnel 1 ‘ SCP AMF PCF SMF} g
= 10.0.0.2 10.0.1.1 é
TLS
Tunnel 2 i %

UE VM

=
o
S
N
o Tunnel 3

Fig. 6: 5G Testbed with TLS capabilities.

In our Local Testbed, the NRF runs as a standalone function on
the Dell Precision Workstation Intel i7 10" generation processor.
We use three laptops running Ubuntu 20.04, 8GB RAM, and a
3.4GHZ Intel i5 8" generation processor to deploy CP func-
tions, gNB, and UE. The connection was established among the

Uhttps://github.com/open5gs/openSgs

machines by setting up a Hotspot network in which one device
acts as an access point, creating a wireless network that other
devices may connect to and communicate locally over Wi-Fi. We
use the proposed approach to establish TLS tunneling between
four devices (which are shown as VMs in Fig. 6). For our Cloud
Testbed, we duplicated this setup on the Google Cloud Platform
(GCP) using four distinct virtual machines (VMs) in the East
and Central US regions.

We utilized the OQS-OpenSSL library [29] to implement
PQ-TLS on each machine within our testbed. We make the
complete code for our setup available under GitHub?. We used
Wireshark to capture and analyze the traffic generated by both
testbeds. Moreover, we examine various PQ algorithms in order
to evaluate their impact on the efficiency of 5G connections
across diverse network elements. The PQ signature algorithms
have been applied in our experiments to create a certificate that
the root CA verifies. These PQ certificates verify the identity of
the server. We assume that the PQ public key of the CA will be
available at the client of each machine.

B. Metrics and Benchmarks

We assess the performance of our approach using four over-
head metrics: latency, packet size, number of messages, and
energy consumption. The latency measures the time required
to establish a secure connection between the 5G network com-
ponents. The number of messages and packet size correspond
to the total number of messages exchanged during connection
establishment and the size of each packet, respectively. Energy
consumption is the total amount of electrical power the clients
use while performing tasks under the different cryptographic
algorithms.

We use these metrics to evaluate the efficiency of PQ-TLS
for 1) NRF initialization with the 5G core network and 2) UE
registration to the 5G core network.

In the experiments, we tested five different certificates:
ECDSA, RSA, Falcon512 (Fal512), Dilithium2 (Dil2), and
SPHINCS SHA (S+SHA). We selected two primary benchmark
approaches. First, we consider cases where TLS is not employed
or existing 4/5G security solutions are used. For instance, for UE
registration, we compare a traditional 4/5G AKA implementation
without TLS against our case when TLS tunneling is applied. In
the case of NRF function registration, we use an approach where
there is no TLS and security. These approaches are depicted as
noTLS in the figures. As another benchmarking, we compare the
PQ algorithms to the RSA/ECDSA implementation of TLS.

C. Performance Results

This section presents the performance evaluation of 5G net-
works utilizing TLS by measuring latency in various experiment
setups in local and cloud testbeds.

1) NRF Registration with the 5G Core Network:

Zhttps://github.com/adwise-fiu/5G-PQ-TLS-Tunnel

a) NRF Registration at Local Testbed: We first conducted
experiments in our Local Testbed to measure the overhead of
TLS integration. We looked at two cases: 1) NRF-SCP, which
measures the TLS overhead when NRF authenticates SCP only;
2) NRF-CP, which measures the TLS overhead when all the
remaining CP functions are registered.

As shown in Table I, the results indicated that TLS brings
in certain overhead in packet sizes and latency. For instance,
registering the SCP function to the NRF without TLS takes 0.072
seconds, while using TLS with ECDSA increases the value to
0.143 seconds and RSA to 0.155 seconds. Also, message size
increases from 32 to 53 bytes when TLS with ECDSA and RSA
are used. These increases are due to the introduction of TLS
handshakes in the process. Note that NRF-CP takes longer as it
waits for all the NFs to register using TLS sequentially.

TABLE I: Average TLS Overhead for NRF Registration under
Different Traditional Signatures in the Local Testbed

noTLS | ECDSA | RSA
Delay (sec) NRF-SCP 0.072 0.143 0.155
NRF-CP 0.124 0.378 0.39
Packet Size | NRF-SCP 6351 15581 15778
(Byte) NRF-CP 16kB 50kB 52kB
No of msgs NRF-SCP 32 53 53
NRF-CP 81 93.7 95.1

When we check the impact of PQ overhead, we see that the
additional overhead depends on the type of PQ certificate used,
as shown in Table II. For instance, when NRF registers the CP
functions, the increase in latency compared to existing RSA-
based TLS to PQ-based Falcon512 is 7.94%. For others, such as
Dilithium2 and S+SHA, there is a significant increase in delay.
Therefore, Falcon512 is a viable alternative to RSA, while others
should not be used if performance concerns exist for specific
applications. For the packet size and number of messages, the
increase compared to RSA is not significant except for S+SHA.

TABLE II: Average TLS Overhead for NRF Registration under
Different PQ Signatures in the Local Testbed

RSA | Fal512 Dil2 S+SHA
Delay (sec) NRF-SCP | 0.155 0.186 0.341 0.838
NRF-CP 0.390 0.421 0.576 1.073
Packet Size | NRF-SCP | 15778 16851 | 21801 59392
(Byte) NRF-CP 52kB 53kB 56kB 82kB
No of msgs NRF-SCP 53 56 60 84
NRF-CP 96.2 99 106.8 130.8

b) NRF Registration on the Cloud Testbed: In our cloud
testbed experiment, as shown in Fig.7, the NRF function and CP
are located in Ohio and South Carolina, respectively. Looking at
the Tables III and IV, the results reflect slightly higher values
compared to the Local Testbed due to additional propagation
delay in the cloud environment.

For example, when comparing Dilithium2 on local and
cloud testbeds for NRF registration to CP, we find mini-
mal variation; it is 0.421 seconds in the local and 0.48
seconds in the cloud testbed, resulting in an acceptable
overhead increase of only 14.27%. S+SHA benefits the
most from the cloud testbed as the latency goes down.

These results suggest that Falcon512 is still
the best option in realistic deployments.
Other alternatives, such as Dilithium and
S+SHA, can also be considered as they
do not significantly increase the latency.
Indeed, given its implementation simplicity
due to being stateless, S+SHA can be at-
tractive for large-scale 5G systems. One in-
teresting observation is that both Dilithium
and S+SHA perform better in latency com-
pared to the Local Testbed. This indicates
that these algorithms are advantageous re-
garding message size and count. We will
discuss this in Section VI.

TABLE III: Average TLS Overhead for NRF Registration with
Different Traditional Signatures in the Cloud Testbed

v
-

Fig. 7: NRF and
CP locations on
the Cloud Testbed.

noTLS | ECDSA | RSA

Delay (sec) NRF-SCP | 0.107 0.26 0.281

NRF-CP 0.110 0.431 0.452

Packet Size | NRF-SCP | 6kB 14kB 15kB

(Byte) NRF-CP 14kB 62kB 64kB
No of msgs NRF-SCP | 34 48 50
NRF-CP 64 78 80

TABLE IV: Average TLS Overhead for NRF Registration with
Different PQ Signatures in the Cloud Testbed

RSA | FalS12 Dil2 S+SHA
Delay (sec) NRF-SCP | 0.281 0.291 0.312 0.385
NRF-CP | 0.452 0.481 0.529 0.653
Packet Size | NRF-SCP | 15kB | 16.5kB 20kB 50kB
(Byte) NRF-CP 64kB | 64.4kB | 68.48kB 97kB
No of msgs NRF-SCP 50 54 58 82
NRF-CP 80 84 88 112

2) UE Registration with the 5G Core Network: Using the
same setups, we conducted experiments to measure the overhead
of bringing TLS to the UE registration protocol.

a) UE Registration in the Local Testbed: Table V and VI
shows the average overhead during registration of UE to AMF.
For the traditional signature algorithm, there is a delay overhead
of 8.24% with ECDSA and 11.65% for RSA when compared
with no TLS. On the other hand, Falcon512 and Dilithium2
have an overhead of 7.61% and 45.45% compared to RSA,
respectively.

Also, the UE-AMF message count shows a similar trend:
Falcon512 and Dilithium?2 have 9.048% and 18.09% more mes-
sages compared to RSA, respectively. Consequently, based on
these results, Falcon512 is again a viable alternative for UE
registration.

We note that since UE registration suffers from a higher base-
line delay and happens more frequently than NRF registration,
this results in a more significant impact on the overall system
performance.

b) UE Registration in the Cloud Testbed: We have deployed
the cloud setup shown in Fig. 8 for UE registration where the
NRF-CP (i.e., core network) is located in Iowa, while both gNB
and UE are located in South Carolina.

TABLE V: Average TLS Overhead for UE Registration with
Different Traditional Signatures in the Local Testbed

noTLS | ECDSA RSA

Delay (sec) 0.365 0.3951 0.4075

UE-AMF | Packet Size (Byte) | 13kB 21kB 25kB
No of msgs 30 43 43.1

TABLE VI: Average TLS Overhead for UE Registration with
Different PQ Signatures in the Local Testbed

RSA | Fal512 | Dil2 | S+SHA
Delay (sec) 0.407 0.438 0.592 | 1.09
UE-AMF | Packet Size (Byte) 25kB 29kB 32kB | 67kB
No of msgs 43.1 47 50.9 75

Table VII and VIII show the
UE registration overhead. There
is a noticeable increase when
using RSA, with 0.624 sec-
onds compared to 0.521 sec-
onds when using noTLS. More-
over, ECDSA and RSA require
37 messages, whereas noTLS re-
quires only 21. On the other
hand, Falcon512 and Dilithium2
show an increase in the latency
overhead of 2.88% and 4.65%, compared to RSA. Additionally,
the packet size of Falcon512 increases by 8.11%.

Although S+SHA contains 69 messages compared to Fal-
con512’s 41 in cloud environments, the delays remain com-
parable. This is because the cloud has optimized CPU usage
and faster transmission speeds, which better accommodate the
large signature size and computationally demanding certificates,
like Dilithium2 and S+SHA, over smaller and less demanding
certificates like RSA and Falcon512.

TABLE VII: Average TLS Overhead with Different Traditional
Signatures on the Cloud Testbed.

@

Fig. 8: UE, gNB, and CP lo-
cations on the Cloud Testbed.

noTLS | ECDSA RSA

Delay (sec) 0.521 0.611 0.624

UE-AMF | Packet Size (Byte) 2kB 4.4kB 4.44kB
No of msgs 21 37 37

TABLE VIII: Average TLS Overhead with Different PQ Signa-
tures on the Cloud Testbed.

RSA Fal512 Dil2 S+SHA
Delay (sec) 0.624 0.642 0.653 0.686
UE-AMF | Packet Size (Byte) | 4.44kB 4.8kB 12.4kB 39kB
No of msgs 37 41 45 69

D. Comparing EAP-TLS and TLS Tunneling

We also wanted to evaluate how much, if any, overhead TLS
tunneling brings compared to regular EAP-TLS as we advocate
for it. To this end, we performed a different experiment. We
deployed a Raspberry PI 4 as the client UE and the server in
the cloud. We measured the energy consumption from the UE
perspective and latency for the whole TLS handshake.

Table IX shows the additional energy overhead compared to a
noTLS approach for both approaches under different signatures.
Note that the local setup also offered the same results, so we
did not include them separately. As can be seen, the energy
burden it brings to the client side, even on an RPi, is minimal.
Most importantly, the energy consumption for EAP-TLS and TLS
tunneling is the same.

TABLE IX: Energy Consumption Comparison of EAP-TLS and
TLS Tunnel (Watts) in the Cloud Testbed.

TLS TLS Tunneling
ECDSA | 0.4084 0.4090
RSA 0.4378 0.4394
Fal512 | 0.4706 0.4738
Dil2 0.4789 0.4794
S+SHA | 0.48064 0.4880

We then looked at the latency of the TLS handshake for both
cases, which are reported in Table X. In both setups, the latency
difference is negligible. These results suggest that utilizing TLS
tunneling does not bring any additional overhead with respect to
regular EAP-TLS.

TABLE X: Latency comparison of EAP-TLS with TLS Tunnel-
ing in Local and Cloud Testbeds

Latency in Local (sec) Latency in Cloud (sec)
EAP-TLS | TLS Tunneling | EAP-TLS | TLS Tunneling
ECDSA 0.065 0.066 0.180 0.179
RSA 0.079 0.0793 0.200 0.201
Fal512 0.110 0.109 0.234 0.245
Dil2 0.2649 0.2649 0.266 0.281
S+SHA 0.762 0.762 0.328 0.351

E. Discussion

Analyzing the Local and Cloud Testbeds, we find a dis-
crepancy, with a significant increase in latency moving from
Falcon512 to S+SHA in the Local Testbed, while this increase
is not significant in the Cloud Testbed. For instance, analyzing
Table IT and Table IV, there is a notable increase in latency when
moving from Falcon512 with 0.186 seconds to S+SHA with
0.838 seconds for registering NRF to CP in the Local Testbed. On
the other hand, the cloud environment shows a smaller difference
in latency between RSA at 0.481 seconds and S+SHA at 0.653
seconds.

This difference is due to the variance in cloud infrastructure
as well as in key and signature sizes between Falcon512 and
S+SHA. When comparing Falcon512 and S+SHA in terms of
their key and signature sizes, we observe the following: Fal-
con512 has a public key size of 897 bytes, a secret key size of
1281 bytes, and a signature size of 752 bytes, while S+SHA has
a significantly smaller public and secret key sizes at 32 and 64
bytes, but much larger signature size of 17088 bytes.

The overall latency consists of propagation delay, transmission
of packets, and computational delay of certificates. Locally,
transmission and computational delay are dominant factors, as
propagation delay is negligible. Although the cloud introduces
some propagation delay, it manages the overall latency effectively

with better CPU utilization and faster transmission speeds. We
find that the smaller certificates with low computational demands
perform efficiently in local environments, while the cloud en-
vironment performs significantly better when the signature size
and computational demands are larger. Therefore, certificates like
Dilithium2 and S+SHA perform better in cloud environments
than in local setups. Finally, using TLS tunneling instead of EAP-
TLS is more suitable as it adds comprehensive security without
any additional delay or energy overheads.

To conclude our findings, across all setups, Falcon512 stands
out as the most practical choice when compared to traditional
RSA certificates due to its modest overhead increase. In the Local
Testbed, we observed that Dilithium2 and S+SHA exhibited a
substantial spike in latency. At the same time, only Falcon512
maintained an acceptable level of latency, indicating it as the
only feasible option for implementation. However, when real-life
and closely configured Cloud Testbeds are used, the impact of
latency overhead becomes less relevant for Dilithium2 and even
for S+SHA compared to the Local Testbed, making Dilithium2 a
viable alternative. Additionally, S+SHA also remains an option
for cloud implementation since its algorithm is stateless and can
be easier to implement in complex systems.

VI. CONCLUSION

In this paper, we designed an end-to-end TLS integrated
into 5G communications. We applied a tunneling approach,
ensuring all network components can establish a reliable TLS
connection using a VPN. In addition, we integrated PQ algo-
rithms, Falcon512, Dilithium2, and S+SHA, with TLS to further
secure 5G communications against emerging threats of quantum
computing. We implemented the proposed approach on two test
beds consisting of real physical devices and cloud-based virtual
machines and conducted a series of experiments to assess its
feasibility. Our results indicate that while PQ-TLS approaches
introduce slight overhead for communications, some of them
match the performance of classical TLS approaches. For instance,
we identified PQ-TLS using Falcon512 as the most efficient
implementation, combining both security and minimized delays.
Finally, TLS tunneling also matched the performance of a regular
EAP-TLS implementation.

ACKNOWLEDGMENT

This research was funded by US NSF under the grant No.
2147196.

REFERENCES

[1] T. Liu, F. Wu, X. Li, and C. Chen, “A new authentication and key agreement
protocol for 5g wireless networks,” Telecommunication Systems, vol. 78,
pp. 317-329, 2021.

[2] J. Zhang, L. Yang, W. Cao, and Q. Wang, “Formal analysis of 5g eap-tls
authentication protocol using proverif,” IEEE access, vol. 8, pp. 23 674—
23688, 2020.

[3] S. K. Rao and R. Prasad, “Impact of 5G technologies on industry 4.0,”
Wireless personal communications, vol. 100, pp. 145-159, 2018.

[4] Z. Huang, C. Xiong, H. Ni, D. Wang, Y. Tao, and T. Sun, “Standard
evolution of 5g-advanced and future mobile network for extended reality
and metaverse,” IEEE Internet of Things Magazine, vol. 6, no. 1, pp. 20-25,
2023.

[3]

(6]

(71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

H. T. Larasati and H. Kim, “Quantum cryptanalysis landscape of shor’s
algorithm for elliptic curve discrete logarithm problem,” in Information

[26]

D. Chandramouli, R. Liebhart, and J. Pirskanen, 5G for the Connected
World. John Wiley & Sons, 2019.

Security Applications: 22nd International Conference, WISA 2021, Jeju

Island, South Korea, August 11-13, 2021, Revised Selected Papers 22.

Springer, 2021, pp. 91-104.

D. Stebila and M. Mosca, “Post-quantum key exchange for the internet and
the open quantum safe project,” in International Conference on Selected
Areas in Cryptography. Springer, 2016, pp. 14-37.

National Institute of Standards & Technology, ‘“Post-quantum
cryptography,” Jul. 22, 2022. [Online]. Available: https://csrc.nist.gov/
Projects/post-quantum-cryptography

A. Hosseini Vasoukolaei, “Tls performance evaluation in the control plane
of a 5g core network slice,” Ph.D. dissertation, Carleton University, 2021.
A. B. N. Linh, D. Rupprecht, E. Poll, and K. Kohls, “Analysing open-source
S5g core networks for tls vulnerabilities and 3gpp compliance,” 2023.

D. Simon, R. Hurst, and D. B. D. Aboba, “The EAP-TLS Authentication
Protocol,” RFC 5216, Mar. 2008. [Online]. Available: https://www.
rfc-editor.org/info/rfc5216

Tech Invite. (2023) Ts 33.310 - 3gpp specification. Accessed: 2024-07-22.
[Online]. Available: https://www.tech-invite.com/3m33/tinv-3gpp-33-310.
html

Q. Hao, L. Sun, S. Guo, R. Dou, H. Liu, and D. Qian, “5g secondary
authentication based on eap-tls protocol,” in 2021 International Conference

on Computer Technology and Media Convergence Design (CTMCD), 2021,

pp- 296-300.
National Institute of Standards & Technology, “Nist announces
first four quantum-resistant cryptographic algorithms,” Jul. 5,

2022. [Online]. Available: https://www.nist.gov/news-events/news/2022/
07/nist-announces-first- four-quantum-resistant-cryptographic-algorithms
“Control and user plane separation of epc nodes (cups),” 2017. [Online].
Available: https://www.3gpp.org/news-events/3gpp-news/cups

“Sg access and mobility management

tion (amf),” 2023. [Online]. Available:
/techcommunity.microsoft.com/t5/azure-for-operators-blog/
what-is-the-5g-access-and-mobility-management- function-amf/ba-p/
3707685

“5g system;network function repository services;stage 3(3gpp ts 29.510
version 15.3.0 release 15),” 2019. [Online]. Available: https:/www.etsi.
org/deliver/etsi_ts/129500_129599/129510/

M. Toy and A. Toy, “Overall network and service architecture,” Future
Networks, Services and Management: Underlay and Overlay, Edge,

func-
https:

Applications, Slicing, Cloud, Space, AI/ML, and Quantum Computing, pp.
93-155, 2021.
D. Simon, R. Hurst, and D. B. D. Aboba, “Rfc 5216: The eap-

tls authentication protocol,” Mar 2008. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc5216#page-28
Radius/udp considered harmful. [Online]. Available: https://www.

blastradius.fail/pdf/radius.pdf
J. Zhang, Q. Wang, L. Yang, and T. Feng, “Formal verification of 5g-eap-tls
authentication protocol,” in 2019 IEEE Fourth International Conference on

Data Science in Cyberspace (DSC), 2019, pp. 503-509.

H. Akter, S. Jahan, S. Saha, R. H. Faisal, and S. Islam, “Evaluating per-
formances of vpn tunneling protocols based on application service require-
ments,” in Proceedings of the Third International Conference on Trends in

Computational and Cognitive Engineering: TCCE 2021. Springer, 2022,
pp. 433-444.

S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou, and
M. Grace, “Hanguard: Sdn-driven protection of smart home wifi devices
from malicious mobile apps,” in Proceedings of the 10th ACM Conference

on Security and Privacy in Wireless and Mobile Networks, 2017, pp. 122—
133.

Y. Song and U. Hengartner, “Privacyguard: A vpn-based platform to detect
information leakage on android devices,” in Proceedings of the Sth Annual

ACM CCS Workshop on Security and Privacy in Smartphones and Mobile

Devices, 2015, pp. 15-26.

A. Alshalan, S. Pisharody, and D. Huang, “A survey of mobile vpn
technologies,” IEEE Communications Surveys Tutorials, vol. 18, no. 2,
pp. 1177-1196, 2016.

A. Mense, S. Steger, D. Jukic-Sunaric, A. Mészaros, and M. Sulek, “Open
source based privacy-proxy to restrain connectivity of mobile apps,” in
Proceedings of the 14th International Conference on Advances in Mobile

Computing and Multi Media, 2016, pp. 284-287.

(271

(28]

[29]

3rd Generation Partnership Project (3GPP), “Technical Specification Group
Services and System Aspects and Procedures for the 5G System (5GS);
Stage 2; (R16),” 3GPP, Tech. Rep. TS 23.502, September 2020.

D. Pineda, R. Harrilal-Parchment, K. Akkaya, A. Ibrahim, and A. Perez-
Pons, “Design and analysis of an open-source sdn-based 5g stan-
dalone testbed,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2023, pp.

1-6.

“Ogs-openssl,” Feb 2022. [Online]. Available:
//github.com/open-quantum-safe/openssl/blob/OQS-OpenSSL_1_1_
1-stable/README.md

https:

	Introduction
	Related Work
	Background
	Transport Layer Security (TLS) Handshake
	Extensible Authentication Protocol-Transport Layer Security (EAP-TLS)
	Post-Quantum Algorithms
	5G Background

	Proposed Approach
	Problem and Motivation
	Integration of VPN TLS Tunnel
	TLS Integration into NF Registration
	TLS Integration to UE Registration

	Performance Evaluation
	Setting up the 5G Testbed Environment
	Metrics and Benchmarks
	Performance Results
	NRF Registration with the 5G Core Network
	UE Registration with the 5G Core Network

	Comparing EAP-TLS and TLS Tunneling
	Discussion

	Conclusion
	References

