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ABSTRACT

Hybrid zones, where genetically distinct groups of organisms meet and interbreed, offer valuable insights into the nature of spe-

cies and speciation. Here, we present a new R package, bgchm, for population genomic analyses of hybrid zones. This R package 

extends and updates the existing bgc software and combines Bayesian analyses of hierarchical genomic clines with Bayesian 

methods for estimating hybrid indexes, interpopulation ancestry proportions, and geographic clines. Compared to existing soft-

ware, bgchm offers enhanced efficiency through Hamiltonian Monte Carlo sampling and the ability to work with genotype like-

lihoods combined with a hierarchical Bayesian approach, enabling inference for diverse types of genetic data sets. The package 

also facilitates the quantification of introgression patterns across genomes, which is crucial for understanding reproductive isola-

tion and speciation genetics. We first describe the models underlying bgchm and then provide an overview of the R package and 

illustrate its use through the analysis of simulated and empirical data sets. We show that bgchm generates accurate estimates of 

model parameters under a variety of conditions, especially when the genetic loci analyzed are highly ancestry informative. This 

includes relatively robust estimates of genome- wide variability in clines, which has not been the focus of previous models and 

methods. We also illustrate how both selection and genetic drift contribute to variability in introgression among loci and how ad-

ditional information can be used to help distinguish these contributions. We conclude by describing the promises and limitations 

of bgchm, comparing bgchm to other software for genomic cline analyses, and identifying areas for fruitful future development.

1   |   Introduction

Hybrid zones form when genetically distinct groups of or-

ganisms meet, mate, and produce offspring (Barton and 

Hewitt  1985; Gompert and Buerkle  2016). Studies of hybrid 

zones provide powerful opportunities to analyze interactions 

between divergent gene pools in the wild (Barton, Gale, and 

Harrison 1993; Buerkle and Lexer 2008; Gompert, Mandeville, 

and Buerkle 2017) and are especially relevant for testing hypoth-

eses about the nature and genetic basis of species and speciation 

(Harrison and Larson 2014; Firneno et al. 2023). The ease with 

which genomic data can be generated has vastly increased the 

potential for genomic analyses of hybrid zones. Simultaneously, 

advances in analytical approaches and computer software pack-

ages have increased the ability of investigators to make evolu-

tionary inferences from hybrid zone data (reviewed in Gompert, 

Mandeville, and Buerkle 2017).

Hybrid zone theory was largely developed in the mid to late 1900s 

(e.g., Haldane 1948; Endler 1977; Barton 1979, 1983; Barton and 
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Hewitt 1985). Results from this body of theory provide a means 

to connect model parameters describing the width, location, and 

shape of geographic clines in hybrid zones to evolutionary pa-

rameters and processes, such as selection and dispersal (Barton 

and Hewitt 1985). Such geographic cline approaches have been 

used extensively and productively in speciation research (e.g., 

Szymura and Barton  1986; Mallet et  al.  1990; Dasmahapatra 

et  al.  2002; Carling and Brumfield  2008; Teeter et  al.  2008; 

Westram et al. 2021; Caeiro- Dias et al. 2023). Nonetheless, these 

approaches are not always applicable, especially when hybridiza-

tion lacks a major geographic axis (e.g., Harrison and Rand 1989; 

Rieseberg, Whitton, and Gardner 1999; Mandeville et al. 2015; 

Chaturvedi et al. 2020) and are but one of the several windows 

into the evolutionary processes provided by hybrid zones.

The prevalence and genomic composition of hybrids in hy-

brid zones provides additional information about the strength 

and form of reproductive isolation (Jiggins and Mallet  2000). 

Moreover, genomic approaches can go beyond simple classifica-

tion of hybrids as F1s, F2s, or backcrosses by describing hybrid 

genomes quantitatively. For example, genome composition can 

be measured with a hybrid index, which denotes the proportion 

of an individual's genome inherited from one of two designated 

hybridizing lineages (Buerkle  2005), and by an interpopula-

tion (i.e., interclass) ancestry proportion, which indicates the 

proportion of an individual's genome with gene copies inher-

ited from both hybridizing species (Gompert and Buerkle 2010; 

Fitzpatrick  2012; Gompert et  al.  2014; Shastry et  al.  2021). 

Admixture proportions summarize genome composition simi-

larly to hybrid indexes but without specifying reference or source 

populations (Pritchard, Stephens, and Donnelly 2000). Together 

these metrics provide flexible, continuous summaries of the 

genetic makeup of hybrids that are relevant for understanding 

hybrid zone dynamics. For example, interpopulation ancestry 

will be high when matings between non- admixed individuals 

or between hybrids and non- admixed individuals are common.

Additionally, genomic cline models can be used to quantify in-

trogression from one genomic background to another, with a 

focus on patterns of heterogeneity in introgression across the 

genome and associated evolutionary processes (Szymura and 

Barton  1986; Gompert and Buerkle  2011; Macholán et al.  2011; 

Fitzpatrick, 2013b). In this context, recombination and indepen-

dent assortment in hybrids create new genotypic combinations 

that are subject to selection based on their effects on hybrid fit-

ness. Such selection, along with other factors (e.g., patterns of 

linkage disequilibrium) and processes (e.g., recombination, drift, 

gene flow, etc.), affect patterns of introgression in hybrid zones 

(Barton  1983; Gompert, Parchman, and Buerkle  2012; Lindtke 

and Buerkle  2015; Schumer et  al.  2018; McFarlane et  al.  2021). 

Consequently, outcomes of hybridization and patterns of intro-

gression often vary across the genome (e.g., Nolte, Gompert, and 

Buerkle  2009; Larson et  al.  2013; Sung et  al.  2018; Chaturvedi 

et al. 2020; Wagner et al. 2020; Caeiro- Dias et al. 2023), which can 

provide additional information about the genetics of speciation 

(Payseur 2010; Harrison and Larson 2016; Gompert, Mandeville, 

and Buerkle  2017). This variation can be quantified using ge-

nomic cline models and compared across sets of SNPs, genetic 

regions, chromosomes, and hybrid zones with implications for un-

derstanding the genetics of reproductive isolation, the repeatabil-

ity of speciation, and coupling of barrier loci in hybrid zones (e.g., 

Teeter et al. 2010; Larson et al. 2013; Taylor et al. 2014; Nikolakis 

et al. 2022; Firneno et al. 2023; McFarlane et al. 2023).

Here, we present a new R package, bgchm, which combines 

Bayesian analyses of hierarchical genomic clines with Bayesian 

methods for (i) estimating hybrid indexes and interpopulation an-

cestry proportions and (ii) fitting geographic cline models. This 

package builds on the foundation of the existing bgc software 

(Gompert and Buerkle 2012) but replaces the Barton cline model 

with the logit- logistic cline model proposed by Fitzpatrick (2013b). 

We describe the details of the models and software usage below 

but here briefly highlight some of the most salient aspects of this 

R package (we make detailed comparisons with related software 

in the Discussion). First, bgchm replaces traditional random- 

walk Metropolis- Hastings Markov chain Monte Carlo with 

Hamiltonian Monte Carlo, which generally results in less autocor-

relation among samples from posterior distributions (Neal 2011). 

As with the original bgc, bgchm retains the ability to analyze 

data comprising known genotypes or to work directly with gen-

otype likelihoods, which are the standard output of most modern 

genetic variant callers and imputation methods. This makes it 

possible to account for uncertainty in genotypes in analyses and is 

critical for accurate and powerful inference from low to moderate 

coverage DNA sequence data sets. bgchm additionally adds the op-

tion to work directly with local (locus- specific) ancestry estimates 

instead of genotypic data. Finally, bgchm retains a hierarchical 

Bayesian approach to cline inference. Together, these features 

result in more reliable inference of cline standard deviation pa-

rameters, which provide model- based summaries of variation in 

introgression across the genome and are relevant for studying 

coupling in hybrid zones (Firneno et  al.  2023). Additionally, by 

separately estimating hybrid indexes and clines, but still retain-

ing the hierarchical structure of the model, bgchm drastically im-

proves parallelization relative to bgc and also allows comparisons 

among different sets of loci (e.g., trait associated versus putatively 

neutral loci, or different chromosomes) without assuming all loci 

in a set share the same cline parameters. These features are im-

portant for scaling cline analyses to genome- level data sets, with 

limitations mostly set by the availability of CPUs.

In this manuscript, we first describe the core models underlying 

bgchm. We then provide an overview of the R package and illus-

trate its use through the analysis of simulated data sets, with a focus 

on the effects of hierarchical modeling and allele frequency differ-

ences between reference populations, and on our ability to estimate 

cline standard deviations. Where relevant, we compare bgchm to 

HIest (Fitzpatrick 2013a), which provided the original implemen-

tation of the logit- logistic cline model. We further demonstrate the 

usage of bgchm via the analysis of a butterfly hybrid zone data set. 

We conclude by discussing the potential and limitations of bgchm, 

comparing this R package with other hybrid zone analysis software 

and identifying possibilities for further developments.

2   |   Methods

2.1   |   Models

We consider three sets of models to describe genomic patterns 

of admixture and introgression in hybrid zones, specifically, 

models to infer hybrid indexes, ancestry class proportions, and 
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genomic clines (geographic cline models are described in the 

Supporting Information). All three models infer ancestry from 

defined source or reference populations and use a (hierarchical) 

Bayesian approach for inference and quantifying uncertainty in 

model parameters. We first describe these models for the case 

where genotypes are assumed to be known without error be-

fore presenting extensions for modeling genotype uncertainty 

or working directly with local ancestry estimates.

2.1.1   |   Hybrid Index Model

We follow the basic structure of the hybrid index model proposed 

by Buerkle (2005). Here, hybrid indexes are defined with respect 

to two putative source or reference populations chosen to repre-

sent or approximate the genetic composition of two hybridizing 

species or lineages. The hybrid index for individual, j, Hj, de-

notes the proportion of individual j's genome that is best mod-

eled as being inherited from one of the two source populations 

(labeled source 1). Consequently, 1 −Hj denotes the proportion 

of the genome inherited from the other source population (la-

beled source 0). Hybrid indexes are based on supervised learning 

of allele frequencies within source populations that are defined 

a priori and are analogous to admixture proportions estimated 

in an unsupervised learning context (Pritchard, Stephens, and 

Donnelly  2000; Gompert et  al.  2014). Here, we consider only 

two source populations. We assume that the genotypic data for 

individual j and locus i is binomially distributed conditional on 

ancestry of the alleles at locus i and the corresponding parental 

allele frequencies (P0i and P1i) and, similarly, that the ancestry at 

locus i is binomially distributed conditional on the hybrid index, 

Hj. This results in the following likelihood model for estimating 

hybrid indexes:

Here, Gij is the count of one of the two alleles (e.g., the non- 

reference allele), and Nij denotes the number of allele copies for 

the individual and locus (i.e., two for diploids). At present, we 

restrict analysis to diploid or haploid loci, including mixtures 

of diploid and haploid loci as might occur with sex chromo-

somes. We assume that any allele with a non- zero frequency in 

the putative hybrids has a non- zero frequency in at least one of 

the source populations. The information about ancestry (and 

thus hybrid index) a locus provides depends on the allele fre-

quency difference between the reference populations and thus 

varies from a maximum for loci with fixed differences, to no 

information, in cases where the allele frequencies are iden-

tical. Missing data can be accommodated by the model and 

does not contribute to the hybrid index estimate for an indi-

vidual. We assume a beta prior on hybrid indexes, such that 

Hj ∼ beta(� = 0.5, � = 0.5), which corresponds with Jeffreys 

minimally informative prior.

2.1.2   |   Ancestry Class Proportions Model

Our model for ancestry class proportions is similar to the in-

terpopulation ancestry models described by Gompert 

et  al.  (2014) and Shastry et  al.  (2021) (i.e., the Q model). 

However, unlike these models, our ancestry class proportion 

model assumes that source populations are defined with 

known allele frequencies a priori (i.e., supervised learning, as 

in our hybrid index model). We designate the ancestry class 

proportions Q00, Q11, and Q10 to denote (i) the proportion of an 

individual's genome where both gene copies were inherited 

from source (i.e., reference) population 0 (Q00), (ii) the propor-

tion of an individual's genome where both gene copies were 

inherited from source population 1 (Q11), and (iii) the propor-

tion of an individual's genome where one gene copy was inher-

ited from each source population (Q10, i.e., interpopulation 

ancestry). The main purpose of the model is to estimate these 

ancestry class proportions. Note that hybrid index can be de-

rived directly from the ancestry class proportions as 

H = Q11 +
1

2
Q10. We define a likelihood analogous to 

Equation (1) for the ancestry class proportions as:

Here also, we restrict the analysis to haploid and diploid loci. 

Haploid loci provide information about the proportion of the ge-

nome inherited from each species but not how this is partitioned 

into homozygous versus heterozygous (interpopulation) ances-

try, the latter comes only from the diploid loci.

2.1.3   |   Genomic Clines Model

Genomic clines represent the probability of locus- specific ances-

try along a genome- wide admixture gradient, that is, as a func-

tion of hybrid index (Szymura and Barton 1986; Gompert and 

Buerkle  2009, 2011). Here, we model genomic clines with the 

logit- logistic model proposed by Fitzpatrick (2013b), which was 

derived from a sigmoidal geographic cline model (this does not 

imply a sigmoidal genomic cline). With this function, the proba-

bility that a gene copy for locus i and individual j was inherited 

from source population 1 (as opposed to source population 0) is 

�ij = H
vi
j
∕
(

H
vi
j
+
(

1 −H
vi
j

)

eui
)

, where Hj is the hybrid index 

(i.e., the proportion of the genome inherited from population 1), 

vi gives the slope of the cline for locus i relative to the genome- 

average (v = 1), and ui specifies the center of the cline for locus i 

relative to both the genome average and vi (Fitzpatrick 2013b). 

We use the re- parameterization from Bailey (2024) and Firneno 

et al. (2023) that defines logit
(

ci
)

=

ui
vi

 to specify a more intuitive 

cline center parameter (ci), which indicates the hybrid index 

value at which �ij = 0.5, that is where the probability of inherit-

ing an allele from each source population is equal. Genomic 

cline slopes greater than 1 indicate a steeper cline than the ad-

mixture gradient, whereas clines less than 1 indicate a shallower 

cline. Similarly, centers greater than 0.5 indicate an overall ex-

cess of source 0 ancestry, whereas centers less than 0.5 indicate 

an excess of source 1 ancestry.

(1)
Pr
(
Gij|Hij,P0i,P1i

)
∝
(
HijP1i+

(
1−Hij

)
P0i

)Gij

(
Hij

(
1−P1i

)
+
(
1−Hij

)(
1−P0i

))(Nij−Gij)

(2)

Pr
�
Gij�Qj,P0i,P1i

�
∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q11jP
2
1i+Q00jP

2
0i+Q01jP1iP0i if Gij=2

Q11j

�
1−P1i

�
P1i+Q00j

�
1−P0i

�
P0i+

Q01j

�
1−P1i

�
P0i+Q01jP1i

�
1−P0i

�
if Gij=1

Q11j

�
1−P1i

�2
+Q00j

�
1−P0i

�2
+

Q01j

�
1−P1i

��
1−P0i

�
if Gij=0
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We specify the following likelihood model for the genetic data at 

locus i given in terms of �ij, which is itself a function of hybrid 

index (Hj, a property of an individual) and the cline parameters 

vi and ci (properties of a locus):

Note the similarity between Equation  (3) and Equation  (1); the 

forms are identical except that �ij (the probability of ancestry from 

source 1 for locus i and individual j) in Equation (3) replaces Hj 

(the marginal probability of ancestry from source 1 for individual 

j) in Equation (1). Here also, we allow for diploid and haploid loci 

as well as loci with mixed ploidy (e.g., sex chromosomes).

Following Gompert and Buerkle (2011) and Firneno et al. (2023), 

we define hierarchical priors for the cline parameters vi and ci. 

Hierarchical modeling allows information on the genomic vari-

ability of introgression to be shared across loci and explicitly ac-

knowledges the partial dependence (and partial independence) 

of introgression across the genome (Gompert and Buerkle 2011; 

Betancourt and Girolami  2015) (Figure  1). In general, hier-

archical modeling in such cases is conceptually preferable to 

the alternative assumptions of complete independence of units 

(e.g., introgression patterns across loci) as implied by fixed, in-

dependent priors, or the complete lack of independence among 

units as implied by a shared parameter for all units (e.g., the 

same cline parameters for all loci; Gelman et al. 1995; Fordyce 

et al. 2011). In our case, the main benefit of hierarchical mod-

eling is the ability to learn about and account for the degree 

of variability in clines among loci. In our standard model, we 

specify the following priors for cline parameters (modifications 

are discussed below): log10
(

vi
)

∼ normal
(

� = 0, � = �v

)

 and 

logit
(

ci
)

∼ normal
(

� = 0, � = �c

)

. The log and logit functions are 

used to set the expected means of vi and ci to 0– log10(1) = 0 and 

logit(0.5) = 0–and also to project these parameters onto the scale 

of − ∞ and ∞. The means of both priors are set to 0 to reflect the 

fact that, assuming the same loci (or random subsets of the same 

loci) are used to infer hybrid indexes and to fit genomic clines, 

the average deviation of locus- specific clines from the genome 

average should by definition be 0 (Gompert and Buerkle 2011). 

This can be relaxed in cases where distinct sets of loci are used 

for cline fitting and hybrid indexes, as we discuss below. Such 

a zero- centered prior does not enforce a hard sum- to- zero con-

straint but rather serves as a form of soft centering. We discuss 

hard- centering (i.e., sum- to- zero constraints) in Section 2.2.

The standard deviation parameters, �v and �c describe the vari-

ability of cline slopes and centers across the genome and can 

be related to the extent of coupling among loci (Barton  1983; 

Firneno et al. 2023). Specifically, with coupling, linkage disequi-

librium among loci causes selection arising from one locus to 

indirectly result in selection on other loci such that the loci expe-

rience similar levels of selection and exhibit concordant and co-

incident clines (as well as steeper geographic clines). This should 

manifest as lower levels of variation in genomic clines across the 

loci with the extreme case being clines for each locus coinciding 

precisely with the genome- average cline (vi = 1 and ci = 0.5). The 

standard deviation parameters simultaneously inform and are 

informed by the locus- specific cline parameters, and it is this 

co- dependency that allows information sharing across loci. As 

such, these cline standard deviations (�v and �c) are estimated 

from the data as part of the analysis (at least in the standard 

model, modifications to this procedure are discussed below). 

Thus, priors (hyperpriors) are placed on the standard deviations, 

�v ∼ normal
(

� = 0, � = �0

)

 and �c ∼ normal
(

� = 0, � = �0

)

, 

with �0 set by users. Note that this specification assumes that the 

loci are exchangeable, which is likely not true for sets of tightly 

linked loci. However, the cline standard deviations can be in-

ferred from a subset of unlinked or loosely linked loci.

2.1.4   |   Alternative Model Specifications 

and Assumptions

Having described a standard version of each of our models for 

hybrid indexes, ancestry class proportions, and genomic clines 

above, we now discuss modifications and variants of these 

(3)
Pr
(
Gij|�ij,P0i,P1i

)
∝
(
�ijP1i+

(
1−�ij

)
P0i

)Gij

(
�ij

(
1−P1i

)
+
(
1−�ij

)(
1−P0i

))(Nij−Gij).

FIGURE 1    |    Directed graph summarizing the (standard) hierarchical 

Bayesian genomic cline model. Boxes and circles denote fixed and 

stochastic nodes, respectively, with the data node in orange and other 

stochastic nodes in blue. G
[

i, j
]

 denotes the genetic data for locus i  and 

individual j, that is, the known genotype or genotype likelihoods. P0[i] 

and P1[i] are the known (previously estimated) allele frequencies in 

parental source or reference populations. H
[

j
]

 is the known (previously 

estimated) hybrid index for individual j. The stochastic nodes v[i] 

and u[i] are the cline parameters, with v[i] denoting the slope and 

u[i] = logit(center[i])v[i], where center[i] is the cline center. �v and �c 

denote the standard deviations of the normal priors on log(v[i]) and 

logit(center[i]). These describe variability in clines across the genome 

and are estimated from the data. The remaining fixed nodes denote 

means (�0) and standard deviations (�0) of higher- level normal priors.
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models. First, the model descriptions above assume that geno-

types are known without error (or completely missing). 

However, modern sequencing technologies and bioinformatic 

tools generate finite numbers of reads or sequences covering 

each segment of DNA, uncertain base calls, and mapping er-

rors. These sources of uncertainty mean that genotypes are 

often uncertain. This is reflected in the genotype likelihoods 

output by most variant calling software (e.g., samtools and 

bcftools; Li 2011). Uncertainty can also arise from genotype 
imputation or Bayesian inference of genotypes (in these cases, 
uncertainty is often captured in a posterior probability rather 
than a likelihood but can be incorporated in the same manner). 
Thus, we include modifications of all three core models to in-
corporate uncertainty in genotypes (including equal likelihoods 
of all genotypes) by working directly with relative likelihoods or 
posterior probabilities of genotypes (e.g., as output by some 
Bayesian genotype inference methods, e.g., Shastry et al. 2021). 
In such cases, the likelihoods given in Equations (1–3) are re-
placed by the average likelihood of the parameter values condi-
tional on each genotype and weighted by relative genotype 
likelihoods or posterior probabilities. For example, Equation (3) 
becomes Pr

(
Gij|�ij,P0i,P1i

)
=Pr

(
Gij=0|�ij,P0i,P1i

)
Pr
(
Gij=0

)
 

We also consider alternative models where we assume that locus- 
specific ancestry is itself known or has been estimated using one 
of many programs designed for local- ancestry inference (e.g., Li 
and Stephens 2003; Maples et al. 2013; Browning, Waples, and 
Browning  2023). With known local ancestry, the likelihood 
equations no longer depend on parental allele frequencies, and, 
for example, Equation (3) can be simplified to (this is mathemat-
ically equivalent to a model for diagnostic markers):

Here, Zij denotes the ancestry of locus i in individual j, that is, 
the number of gene copies (out of Nij) individual j inherited from 
source population 1 at this specific locus. Local ancestry can be 
defined for, and inferred from, individual SNPs or larger loci, 
such as haplotype blocks.

We define two additional variants of the genomic clines model, 
both of which can be applied with known genotypes, uncertain 
genotypes, or local ancestry. First, one such variant allows the 
standard deviations of the hierarchical priors, �v and �c, to be 
specified and fixed. As described in more detail in Section 2.2, 
this makes it possible to first estimate these parameters using 
the standard hierarchical model based on a random subset of 
data and then to fix these parameters for estimating clines for the 
full set of data, enabling massive parallelization of the model fit-
ting procedure across genetic loci. Alternatively, this model for-
mulation can be used to specify weakly informative priors (i.e., 
relatively flat priors) and thereby implement a non- hierarchical 
version of the genomic clines model akin to Bailey (2024).

Second, in some cases, it can be useful to estimate the means of the 
hierarchical priors for v and c from the data rather than fix them 
at 0. As we illustrate in an example analysis below, this could be 
done if one estimates hybrid indexes based on one subset of loci 
(e.g., putative neutral regions of the genome, autosomes only, 

etc.) and then wants to ask whether a different subset of loci (e.g., 
trait- associated loci, other candidate genes, and sex- linked loci, 
etc.) exhibit patterns of introgression that deviate on average from 
the subset of loci used for hybrid index inference. Consequently, 
we have also included models with unknown means for the 
hierarchical priors, log10

(

vi
)

∼ normal
(

� = �v, � = �v

)

 and 
logit

(

ci
)

∼ normal
(

� = �c, � = �c

)

. In such cases, we place nor-
mal priors on the unknown means as well as the unknown 
standard deviation, with �v ∼ normal

(

� = 0, � = �0

)

 and 
�c ∼ normal

(

� = 0, � = �0

)

, and with the prior standard devia-
tion for these means, �0, specified by the user.

2.2   |   Software Usage

We implemented the models described above in a new R pack-
age, bgchm, which updates the original bgc program (Gompert 
and Buerkle 2012). The R package is available for direct installa-
tion from GitHub at https:// github. com/ zgomp ert/ bgc-  hm. The 
R package uses Stan (via rstan) for sampling from posteriors 
(Stan Development Team  2022, 2024). This implementation 
makes it possible to fit the models using Hamiltonian Monte 
Carlo (HMC) rather than using more traditional Markov chain 
Monte Carlo algorithms. This is important as HMC routinely 
outperforms other algorithms especially in terms of convergence 
and more effectively exploring complex posterior distributions 
(Neal 2011; Betancourt and Girolami 2015). This means that far 
fewer HMC steps are generally required to obtain a good approx-
imation of the posterior distribution and that the HMC algorithm 
is less likely to get stuck in one region of the posterior, especially 
when fitting hierarchical models and estimating higher- level 
standard deviations (Betancourt and Girolami 2015). We specif-
ically use the No- U- Turn Sampler (NUTS) from Stan (Hoffman, 
Gelman, et al. 2014; Betancourt 2017). Integration with Stan and 
rstan also provides built- in diagnostics of HMC performance, 
including automated and standard warning messages about 
performance and estimates of effective sample sizes and conver-
gence diagnostics for each of the model parameters. Moreover, 
by using Stan, all of the HMC sampling is done based on com-
piled C++ code, rather than native R code, which is critical for 
reducing the time required for model fitting.

The R package bgchm includes core functions for estimating hy-
brid indexes (est_hi), ancestry class proportions (est_Q), and 
genomic clines (est_gencline). Each function is documented 
in the R package. The arguments to these functions determine 
which version of each model to fit, with each version correspond-
ing to an internal compiled C++ program. The result of any 
Bayesian analysis is the full posterior distribution for the set of 
model parameters. Samples from this distribution are provided 
with each of the core functions as well as useful summaries of 
the central tendency (median) of the posterior and uncertainty 
in estimates (credible intervals). Separate helper functions exist 
for estimating parental allele frequencies (est_p) (this can also 
be done within the three core functions), summarizing posterior 
distributions (pp_plot), and visualizing results (e.g., produc-
ing triangle interpopulation ancestry plots or plotting genomic 
clines). Additional functions for hierarchical geographic cline 
analyses are described in the Supporting Information (these 
are not the main focus of the software but are included for the 

+Pr
(
Gij=1|�ij,P0i,P1i

)
Pr
(
Gij=1

)
+Pr

(
Gij=2|�ij,P0i,P1i

)
Pr
(
Gij=2

)

(4)Pr
(
Zij|�ij

)
∝ �

Zij
ij

(
1−�ij

)Nij−Zij

 2
0
4
5
7
7
5
8
, 2

0
2
4
, 1

1
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/ece3

.7
0
5
4
8
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

2
/0

4
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n

s L
icen

se



6 of 20 Ecology and Evolution, 2024

convenience of users interested in hierarchical geographic cline 
models). We assume that reasonable filtering and quality con-
trol of the genetic data have been completed prior to analysis 
with bgchm.

We have made the core functions modular for flexibility and ease 
of scaling though this comes at the cost of not fully propagating 
uncertainty in parental allele frequencies and hybrid indexes in 
genomic cline analyses (this is an unfortunate but somewhat 
necessary trade- off). Consequently, the parental allele frequen-
cies required for hybrid index, ancestry class proportions, and 
genomic clines can be estimated within bgchm or provided 
from other software. Likewise, the hybrid indexes used in the 
genomic cline analysis can be estimated for all or a subset of loci 
and can be inferred within bgchm or using other software (e.g., 
these could be admixture proportions from a model with k = 2 
in structure; Pritchard, Stephens, and Donnelly 2000). This 
set- up allows for extensive parallelization of cline fitting and 
thus makes it possible to run bgchm on genome- scale data sets 
as long as one has access to sufficient computational resources. 
Specifically, a standard analysis can begin by estimating hybrid 
indexes based on a moderate number of loci; several hundred 
to a thousand will generally be sufficient to obtain precise esti-
mates of hybrid indexes. Then, for modest sized data sets (up to 
a few thousand loci and a few hundred hybrids), the full set of 
loci can be analyzed in a single hierarchical model (the standard 
model described above). For larger data sets (more than a thou-
sand individuals or loci, and up to millions of SNPs), a subset of 
hundreds or a few thousand (unlinked or loosely linked) loci can 
be fit in an initial hierarchical model to estimate the cline stan-
dard deviation parameters, �v and �c. These parameters can then 
be fixed at their point estimates and the clines for the remain-
ing loci can be fit in batches (and thus in parallel across CPUs 
or computer nodes) using these estimated standard deviations 
(runtimes for individual SNPs are on the order of a few seconds). 
This gains most of the benefit of using a hierarchical modeling 
framework without the cost of needing to fit clines for a very 
large number of loci in a single model. Additional parallelization 
is possible for all analyses by running multiple HMC chains in 
parallel (this is done within the bgchm program). We provide an 
example of batch parallelization of loci in the bgchm repository 
(https:// github. com/ zgomp ert/ bgc-  hm), including a UNIX shell 
script to control the batch parallelization, and we have success-
fully used this approach to fit clines for > 1 million SNPs in about 
2 days on a single compute node with 48 CPUs.

As noted above in Section 2.1, the hierarchical prior structure 
for the standard genomic cline model results in soft centering of 
the cline parameters, such that the mean of the cline parameters 
(on the appropriate log or logit scale) is shrunk towards zero. 
However, this is not the same as a hard, sum- to- zero constraint, 
as implemented in the original bgc program (Gompert and 
Buerkle  2012), which forces the mean of the cline parameters 
to be zero. We found that trying to enforce a hard sum- to- zero 
constraint within the HMC algorithm dramatically degraded 
performance of the algorithm. Moreover, a hard sum- to- zero 
constraint would only be possible when fitting all loci in a single 
model. We have thus instead opted to use soft centering, while 
also providing a function, sum2zero, that applies a sum- to- zero 
constraint to a set of cline parameter estimates after model fit-
ting. This can be done based on the full HMC output (preferable 

when practical) or simply as an adjustment to the parameter 
estimates (useful when saving the full HCM output for all loci 
is computationally burdensome). Either of these options can be 
applied after batch processing of cline estimation for many loci 
and thus makes it possible to apply a sum- to- zero constraint to 
genome- scale data. We think this is advisable in most cases, at 
least when the loci used to estimate hybrid indexes are the same 
or a random subset of those used to estimate clines. We think this 
because the genomic clines are, by definition, deviation from av-
erage introgression. In some cases, the soft centering might be 
sufficient to effectively constrain the mean of cline parameters 
to zero such that applying the hard sum- to- zero constraint is not 
necessary, but in other cases, including in the example empirical 
analysis we present, this is not true (this will depend—in ways 
that are yet to be fully investigated—on the distribution of hy-
brid indexes, variability of clines among loci, and other aspects 
of the data set and posterior distribution).

2.3   |   Analyses of Simulated Data Sets

We analyzed a series of simulated data sets to illustrate and 
evaluate the performance of the bgchm package. Aspects of 
this or related models have been analyzed extensively elsewhere 
and thus are not treated in depth here. For example, Gompert, 
Parchman, and Buerkle  (2012) evaluated the concordance be-
tween loci with exceptional genomic cline parameters (from the 
original bgc model) and loci causally affecting fitness (this var-
ies depending on the genetic architecture of fitness variation). 
Firneno et  al.  (2023) used simulations to assess the relation-
ship between Barton's theoretical coupling coefficient (�) and 
the cline standard deviations from the hierarchical Bayesian 
logit- logistic model described here. Firneno et  al.  (2023) then 
quantified these cline standard deviations across a series of em-
pirical data sets. Bailey (2024) examined the sensitivity of a non- 
hierarchical implementation of the logit- logistic cline model to 
the distribution of hybrid indexes. Here, our main focus is on 
demonstrating the general performance of the software and 
exploring specific aspects of these models or performance that 
have received less attention, including the effects of hierarchical 
modeling, allele frequency differences between parents, and our 
ability to accurately estimate cline standard deviations.

2.3.1   |   Analyses of Simulations of Hybrid Indexes 

and Ancestry Class Proportions

We first conducted simulations to evaluate the ability of bgchm 
to accurately estimate hybrid indexes and ancestry class pro-
portion from genetic data. Simulations were conducted using 
dfuse under a model of neutral secondary contact (Lindtke 
and Buerkle 2015). The program dfuse implements individual- 
based simulations to model a hybrid zone that forms following 
secondary contact. The program tracks hybrid indexes, ancestry 
class proportions (specifically our Q10), and ancestry junctions 
along chromosomes. As such, it provides a way to simulate hy-
brids where the core parameters for these models, H and Q, are 
known. We conducted 50 replicate simulations of 200 genera-
tions where hybridization occurs in a single admixed deme with 
an adult carrying capacity of 500. The migration rate from the 
parental populations to the deme was set to 0.1. We simulated 
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hermaphroditic, diploid organisms with ten chromosomes, each 
one Morgan in length. We output ancestry information for 51 
loci spaced evenly along each of the ten chromosomes (510 loci 
total). At the end of each simulation, we randomly sampled 50 
individuals from the hybrid zone deme for analysis. We then 
generated three genotypic data sets based on the output from 
each replicate simulation. Specifically, we sampled genotypes 
for each individual and locus based on the individual's local 
ancestry and assumed parental allele frequencies of (i) 0 and 
1, (ii) 0.25 and 0.75, (iii) or 0.45 and 0.55 for parents 0 and 1, 
respectively. This corresponds with parental allele frequency 
differences of 1 (fixed differences), 0.5 and 0.1. Genotypes were 
generated using binomial sampling (in R). From each of these 
genotypic data sets, we created an additional data set where the 
genotypes were uncertain. For this, we assumed the number of 
sequence reads for each individual and locus followed a Poisson 
distribution with � = 7 and these sequences had a 1% error rate 
(the inherent per- base pair error rate for Illumina sequences is 
∼0.31%, Schirmer et al. 2016). Reads were sampled in R based on 
the genotypes and these parameters, and the likelihood of each 
genotype was then computed from the reads assuming the 1% 
error rate. Thus, for each of the 50 initial simulated hybrid zones, 
we generated six genetic data sets: parental allele frequency dif-
ferences of 1, 0.5, or 0.1 with genotypes known or uncertain.

We then estimated hybrid indexes and ancestry class propor-
tions with bgchm using the est_hi and est_Q functions. 
We did this using the model for known genotypes or genotype 
likelihoods as appropriate and with default HMC conditions 
for these functions: four HMC chains with 2000 steps, includ-
ing 1000 warmup iterations. We used the known parental allele 
frequencies for the analysis. We summarized the posterior es-
timates of hybrid index and ancestry class proportions for each 
individual and simulated data set based on the posterior median 
(point estimate) and 90% credible intervals (CIs, specifically the 
90% equal- tail probability intervals). We then evaluated perfor-
mance by computing the mean absolute error (MAE) and the 
proportion of 90% CIs containing the true parameter value (90% 
CI coverage) for each data set.

2.3.2   |   Genomic Cline Analyses of Simulated 

Hybrid Zones

We next conducted a series of simulations and analyses to evalu-
ate the performance of the genomic cline models in bgchm. The 
first two sets of simulations were designed to evaluate the condi-
tions under which bgchm could accurately estimate genomic 
cline parameters. Unlike hybrid indexes and ancestry class pro-
portions, individual- based simulations, such as those in dfuse, 
do not generate known cline parameters. Thus, for these sets of 
simulations, we instead simulated hybrids using the logit- logistic 
genomic cline model as a generative model. The first set of sim-
ulations was designed to evaluate the effect of cline variability, 
that is variability in introgression across the genome, on our 
ability to accurately estimate cline parameters. For this, we con-
sidered three levels of cline variability: low (�v = 0.2 and �c 
= 0.5), moderate (�v = 0.4 and �c = 0.8), and high (�v = 0.6 and �c 
= 1.2) (for context, compare these to estimates of the same pa-
rameters across a series of empirical data sets in Firneno 
et  al.  2023). We simulated 50 data sets for each level of cline 

variability. In each case, we sampled the cline parameters v and 
c from normal distributions (on the log10 and logit scale, respec-
tively) with means of zero and standard deviations of �v and �c. 
Cline parameters were sampled for 100 loci per data set. We then 
sampled hybrid indexes for 50 hybrids per data set; these were 
drawn from a uniform distribution bounded by 0 and 1. We then 
computed the locus- specific ancestry for each locus i and indi-
vidual j based on the cline parameters and hybrid index, 

�ij = H
vi
j
∕
(

H
vi
j
+
(

1 −H
vi
j

)

eui
)

, with ui = logit
(

ci
)

vi. Local an-

cestry states for each locus and individual (Zij) were then sam-
pled from a binomial distribution with two draws using �ij as the 
probability of ancestry from source population 1. In these initial 
simulations, we assumed fixed differences between source pop-
ulations, such that ancestry was fully informative of state.

We then estimated cline parameters for each of the 150 data sets 
(50 replicates with each of three cline standard deviations). We 
analyzed the data using the standard hierarchical Bayesian ge-
nomic cline model in bgchm and with two alternative models: (i) 
a non- hierarchical variant of the genomic cline model in bgchm 
with the prior cline standard deviation set to be relatively unin-
formative (�c and �v = 100) and the corresponding logit- logistic 
genomic cline model in HIest (version 2.0; Fitzpatrick 2013a). 
The comparison with the non- hierarchical model was done to 
evaluate the effect of modeling the clines hierarchically versus 
not doing so. The comparison with HIest was chosen as this 
was the initial software developed to fit this form of genomic cine 
model (with a non- hierarchical model) and thus serves as a gen-
eral check on the quality of our inference. Notably, only the hier-
archical model provides a means to estimate the cline standard 
deviations and HIest requires fixed differences between parents 
(hence our focus on loci with fixed differences for this initial set 
of simulations). Genomic clines in HIest were fit using the L- 
BFGS- B algorithm. Models fit with bgchm used default HMC 
settings of 2000 iterations, including a 1000 iteration warmup, 
and no thinning. Four chains were run. For the hierarchical 
models, the priors on the standard deviations for �v and �c were 
normal with means of 0 and standard deviations of �0 = 2. We 
used the known parental allele frequencies and hybrid indexes 
for all analyses (with the caveat, the parental allele frequencies of 
0.001 and 0.999 were used rather than 0 and 1 to avoid problems 
with infinite probabilities during computation).

We conducted a second set of simulations to evaluate the effects 
of allele frequency differences between source populations and 
uncertainty in genotypes on the ability of bgchm to estimate ge-
nomic cline parameters. For this, we again simulated data using 
the logit- logistic genomic cline model as a generative model. 
Here, we considered only a case of intermediate variability in in-
trogression across the genome, that is, �v 0.3 = and �c = 0.7 (this 
is between the low and moderate variability cases considered for 
the first set of simulations). We simulated three levels of allele 
frequency differences between source populations: (i) fixed dif-
ferences, (ii) SNPs with a minimum allele frequency difference 
of 0.5, and (iii) SNPs with a minimum allele frequency differ-
ence of 0.1. In each case, actual allele frequency differences for 
each SNP were sampled from a uniform distribution bounded 
by 1 and the specified lower bound (e.g., 0.5 or 0.1). Thus, allele 
frequency differences varied among loci (except in the case of 
all fixed differences), as would be expected for many empirical 
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data sets. We simulated 50 data sets comprising 100 loci and 50 
hybrids for each level of minimum allele frequency differences. 
Then, for each simulation, we generated an additional, comple-
mentary data set with uncertain genotypes. This was done as 
described above for the hybrid index and ancestry class propor-
tion analyses. Specifically, we again assumed a Poisson distrib-
uted number of reads per individual and locus (� = 7) and 1% 
sequence error rate.

Next, we estimated genomic cline parameters for each of the 
300 simulated data sets (50 replicates for each level of allele fre-
quency differences and for genotypes known versus uncertain) 
using the hierarchical model from bgchm. We did not include 
the comparison with HIest as this program requires diagnostic 
allele frequency differences between source populations and we 
kept our focus on the hierarchical model to evaluate inferences 
of cline standard deviations. We used the default HMC settings 
of 2000 iterations, including a 1000 iteration warmup, and no 
thinning. Four chains were run. Priors on the standard devia-
tions for �v and �c were normal with means of 0 and standard 
deviations of �0 = 2. We again used the known parental allele 
frequencies and hybrid indexes for all analyses.

2.3.3   |   Genomic Cline Analyses of Hybrid Zones 

Simulated With Dfuse

We then conducted a third set of simulations to examine the 
relationship between the genetic architecture of hybrid fitness 
and cline parameters, including both clines for individual loci 
and the cline parameter standard deviations. These simulations 
were not meant to be exhaustive but rather to complement ex-
isting simulation- based studies of genomic clines in the context 
of the genetics of isolation in hybrids and cline coupling (e.g., 
Gompert, Parchman, and Buerkle  2012; Firneno et  al.  2023). 

Our purpose was to illustrate how different genetic architec-

tures of hybrid fitness can leave different patterns in genomic 

clines and how these relate to patterns that might arise in the 

absence of selection.

Hybrid zones were simulated using dfuse (Lindtke and 

Buerkle  2015). We described this software and model previ-

ously in the context of the simulations used to assess our hybrid 

index and ancestry class proportion models. In these individual- 

based simulations, cline parameters are not strictly defined–it is 

not guaranteed that the patterns of introgression will conform 

precisely to the form specified by the genomic cline model nor 

are the parameters of such a model defined by the simulation 

conditions. Thus, we do not use these simulations to assess 

the accuracy of the bgcmh model per se but rather to evaluate 

how cline parameter estimates are affected by the simulation 

conditions. Here, we assumed that hybrid fitness is determined 

by N underdominant loci, such that the fitness of an individ-

ual heterozygous for ancestry at n of the N loci is wj = (1− s)n, 

where s is the selection coefficient (the underdominance model 

was added to dfuse in Firneno et al.  (2023). We simulated ten 

replicate data sets under four different hybrid zone models. All 

simulations involved secondary contact, 15 demes for the hybrid 

zone, an adult carrying capacity of 100 individuals per deme, 

a migration rate of 0.05 between neighboring demes, and 5000 

generations of evolution post secondary contact. We simulated 

hermaphroditic, diploid organisms each with one, 1 Morgan 

chromosome. We recorded ancestry at 251 evenly spaced loci 

along the chromosome of each individual. One set of simulations 

involved no selection (i.e., neutral evolution by drift and gene 

flow only). A second set assumed an oligogenic architecture of 

fitness with two underdominant loci with s = 0.3 at positions 

25 cM and 75 cM along the chromosome (an individual heterozy-

gous at both loci would have a relative fitness of 0.49). The third 

set of simulations considered a polygenic architecture with weak 

selection overall, specifically 50 underdominant loci distributed 

at even distances across the chromosome and with s = 0.005 per 

locus (an individual heterozygous at all 50 loci would have a rel-

ative fitness of 0.78). The last set of simulations was of strong 

polygenic selection, which again involved 50 evenly distributed 

underdominant loci but with s = 0.01 (an individual heterozy-

gous at all 50 loci would have a relative fitness of 0.61).

We randomly sampled 100 individuals from each simulated hy-

brid zone for analysis. We assumed fixed differences between 

source populations at the 251 loci, such that ancestry was per-

fectly informative of genotype. Genomic cline parameters were 

estimated using the standard hierarchical model in bgchm. We 

used the known hybrid indexes and parental allele frequencies 

of 0.001 and 0.999. We again used the default HMC settings of 

four chains each comprising 2000 iterations including a 1000 it-

eration warmup and no thinning. We set normal priors for �v 

and �c with means of 0 and standard deviations of �0 = 2.

2.4   |   Analysis of an Example Empirical Data Set

Lastly, to demonstrate possible usages of the genomic cline mod-

els in bgchm, we applied them to an empirical genetic data set 

from a hybrid zone in Lycaeides butterflies. The data set was orig-

inally published and analyzed in Chaturvedi et al.'s (2020). Two 

nominal species of Lycaeides butterflies, L. idas and L. melissa, 

occur throughout much of western North America with par-

tially overlapping ranges (Nabokov 1943; Gompert et al. 2010, 

2014). These species differ on average in terms of the structure of 

the male genitalia (Nabokov 1944; Gompert et al. 2010), aspects 

of wing pattern (Lucas, Nice, and Gompert 2018), host plant spe-

cies used, and voltinism (Gompert et al. 2013) but nonetheless 

have hybridized extensively (Gompert et  al.  2010, 2012a; Nice 

et  al.  2013; Gompert et  al.  2014; Chaturvedi et  al.  2020). An 

ancient, partially stabilized series of admixed populations oc-

curs in the central Rocky mountains and Jackson Hole, which 

we refer to as Jackson Hole Lycaeides. These populations are 

the product of hybridization between L. idas and L. melissa 

that occurred about 14,000 years ago following the retreat of 

Pleistocene glaciers. More recently, Jackson Hole Lycaeides have 

come into secondary contact with L. melissa near the town of 

Dubois, WY (43.5623°N, 109.6991°W) where L. melissa feed on 

naturalized alfalfa (Medicago sativa) that grows along roadsides 

and that was introduced to North America about 250 years ago. 

This recent secondary contact has resulted in a contemporary 

hybrid zone (Chaturvedi et al. 2020; Zhang et al. 2023), which is 

the focus of our analyses here. Our goals here are to use bgchm 

to characterize the genomic composition of this hybrid zone 

in terms of hybrid indexes, ancestry class proportions, and ge-

nomic cline parameters. We then specifically examine the extent 

to which clines differ on average between autosomes and the Z 
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sex chromosome and as a function of features of the genome 

(gene and transposable element density).

We focus on a data set comprising the Dubois hybrid zone 

(N = 115) individuals, three populations representative of source 

Jackson Hole Lycaeides (set as source 0, N = 166), and two pop-

ulations representative of source L. melissa populations (set as 

source 1, N = 117) (see Figure  S1). We identified ancestry in-

formative loci from a larger set of 39,193 SNPs generated from 

genotyping- by- sequencing data (see Chaturvedi et  al.  2020 for 

details, including variant filtering and genotype inference). We 

specifically considered ancestry- informative SNPs, here defined 

as those with an allele frequency difference of 0.3 or greater be-

tween our source populations; this yielded a total of 500 ancestry 

informative SNPs (330 such SNPs on the 22 autosomes and 170 

on the Z chromosome). We began by estimating hybrid indexes 

and ancestry class proportions based on this full data set with the 

est_hi and est_Q functions in bgchm. This was done using 

the known genotype model with maximum likelihood estimates 

of parental allele frequencies derived from Bayesian point esti-

mates of genotypes. We treated Z- linked SNPs in females as hap-

loid. We used the default HMC conditions for these functions, 

that is four HMC chains with 2000 steps, including 1000 war-

mup iterations and no thinning. We summarized the posterior 

estimates of hybrid index and ancestry class proportions for each 

individual based on posterior medians and 90% CIs.

We next fit several genomic cline models to illustrate different 

ways cline estimates can be used to make inferences. First, as the 

primary analysis, we fit a single hierarchical genomic cline model 

using all 500 SNPs. Here, we used the hybrid indexes estimated 

from the full data set, maximum likelihood estimates of parental 

allele frequencies, and again treated Z- linked SNPs as haploid in 

females. We fit the model with the default HMC conditions–four 

chains each comprising 2000 iterations including a 1000 iteration 

warmup and no thinning–with the prior mean for the cline stan-

dard deviations set to 0 and the prior standard deviations set to 2 

(i.e., �c and �v were estimated from the data). We applied the sum- 

to- zero constraint to cline estimates from this analysis.

We then fit an additional pair of genomic cline models to di-

rectly ask whether patterns of introgression differed on average 

for autosomes versus the Z chromosome. For this, we used hy-

brid indexes estimated only from the autosomes. Genomic cline 

parameters for the autosomes and Z chromosome were then es-

timated separately, that is, in separate fits of genomic cline mod-

els. Here, not only did we estimate the cline standard deviations 

from the data (�c and �v) but also the mean (�c and �v). Because 

the hybrid indexes were based on the autosomal data, the ex-

pected means for the autosomal SNPs were �c = 0 and �v = 0. 

However, this was not true for the Z chromosome SNPs and the 

values of �c and �v for these SNPs thus indicate the extent and 

manner in which patterns of introgression deviate on average 

for Z- linked SNPs versus autosomes. With that said, the values 

of �c and �v for autosomes are not forced to be 0, and thus, we 

based our inferences on the difference in �c and �v for Z for au-

tosome SNPs (specifically, on the posterior distribution for such 

differences). These models were also fit the default HMC condi-

tions, but with normal priors on �c and �v, both with means of 0 

and standard deviations of �0 = 2.

We conducted a final set of cline model fits to explicitly compare 

the variability of clines across autosomes versus the Z chromo-

some relative to the average introgression on autosomes versus 

the Z chromosome. For this, we estimated hybrid indexes sep-

arately for autosomal and Z loci; we then fit hierarchical cline 

models for these sets of loci separately using the autosomal and 

Z- based hybrid indexes, respectively. We fixed cline means to 

0 (as per the standard model) and estimated the cline standard 

deviations, �c and �v, which were the main focus of this analy-

sis. This was again done with the standard HMC settings with 

the standard deviation of the normal prior on the cline standard 

deviations set to �0 = 2. For all analyses we summarized the pos-

terior estimates of cline parameters (v and c), hierarchical cline 

standard deviations, and hierarchical cline means based on pos-

terior medians and 90% CIs.

3   |   Results

3.1   |   Analyses of Simulated Data Sets

3.1.1   |   Results for Simulations of Hybrid Indexes 

and Ancestry Class Proportions

Example graphical summaries of hybrid index (H) and inter-

population ancestry (Q10) estimates are shown in Figure 2A,B. 

In general, performance was slightly better for hybrid index 

than interpopulation ancestry (Table  S1 and Figure  2). Mean 

absolute error (MAE, the average deviation between true and 

estimated parameter values) increased with decreasing allele 

frequency differences, that is, with reduced information on 

ancestry in the genotypic data (Figure 2). However, even with 

allele frequency differences of 0.1, average MAEs were below 

0.14 for H and 0.17 for Q10 (Table S1). Moreover, 90% credible in-

tervals generally contained the true parameter value 90% of the 

time or more. Indeed, for the simulations with the greatest allele 

frequency differences (i.e., 1; fixed differences), the CIs appear 

to be conservative, with the true values of H and Q10 almost al-

ways falling within the 90% CIs. Inferences based on appropri-

ately modeled uncertain genotypes were nearly as accurate as 

those based on known genotypes (Table S1 and Figure 2).

3.1.2   |   Results From Genomic Cline Analyses 

of Simulated Hybrid Zones

Example clines for loci with fixed differences and with low 

(�v = 0.2 and �c = 0.5), moderate (�v = 0.4 and �c = 0.8), and high 

(�v = 0.6 and �c = 1.2) variability in introgression across the 

genome are shown in Figure 3A. Under these conditions, esti-

mated cline standard deviations were highly correlated with the 

true cline standard deviations, with Pearson correlations of 0.97 

(95% confidence interval = 0.96–0.98) and 0.97 (95% confidence 

interval = 0.95–0.98) for �v and �c, respectively (Figure  3B,C). 

With that said, when cline variability was high, variation was 

somewhat underestimated, such that the mean estimates of �v 

and �c for the highest variability case were 0.50 and 1.09 com-

pared to the true values of 0.6 and 1.2. Such a bias was not appar-

ent for the low variability simulations (mean �v = 0.20 and mean 

�c = 0.47, compared to true values of 0.2 and 0.5).
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FIGURE 2    |    Example results and summary evaluation of model performance for estimating hybrid index (H) and interpopulation ancestry (Q10). 

Panel (A) shows point estimates of hybrid index (black points) and 90% credible intervals (CIs) (vertical lines) for 100 individuals. This is based on 

100 loci with fixed differences between parental populations. Pink points show the true, simulated hybrid index values. The triangle plot in panel 

(B) shows interpopulation ancestry estimates (Q10) as a function of hybrid index (H) for the same simulated individuals. Point colors indicate true 

parameter values (in increments of 0.1) and lines (the triangle) denote maximum values of interpopualtion ancestry for a given hybrid index. Points 

on or near this line denote likely offspring with one non- hybrid parent. Panels (C)–(F) summarize model performance for 50 replicate simulations 

each with allele frequency differences (AFDs) between parents of 1.0, 0.5, or 0.1 and known or uncertain genotypes. Panels (C) and (D) summarize 

mean absolute error for estimates of H and Q10, respectively. Boxes indicate the median and 1st and 3rd quartiles of the distribution across replicate 

simulations, with whiskers extending up to 1.5 × the interquartile range. The overlain points show metrics for individual replicates. Panels (E) and 

(F) similarly summarize the proportion of loci where the true parameter value is within the 90% CI of the Bayesian estimate for H (E) and Q10 (F). 

The horizontal dashed line denotes the expectation of 90% for a 90% CI.
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With regard to individual cline parameters, MAE was generally 

higher when clines were more variable, and likewise, correlations 

between true and estimated values declined (more so for slope 

than center) (Table S2, Figure 3). In general, bgchm outperformed 

HIest, especially when cline variability was high. The hierar-

chical and non- hierarchical models performed similarly, but with 

slightly better performance in terms of error and correlations with 

true parameter values for the hierarchical model, especially when 

cline variance was low (Table S2). As expected, our results also 

suggest that, relative to the non- hierarchical model with weakly 

informative priors, the hierarchical model is conservative in the 

sense that it induces some shrinkage towards zero into the param-

eter estimates (see Table S3). Furthermore, �v and �c can only be 

estimated as model parameters in the hierarchical model.

We next considered the effects of source allele frequency differ-

ences and genotype uncertainty on estimates of genomic cline 

parameters with the hierarchical model in bgchm. We found 

that cline standard deviation estimates (�v and �c) were most ac-

curate for fixed differences and became progressively less accu-

rate with low levels of allele frequency differences (Figure 4A,B). 

When the minimum allele frequency difference between source 

populations was 0.1, there was a tendency to overestimate the 

variability in cline slopes (true �v = 0.3, mean point estimate 

for known genotypes = 0.39) and underestimate the variability 

in cline centers (true �c = 0.7, mean point estimate for known 

genotypes = 0.58). Uncertainty in genotypes had little effect on 

estimates of cline standard deviations (Figure 4A,B). Similarly, 

cline parameter estimates were most accurate in terms of both 

MAE and the correlation with true parameter values when allele 

frequency differences were high and were less accurate when 

they were low (e.g., 0.1; Table S4, Figure 4). Uncertainty in gen-

otypes tended to further decrease the accuracy of estimates but 

only to a minor extent (see Table S4, Figure 4). Moreover, the 

average proportion of loci where the true parameter value was 

contained in the 90% CIs was only weakly affected by allele 

frequency differences or genotype uncertainty suggesting that 

the uncertainty in clines caused by weak genetic differentiation 

between sources is mostly captured by the uncertainty in pa-

rameter estimates (Table  S4). With that said, there was slight 

tendency overall to underestimate cline uncertainty (i.e., be-

tween 80% and 88% of the 90% CIs contained the true value rel-

ative to the expectation of 90%).

3.1.3   |   Results From Genomic Cline Analyses of Hybrid 

Zone Simulated With Dfuse

Our final analysis of simulated hybrid zones involved various 

genetic architectures for hybrid fitness with dfuse. Overall, 

stronger selection (oligenic or strong polygenic) resulted in a 

steeper geographic clines in hybrid indexes across the hybrid 

zones (Figure  5). However, all four sets of conditions resulted 

in similar numbers of loci with credible deviations from null 

expectations for cline slopes (v) and centers (c) (Table  S5 and 

Figure 5). We observed notable variation in cline standard de-

viations across simulated data sets, with a trend towards larger 

slope variances (�v) for oligogenic selection (Figure 5I).

Despite similar numbers of loci with clines deviating from null 

expectations, we did find patterns of cline variation consistent 

with the effects of selection. Specifically, for oligogenic se-

lection and strong polygenic selection, there was a significant 

(all p < 0.05) negative correlation between the log of v and the 

distance a marker locus was from an underdominant locus 

(Pearson correlations ranged from −0.34 to −0.49 for oligo-

genic selection and − 0.11 to −0.23 for strong polygenic selec-

tion; Table  S6 and Figure  5). Negative correlations were also 

observed for weak polygenic selection (range = −0.04 to −0.11), 

but these were not significantly different from 0 (all p > 0.05) 

(Table S6 and Figure 5). No underdominant loci were present in 

the neutral simulations, thus, as expected, we found small and 

non- significant (and mostly positive) correlations between cline 

slopes and the locations used for underdominant loci in the poly-

genic simulations (range = −0.02 to 0.06) (Table S6); this demon-

strates that large negative correlations do not arise inherently in 

the absence of selection.

Interestingly, we detected positive correlations between the ab-

solute value of logit cline centers and the location of underdom-

inant loci in the oligogenic simulations and most of the strong 

polygenic simulations (positive in all ten of the latter, but signifi-

cantly greater than 0 with p < 0.05 for eight of the simulations; 

Table S7, Figure S2). A similar but non- significant pattern was 

documented for weak polygenic selection, and no such pattern 

was found for neutral simulations (again based on the locations 

of underdominant loci in polygenic simulations). Thus, at least 

with stronger selection, simulated SNPs near underdominant 

loci have steeper cline slopes (larger, positive values of v) but 

also cline centers closer to the genome- wide null expectation, 

suggesting that selection resulted in steeper clines but more con-

strained (coincident) centers.

3.2   |   Analysis of an Example Empirical Data Set

We estimated hybrid indexes, ancestry class proportions, and 

genomic cline parameters for 500 ancestry- informative SNPs 

in a Lycaedies butterfly hybrid zone (Figure  6). Estimates of 

hybrid indexes were generally precise (mean width of the 90% 

CIs = 0.061) and spanned the full range from only ancestry 

from source population 0 (i.e., Jackson Hole Lycaeides) to only 

ancestry from source population 1 (i.e., L. melissa) (Figure 6B). 

Ancestry class proportion estimates suggest a wide range of ge-

nome compositions in hybrids, including some individuals with 

near maximal interpopulation ancestry for their hybrid indexes 

(i.e., individuals with one or more non- admixed parents, that 

is F1s or backcrosses) and individuals where both parents were 

likely themselves hybrids (i.e., individuals with lower levels of 

interpopulation ancestry given their hybrid indexes; Figure 6C).

Genomic cline analysis of all 500 SNPs detected substan-

tial genome- wide variation in introgression (Figure  6D–F). 

Overall, patterns of introgression deviated from null expec-

tations based on genome- average admixture for 218 out of the 

500 loci (Table S8). This includes 40 loci with credibly steeper 

clines than null expectations (v > 1), of which 39 were on the Z 

chromosome. This is a significant enrichment of steep clines on 

the Z chromosome (randomization test, 1000 randomizations, 

expected = 13.7, p = 0.001). We detected 48 loci with credible ex-

cesses in Jackson Hole Lycaeides (c > 0.5) or L. melissa (c < 0.5) 

ancestry, with enrichments of both types of excesses on the Z 
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chromosome (randomization tests, 1000 randomizations each; 

c > 0.5, Z observed = 23, Z expected = 16.4, p = 0.022; c < 0.5, Z 

observed = 37, Z expected = 23.8, p = 0.001).

In general, variability in introgression among loci can reflect the 

joint effects of selection and genetic drift. A role for selection 

predicts associations between cline parameters and genomic 

features, such as chromosome size and genomic content (e.g., 

Schumer et al. 2018; Chaturvedi et al. 2020). Along these lines, 

we found a modest and marginally significant positive associa-

tion between chromosome size and mean log cline slope or gra-

dient (v) when considering the subset of chromosomes with at 

least five ancestry informative SNPs (linear regression, df = 17, 

� = 2.6 × 10
−8, s.e. = 1.4 × 10

−8, r2 = 0.18, model p = 0.017). This 

would be expected if loci on larger chromosomes were affected 

on average more by indirect selection because of a lower rate 

FIGURE 3    |     Legend on next page.
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of recombination per base pair (and thus higher average link-

age disequilibrium). We found no evidence of steeper clines in 

or near (within 1 kb) genes (randomization test, 1000 random-

izations, p = 0.792) but did find evidence of significantly steeper 

clines in or near annotated transposable elements (randomiza-

tion test, 1000 randomizations, p = 0.011). Together these results 

suggest some role for selection in clinal patterns and highlight 

different patterns of introgression for autosomes and the Z chro-

mosome. We followed up on this latter possibility with formal 

analyses comparing these sets of chromosomes.

In cline models based on autosomal hybrid indexes, we found 

credibly steeper clines on average for the Z chromosome than 

for autosomes (posterior probability �v for Z was greater than 

�v = 0.999 for autosomes, estimate of difference = 0.118, 90% 

CIs = 0.055–0.181; Figure 6H). This is consistent with stronger 

selection (or reduced recombination) in hybrids on the Z chro-

mosome, especially as drift has a much more pronounced effect 

on cline centers than slopes in the absence of spatial structure 

(Gompert, Parchman, and Buerkle  2012). When considering 

cline slopes inferred from fully independent analyses of auto-

somes and Z loci (for hybrid indexes and clines), we found a trend 

towards more variability of introgression on the Z relative to av-

erage introgression on the Z (�v = 0.355, 90% CI = 0.296–0.415) 

versus variability of introgression on the autosomes rela-

tive to average introgression on autosomes (�v = 0.325, 90% 

CI = 0.273–0.374), but there was sufficient uncertainty in both 

parameters to preclude strong confidence in the difference sug-

gested by this trend (posterior probability Z > autosomes = 0.748, 

see Figure 6I). Still, taken together, these results point to a spe-

cial role for the Z sex chromosome in speciation in Lycaeides but-

terflies (consistent with Chaturvedi et al. 2020).

4   |   Discussion

Genomic analyses of hybrid zones provide unique and powerful in-

sights into the nature and basis of species boundaries and the eco-

logical and evolutionary consequences of hybridization (Harrison 

and Larson 2014; Gompert, Mandeville, and Buerkle 2017). Here, 

we described, demonstrated and assessed bgchm, a new R pack-

age designed to facilitate genomic analyses of hybrid zones. This R 

package combines methods and models for Bayesian inference hy-

brid indexes, ancestry class proportions, and genomic clines (and 

also geographic clines, see the Supporting Information, Table S9 

and Figure S3) with HMC. We showed that bgchm provides ac-

curate estimates of the relevant model parameters under a variety 

of conditions and especially when the genetic loci are highly in-

formative of ancestry (i.e., when the allele frequency differences 

between source populations are not too small). This even includes 

reasonably robust estimates of the variability of clines across the 

genome via inference of cline standard deviations, which have not 

been the focus of previous models and methods. The models pre-

sented also allow for inference with uncertainty in genotypes, and 

we showed that at least with modest sequencing coverage this has 

minimal effect on the accuracy of inferences. Finally, we found 

that under most conditions true uncertainty in parameters was ac-

curately estimated, although in some cases credible intervals were 

overly conservative (e.g., hybrid indexes with fixed differences be-

tween parents) or too narrow (e.g., genomic cline parameters in 

some cases).

Our results from simulated and empirical data sets build on 

our existing understanding of how evolutionary processes in-

teract to affect patterns of introgression in hybrid zones (e.g., 

Endler 1977; Barton and Hewitt 1985; Gompert, Parchman, and 

Buerkle 2012; Harrison and Larson 2016; Gompert, Mandeville, 

and Buerkle  2017; McFarlane et  al.  2021). For example, when 

hybrid fitness has a simple genetic architecture, loci residing 

in genomic regions proximate to causal variants affecting hy-

brid fitness had exceptional genomic cline parameters, consis-

tent with Gompert, Parchman, and Buerkle (2012). The effects 

of selection on individual genomic cline parameters were less 

pronounced for weaker and more polygenic selection, though 

some signals remained in terms of cline parameters varying as a 

function of distance from causal variants in simulations and dif-

ferences among classes of loci (those near transposable elements 

or on the Z sex chromosome versus autosomes) for the Lycaeides 

hybrid zone. This suggests that when the genetic architecture 

of hybrid fitness is polygenic, it is probably more informative to 

focus on such higher level contrasts, including cline standard de-

viations (which can sometimes be related to cline coupling, see, 

e.g., Firneno et al. 2023) rather than so- called individual outlier 

loci as patterns of introgression for neutral and non- neutral loci 

can be similar. It is also critical to recall that selection is not 

required for introgression to vary across the genome and for loci 

to deviate from null patterns of introgression based on genome- 

wide admixture, as illustrated by our simulations of neutral 

secondary contact. Indeed, selection can either increase or de-

crease the variation in introgression across the genome, with 

the former expected for simple genetic architectures and the 

latter expected for coupled clines when many loci contribute to 

reproductive isolation (Barton 1983; Firneno et al. 2023). Thus, 

additional information beyond deviations from genome- average 

FIGURE 3    |    Summary of genomic cline variability and the effect of such variability on cline inference. Panel (A) shows simulated genomic clines 

with low (�v = 0.2 and �c = 0.5), moderate (�v = 0.4 and �c = 0.8), and high (�v = 0.6 and �c = 1.2) variability in introgression. Each gray line is the cline 

for a locus and gives the probability of ancestry from source 1 as a function of hybrid index (the overall proportion of the genome from source 1). The 

null expectation if introgression does not vary across the genome is given by the dashed black line. Estimates of cline standard deviations for slope, 

�v, and center, �c, are shown in panels (B) and (C), respectively. Here, point estimates and 90% credible intervals (CIs) are depicted with points and 

vertical lines. Horizontal dotted lines give the true value used for each simulation. Performance, in terms of estimating cline slopes (v) and centers, 

is summarized based on mean absolute error in panels (D) and (E) and in terms of the correlation between true and estimated parameter values in 

panels (F) and (G). Errors and Pearson correlations were computed based on parameter point estimates (posterior medians) and are summarized 

across replicate simulations with boxplots. Boxes indicate the median and 1st and 3rd quartiles of the distribution across replicate simulations, with 

whiskers extending up to 1.5 × the interquartile range. The overlain points show metrics for individual replicates. Performance of bgchm using a 

simple non- hierarchical model and a hierarchical model are shown, as are results from HIest (for HIest, cases where the algorithm failed are 

excluded).
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FIGURE 4    |    Summary of the effects of source allele frequency differences and genotype uncertainty on genomic cline inference. All panels show 

results based on minimum source allele frequency differences of 1, 0.5 and 0.1 and with or without uncertainty in genotypes as indicated by the colors 

and associated legend. Panels (A) and (B) provide estimates of cline standard deviations for slope, �v, and center, �c, respectively. Points and vertical 

lines depict point estimates and 90% credible intervals (CIs) Horizontal dotted lines give the true value used for �v (A) and �c (B). Model performance 

for genomic cline parameters (v and c) is summarized based on mean absolute error in panels (C) and (D) and based on the correlation between true 

and estimated parameter values in panels (E) and (F). Errors and Pearson correlations were computed based on parameter point estimates (posterior 

medians) and are summarized across replicate simulations with boxplots. Boxes indicate the median and 1st and 3rd quartiles of the distribution 

across replicate simulations, with whiskers extending up to 1.5 × the interquartile range. The overlain points show metrics for individual replicates.
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introgression is required to infer processes from patterns in hy-

brid zones; we expand on this topic in the section 4.2.

4.1   |   Comparison With Other Software

Several computer programs exist for genetic analyses of hybrid 
zones, and thus, it is worth considering how this newly intro-
duced R package, bgchm, fits in with existing software. To our 
knowledge, four main programs are currently available for esti-
mating genomic clines. The earliest of these was introgress 
(Gompert and Buerkle  2010), which adopts a multinomial 
likelihood- based approach to estimate genomic clines for mul-
tilocus genotypic data (Gompert and Buerkle 2009, 2010). This 
program does not consider ancestry but is unique in separately 
modeling introgression of homozygous versus heterozygous 

genotypes. The original bgc (Gompert and Buerkle  2012) fits 
Bayesian genomic clines in ancestry using a hierarchical model 
and a polynomial function for clines adapted from Szymura and 
Barton's  (1986). This software has many similarities with our 
new bgchm, including the basic hierarchical modeling approach 
and the ability to work with genotype uncertainty. However, 
bgc is less modular (all loci must be fit together) and uses tra-
ditional Markov chain Monte Carlo, which exhibits notably 
poorer mixing. These features make bgc less well- suited for 
genome- scale data and for estimating cline standard deviations 
(these tend to mix especially poorly and are generally treated 
as nuisance parameters). HIest features multiple cline models 
and approaches to model fitting but takes a non- hierarchical 
approach and assumes fixed differences between source popu-
lations (Fitzpatrick 2012). Finally, the recently released gghy-
brid (Bailey 2024) shares many aspects with bgchm including 

FIGURE 5    |    Summary of genomic cline analysis of hybrid zone simulations with alternative genetic architectures for hybrid fitness. Results 

are shown for neutral secondary contact, oligenic selection, weak polygenic selection and strong polygenic selections (see main text for details). 

Panels (A–D) show the distribution of hybrid indexes (HI) across demes and across 10 replicate simulations for each set of conditions. Boxes indicate 

the median and 1st and 3rd quartiles of the hybrid index distribution for each deme, with whiskers extending up to 1.5 × the interquartile range. 

The overlain points denote individual hybrid indexes. Panels (E–H) show genomic clines from 100 representative loci for each set of conditions. 

Each colored line is the cline for a locus and gives the probability of ancestry from source 1 as a function of hybrid index. The null expectation if 

introgression does not vary across the genome is given by the dashed black line. Point estimates of cline standard deviations (SDs) are shown in 

panel (I). Here, conditions are colored in accordance with panels (A–H). Panels (J), (K) and (L) show the relationships between the distance (in cM) 

a marker locus is from a selected locus and the log of the cline gradient or slope (v). This is only shown for the three sets of conditions with selection. 

Points are colored to indicate distinct replicate simulations and the Pearson correlation between distance and log(v) is reported.
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the Bayesian approach and use of the logit- logistic cline model. 
The key features provided by bgchm relative to gghybrids 
are (i) an ability to model uncertainty in genotypes, (ii) the abil-
ity to directly model ancestry data, (iii) the use of hierarchical 
models and thus inference of cline standard deviation, (iv) in-
terpopulation ancestry models, (v) hierarchical Bayesian models 
for geographic cline analyses, and (vi) the use of HMC for effi-
cient sampling from posterior distributions. In terms of speed, 
the original bgc is by far the slowest program, especially with 
large data sets, whereas the likelihood- based approaches tend to 
be the fastest. We have not conducted a detailed comparison of 
gghybrid and bgchm, and this is slightly complicated by the 
fact that fewer MCMC steps are required to obtain a high effec-
tive sample size with HMC, but both programs make it practical 
to analyze very large data sets, especially given the potential for 

parallelization in bgchm (and gghybrids). For bgchm, the 
total runtime largely depends on the extent to which cline fitting 
is done in parallel after the cline standard deviation parameters 
have been estimated. With robust computational resources (i.e., 
a single compute node with ~48 CPUs and multi- threading), we 
have been able to successfully fit clines for millions of SNPs in a 
few days of human time.

Further, existing programs differ in terms of the set of features 
included. The original bgc was a standalone program that only 
included the genomic cline model but did estimate hybrid in-
dexes as part of this model. In contrast, introgress, HIest, 
and gghybrid include additional functions for estimating hy-
brid indexes and (for the former two) for estimating genotype- 
based metrics similar to ancestry class proportions. bgchm also 

FIGURE 6    |     Legend on next page.
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includes models of hybrid index inference and includes a unique 
model for true ancestry class proportions (this is similar to the Q 
model in entropy, but with source populations designated a pri-
ori; Gompert et al. 2014; Shastry et al. 2021). Additionally, while 
several computer programs, including Cfit (Gay et al. 2008) and 
hzar, which uses a Bayesian approach (Derryberry et al. 2014), 
exist for inference of geographic cline parameters, bgchm is 
unique in including the option to fit hierarchical models for geo-
graphic and genomic clines in a single program (the geographic 
cline models are described in the Supporting Information). 
Likelihood- based approaches for estimating hybrid index and 
interpopulation ancestry exist in introgress (Gompert and 
Buerkle 2010) and HIest (Fitzpatrick 2012), and hybrid indexes 
can be inferred in several programs using either likelihood 
or Bayesian methods (e.g., introgress, HIest, bgc, and 
gghybrid; Gompert and Buerkle 2012; Bailey 2024). Moreover, 
interpopulation ancestry and admixture proportions, which are 
analogous to hybrid indexes with two source populations, can 
be jointly inferred in entropy (Gompert et  al.  2014; Shastry 
et al. 2021). Finally, additional software packages exist for ge-
nomic analyses of hybrids or hybrid zones that focus on ancestry 
inference via genome polarization without pre- defined parental 
populations (Baird et al. 2023) and genomic characterization of 
hybrids from diagnostic markers (Wiens and Colella 2024).

4.2   |   Conclusions and Future Directions

Our use of HMC, and specifically the NUTS algorithm from 
Stan, results in more rapid and robust Bayesian inference of ge-
nomic clines than was possible with the original bgc program. 
However, analyses of very large data sets, or of many replicate 
hybrid zones, can still require substantial time or computational 
resources (e.g., many CPUs). One possible way to overcome 
this limitation is to replace the current HMC approach with an 
approximation of the posterior through variational inference 
(Kucukelbir et  al.  2017). Variational inference is supported by 
Stan and allows for automatic approximation of the posterior 
distribution. This can increase the speed of model fitting by 

orders of magnitude (Kucukelbir et  al.  2017). However, it can 
also come at a cost in terms of accuracy, and the reliability of 
variational inference for genomic cline models remains to be 
evaluated. We see additional potential for increases in speed, 
and potentially accuracy, by fitting cline models for ancestry 
blocks (as identified in models for local ancestry inference or 
via genome polarization, e.g., Sankararaman et al. 2008; Baird 
et al. 2023; Browning, Waples, and Browning 2023) rather than 
for genotypes or ancestry at individual loci. This could reduce 
the number of independent genomic regions or loci required 
for analysis and simultaneously overcome limitations that arise 
from low ancestry information for subsets of loci. This could be 
done with the existing ancestry model in bgchm. We intend to 
evaluate both variational approximations and ancestry- block 
based analyses in a future publication.

Finally, hybrid indexes, ancestry class proportions, and ge-
nomic clines provide summaries of patterns of introgression 
but connecting such genomic patterns to ecological and evo-
lutionary processes remains difficult (McFarlane et al. 2021). 
With certain assumptions or information, especially about 
dispersal, geographic patterns of introgression can be directly 
related to process- based parameters, such as the average inten-
sity of selection against hybrids (e.g., Barton and Hewitt 1985; 
Szymura and Barton  1986; Mallet et  al.  1990). However, this 
is less true for genomic clines, as these are always relative to 
overall admixture and thus not absolute metrics of introgres-
sion (this is also an advantage as they are less dependent on 
the geography of a hybrid zone). We think a valuable area for 
future research is to test whether the combined information 
from hybrid indexes, ancestry class proportions, genomic and 
geographic clines, as well as patterns of linkage disequilibrium 
in hybrid zones, could be used to reliably infer demographic 
and evolutionary processes governing hybrid zones, at least for 
a subset of clear, alternative models. This could be done using 
approximate Bayesian computation or with neural networks, 
both of which are suitable for combining information across 
heterogeneous data types (Sisson, Fan, and Beaumont  2018; 
Gehara, Mazzochinni, and Burbrink  2020; Yang et al.  2022). 

FIGURE 6    |    Summary of key results from an example analysis with Lycaeides butterflies. An illustration of a Lycaeides butterfly from the Dubois 

hybrid zone is shown in panel (A). Panel (B) gives point estimates (points) and 90% credible intervals (CIs) (vertical lines) for hybrid index based on 

the combined autosomal and Z chromosome data. Panel (C) shows interpopulation ancestry estimates (Q10) as a function of hybrid index (H) for the 

same hybrid zone butterflies. Point estimates and 90% CIs (vertical and horizontal lines) are given. Genomic clines for 100 representative loci are 

shown in panel (D). Each line denotes the probability of L. melissa ancestry for a locus as a function of hybrid index (the overall proportion of an 

individual's genome with L. melissa ancestry). Darker and thicker lines are used for loci with credible deviations from genome- average ancestry (90% 

CIs for cline gradient of center not overlapping null expectations). The diagonal, dashed line shows the null 1:1 expectation for locus- specific ancestry 

probabilities as a function of hybrid index. Panels (E) and (F) display estiamtes of the log cline gradient (log of v) and logit cline center for each of the 

500 ancestry- informative SNPs. Point estimates and 90% CIs (vertical lines) are displayed, with open points used for cases where the 90% CIs do not 

exclude values less than 0 (E) or do not exclude 0 (F). The null expectation value of 0 (on the log or logit scale) is shown for each panel with a horizontal 

dashed line. Panel (G) shows the relationship between chromosome size (length in base pairs, bps) the the mean log gradient for the 20 chromosomes 

with more than five ancestry informative SNPs. Chromosome numbers (or Z) are given, along with the best fit line from a linear regression; the model 

r2 and p- value are reported. Panel (H) gives the difference in mean log gradient between the Z chromosome and autosomes for cline models where Z 

and autosomal SNPs were analyzed separately and where the means were not set to zero but estimated from the data. Both models used autosomal 

estimates of hybrid indexes. The posterior density for the difference is shown, along with a vertical line for the null expectations. The posterior 

probability that the mean for Z loci exceeds the mean for autosomes was > 0.99. Panel (I) shows the posterior distributions for the standard deviation 

in log cline gradients for autosomes and the Z chromosome. Here, autosomal and Z SNPs were analyzed separately and with hybrid indexes inferred 

from autosomal and Z SNPs, respectively. Boxes indicate the median and 1st and 3rd quartiles of the posterior distribution, with whiskers extending 

up to 1.5 × the interquartile range. The overlain points show 4000 parameter value samples from the posterior. The posterior probability that the 

variance for the Z SNPs exceeds the variance for the autosomal SNPs was 0.75.
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Convolutional neural networks, which have recently shown 
great general promise in population genomics (Flagel, 
Brandvain, and Schrider  2019; Torada et  al.  2019; Smith 
et al. 2023), could be particularly useful for mapping such dis-
parate data information sources to generative processes that 
emit identifiable signals. We think that this gap between pat-
tern and process is an important area for future work to ad-
dress and we hope to contribute to doing so in future work.
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