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ABSTRACT

Hybrid zones, where genetically distinct groups of organisms meet and interbreed, offer valuable insights into the nature of spe-
cies and speciation. Here, we present a new R package, bgchm, for population genomic analyses of hybrid zones. This R package
extends and updates the existing bgc software and combines Bayesian analyses of hierarchical genomic clines with Bayesian
methods for estimating hybrid indexes, interpopulation ancestry proportions, and geographic clines. Compared to existing soft-
ware, bgchm offers enhanced efficiency through Hamiltonian Monte Carlo sampling and the ability to work with genotype like-
lihoods combined with a hierarchical Bayesian approach, enabling inference for diverse types of genetic data sets. The package
also facilitates the quantification of introgression patterns across genomes, which is crucial for understanding reproductive isola-
tion and speciation genetics. We first describe the models underlying bgchm and then provide an overview of the R package and
illustrate its use through the analysis of simulated and empirical data sets. We show that bgchm generates accurate estimates of
model parameters under a variety of conditions, especially when the genetic loci analyzed are highly ancestry informative. This
includes relatively robust estimates of genome-wide variability in clines, which has not been the focus of previous models and
methods. We also illustrate how both selection and genetic drift contribute to variability in introgression among loci and how ad-
ditional information can be used to help distinguish these contributions. We conclude by describing the promises and limitations
of bgchm, comparing bgchm to other software for genomic cline analyses, and identifying areas for fruitful future development.

1 | Introduction (Harrison and Larson 2014; Firneno et al. 2023). The ease with

which genomic data can be generated has vastly increased the

Hybrid zones form when genetically distinct groups of or-
ganisms meet, mate, and produce offspring (Barton and
Hewitt 1985; Gompert and Buerkle 2016). Studies of hybrid
zones provide powerful opportunities to analyze interactions
between divergent gene pools in the wild (Barton, Gale, and
Harrison 1993; Buerkle and Lexer 2008; Gompert, Mandeville,
and Buerkle 2017) and are especially relevant for testing hypoth-
eses about the nature and genetic basis of species and speciation

potential for genomic analyses of hybrid zones. Simultaneously,
advances in analytical approaches and computer software pack-
ages have increased the ability of investigators to make evolu-
tionary inferences from hybrid zone data (reviewed in Gompert,
Mandeville, and Buerkle 2017).

Hybrid zone theory was largely developed in the mid to late 1900s
(e.g., Haldane 1948; Endler 1977; Barton 1979, 1983; Barton and
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Hewitt 1985). Results from this body of theory provide a means
to connect model parameters describing the width, location, and
shape of geographic clines in hybrid zones to evolutionary pa-
rameters and processes, such as selection and dispersal (Barton
and Hewitt 1985). Such geographic cline approaches have been
used extensively and productively in speciation research (e.g.,
Szymura and Barton 1986; Mallet et al. 1990; Dasmahapatra
et al. 2002; Carling and Brumfield 2008; Teeter et al. 2008;
Westram et al. 2021; Caeiro-Dias et al. 2023). Nonetheless, these
approaches are not always applicable, especially when hybridiza-
tion lacks a major geographic axis (e.g., Harrison and Rand 1989;
Rieseberg, Whitton, and Gardner 1999; Mandeville et al. 2015;
Chaturvedi et al. 2020) and are but one of the several windows
into the evolutionary processes provided by hybrid zones.

The prevalence and genomic composition of hybrids in hy-
brid zones provides additional information about the strength
and form of reproductive isolation (Jiggins and Mallet 2000).
Moreover, genomic approaches can go beyond simple classifica-
tion of hybrids as F1s, F2s, or backcrosses by describing hybrid
genomes quantitatively. For example, genome composition can
be measured with a hybrid index, which denotes the proportion
of an individual's genome inherited from one of two designated
hybridizing lineages (Buerkle 2005), and by an interpopula-
tion (i.e., interclass) ancestry proportion, which indicates the
proportion of an individual's genome with gene copies inher-
ited from both hybridizing species (Gompert and Buerkle 2010;
Fitzpatrick 2012; Gompert et al. 2014; Shastry et al. 2021).
Admixture proportions summarize genome composition simi-
larly to hybrid indexes but without specifying reference or source
populations (Pritchard, Stephens, and Donnelly 2000). Together
these metrics provide flexible, continuous summaries of the
genetic makeup of hybrids that are relevant for understanding
hybrid zone dynamics. For example, interpopulation ancestry
will be high when matings between non-admixed individuals
or between hybrids and non-admixed individuals are common.

Additionally, genomic cline models can be used to quantify in-
trogression from one genomic background to another, with a
focus on patterns of heterogeneity in introgression across the
genome and associated evolutionary processes (Szymura and
Barton 1986; Gompert and Buerkle 2011; Macholédn et al. 2011;
Fitzpatrick, 2013b). In this context, recombination and indepen-
dent assortment in hybrids create new genotypic combinations
that are subject to selection based on their effects on hybrid fit-
ness. Such selection, along with other factors (e.g., patterns of
linkage disequilibrium) and processes (e.g., recombination, drift,
gene flow, etc.), affect patterns of introgression in hybrid zones
(Barton 1983; Gompert, Parchman, and Buerkle 2012; Lindtke
and Buerkle 2015; Schumer et al. 2018; McFarlane et al. 2021).
Consequently, outcomes of hybridization and patterns of intro-
gression often vary across the genome (e.g., Nolte, Gompert, and
Buerkle 2009; Larson et al. 2013; Sung et al. 2018; Chaturvedi
et al. 2020; Wagner et al. 2020; Caeiro-Dias et al. 2023), which can
provide additional information about the genetics of speciation
(Payseur 2010; Harrison and Larson 2016; Gompert, Mandeville,
and Buerkle 2017). This variation can be quantified using ge-
nomic cline models and compared across sets of SNPs, genetic
regions, chromosomes, and hybrid zones with implications for un-
derstanding the genetics of reproductive isolation, the repeatabil-
ity of speciation, and coupling of barrier loci in hybrid zones (e.g.,

Teeter et al. 2010; Larson et al. 2013; Taylor et al. 2014; Nikolakis
et al. 2022; Firneno et al. 2023; McFarlane et al. 2023).

Here, we present a new R package, bgchm, which combines
Bayesian analyses of hierarchical genomic clines with Bayesian
methods for (i) estimating hybrid indexes and interpopulation an-
cestry proportions and (ii) fitting geographic cline models. This
package builds on the foundation of the existing bgc software
(Gompert and Buerkle 2012) but replaces the Barton cline model
with the logit-logistic cline model proposed by Fitzpatrick (2013b).
We describe the details of the models and software usage below
but here briefly highlight some of the most salient aspects of this
R package (we make detailed comparisons with related software
in the Discussion). First, bgchm replaces traditional random-
walk Metropolis-Hastings Markov chain Monte Carlo with
Hamiltonian Monte Carlo, which generally results in less autocor-
relation among samples from posterior distributions (Neal 2011).
As with the original bgc, bgchm retains the ability to analyze
data comprising known genotypes or to work directly with gen-
otype likelihoods, which are the standard output of most modern
genetic variant callers and imputation methods. This makes it
possible to account for uncertainty in genotypes in analyses and is
critical for accurate and powerful inference from low to moderate
coverage DNA sequence data sets. bgchm additionally adds the op-
tion to work directly with local (locus-specific) ancestry estimates
instead of genotypic data. Finally, bgchm retains a hierarchical
Bayesian approach to cline inference. Together, these features
result in more reliable inference of cline standard deviation pa-
rameters, which provide model-based summaries of variation in
introgression across the genome and are relevant for studying
coupling in hybrid zones (Firneno et al. 2023). Additionally, by
separately estimating hybrid indexes and clines, but still retain-
ing the hierarchical structure of the model, bgchm drastically im-
proves parallelization relative to bgc and also allows comparisons
among different sets of loci (e.g., trait associated versus putatively
neutral loci, or different chromosomes) without assuming all loci
in a set share the same cline parameters. These features are im-
portant for scaling cline analyses to genome-level data sets, with
limitations mostly set by the availability of CPUs.

In this manuscript, we first describe the core models underlying
bgchm. We then provide an overview of the R package and illus-
trate its use through the analysis of simulated data sets, with a focus
on the effects of hierarchical modeling and allele frequency differ-
ences between reference populations, and on our ability to estimate
cline standard deviations. Where relevant, we compare bgchm to
HIest (Fitzpatrick 2013a), which provided the original implemen-
tation of the logit-logistic cline model. We further demonstrate the
usage of bgchm via the analysis of a butterfly hybrid zone data set.
We conclude by discussing the potential and limitations of bgchm,
comparing this R package with other hybrid zone analysis software
and identifying possibilities for further developments.

2 | Methods
2.1 | Models
We consider three sets of models to describe genomic patterns

of admixture and introgression in hybrid zones, specifically,
models to infer hybrid indexes, ancestry class proportions, and
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genomic clines (geographic cline models are described in the
Supporting Information). All three models infer ancestry from
defined source or reference populations and use a (hierarchical)
Bayesian approach for inference and quantifying uncertainty in
model parameters. We first describe these models for the case
where genotypes are assumed to be known without error be-
fore presenting extensions for modeling genotype uncertainty
or working directly with local ancestry estimates.

2.1.1 | Hybrid Index Model

We follow the basic structure of the hybrid index model proposed
by Buerkle (2005). Here, hybrid indexes are defined with respect
to two putative source or reference populations chosen to repre-
sent or approximate the genetic composition of two hybridizing
species or lineages. The hybrid index for individual, j, Hj, de-
notes the proportion of individual j's genome that is best mod-
eled as being inherited from one of the two source populations
(labeled source 1). Consequently, 1 — H; denotes the proportion
of the genome inherited from the other source population (la-
beled source 0). Hybrid indexes are based on supervised learning
of allele frequencies within source populations that are defined
a priori and are analogous to admixture proportions estimated
in an unsupervised learning context (Pritchard, Stephens, and
Donnelly 2000; Gompert et al. 2014). Here, we consider only
two source populations. We assume that the genotypic data for
individual j and locus i is binomially distributed conditional on
ancestry of the alleles at locus i and the corresponding parental
allele frequencies (Py; and P;;) and, similarly, that the ancestry at
locus i is binomially distributed conditional on the hybrid index,
H;. This results in the following likelihood model for estimating
hybrid indexes:

Pr(Gy| Hy, Py, Pyy) o (HyPy+ (1 - Hy) Py )

G, )
(H;(1-Py;) +(1-Hy) (1_Poz))(N” Gy)

Here, G;; is the count of one of the two alleles (e.g., the non-
reference allele), and Nj; denotes the number of allele copies for
the individual and locus (i.e., two for diploids). At present, we
restrict analysis to diploid or haploid loci, including mixtures
of diploid and haploid loci as might occur with sex chromo-
somes. We assume that any allele with a non-zero frequency in
the putative hybrids has a non-zero frequency in at least one of
the source populations. The information about ancestry (and
thus hybrid index) a locus provides depends on the allele fre-
quency difference between the reference populations and thus
varies from a maximum for loci with fixed differences, to no
information, in cases where the allele frequencies are iden-
tical. Missing data can be accommodated by the model and
does not contribute to the hybrid index estimate for an indi-
vidual. We assume a beta prior on hybrid indexes, such that
H; ~beta(a = 0.5, = 0.5), which corresponds with Jeffreys
minimally informative prior.

2.1.2 | Ancestry Class Proportions Model

Our model for ancestry class proportions is similar to the in-
terpopulation ancestry models described by Gompert

et al. (2014) and Shastry et al. (2021) (i.e., the Q model).
However, unlike these models, our ancestry class proportion
model assumes that source populations are defined with
known allele frequencies a priori (i.e., supervised learning, as
in our hybrid index model). We designate the ancestry class
proportions Qg,, Q;;, and Q,, to denote (i) the proportion of an
individual's genome where both gene copies were inherited
from source (i.e., reference) population 0 (Q,,), (ii) the propor-
tion of an individual's genome where both gene copies were
inherited from source population 1 (Q,;), and (iii) the propor-
tion of an individual's genome where one gene copy was inher-
ited from each source population (Q,, i.e., interpopulation
ancestry). The main purpose of the model is to estimate these
ancestry class proportions. Note that hybrid index can be de-
rived directly from the ancestry class proportions as
H=0Q;+ %Qm. We define a likelihood analogous to

Equation (1) for the ancestry class proportions as:

QuyyP}; + Qoo Py, + QoyPriPos if Gy =2
Qllj(l_Pli)P1i+Q0()j(1—POlv)P0i+
Pr(Gij| Qj’Poi’Pli) & QOlj(l—Pli)P0i+Q01jP1i(1_P0i) ifG,=1
Qllj(l_Pli)2+Q00j(1—POi)2+
Quij(1-Py;) (1-Py;) if G;=0
@

Here also, we restrict the analysis to haploid and diploid loci.
Haploid loci provide information about the proportion of the ge-
nome inherited from each species but not how this is partitioned
into homozygous versus heterozygous (interpopulation) ances-
try, the latter comes only from the diploid loci.

2.1.3 | Genomic Clines Model

Genomic clines represent the probability of locus-specific ances-
try along a genome-wide admixture gradient, that is, as a func-
tion of hybrid index (Szymura and Barton 1986; Gompert and
Buerkle 2009, 2011). Here, we model genomic clines with the
logit-logistic model proposed by Fitzpatrick (2013b), which was
derived from a sigmoidal geographic cline model (this does not
imply a sigmoidal genomic cline). With this function, the proba-
bility that a gene copy for locus i and individual j was inherited
from source population 1 (as opposed to source population 0) is
¢y = H;i / <H;‘ + (1 —PI}")e“f ), where H; is the hybrid index

(i.e., the proportion of the genome inherited from population 1),
v; gives the slope of the cline for locus i relative to the genome-
average (v = 1), and u; specifies the center of the cline for locus i
relative to both the genome average and v; (Fitzpatrick 2013b).
We use the re-parameterization from Bailey (2024) and Firneno
et al. (2023) that defines logit(c;) = :— to specify a more intuitive
cline center parameter (c¢;), which indicates the hybrid index
value at which ¢;; =0.5, that is where the probability of inherit-
ing an allele from each source population is equal. Genomic
cline slopes greater than 1 indicate a steeper cline than the ad-
mixture gradient, whereas clines less than 1 indicate a shallower
cline. Similarly, centers greater than 0.5 indicate an overall ex-
cess of source 0 ancestry, whereas centers less than 0.5 indicate
an excess of source 1 ancestry.
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We specify the following likelihood model for the genetic data at
locus i given in terms of ¢;, which is itself a function of hybrid
index (Hj, a property of an individual) and the cline parameters
v; and c; (properties of a locus):

Pr(Gyl ¢y Poss P1y) o< (Py; + (1= ) Poy)

3
@1-P) () .
Note the similarity between Equation (3) and Equation (1); the
forms are identical except that ¢;; (the probability of ancestry from
source 1 for locus i and individual j) in Equation (3) replaces H;
(the marginal probability of ancestry from source 1 for individual
J) in Equation (1). Here also, we allow for diploid and haploid loci
as well as loci with mixed ploidy (e.g., sex chromosomes).

Following Gompert and Buerkle (2011) and Firneno et al. (2023),
we define hierarchical priors for the cline parameters v; and c;.
Hierarchical modeling allows information on the genomic vari-
ability of introgression to be shared across loci and explicitly ac-
knowledges the partial dependence (and partial independence)
of introgression across the genome (Gompert and Buerkle 2011;
Betancourt and Girolami 2015) (Figure 1). In general, hier-
archical modeling in such cases is conceptually preferable to
the alternative assumptions of complete independence of units
(e.g., introgression patterns across loci) as implied by fixed, in-
dependent priors, or the complete lack of independence among
units as implied by a shared parameter for all units (e.g., the
same cline parameters for all loci; Gelman et al. 1995; Fordyce
et al. 2011). In our case, the main benefit of hierarchical mod-
eling is the ability to learn about and account for the degree
of variability in clines among loci. In our standard model, we
specify the following priors for cline parameters (modifications
are discussed below): log,y(v;) ~ normal(y =0,6=0,) and
logit(c;) ~ normal(y = 0,0 = ¢,). The log and logit functions are
used to set the expected means of v; and c; to 0-log,,(1) = 0 and
logit(0.5) = 0-and also to project these parameters onto the scale
of — o0 and co. The means of both priors are set to 0 to reflect the
fact that, assuming the same loci (or random subsets of the same
loci) are used to infer hybrid indexes and to fit genomic clines,
the average deviation of locus-specific clines from the genome
average should by definition be 0 (Gompert and Buerkle 2011).
This can be relaxed in cases where distinct sets of loci are used
for cline fitting and hybrid indexes, as we discuss below. Such
a zero-centered prior does not enforce a hard sum-to-zero con-
straint but rather serves as a form of soft centering. We discuss
hard-centering (i.e., sum-to-zero constraints) in Section 2.2.

The standard deviation parameters, ¢, and o, describe the vari-
ability of cline slopes and centers across the genome and can
be related to the extent of coupling among loci (Barton 1983;
Firneno et al. 2023). Specifically, with coupling, linkage disequi-
librium among loci causes selection arising from one locus to
indirectly result in selection on other loci such that the loci expe-
rience similar levels of selection and exhibit concordant and co-
incident clines (as well as steeper geographic clines). This should
manifest as lower levels of variation in genomic clines across the
loci with the extreme case being clines for each locus coinciding
precisely with the genome-average cline (v; = 1and ¢; = 0.5). The
standard deviation parameters simultaneously inform and are
informed by the locus-specific cline parameters, and it is this

Ho=0 ‘ Ho=0
P4 li] \A\ /
G[ij] |<e—————| HIi
o /

FIGURE1 | Directed graph summarizing the (standard) hierarchical
Bayesian genomic cline model. Boxes and circles denote fixed and
stochastic nodes, respectively, with the data node in orange and other
stochastic nodes in blue. G[i, j] denotes the genetic data for locus i and
individual j, that is, the known genotype or genotype likelihoods. P,[i]
and P,[i] are the known (previously estimated) allele frequencies in
parental source or reference populations. H []] is the known (previously
estimated) hybrid index for individual j. The stochastic nodes v[i]
and u[i] are the cline parameters, with v[i] denoting the slope and
uli] = logit(center[i])v[i], where center[i] is the cline center. ¢, and o,
denote the standard deviations of the normal priors on log(v[i]) and
logit(center[i]). These describe variability in clines across the genome
and are estimated from the data. The remaining fixed nodes denote
means (y,) and standard deviations (c,) of higher-level normal priors.

co-dependency that allows information sharing across loci. As
such, these cline standard deviations (¢, and ¢,) are estimated
from the data as part of the analysis (at least in the standard
model, modifications to this procedure are discussed below).
Thus, priors (hyperpriors) are placed on the standard deviations,
o, ~normal(y =0,6 =0,) and o, ~normal(y=0,0=o0,),
with o, set by users. Note that this specification assumes that the
loci are exchangeable, which is likely not true for sets of tightly
linked loci. However, the cline standard deviations can be in-
ferred from a subset of unlinked or loosely linked loci.

2.1.4 | Alternative Model Specifications
and Assumptions

Having described a standard version of each of our models for
hybrid indexes, ancestry class proportions, and genomic clines
above, we now discuss modifications and variants of these
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models. First, the model descriptions above assume that geno-
types are known without error (or completely missing).
However, modern sequencing technologies and bioinformatic
tools generate finite numbers of reads or sequences covering
each segment of DNA, uncertain base calls, and mapping er-
rors. These sources of uncertainty mean that genotypes are
often uncertain. This is reflected in the genotype likelihoods
output by most variant calling software (e.g., samtools and
beftools; Li 2011). Uncertainty can also arise from genotype
imputation or Bayesian inference of genotypes (in these cases,
uncertainty is often captured in a posterior probability rather
than a likelihood but can be incorporated in the same manner).
Thus, we include modifications of all three core models to in-
corporate uncertainty in genotypes (including equal likelihoods
of all genotypes) by working directly with relative likelihoods or
posterior probabilities of genotypes (e.g., as output by some
Bayesian genotype inference methods, e.g., Shastry et al. 2021).
In such cases, the likelihoods given in Equations (1-3) are re-
placed by the average likelihood of the parameter values condi-
tional on each genotype and weighted by relative genotype
likelihoods or posterior probabilities. For example, Equation (3)
becomes Pr(Gyl #y. o Pr;) =Pr(Gy =0l ¢y, Py, Py ) Pr(Gy =0)

+Pr(Gij= 1 ¢ij’P0i’P1i)Pr(Gij = 1) +Pr(Gij =2| ¢U’P0i’P1i)Pr(Gij=2)

We also consider alternative models where we assume that locus-
specific ancestry is itself known or has been estimated using one
of many programs designed for local-ancestry inference (e.g., Li
and Stephens 2003; Maples et al. 2013; Browning, Waples, and
Browning 2023). With known local ancestry, the likelihood
equations no longer depend on parental allele frequencies, and,
for example, Equation (3) can be simplified to (this is mathemat-
ically equivalent to a model for diagnostic markers):

Z;j

Pr(Zyl dy) o ' (1= )™ @
Here, Z; denotes the ancestry of locus i in individual j, that is,
the number of gene copies (out of Ny) individual j inherited from
source population 1 at this specific locus. Local ancestry can be
defined for, and inferred from, individual SNPs or larger loci,
such as haplotype blocks.

We define two additional variants of the genomic clines model,
both of which can be applied with known genotypes, uncertain
genotypes, or local ancestry. First, one such variant allows the
standard deviations of the hierarchical priors, ¢, and o, to be
specified and fixed. As described in more detail in Section 2.2,
this makes it possible to first estimate these parameters using
the standard hierarchical model based on a random subset of
data and then to fix these parameters for estimating clines for the
full set of data, enabling massive parallelization of the model fit-
ting procedure across genetic loci. Alternatively, this model for-
mulation can be used to specify weakly informative priors (i.e.,
relatively flat priors) and thereby implement a non-hierarchical
version of the genomic clines model akin to Bailey (2024).

Second,insome cases, itcan be useful to estimate the means of the
hierarchical priors for v and ¢ from the data rather than fix them
at 0. As we illustrate in an example analysis below, this could be
done if one estimates hybrid indexes based on one subset of loci
(e.g., putative neutral regions of the genome, autosomes only,

etc.) and then wants to ask whether a different subset of loci (e.g.,
trait-associated loci, other candidate genes, and sex-linked loci,
etc.) exhibit patterns of introgression that deviate on average from
the subset of loci used for hybrid index inference. Consequently,
we have also included models with unknown means for the
hierarchical priors, log,(v;) ~ normal(u = y,,6 =0,) and
logit(c;) ~ normal(u = u,, 6 = 6,). In such cases, we place nor-
mal priors on the unknown means as well as the unknown
standard deviation, with u, ~normal(y=0,6=y,) and
#e ~normal(u = 0,0 = p,), and with the prior standard devia-
tion for these means, 4, specified by the user.

2.2 | Software Usage

We implemented the models described above in a new R pack-
age, bgchm, which updates the original bgc program (Gompert
and Buerkle 2012). The R package is available for direct installa-
tion from GitHub at https://github.com/zgompert/bgc-hm. The
R package uses Stan (via rstan) for sampling from posteriors
(Stan Development Team 2022, 2024). This implementation
makes it possible to fit the models using Hamiltonian Monte
Carlo (HMC) rather than using more traditional Markov chain
Monte Carlo algorithms. This is important as HMC routinely
outperforms other algorithms especially in terms of convergence
and more effectively exploring complex posterior distributions
(Neal 2011; Betancourt and Girolami 2015). This means that far
fewer HMC steps are generally required to obtain a good approx-
imation of the posterior distribution and that the HMC algorithm
is less likely to get stuck in one region of the posterior, especially
when fitting hierarchical models and estimating higher-level
standard deviations (Betancourt and Girolami 2015). We specif-
ically use the No-U-Turn Sampler (NUTS) from Stan (Hoffman,
Gelman, et al. 2014; Betancourt 2017). Integration with Stan and
rstan also provides built-in diagnostics of HMC performance,
including automated and standard warning messages about
performance and estimates of effective sample sizes and conver-
gence diagnostics for each of the model parameters. Moreover,
by using Stan, all of the HMC sampling is done based on com-
piled C++ code, rather than native R code, which is critical for
reducing the time required for model fitting.

The R package bgchm includes core functions for estimating hy-
brid indexes (est_hi), ancestry class proportions (est_0), and
genomic clines (est _gencline). Each function is documented
in the R package. The arguments to these functions determine
which version of each model to fit, with each version correspond-
ing to an internal compiled C++ program. The result of any
Bayesian analysis is the full posterior distribution for the set of
model parameters. Samples from this distribution are provided
with each of the core functions as well as useful summaries of
the central tendency (median) of the posterior and uncertainty
in estimates (credible intervals). Separate helper functions exist
for estimating parental allele frequencies (est_p) (this can also
be done within the three core functions), summarizing posterior
distributions (pp_plot), and visualizing results (e.g., produc-
ing triangle interpopulation ancestry plots or plotting genomic
clines). Additional functions for hierarchical geographic cline
analyses are described in the Supporting Information (these
are not the main focus of the software but are included for the
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convenience of users interested in hierarchical geographic cline
models). We assume that reasonable filtering and quality con-
trol of the genetic data have been completed prior to analysis
with bgchm.

We have made the core functions modular for flexibility and ease
of scaling though this comes at the cost of not fully propagating
uncertainty in parental allele frequencies and hybrid indexes in
genomic cline analyses (this is an unfortunate but somewhat
necessary trade-off). Consequently, the parental allele frequen-
cies required for hybrid index, ancestry class proportions, and
genomic clines can be estimated within bgchm or provided
from other software. Likewise, the hybrid indexes used in the
genomic cline analysis can be estimated for all or a subset of loci
and can be inferred within bgchm or using other software (e.g.,
these could be admixture proportions from a model with k = 2
in structure; Pritchard, Stephens, and Donnelly 2000). This
set-up allows for extensive parallelization of cline fitting and
thus makes it possible to run bgchm on genome-scale data sets
as long as one has access to sufficient computational resources.
Specifically, a standard analysis can begin by estimating hybrid
indexes based on a moderate number of loci; several hundred
to a thousand will generally be sufficient to obtain precise esti-
mates of hybrid indexes. Then, for modest sized data sets (up to
a few thousand loci and a few hundred hybrids), the full set of
loci can be analyzed in a single hierarchical model (the standard
model described above). For larger data sets (more than a thou-
sand individuals or loci, and up to millions of SNPs), a subset of
hundreds or a few thousand (unlinked or loosely linked) loci can
be fit in an initial hierarchical model to estimate the cline stan-
dard deviation parameters, o, and o,. These parameters can then
be fixed at their point estimates and the clines for the remain-
ing loci can be fit in batches (and thus in parallel across CPUs
or computer nodes) using these estimated standard deviations
(runtimes for individual SNPs are on the order of a few seconds).
This gains most of the benefit of using a hierarchical modeling
framework without the cost of needing to fit clines for a very
large number of loci in a single model. Additional parallelization
is possible for all analyses by running multiple HMC chains in
parallel (this is done within the bgchm program). We provide an
example of batch parallelization of loci in the bgchm repository
(https://github.com/zgompert/bgc-hm), including a UNIX shell
script to control the batch parallelization, and we have success-
fully used this approach to fit clines for > 1 million SNPs in about
2days on a single compute node with 48 CPUs.

As noted above in Section 2.1, the hierarchical prior structure
for the standard genomic cline model results in soft centering of
the cline parameters, such that the mean of the cline parameters
(on the appropriate log or logit scale) is shrunk towards zero.
However, this is not the same as a hard, sum-to-zero constraint,
as implemented in the original bgc program (Gompert and
Buerkle 2012), which forces the mean of the cline parameters
to be zero. We found that trying to enforce a hard sum-to-zero
constraint within the HMC algorithm dramatically degraded
performance of the algorithm. Moreover, a hard sum-to-zero
constraint would only be possible when fitting all loci in a single
model. We have thus instead opted to use soft centering, while
also providing a function, sum2zero, that applies a sum-to-zero
constraint to a set of cline parameter estimates after model fit-
ting. This can be done based on the full HMC output (preferable

when practical) or simply as an adjustment to the parameter
estimates (useful when saving the full HCM output for all loci
is computationally burdensome). Either of these options can be
applied after batch processing of cline estimation for many loci
and thus makes it possible to apply a sum-to-zero constraint to
genome-scale data. We think this is advisable in most cases, at
least when the loci used to estimate hybrid indexes are the same
or arandom subset of those used to estimate clines. We think this
because the genomic clines are, by definition, deviation from av-
erage introgression. In some cases, the soft centering might be
sufficient to effectively constrain the mean of cline parameters
to zero such that applying the hard sum-to-zero constraint is not
necessary, but in other cases, including in the example empirical
analysis we present, this is not true (this will depend—in ways
that are yet to be fully investigated—on the distribution of hy-
brid indexes, variability of clines among loci, and other aspects
of the data set and posterior distribution).

2.3 | Analyses of Simulated Data Sets

We analyzed a series of simulated data sets to illustrate and
evaluate the performance of the bgchm package. Aspects of
this or related models have been analyzed extensively elsewhere
and thus are not treated in depth here. For example, Gompert,
Parchman, and Buerkle (2012) evaluated the concordance be-
tween loci with exceptional genomic cline parameters (from the
original bgc model) and loci causally affecting fitness (this var-
ies depending on the genetic architecture of fitness variation).
Firneno et al. (2023) used simulations to assess the relation-
ship between Barton's theoretical coupling coefficient (f) and
the cline standard deviations from the hierarchical Bayesian
logit-logistic model described here. Firneno et al. (2023) then
quantified these cline standard deviations across a series of em-
pirical data sets. Bailey (2024) examined the sensitivity of a non-
hierarchical implementation of the logit-logistic cline model to
the distribution of hybrid indexes. Here, our main focus is on
demonstrating the general performance of the software and
exploring specific aspects of these models or performance that
have received less attention, including the effects of hierarchical
modeling, allele frequency differences between parents, and our
ability to accurately estimate cline standard deviations.

2.3.1 | Analyses of Simulations of Hybrid Indexes
and Ancestry Class Proportions

We first conducted simulations to evaluate the ability of bgchm
to accurately estimate hybrid indexes and ancestry class pro-
portion from genetic data. Simulations were conducted using
dfuse under a model of neutral secondary contact (Lindtke
and Buerkle 2015). The program dfuse implements individual-
based simulations to model a hybrid zone that forms following
secondary contact. The program tracks hybrid indexes, ancestry
class proportions (specifically our Q,,), and ancestry junctions
along chromosomes. As such, it provides a way to simulate hy-
brids where the core parameters for these models, H and Q, are
known. We conducted 50 replicate simulations of 200 genera-
tions where hybridization occurs in a single admixed deme with
an adult carrying capacity of 500. The migration rate from the
parental populations to the deme was set to 0.1. We simulated
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hermaphroditic, diploid organisms with ten chromosomes, each
one Morgan in length. We output ancestry information for 51
loci spaced evenly along each of the ten chromosomes (510 loci
total). At the end of each simulation, we randomly sampled 50
individuals from the hybrid zone deme for analysis. We then
generated three genotypic data sets based on the output from
each replicate simulation. Specifically, we sampled genotypes
for each individual and locus based on the individual's local
ancestry and assumed parental allele frequencies of (i) 0 and
1, (ii) 0.25 and 0.75, (iii) or 0.45 and 0.55 for parents 0 and 1,
respectively. This corresponds with parental allele frequency
differences of 1 (fixed differences), 0.5 and 0.1. Genotypes were
generated using binomial sampling (in R). From each of these
genotypic data sets, we created an additional data set where the
genotypes were uncertain. For this, we assumed the number of
sequence reads for each individual and locus followed a Poisson
distribution with A =7 and these sequences had a 1% error rate
(the inherent per-base pair error rate for Illumina sequences is
~0.31%, Schirmer et al. 2016). Reads were sampled in R based on
the genotypes and these parameters, and the likelihood of each
genotype was then computed from the reads assuming the 1%
error rate. Thus, for each of the 50 initial simulated hybrid zones,
we generated six genetic data sets: parental allele frequency dif-
ferences of 1, 0.5, or 0.1 with genotypes known or uncertain.

We then estimated hybrid indexes and ancestry class propor-
tions with bgchm using the est hi and est 0O functions.
We did this using the model for known genotypes or genotype
likelihoods as appropriate and with default HMC conditions
for these functions: four HMC chains with 2000 steps, includ-
ing 1000 warmup iterations. We used the known parental allele
frequencies for the analysis. We summarized the posterior es-
timates of hybrid index and ancestry class proportions for each
individual and simulated data set based on the posterior median
(point estimate) and 90% credible intervals (CIs, specifically the
90% equal-tail probability intervals). We then evaluated perfor-
mance by computing the mean absolute error (MAE) and the
proportion of 90% CIs containing the true parameter value (90%
CI coverage) for each data set.

2.3.2 | Genomic Cline Analyses of Simulated
Hybrid Zones

We next conducted a series of simulations and analyses to evalu-
ate the performance of the genomic cline models in bgchm. The
first two sets of simulations were designed to evaluate the condi-
tions under which bgchm could accurately estimate genomic
cline parameters. Unlike hybrid indexes and ancestry class pro-
portions, individual-based simulations, such as those in dfuse,
do not generate known cline parameters. Thus, for these sets of
simulations, we instead simulated hybrids using the logit-logistic
genomic cline model as a generative model. The first set of sim-
ulations was designed to evaluate the effect of cline variability,
that is variability in introgression across the genome, on our
ability to accurately estimate cline parameters. For this, we con-
sidered three levels of cline variability: low (¢, =0.2 and o,
=0.5), moderate (o, =0.4 and o, =0.8), and high (¢, =0.6 and o,
=1.2) (for context, compare these to estimates of the same pa-
rameters across a series of empirical data sets in Firneno
et al. 2023). We simulated 50 data sets for each level of cline

variability. In each case, we sampled the cline parameters v and
c from normal distributions (on the log,, and logit scale, respec-
tively) with means of zero and standard deviations of 5, and o,.
Cline parameters were sampled for 100 loci per data set. We then
sampled hybrid indexes for 50 hybrids per data set; these were
drawn from a uniform distribution bounded by 0 and 1. We then
computed the locus-specific ancestry for each locus i and indi-
vidual j based on the cline parameters and hybrid index,

¢y=H'/ <H; + (1 —H;">e“i ) with u; = logit(c;)v;. Local an-

cestry states for each locus and individual (Z;) were then sam-
pled from a binomial distribution with two draws using ¢;; as the
probability of ancestry from source population 1. In these initial
simulations, we assumed fixed differences between source pop-
ulations, such that ancestry was fully informative of state.

We then estimated cline parameters for each of the 150 data sets
(50 replicates with each of three cline standard deviations). We
analyzed the data using the standard hierarchical Bayesian ge-
nomic cline model in bgchm and with two alternative models: (i)
a non-hierarchical variant of the genomic cline model in bgchm
with the prior cline standard deviation set to be relatively unin-
formative (o, and ¢, =100) and the corresponding logit-logistic
genomic cline model in HIest (version 2.0; Fitzpatrick 2013a).
The comparison with the non-hierarchical model was done to
evaluate the effect of modeling the clines hierarchically versus
not doing so. The comparison with HIest was chosen as this
was the initial software developed to fit this form of genomic cine
model (with a non-hierarchical model) and thus serves as a gen-
eral check on the quality of our inference. Notably, only the hier-
archical model provides a means to estimate the cline standard
deviations and HIest requires fixed differences between parents
(hence our focus on loci with fixed differences for this initial set
of simulations). Genomic clines in HIest were fit using the L-
BFGS-B algorithm. Models fit with bgchm used default HMC
settings of 2000 iterations, including a 1000 iteration warmup,
and no thinning. Four chains were run. For the hierarchical
models, the priors on the standard deviations for ¢, and o, were
normal with means of 0 and standard deviations of o, =2. We
used the known parental allele frequencies and hybrid indexes
for all analyses (with the caveat, the parental allele frequencies of
0.001 and 0.999 were used rather than 0 and 1 to avoid problems
with infinite probabilities during computation).

We conducted a second set of simulations to evaluate the effects
of allele frequency differences between source populations and
uncertainty in genotypes on the ability of bgchm to estimate ge-
nomic cline parameters. For this, we again simulated data using
the logit-logistic genomic cline model as a generative model.
Here, we considered only a case of intermediate variability in in-
trogression across the genome, that is, o, 0.3=and o, =0.7 (this
is between the low and moderate variability cases considered for
the first set of simulations). We simulated three levels of allele
frequency differences between source populations: (i) fixed dif-
ferences, (ii) SNPs with a minimum allele frequency difference
of 0.5, and (iii) SNPs with a minimum allele frequency differ-
ence of 0.1. In each case, actual allele frequency differences for
each SNP were sampled from a uniform distribution bounded
by 1 and the specified lower bound (e.g., 0.5 or 0.1). Thus, allele
frequency differences varied among loci (except in the case of
all fixed differences), as would be expected for many empirical

7 of 20

ASUADIT SUOWIO)) dANEAI) d[qearidde o) Aq pauraAoS aIe sa[dNIE Y 1asn Jo So[nI 10§ AIRIqIT AUIUQ AJ[IAY UO (SUOHIPUOD-PUB-SULIA} WO’ AAIm  KIRIqI[ouT[uo//:sdit) SUONIPUOD) pue SWIS], A 99§ *[SZ0T/H0/T] U0 ATeiqr] auruQ K[IA ‘8+S0L €999/2001°01/10p/wod Kafim Kreqrjaur[uoy/:sdny woiy papeofumod ‘11 ‘#20T ‘8SLLSHOT



data sets. We simulated 50 data sets comprising 100 loci and 50
hybrids for each level of minimum allele frequency differences.
Then, for each simulation, we generated an additional, comple-
mentary data set with uncertain genotypes. This was done as
described above for the hybrid index and ancestry class propor-
tion analyses. Specifically, we again assumed a Poisson distrib-
uted number of reads per individual and locus (4 =7) and 1%
sequence error rate.

Next, we estimated genomic cline parameters for each of the
300 simulated data sets (50 replicates for each level of allele fre-
quency differences and for genotypes known versus uncertain)
using the hierarchical model from bgchm. We did not include
the comparison with HIest as this program requires diagnostic
allele frequency differences between source populations and we
kept our focus on the hierarchical model to evaluate inferences
of cline standard deviations. We used the default HMC settings
of 2000 iterations, including a 1000 iteration warmup, and no
thinning. Four chains were run. Priors on the standard devia-
tions for ¢, and o, were normal with means of 0 and standard
deviations of 6, =2. We again used the known parental allele
frequencies and hybrid indexes for all analyses.

2.3.3 | Genomic Cline Analyses of Hybrid Zones
Simulated With Dfuse

We then conducted a third set of simulations to examine the
relationship between the genetic architecture of hybrid fitness
and cline parameters, including both clines for individual loci
and the cline parameter standard deviations. These simulations
were not meant to be exhaustive but rather to complement ex-
isting simulation-based studies of genomic clines in the context
of the genetics of isolation in hybrids and cline coupling (e.g.,
Gompert, Parchman, and Buerkle 2012; Firneno et al. 2023).
Our purpose was to illustrate how different genetic architec-
tures of hybrid fitness can leave different patterns in genomic
clines and how these relate to patterns that might arise in the
absence of selection.

Hybrid zones were simulated using dfuse (Lindtke and
Buerkle 2015). We described this software and model previ-
ously in the context of the simulations used to assess our hybrid
index and ancestry class proportion models. In these individual-
based simulations, cline parameters are not strictly defined-it is
not guaranteed that the patterns of introgression will conform
precisely to the form specified by the genomic cline model nor
are the parameters of such a model defined by the simulation
conditions. Thus, we do not use these simulations to assess
the accuracy of the bgcmh model per se but rather to evaluate
how cline parameter estimates are affected by the simulation
conditions. Here, we assumed that hybrid fitness is determined
by N underdominant loci, such that the fitness of an individ-
ual heterozygous for ancestry at n of the N loci is w; = (1-s)",
where s is the selection coefficient (the underdominance model
was added to dfuse in Firneno et al. (2023). We simulated ten
replicate data sets under four different hybrid zone models. All
simulations involved secondary contact, 15 demes for the hybrid
zone, an adult carrying capacity of 100 individuals per deme,
a migration rate of 0.05 between neighboring demes, and 5000
generations of evolution post secondary contact. We simulated

hermaphroditic, diploid organisms each with one, 1 Morgan
chromosome. We recorded ancestry at 251 evenly spaced loci
along the chromosome of each individual. One set of simulations
involved no selection (i.e., neutral evolution by drift and gene
flow only). A second set assumed an oligogenic architecture of
fitness with two underdominant loci with s =0.3 at positions
25cM and 75cM along the chromosome (an individual heterozy-
gous at both loci would have a relative fitness of 0.49). The third
set of simulations considered a polygenic architecture with weak
selection overall, specifically 50 underdominant loci distributed
at even distances across the chromosome and with s =0.005 per
locus (an individual heterozygous at all 50 loci would have a rel-
ative fitness of 0.78). The last set of simulations was of strong
polygenic selection, which again involved 50 evenly distributed
underdominant loci but with s =0.01 (an individual heterozy-
gous at all 50 loci would have a relative fitness of 0.61).

We randomly sampled 100 individuals from each simulated hy-
brid zone for analysis. We assumed fixed differences between
source populations at the 251 loci, such that ancestry was per-
fectly informative of genotype. Genomic cline parameters were
estimated using the standard hierarchical model in bgchm. We
used the known hybrid indexes and parental allele frequencies
of 0.001 and 0.999. We again used the default HMC settings of
four chains each comprising 2000 iterations including a 1000 it-
eration warmup and no thinning. We set normal priors for o,
and o, with means of 0 and standard deviations of 6, =2.

2.4 | Analysis of an Example Empirical Data Set

Lastly, to demonstrate possible usages of the genomic cline mod-
els in bgchm, we applied them to an empirical genetic data set
from a hybrid zone in Lycaeides butterflies. The data set was orig-
inally published and analyzed in Chaturvedi et al.'s (2020). Two
nominal species of Lycaeides butterflies, L. idas and L. melissa,
occur throughout much of western North America with par-
tially overlapping ranges (Nabokov 1943; Gompert et al. 2010,
2014). These species differ on average in terms of the structure of
the male genitalia (Nabokov 1944; Gompert et al. 2010), aspects
of wing pattern (Lucas, Nice, and Gompert 2018), host plant spe-
cies used, and voltinism (Gompert et al. 2013) but nonetheless
have hybridized extensively (Gompert et al. 2010, 2012a; Nice
et al. 2013; Gompert et al. 2014; Chaturvedi et al. 2020). An
ancient, partially stabilized series of admixed populations oc-
curs in the central Rocky mountains and Jackson Hole, which
we refer to as Jackson Hole Lycaeides. These populations are
the product of hybridization between L. idas and L. melissa
that occurred about 14,000years ago following the retreat of
Pleistocene glaciers. More recently, Jackson Hole Lycaeides have
come into secondary contact with L. melissa near the town of
Dubois, WY (43.5623°N, 109.6991°W) where L. melissa feed on
naturalized alfalfa (Medicago sativa) that grows along roadsides
and that was introduced to North America about 250years ago.
This recent secondary contact has resulted in a contemporary
hybrid zone (Chaturvedi et al. 2020; Zhang et al. 2023), which is
the focus of our analyses here. Our goals here are to use bgchm
to characterize the genomic composition of this hybrid zone
in terms of hybrid indexes, ancestry class proportions, and ge-
nomic cline parameters. We then specifically examine the extent
to which clines differ on average between autosomes and the Z
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sex chromosome and as a function of features of the genome
(gene and transposable element density).

We focus on a data set comprising the Dubois hybrid zone
(N =115) individuals, three populations representative of source
Jackson Hole Lycaeides (set as source 0, N =166), and two pop-
ulations representative of source L. melissa populations (set as
source 1, N =117) (see Figure S1). We identified ancestry in-
formative loci from a larger set of 39,193 SNPs generated from
genotyping-by-sequencing data (see Chaturvedi et al. 2020 for
details, including variant filtering and genotype inference). We
specifically considered ancestry-informative SNPs, here defined
as those with an allele frequency difference of 0.3 or greater be-
tween our source populations; this yielded a total of 500 ancestry
informative SNPs (330 such SNPs on the 22 autosomes and 170
on the Z chromosome). We began by estimating hybrid indexes
and ancestry class proportions based on this full data set with the
est hi and est O functions in bgchm. This was done using
the known genotype model with maximum likelihood estimates
of parental allele frequencies derived from Bayesian point esti-
mates of genotypes. We treated Z-linked SNPs in females as hap-
loid. We used the default HMC conditions for these functions,
that is four HMC chains with 2000 steps, including 1000 war-
mup iterations and no thinning. We summarized the posterior
estimates of hybrid index and ancestry class proportions for each
individual based on posterior medians and 90% ClIs.

We next fit several genomic cline models to illustrate different
ways cline estimates can be used to make inferences. First, as the
primary analysis, we fit a single hierarchical genomic cline model
using all 500 SNPs. Here, we used the hybrid indexes estimated
from the full data set, maximum likelihood estimates of parental
allele frequencies, and again treated Z-linked SNPs as haploid in
females. We fit the model with the default HMC conditions-four
chains each comprising 2000 iterations including a 1000 iteration
warmup and no thinning-with the prior mean for the cline stan-
dard deviations set to 0 and the prior standard deviations set to 2
(i.e., 0. and o, were estimated from the data). We applied the sum-
to-zero constraint to cline estimates from this analysis.

We then fit an additional pair of genomic cline models to di-
rectly ask whether patterns of introgression differed on average
for autosomes versus the Z chromosome. For this, we used hy-
brid indexes estimated only from the autosomes. Genomic cline
parameters for the autosomes and Z chromosome were then es-
timated separately, that is, in separate fits of genomic cline mod-
els. Here, not only did we estimate the cline standard deviations
from the data (¢, and o) but also the mean (u, and p,). Because
the hybrid indexes were based on the autosomal data, the ex-
pected means for the autosomal SNPs were y, =0 and y, =0.
However, this was not true for the Z chromosome SNPs and the
values of y, and pu, for these SNPs thus indicate the extent and
manner in which patterns of introgression deviate on average
for Z-linked SNPs versus autosomes. With that said, the values
of yu, and u, for autosomes are not forced to be 0, and thus, we
based our inferences on the difference in y, and u, for Z for au-
tosome SNPs (specifically, on the posterior distribution for such
differences). These models were also fit the default HMC condi-
tions, but with normal priors on u, and y,, both with means of 0
and standard deviations of o, =2.

We conducted a final set of cline model fits to explicitly compare
the variability of clines across autosomes versus the Z chromo-
some relative to the average introgression on autosomes versus
the Z chromosome. For this, we estimated hybrid indexes sep-
arately for autosomal and Z loci; we then fit hierarchical cline
models for these sets of loci separately using the autosomal and
Z-based hybrid indexes, respectively. We fixed cline means to
0 (as per the standard model) and estimated the cline standard
deviations, o, and o,, which were the main focus of this analy-
sis. This was again done with the standard HMC settings with
the standard deviation of the normal prior on the cline standard
deviations set to o, =2. For all analyses we summarized the pos-
terior estimates of cline parameters (v and c), hierarchical cline
standard deviations, and hierarchical cline means based on pos-
terior medians and 90% Cls.

3 | Results
3.1 | Analyses of Simulated Data Sets

3.1.1 | Results for Simulations of Hybrid Indexes
and Ancestry Class Proportions

Example graphical summaries of hybrid index (H) and inter-
population ancestry (Q,,) estimates are shown in Figure 2A,B.
In general, performance was slightly better for hybrid index
than interpopulation ancestry (Table S1 and Figure 2). Mean
absolute error (MAE, the average deviation between true and
estimated parameter values) increased with decreasing allele
frequency differences, that is, with reduced information on
ancestry in the genotypic data (Figure 2). However, even with
allele frequency differences of 0.1, average MAEs were below
0.14 for H and 0.17 for Q,, (Table S1). Moreover, 90% credible in-
tervals generally contained the true parameter value 90% of the
time or more. Indeed, for the simulations with the greatest allele
frequency differences (i.e., 1; fixed differences), the CIs appear
to be conservative, with the true values of H and Q,, almost al-
ways falling within the 90% CIs. Inferences based on appropri-
ately modeled uncertain genotypes were nearly as accurate as
those based on known genotypes (Table S1 and Figure 2).

3.1.2 | Results From Genomic Cline Analyses
of Simulated Hybrid Zones

Example clines for loci with fixed differences and with low
(6,=0.2 and 6, =0.5), moderate (6, =0.4 and o, =0.8), and high
(6, =0.6 and o, =1.2) variability in introgression across the
genome are shown in Figure 3A. Under these conditions, esti-
mated cline standard deviations were highly correlated with the
true cline standard deviations, with Pearson correlations of 0.97
(95% confidence interval =0.96-0.98) and 0.97 (95% confidence
interval =0.95-0.98) for ¢, and o, respectively (Figure 3B,C).
With that said, when cline variability was high, variation was
somewhat underestimated, such that the mean estimates of ¢,
and o, for the highest variability case were 0.50 and 1.09 com-
pared to the true values of 0.6 and 1.2. Such a bias was not appar-
ent for the low variability simulations (mean ¢, =0.20 and mean
o, =0.47, compared to true values of 0.2 and 0.5).
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(A) Hybrid index estimates (B) Ancestry triangle plot
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FIGURE2 | Example results and summary evaluation of model performance for estimating hybrid index (H) and interpopulation ancestry (Q,).
Panel (A) shows point estimates of hybrid index (black points) and 90% credible intervals (CIs) (vertical lines) for 100 individuals. This is based on
100 loci with fixed differences between parental populations. Pink points show the true, simulated hybrid index values. The triangle plot in panel
(B) shows interpopulation ancestry estimates (Q,,) as a function of hybrid index (H) for the same simulated individuals. Point colors indicate true
parameter values (in increments of 0.1) and lines (the triangle) denote maximum values of interpopualtion ancestry for a given hybrid index. Points
on or near this line denote likely offspring with one non-hybrid parent. Panels (C)-(F) summarize model performance for 50 replicate simulations
each with allele frequency differences (AFDs) between parents of 1.0, 0.5, or 0.1 and known or uncertain genotypes. Panels (C) and (D) summarize
mean absolute error for estimates of H and Q,,, respectively. Boxes indicate the median and 1st and 3rd quartiles of the distribution across replicate
simulations, with whiskers extending up to 1.5 the interquartile range. The overlain points show metrics for individual replicates. Panels (E) and
(F) similarly summarize the proportion of loci where the true parameter value is within the 90% CI of the Bayesian estimate for H (E) and Q,, (F).
The horizontal dashed line denotes the expectation of 90% for a 90% CI.
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With regard to individual cline parameters, MAE was generally
higher when clines were more variable, and likewise, correlations
between true and estimated values declined (more so for slope
than center) (Table S2, Figure 3). In general, bgchm outperformed
HIest, especially when cline variability was high. The hierar-
chical and non-hierarchical models performed similarly, but with
slightly better performance in terms of error and correlations with
true parameter values for the hierarchical model, especially when
cline variance was low (Table S2). As expected, our results also
suggest that, relative to the non-hierarchical model with weakly
informative priors, the hierarchical model is conservative in the
sense that it induces some shrinkage towards zero into the param-
eter estimates (see Table S3). Furthermore, o, and ¢, can only be
estimated as model parameters in the hierarchical model.

We next considered the effects of source allele frequency differ-
ences and genotype uncertainty on estimates of genomic cline
parameters with the hierarchical model in bgchm. We found
that cline standard deviation estimates (¢, and o,) were most ac-
curate for fixed differences and became progressively less accu-
rate with low levels of allele frequency differences (Figure 4A,B).
When the minimum allele frequency difference between source
populations was 0.1, there was a tendency to overestimate the
variability in cline slopes (true o, =0.3, mean point estimate
for known genotypes=0.39) and underestimate the variability
in cline centers (true o, =0.7, mean point estimate for known
genotypes=0.58). Uncertainty in genotypes had little effect on
estimates of cline standard deviations (Figure 4A,B). Similarly,
cline parameter estimates were most accurate in terms of both
MAE and the correlation with true parameter values when allele
frequency differences were high and were less accurate when
they were low (e.g., 0.1; Table S4, Figure 4). Uncertainty in gen-
otypes tended to further decrease the accuracy of estimates but
only to a minor extent (see Table S4, Figure 4). Moreover, the
average proportion of loci where the true parameter value was
contained in the 90% CIs was only weakly affected by allele
frequency differences or genotype uncertainty suggesting that
the uncertainty in clines caused by weak genetic differentiation
between sources is mostly captured by the uncertainty in pa-
rameter estimates (Table S4). With that said, there was slight
tendency overall to underestimate cline uncertainty (i.e., be-
tween 80% and 88% of the 90% CIs contained the true value rel-
ative to the expectation of 90%).

3.1.3 | Results From Genomic Cline Analyses of Hybrid
Zone Simulated With Dfuse

Our final analysis of simulated hybrid zones involved various
genetic architectures for hybrid fitness with dfuse. Overall,
stronger selection (oligenic or strong polygenic) resulted in a
steeper geographic clines in hybrid indexes across the hybrid
zones (Figure 5). However, all four sets of conditions resulted
in similar numbers of loci with credible deviations from null
expectations for cline slopes (v) and centers (c) (Table S5 and
Figure 5). We observed notable variation in cline standard de-
viations across simulated data sets, with a trend towards larger
slope variances (o) for oligogenic selection (Figure 5I).

Despite similar numbers of loci with clines deviating from null
expectations, we did find patterns of cline variation consistent

with the effects of selection. Specifically, for oligogenic se-
lection and strong polygenic selection, there was a significant
(all p < 0.05) negative correlation between the log of v and the
distance a marker locus was from an underdominant locus
(Pearson correlations ranged from —0.34 to —0.49 for oligo-
genic selection and—0.11 to —0.23 for strong polygenic selec-
tion; Table S6 and Figure 5). Negative correlations were also
observed for weak polygenic selection (range =-0.04 to —0.11),
but these were not significantly different from 0 (all p > 0.05)
(Table S6 and Figure 5). No underdominant loci were present in
the neutral simulations, thus, as expected, we found small and
non-significant (and mostly positive) correlations between cline
slopes and the locations used for underdominant loci in the poly-
genic simulations (range = —0.02 to 0.06) (Table S6); this demon-
strates that large negative correlations do not arise inherently in
the absence of selection.

Interestingly, we detected positive correlations between the ab-
solute value of logit cline centers and the location of underdom-
inant loci in the oligogenic simulations and most of the strong
polygenic simulations (positive in all ten of the latter, but signifi-
cantly greater than 0 with p < 0.05 for eight of the simulations;
Table S7, Figure S2). A similar but non-significant pattern was
documented for weak polygenic selection, and no such pattern
was found for neutral simulations (again based on the locations
of underdominant loci in polygenic simulations). Thus, at least
with stronger selection, simulated SNPs near underdominant
loci have steeper cline slopes (larger, positive values of v) but
also cline centers closer to the genome-wide null expectation,
suggesting that selection resulted in steeper clines but more con-
strained (coincident) centers.

3.2 | Analysis of an Example Empirical Data Set

We estimated hybrid indexes, ancestry class proportions, and
genomic cline parameters for 500 ancestry-informative SNPs
in a Lycaedies butterfly hybrid zone (Figure 6). Estimates of
hybrid indexes were generally precise (mean width of the 90%
CIs=0.061) and spanned the full range from only ancestry
from source population 0 (i.e., Jackson Hole Lycaeides) to only
ancestry from source population 1 (i.e., L. melissa) (Figure 6B).
Ancestry class proportion estimates suggest a wide range of ge-
nome compositions in hybrids, including some individuals with
near maximal interpopulation ancestry for their hybrid indexes
(i.e., individuals with one or more non-admixed parents, that
is F1s or backcrosses) and individuals where both parents were
likely themselves hybrids (i.e., individuals with lower levels of
interpopulation ancestry given their hybrid indexes; Figure 6C).

Genomic cline analysis of all 500 SNPs detected substan-
tial genome-wide variation in introgression (Figure 6D-F).
Overall, patterns of introgression deviated from null expec-
tations based on genome-average admixture for 218 out of the
500 loci (Table S8). This includes 40 loci with credibly steeper
clines than null expectations (v > 1), of which 39 were on the Z
chromosome. This is a significant enrichment of steep clines on
the Z chromosome (randomization test, 1000 randomizations,
expected =13.7, p=0.001). We detected 48 loci with credible ex-
cesses in Jackson Hole Lycaeides (c > 0.5) or L. melissa (c < 0.5)
ancestry, with enrichments of both types of excesses on the Z
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FIGURE3 | Legend on next page.

chromosome (randomization tests, 1000 randomizations each;
¢ > 0.5, Z observed =23, Z expected=16.4, p=0.022; ¢ < 0.5, Z
observed =37, Z expected =23.8, p=0.001).

In general, variability in introgression among loci can reflect the
joint effects of selection and genetic drift. A role for selection
predicts associations between cline parameters and genomic
features, such as chromosome size and genomic content (e.g.,

T T T
0.5 0.8 1.2

Cline standard deviation

Schumer et al. 2018; Chaturvedi et al. 2020). Along these lines,
we found a modest and marginally significant positive associa-
tion between chromosome size and mean log cline slope or gra-
dient (v) when considering the subset of chromosomes with at
least five ancestry informative SNPs (linear regression, df=17,
p=2.6 x10 8 s.e.=1.4 x 108 »=0.18, model p=0.017). This
would be expected if loci on larger chromosomes were affected
on average more by indirect selection because of a lower rate
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FIGURE3 | Summary of genomic cline variability and the effect of such variability on cline inference. Panel (A) shows simulated genomic clines
with low (6,=0.2 and 6,=0.5), moderate (6,=0.4 and 6,=0.8), and high (6,=0.6 and 6,=1.2) variability in introgression. Each gray line is the cline
for a locus and gives the probability of ancestry from source 1 as a function of hybrid index (the overall proportion of the genome from source 1). The
null expectation if introgression does not vary across the genome is given by the dashed black line. Estimates of cline standard deviations for slope,
o,, and center, ¢, are shown in panels (B) and (C), respectively. Here, point estimates and 90% credible intervals (CIs) are depicted with points and
vertical lines. Horizontal dotted lines give the true value used for each simulation. Performance, in terms of estimating cline slopes (v) and centers,
is summarized based on mean absolute error in panels (D) and (E) and in terms of the correlation between true and estimated parameter values in
panels (F) and (G). Errors and Pearson correlations were computed based on parameter point estimates (posterior medians) and are summarized
across replicate simulations with boxplots. Boxes indicate the median and 1st and 3rd quartiles of the distribution across replicate simulations, with
whiskers extending up to 1.5X the interquartile range. The overlain points show metrics for individual replicates. Performance of bgchm using a
simple non-hierarchical model and a hierarchical model are shown, as are results from HIest (for HIest, cases where the algorithm failed are

excluded).

of recombination per base pair (and thus higher average link-
age disequilibrium). We found no evidence of steeper clines in
or near (within 1 kb) genes (randomization test, 1000 random-
izations, p=0.792) but did find evidence of significantly steeper
clines in or near annotated transposable elements (randomiza-
tion test, 1000 randomizations, p=0.011). Together these results
suggest some role for selection in clinal patterns and highlight
different patterns of introgression for autosomes and the Z chro-
mosome. We followed up on this latter possibility with formal
analyses comparing these sets of chromosomes.

In cline models based on autosomal hybrid indexes, we found
credibly steeper clines on average for the Z chromosome than
for autosomes (posterior probability u, for Z was greater than
#, =0.999 for autosomes, estimate of difference=0.118, 90%
CIs=0.055-0.181; Figure 6H). This is consistent with stronger
selection (or reduced recombination) in hybrids on the Z chro-
mosome, especially as drift has a much more pronounced effect
on cline centers than slopes in the absence of spatial structure
(Gompert, Parchman, and Buerkle 2012). When considering
cline slopes inferred from fully independent analyses of auto-
somes and Z loci (for hybrid indexes and clines), we found a trend
towards more variability of introgression on the Z relative to av-
erage introgression on the Z (¢, =0.355, 90% CI=0.296-0.415)
versus variability of introgression on the autosomes rela-
tive to average introgression on autosomes (o, =0.325, 90%
CI=0.273-0.374), but there was sufficient uncertainty in both
parameters to preclude strong confidence in the difference sug-
gested by this trend (posterior probability Z > autosomes =0.748,
see Figure 6I). Still, taken together, these results point to a spe-
cial role for the Z sex chromosome in speciation in Lycaeides but-
terflies (consistent with Chaturvedi et al. 2020).

4 | Discussion

Genomic analyses of hybrid zones provide unique and powerful in-
sights into the nature and basis of species boundaries and the eco-
logical and evolutionary consequences of hybridization (Harrison
and Larson 2014; Gompert, Mandeville, and Buerkle 2017). Here,
we described, demonstrated and assessed bgchm, a new R pack-
age designed to facilitate genomic analyses of hybrid zones. This R
package combines methods and models for Bayesian inference hy-
brid indexes, ancestry class proportions, and genomic clines (and
also geographic clines, see the Supporting Information, Table S9
and Figure S3) with HMC. We showed that bgchm provides ac-
curate estimates of the relevant model parameters under a variety

of conditions and especially when the genetic loci are highly in-
formative of ancestry (i.e., when the allele frequency differences
between source populations are not too small). This even includes
reasonably robust estimates of the variability of clines across the
genome via inference of cline standard deviations, which have not
been the focus of previous models and methods. The models pre-
sented also allow for inference with uncertainty in genotypes, and
we showed that at least with modest sequencing coverage this has
minimal effect on the accuracy of inferences. Finally, we found
that under most conditions true uncertainty in parameters was ac-
curately estimated, although in some cases credible intervals were
overly conservative (e.g., hybrid indexes with fixed differences be-
tween parents) or too narrow (e.g., genomic cline parameters in
Some cases).

Our results from simulated and empirical data sets build on
our existing understanding of how evolutionary processes in-
teract to affect patterns of introgression in hybrid zones (e.g.,
Endler 1977; Barton and Hewitt 1985; Gompert, Parchman, and
Buerkle 2012; Harrison and Larson 2016; Gompert, Mandeville,
and Buerkle 2017; McFarlane et al. 2021). For example, when
hybrid fitness has a simple genetic architecture, loci residing
in genomic regions proximate to causal variants affecting hy-
brid fitness had exceptional genomic cline parameters, consis-
tent with Gompert, Parchman, and Buerkle (2012). The effects
of selection on individual genomic cline parameters were less
pronounced for weaker and more polygenic selection, though
some signals remained in terms of cline parameters varying as a
function of distance from causal variants in simulations and dif-
ferences among classes of loci (those near transposable elements
or on the Z sex chromosome versus autosomes) for the Lycaeides
hybrid zone. This suggests that when the genetic architecture
of hybrid fitness is polygenic, it is probably more informative to
focus on such higher level contrasts, including cline standard de-
viations (which can sometimes be related to cline coupling, see,
e.g., Firneno et al. 2023) rather than so-called individual outlier
loci as patterns of introgression for neutral and non-neutral loci
can be similar. It is also critical to recall that selection is not
required for introgression to vary across the genome and for loci
to deviate from null patterns of introgression based on genome-
wide admixture, as illustrated by our simulations of neutral
secondary contact. Indeed, selection can either increase or de-
crease the variation in introgression across the genome, with
the former expected for simple genetic architectures and the
latter expected for coupled clines when many loci contribute to
reproductive isolation (Barton 1983; Firneno et al. 2023). Thus,
additional information beyond deviations from genome-average
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FIGURE4 | Summary of the effects of source allele frequency differences and genotype uncertainty on genomic cline inference. All panels show
results based on minimum source allele frequency differences of 1, 0.5 and 0.1 and with or without uncertainty in genotypes as indicated by the colors
and associated legend. Panels (A) and (B) provide estimates of cline standard deviations for slope, 5, and center, o, respectively. Points and vertical
lines depict point estimates and 90% credible intervals (CIs) Horizontal dotted lines give the true value used for ¢, (A) and ¢, (B). Model performance
for genomic cline parameters (v and c) is summarized based on mean absolute error in panels (C) and (D) and based on the correlation between true
and estimated parameter values in panels (E) and (F). Errors and Pearson correlations were computed based on parameter point estimates (posterior
medians) and are summarized across replicate simulations with boxplots. Boxes indicate the median and 1st and 3rd quartiles of the distribution
across replicate simulations, with whiskers extending up to 1.5 the interquartile range. The overlain points show metrics for individual replicates.
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FIGURE 5 | Summary of genomic cline analysis of hybrid zone simulations with alternative genetic architectures for hybrid fitness. Results
are shown for neutral secondary contact, oligenic selection, weak polygenic selection and strong polygenic selections (see main text for details).
Panels (A-D) show the distribution of hybrid indexes (HI) across demes and across 10 replicate simulations for each set of conditions. Boxes indicate
the median and 1st and 3rd quartiles of the hybrid index distribution for each deme, with whiskers extending up to 1.5X the interquartile range.
The overlain points denote individual hybrid indexes. Panels (E-H) show genomic clines from 100 representative loci for each set of conditions.
Each colored line is the cline for a locus and gives the probability of ancestry from source 1 as a function of hybrid index. The null expectation if
introgression does not vary across the genome is given by the dashed black line. Point estimates of cline standard deviations (SDs) are shown in
panel (I). Here, conditions are colored in accordance with panels (A-H). Panels (J), (K) and (L) show the relationships between the distance (in cM)
a marker locus is from a selected locus and the log of the cline gradient or slope (v). This is only shown for the three sets of conditions with selection.

Points are colored to indicate distinct replicate simulations and the Pearson correlation between distance and log(v) is reported.

introgression is required to infer processes from patterns in hy-
brid zones; we expand on this topic in the section 4.2.

4.1 | Comparison With Other Software

Several computer programs exist for genetic analyses of hybrid
zones, and thus, it is worth considering how this newly intro-
duced R package, bgchm, fits in with existing software. To our
knowledge, four main programs are currently available for esti-
mating genomic clines. The earliest of these was introgress
(Gompert and Buerkle 2010), which adopts a multinomial
likelihood-based approach to estimate genomic clines for mul-
tilocus genotypic data (Gompert and Buerkle 2009, 2010). This
program does not consider ancestry but is unique in separately
modeling introgression of homozygous versus heterozygous

genotypes. The original bgc (Gompert and Buerkle 2012) fits
Bayesian genomic clines in ancestry using a hierarchical model
and a polynomial function for clines adapted from Szymura and
Barton's (1986). This software has many similarities with our
new bgchm, including the basic hierarchical modeling approach
and the ability to work with genotype uncertainty. However,
bgc is less modular (all loci must be fit together) and uses tra-
ditional Markov chain Monte Carlo, which exhibits notably
poorer mixing. These features make bgc less well-suited for
genome-scale data and for estimating cline standard deviations
(these tend to mix especially poorly and are generally treated
as nuisance parameters). HIest features multiple cline models
and approaches to model fitting but takes a non-hierarchical
approach and assumes fixed differences between source popu-
lations (Fitzpatrick 2012). Finally, the recently released gghy-
brid (Bailey 2024) shares many aspects with bgchm including
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(A) Lycaeides illustration

(B) Hybrid indexes

(C) Ancestry triangle plot
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FIGURE 6 | Legend on next page.

the Bayesian approach and use of the logit-logistic cline model.
The key features provided by bgchm relative to gghybrids
are (i) an ability to model uncertainty in genotypes, (ii) the abil-
ity to directly model ancestry data, (iii) the use of hierarchical
models and thus inference of cline standard deviation, (iv) in-
terpopulation ancestry models, (v) hierarchical Bayesian models
for geographic cline analyses, and (vi) the use of HMC for effi-
cient sampling from posterior distributions. In terms of speed,
the original bgc is by far the slowest program, especially with
large data sets, whereas the likelihood-based approaches tend to
be the fastest. We have not conducted a detailed comparison of
gghybrid and bgchm, and this is slightly complicated by the
fact that fewer MCMC steps are required to obtain a high effec-
tive sample size with HMC, but both programs make it practical
to analyze very large data sets, especially given the potential for

parallelization in bgchm (and gghybrids). For bgchm, the
total runtime largely depends on the extent to which cline fitting
is done in parallel after the cline standard deviation parameters
have been estimated. With robust computational resources (i.e.,
a single compute node with ~48 CPUs and multi-threading), we
have been able to successfully fit clines for millions of SNPs in a
few days of human time.

Further, existing programs differ in terms of the set of features
included. The original bgc was a standalone program that only
included the genomic cline model but did estimate hybrid in-
dexes as part of this model. In contrast, introgress, HIest,
and gghybrid include additional functions for estimating hy-
brid indexes and (for the former two) for estimating genotype-
based metrics similar to ancestry class proportions. bgchm also
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FIGURE 6 | Summary of key results from an example analysis with Lycaeides butterflies. An illustration of a Lycaeides butterfly from the Dubois
hybrid zone is shown in panel (A). Panel (B) gives point estimates (points) and 90% credible intervals (CIs) (vertical lines) for hybrid index based on
the combined autosomal and Z chromosome data. Panel (C) shows interpopulation ancestry estimates (Q,,) as a function of hybrid index (H) for the
same hybrid zone butterflies. Point estimates and 90% Cls (vertical and horizontal lines) are given. Genomic clines for 100 representative loci are
shown in panel (D). Each line denotes the probability of L. melissa ancestry for a locus as a function of hybrid index (the overall proportion of an
individual's genome with L. melissa ancestry). Darker and thicker lines are used for loci with credible deviations from genome-average ancestry (90%
CIs for cline gradient of center not overlapping null expectations). The diagonal, dashed line shows the null 1:1 expectation for locus-specific ancestry
probabilities as a function of hybrid index. Panels (E) and (F) display estiamtes of the log cline gradient (log of v) and logit cline center for each of the
500 ancestry-informative SNPs. Point estimates and 90% CIs (vertical lines) are displayed, with open points used for cases where the 90% CIs do not
exclude values less than 0 (E) or do not exclude 0 (F). The null expectation value of 0 (on the log or logit scale) is shown for each panel with a horizontal
dashed line. Panel (G) shows the relationship between chromosome size (length in base pairs, bps) the the mean log gradient for the 20 chromosomes
with more than five ancestry informative SNPs. Chromosome numbers (or Z) are given, along with the best fit line from a linear regression; the model
r? and p-value are reported. Panel (H) gives the difference in mean log gradient between the Z chromosome and autosomes for cline models where Z
and autosomal SNPs were analyzed separately and where the means were not set to zero but estimated from the data. Both models used autosomal
estimates of hybrid indexes. The posterior density for the difference is shown, along with a vertical line for the null expectations. The posterior
probability that the mean for Z loci exceeds the mean for autosomes was >0.99. Panel (I) shows the posterior distributions for the standard deviation
in log cline gradients for autosomes and the Z chromosome. Here, autosomal and Z SNPs were analyzed separately and with hybrid indexes inferred
from autosomal and Z SNPs, respectively. Boxes indicate the median and 1st and 3rd quartiles of the posterior distribution, with whiskers extending
up to 1.5% the interquartile range. The overlain points show 4000 parameter value samples from the posterior. The posterior probability that the

variance for the Z SNPs exceeds the variance for the autosomal SNPs was 0.75.

includes models of hybrid index inference and includes a unique
model for true ancestry class proportions (this is similar to the Q
modelin entropy, but with source populations designated a pri-
ori; Gompert et al. 2014; Shastry et al. 2021). Additionally, while
several computer programs, including C£1it (Gayet al. 2008) and
hzar, which uses a Bayesian approach (Derryberry et al. 2014),
exist for inference of geographic cline parameters, bgchm is
unique in including the option to fit hierarchical models for geo-
graphic and genomic clines in a single program (the geographic
cline models are described in the Supporting Information).
Likelihood-based approaches for estimating hybrid index and
interpopulation ancestry exist in introgress (Gompert and
Buerkle 2010) and HIest (Fitzpatrick 2012), and hybrid indexes
can be inferred in several programs using either likelihood
or Bayesian methods (e.g., introgress, HIest, bgc, and
gghybrid; Gompert and Buerkle 2012; Bailey 2024). Moreover,
interpopulation ancestry and admixture proportions, which are
analogous to hybrid indexes with two source populations, can
be jointly inferred in entropy (Gompert et al. 2014; Shastry
et al. 2021). Finally, additional software packages exist for ge-
nomic analyses of hybrids or hybrid zones that focus on ancestry
inference via genome polarization without pre-defined parental
populations (Baird et al. 2023) and genomic characterization of
hybrids from diagnostic markers (Wiens and Colella 2024).

4.2 | Conclusions and Future Directions

Our use of HMC, and specifically the NUTS algorithm from
Stan, results in more rapid and robust Bayesian inference of ge-
nomic clines than was possible with the original bgc program.
However, analyses of very large data sets, or of many replicate
hybrid zones, can still require substantial time or computational
resources (e.g., many CPUs). One possible way to overcome
this limitation is to replace the current HMC approach with an
approximation of the posterior through variational inference
(Kucukelbir et al. 2017). Variational inference is supported by
Stan and allows for automatic approximation of the posterior
distribution. This can increase the speed of model fitting by

orders of magnitude (Kucukelbir et al. 2017). However, it can
also come at a cost in terms of accuracy, and the reliability of
variational inference for genomic cline models remains to be
evaluated. We see additional potential for increases in speed,
and potentially accuracy, by fitting cline models for ancestry
blocks (as identified in models for local ancestry inference or
via genome polarization, e.g., Sankararaman et al. 2008; Baird
et al. 2023; Browning, Waples, and Browning 2023) rather than
for genotypes or ancestry at individual loci. This could reduce
the number of independent genomic regions or loci required
for analysis and simultaneously overcome limitations that arise
from low ancestry information for subsets of loci. This could be
done with the existing ancestry model in bgchm. We intend to
evaluate both variational approximations and ancestry-block
based analyses in a future publication.

Finally, hybrid indexes, ancestry class proportions, and ge-
nomic clines provide summaries of patterns of introgression
but connecting such genomic patterns to ecological and evo-
lutionary processes remains difficult (McFarlane et al. 2021).
With certain assumptions or information, especially about
dispersal, geographic patterns of introgression can be directly
related to process-based parameters, such as the average inten-
sity of selection against hybrids (e.g., Barton and Hewitt 1985;
Szymura and Barton 1986; Mallet et al. 1990). However, this
is less true for genomic clines, as these are always relative to
overall admixture and thus not absolute metrics of introgres-
sion (this is also an advantage as they are less dependent on
the geography of a hybrid zone). We think a valuable area for
future research is to test whether the combined information
from hybrid indexes, ancestry class proportions, genomic and
geographic clines, as well as patterns of linkage disequilibrium
in hybrid zones, could be used to reliably infer demographic
and evolutionary processes governing hybrid zones, at least for
a subset of clear, alternative models. This could be done using
approximate Bayesian computation or with neural networks,
both of which are suitable for combining information across
heterogeneous data types (Sisson, Fan, and Beaumont 2018;
Gehara, Mazzochinni, and Burbrink 2020; Yang et al. 2022).
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Convolutional neural networks, which have recently shown
great general promise in population genomics (Flagel,
Brandvain, and Schrider 2019; Torada et al. 2019; Smith
et al. 2023), could be particularly useful for mapping such dis-
parate data information sources to generative processes that
emit identifiable signals. We think that this gap between pat-
tern and process is an important area for future work to ad-
dress and we hope to contribute to doing so in future work.

Author Contributions

Zachariah Gompert: conceptualization (lead), formal analysis (lead),
funding acquisition (lead), investigation (lead), methodology (lead),
software (lead), writing — original draft (lead), writing - review and
editing (lead). Devon A. DeRaad: software (supporting), writing - re-
view and editing (equal). C. Alex Buerkle: conceptualization (equal),
software (equal), writing - review and editing (equal).

Acknowledgments

We thank Rozenn Pineau, Alia Donley, Anthony Reis, and Bhagya
Amarasinghe for their help with testing the bgchm R package. This
work was supported by NSF grant DEB 1844941 to Z.G. Support and
resources from the Center for High Performance Computing at the
University of Utah are gratefully acknowledged.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Simulated data sets are available from Dryad (https://doi.org/10.5061/
dryad.tht76hf87). DNA sequence data for the butterfly hybrid zone are
available from the NCBI SRA (PRINA577236 and PRINA432816).

Code Availability

The source code for bgchm can be downloaded and installed from
GitHub (https://github.com/zgompert/bgc-hm). Additional scripts used
for simulations and analyses in this article are available from a second
GitHub repository (https://github.com/zgompert/bgchm_test).

References

Bailey, R. I. 2024. “Bayesian Hybrid Index and Genomic Cline
Estimation With the R Package Gghybrid.” Molecular Ecology Resources
24:e13910.

Baird, S.J., J. PetruZela, I. Jaroni, P. Skrabanek, and N. Martinkova. 2023.
“Genome Polarisation for Detecting Barriers to Geneflow.” Methods in
Ecology and Evolution 14: 512-528.

Barton, N. H. 1979. “Gene Flow Past a Cline.” Heredity 43: 333-339.
Barton, N. H. 1983. “Multilocus Clines.” Evolution 37: 454-471.

Barton, N. H., K. S. Gale, and R. Harrison. 1993. “Genetic Analysis of
Hybrid Zones.” In Hybrid Zones and the Evolutionary Process, 13-45.
New York, NY: Oxford University Press.

Barton, N. H., and G. M. Hewitt. 1985. “Analysis of Hybrid Zones.”
Annual Review of Ecology and Systematics 16: 113-148.

Betancourt, M. 2017. “A Conceptual Introduction to Hamiltonian Monte
Carlo.” arXiv preprint arXiv:1701.02434.

Betancourt, M., and M. Girolami. 2015. “Hamiltonian Monte Carlo for
Hierarchical Models.” In Current Trends in Bayesian Methodology With
Applications, 79-101. FL: CRC Press Boca Raton.

Browning, S. R., R. K. Waples, and B. L. Browning. 2023. “Fast, Accurate
Local Ancestry Inference With FLARE.” American Journal of Human
Genetics 110: 326-335.

Buerkle, C. A. 2005. “Maximum-Likelihood Estimation of a Hybrid
Index Based on Molecular Markers.” Molecular Ecology Notes 5:
684-687.

Buerkle, C. A., and C. Lexer. 2008. “Admixture as the Basis for Genetic
Mapping.” Trends in Ecology & Evolution 23: 686—-694.

Caeiro-Dias, G., A. Brelsford, M. Meneses-Ribeiro, P. A. Crochet, and
C. Pinho. 2023. “Hybridization in Late Stages of Speciation: Strong but
Incomplete Genome-Wide Reproductive Isolation and ‘Large z-Effect'in
a Moving Hybrid Zone.” Molecular Ecology 32: 4362-4380.

Carling, M. D., and R. T. Brumfield. 2008. “Haldane's Rule in an Avian
System: Using Cline Theory and Divergence Population Genetics to
Test for Differential Introgression of Mitochondrial, Autosomal, and
Sex-Linked Loci Across the Passerina Bunting Hybrid Zone.” Evolution
62:2600-2615.

Chaturvedi, S., L. K. Lucas, C. A. Buerkle, et al. 2020. “Recent Hybrids
Recapitulate Ancient Hybrid Outcomes.” Nature Communications 11:
2179.

Dasmahapatra, K. K., M. J. Blum, A. Aiello, et al. 2002. “Inferences
From a Rapidly Moving Hybrid Zone.” Evolution 56: 741-753.

Derryberry, E. P., G. E. Derryberry, J. M. Maley, and R. T. Brumfield.
2014. “HZAR: Hybrid Zone Analysis Using an r Software Package.”
Molecular Ecology Resources 14: 652-663.

Endler, J. A. 1977. Geographic Variation, Speciation, and Clines.
Princeton, NJ: Princeton University Press.

Firneno, T. J., G. Semenov, E. B. Dopman, S. A. Taylor, E. L. Larson,
and Z. Gompert. 2023. “Quantitative Analyses of Coupling in Hybrid
Zones.” Cold Spring Harbor Perspectives in Biology 15: a041434.

Fitzpatrick, B. 2013a. “HIest: Hybrid Index Estimation.” R Package
Version 2.0.

Fitzpatrick, B. M. 2012. “Estimating Ancestry and Heterozygosity of
Hybrids Using Molecular Markers.” BMC Evolutionary Biology 12: 1-14.

Fitzpatrick, B. M. 2013b. “Alternative Forms for Genomic Clines.”
Ecology and Evolution 3: 1951-1966.

Flagel, L., Y. Brandvain, and D. R. Schrider. 2019. “The Unreasonable
Effectiveness of Convolutional Neural Networks in Population Genetic
Inference.” Molecular Biology and Evolution 36: 220-238.

Fordyce, J. A., Z. Gompert, M. L. Forister, and C. C. Nice. 2011. “A
Hierarchical Bayesian Approach to Ecological Count Data: A Flexible
Tool for Ecologists.” PLoS One 6: €26785.

Gay, L., P. A. Crochet, D. A. Bell, and T. Lenormand. 2008. “Comparing
Clines on Molecular and Phenotypic Traits in Hybrid Zones: A Window
on Tension Zone Models.” Evolution 62: 2789-2806.

Gehara, M., G. G. Mazzochinni, and F. Burbrink. 2020. “PipeMaster:
Inferring Population Divergence and Demographic History With
Approximate Bayesian Computation and Supervised Machine-Learning
in R.” BioRxiv, 2020.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 1995. Bayesian
Data Analysis. Boca Raton, Florida: Chapman and Hall/CRC.

Gompert, Z., and C. Buerkle. 2012. “Bgc: Software for Bayesian
Estimation of Genomic Clines.” Molecular Ecology Resources 12:
1168-1176.

Gompert, Z., and C. A. Buerkle. 2009. “A Powerful Regression-Based
Method for Admixture Mapping of Isolation Across the Genome of
Hybrids.” Molecular Ecology 18: 1207-1224.

Gompert, Z., and C. A. Buerkle. 2010. “INTROGRESS: A Software
Package for Mapping Components of Isolation in Hybrids.” Molecular
Ecology Resources 10: 378-384.

18 of 20

Ecology and Evolution, 2024

ASUADIT SUOWIO)) dANEAI) d[qearidde o) Aq pauraAoS aIe sa[dNIE Y 1asn Jo So[nI 10§ AIRIqIT AUIUQ AJ[IAY UO (SUOHIPUOD-PUB-SULIA} WO’ AAIm  KIRIqI[ouT[uo//:sdit) SUONIPUOD) pue SWIS], A 99§ *[SZ0T/H0/T] U0 ATeiqr] auruQ K[IA ‘8+S0L €999/2001°01/10p/wod Kafim Kreqrjaur[uoy/:sdny woiy papeofumod ‘11 ‘#20T ‘8SLLSHOT



Gompert, Z., and C. A. Buerkle. 2011. “Bayesian Estimation of Genomic
Clines.” Molecular Ecology 20: 2111-2127.

Gompert, Z., and C. A. Buerkle. 2016. “What, if Anything, Are Hybrids:
Enduring Truths and Challenges Associated With Population Structure
and Gene Flow.” Evolutionary Applications 9: 909-923.

Gompert, Z., L. K. Lucas, C. A. Buerkle, M. L. Forister, J. A. Fordyce,
and C. C. Nice. 2014. “Admixture and the Organization of Genetic
Diversity in a Butterfly Species Complex Revealed Through Common
and Rare Genetic Variants.” Molecular Ecology 23: 4555-4573.

Gompert, Z., L. K. Lucas, J. A. Fordyce, M. L. Forister, and C. C. Nice.
2010. “Secondary Contact Between Lycaeides idas and L. melissa in the
Rocky Mountains: Extensive Admixture and a Patchy Hybrid Zone.”
Molecular Ecology 19: 3171-3192.

Gompert, Z., L. K. Lucas, C. C. Nice, J. A. Fordyce, C. Alex Buerkle,
and M. L. Forister. 2013. “Geographically Multifarious Phenotypic
Divergence During Speciation.” Ecology and Evolution 3: 595-613.

Gompert, Z., L. K. Lucas, C. C. Nice, J. A. Fordyce, M. L. Forister, and
C. A. Buerkle. 2012a. “Genomic Regions With a History of Divergent
Selection Affect Fitness of Hybrids Between Two Butterfly Species.”
Evolution 66: 2167-2181.

Gompert, Z., E. G. Mandeville, and C. A. Buerkle. 2017. “Analysis of
Population Genomic Data From Hybrid Zones.” Annual Review of
Ecology, Evolution, and Systematics 48: 207-229.

Gompert, Z., T. L. Parchman, and C. A. Buerkle. 2012. “Genomics of
Isolation in Hybrids.” Philosophical Transactions of the Royal Society, B:
Biological Sciences 367: 439-450.

Haldane, J. B. S. 1948. “The Theory of a Cline.” Journal of Genetics 48:
277-284.

Harrison, R. G., and E. L. Larson. 2014. “Hybridization, Introgression,
and the Nature of Species Boundaries.” Journal of Heredity 105: 795-809.

Harrison, R. G., and E. L. Larson. 2016. “Heterogeneous Genome
Divergence, Differential Introgression, and the Origin and Structure of
Hybrid Zones.” Molecular Ecology 25: 2454-2466.

Harrison, R. G., and D. M. Rand. 1989. “Mosaic Hybrid Zones and the
Nature of Species Boundaries.” In Speciation and Its Consequences, 111-
133. Massachusetts: Sinauer Associates Sunderland.

Hoffman, M. D., and A. Gelman. 2014. “The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.” Journal
of Machine Learning Research 15: 1593-1623.

Jiggins, C. D., and J. Mallet. 2000. “Bimodal Hybrid Zones and
Speciation.” Trends in Ecology & Evolution 15: 250-255.

Kucukelbir, A., D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. 2017.
“Automatic Differentiation Variational Inference.” Journal of Machine
Learning Research 18, no. 14: 1-45.

Larson, E. L., J. A. Andrés, S. M. Bogdanowicz, and R. G. Harrison.
2013. “Differential Introgression in a Mosaic Hybrid Zone Reveals
Candidate Barrier Genes.” Evolution 67: 3653-3661.

Li, H. 2011. “A Statistical Framework for Snp Calling, Mutation
Discovery, Association Mapping and Population Genetical Parameter
Estimation From Sequencing Data.” Bioinformatics 27: 2987-2993.

Li, N., and M. Stephens. 2003. “Modeling Linkage Disequilibrium
and Identifying Recombination Hotspots Using Single-Nucleotide
Polymorphism Data.” Genetics 165: 2213-2233.

Lindtke, D., and C. A. Buerkle. 2015. “The Genetic Architecture of
Hybrid Incompatibilities and Their Effect on Barriers to Introgression
in Secondary Contact.” Evolution 69: 1987-2004.

Lucas, L. K., C. C. Nice, and Z. Gompert. 2018. “Genetic Constraints
on Wing Pattern Variation in Lycaeides Butterflies: A Case Study on
Mapping Complex, Multifaceted Traits in Structured Populations.”
Molecular Ecology Resources 18: 892-907.

Macholéan, M., S. J. Baird, P. Dufkovd, P. Munclinger, B. V. Bimova, and
J. Pidlek. 2011. “Assessing Multilocus Introgression Patterns: A Case
Study on the Mouse X Chromosome in Central Europe.” Evolution 65:
1428-1446.

Mallet, J., N. Barton, G. Lamas, J. Santisteban, M. Muedas, and H.
Eeley. 1990. “Estimates of Selection and Gene Flow From Measures of
Cline Width and Linkage Disequilibrium in Heliconius Hybrid Zones.”
Genetics 124: 921-936.

Mandeville, E. G., T. L. Parchman, D. B. McDonald, and C. A. Buerkle.
2015. “Highly Variable Reproductive Isolation Among Pairs of
Catostomus Species.” Molecular Ecology 24: 1856-1872.

Maples, B. K., S. Gravel, E. E. Kenny, and C. D. Bustamante. 2013. “RFMix:
A Discriminative Modeling Approach for Rapid and Robust Local-
Ancestry Inference.” American Journal of Human Genetics 93: 278-288.

McFarlane, S. E., J. P. Jahner, D. Lindtke, C. A. Buerkle, and E. G.
Mandeville. 2023. “Selection Leads to Remarkable Variability in the
Outcomes of Hybridization Across Replicate Hybrid Zones.” bioRxiv,
€17359.

McFarlane, S. E., H. V. Senn, S. L. Smith, and J. M. Pemberton. 2021.
“Locus-Specific Introgression in Young Hybrid Swarms: Drift May
Dominate Selection.” Molecular Ecology 30: 2104-2115.

Nabokov, V. 1943. “The Nearctic Forms of Lycaeides Hiib.(Lycaenidae,
Lepidoptera).” Psyche: A Journal of Entomology 50: 87-99.

Nabokov, V. 1944. “Notes on the Morphology of the Genus Lycaeides
(Lycaenidae, Lepidoptera).” Psyche: A Journal of Entomology 51:
104-138.

Neal, R. M. 2011. “MCMC Using Hamiltonian Dynamics.” Handbook of
Markov Chain Monte Carlo 2: 2.

Nice, C. C., Z. Gompert, J. A. Fordyce, M. L. Forister, L. K. Lucas, and
C. A. Buerkle. 2013. “Hybrid Speciation and Independent Evolution in
Lineages of Alpine Butterflies.” Evolution 67: 1055-1068.

Nikolakis, Z. L., D. R. Schield, A. K. Westfall, et al. 2022. “Evidence
That Genomic Incompatibilities and Other Multilocus Processes Impact
Hybrid Fitness in a Rattlesnake Hybrid Zone.” Evolution 76: 2513-2530.

Nolte, A., Z. Gompert, and C. Buerkle. 2009. “Variable Patterns of
Introgression in Two Sculpin Hybrid Zones Suggest That Genomic
Isolation Differs Among Populations.” Molecular Ecology 18: 2615-2627.

Payseur, B. A. 2010. “Using Differential Introgression in Hybrid Zones
to Identify Genomic Regions Involved in Speciation.” Molecular Ecology
Resources 10: 806-820.

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. “Inference of
Population Structure Using Multilocus Genotype Data.” Genetics 155:
945-959.

Rieseberg, L. H., J. Whitton, and K. Gardner. 1999. “Hybrid Zones
and the Genetic Architecture of a Barrier to Gene Flow Between Two
Sunflower Species.” Genetics 152: 713-727.

Sankararaman, S., S. Sridhar, G. Kimmel, and E. Halperin. 2008.
“Estimating Local Ancestry in Admixed Populations.” American
Journal of Human Genetics 82: 290-303.

Schirmer, M., R. D'’Amore, U. Z. Ijaz, N. Hall, and C. Quince.
2016. “Illumina Error Profiles: Resolving Fine-Scale Variation in
Metagenomic Sequencing Data.” BMC Bioinformatics 17: 1-15.

Schumer, M., C. Xu, D. L. Powell, et al. 2018. “Natural Selection Interacts
With Recombination to Shape the Evolution of Hybrid Genomes.”
Science 360: 656—-660.

Shastry, V., P. E. Adams, D. Lindtke, et al. 2021. “Model-Based Genotype
and Ancestry Estimation for Potential Hybrids With Mixed-Ploidy.”
Molecular Ecology Resources 21: 1434-1451.

Sisson, S. A.,Y. Fan, and M. Beaumont. 2018. Handbook of Approximate
Bayesian Computation. Boca Raton, Florida: CRC Press.

19 of 20

ASUADIT SUOWIO)) dANEAI) d[qearidde o) Aq pauraAoS aIe sa[dNIE Y 1asn Jo So[nI 10§ AIRIqIT AUIUQ AJ[IAY UO (SUOHIPUOD-PUB-SULIA} WO’ AAIm  KIRIqI[ouT[uo//:sdit) SUONIPUOD) pue SWIS], A 99§ *[SZ0T/H0/T] U0 ATeiqr] auruQ K[IA ‘8+S0L €999/2001°01/10p/wod Kafim Kreqrjaur[uoy/:sdny woiy papeofumod ‘11 ‘#20T ‘8SLLSHOT



Smith, C. C., S. Tittes, P. L. Ralph, and A. D. Kern. 2023. “Dispersal
Inference From Population Genetic Variation Using a Convolutional
Neural Network.” Genetics 224: iyad068.

Stan Development Team. 2022. “RStan: The R Interface to Stan.” R
Package Version 2.21.7.

Stan Development Team. 2024. “Stan Modeling Language Users Guide
and Reference Manual.” Version 2.34.

Sung, C. J,, K. L. Bell, C. C. Nice, and N. H. Martin. 2018. “Integrating
Bayesian Genomic Cline Analyses and Association Mapping of
Morphological and Ecological Traits to Dissect Reproductive Isolation
and Introgression in a Louisiana Iris Hybrid Zone.” Molecular Ecology
27:959-978.

Szymura, J. M., and N. H. Barton. 1986. “Genetic Analysis of a Hybrid
Zone Between the Fire-Bellied Toads, Bombina bombina and B. varie-
gata, Near Cracow in Southern Poland.” Evolution 40: 1141-1159.

Taylor, S. A., R. L. Curry, T. A. White, V. Ferretti, and I. Lovette. 2014.
“Spatiotemporally Consistent Genomic Signatures of Reproductive
Isolation in a Moving Hybrid Zone.” Evolution 68: 3066-3081.

Teeter, K. C., B. A. Payseur, L. W. Harris, et al. 2008. “Genome-Wide
Patterns of Gene Flow Across a House Mouse Hybrid Zone.” Genome
Research 18: 67-76.

Teeter, K. C., L. M. Thibodeau, Z. Gompert, C. A. Buerkle, M. W.
Nachman, and P. K. Tucker. 2010. “The Variable Genomic Architecture
of Isolation Between Hybridizing Species of House Mice.” Evolution 64:
472-485.

Torada, L., L. Lorenzon, A. Beddis, et al. 2019. “ImaGene: A
Convolutional Neural Network to Quantify Natural Selection From
Genomic Data.” BMC Bioinformatics 20: 1-12.

Wagner, D. N., R. L. Curry, N. Chen, I. J. Lovette, and S. A. Taylor.
2020. “Genomic Regions Underlying Metabolic and Neuronal Signaling
Pathways Are Temporally Consistent in a Moving Avian Hybrid Zone.”
Evolution 74: 1498-1513.

Westram, A. M., R. Faria, K. Johannesson, and R. Butlin. 2021. “Using
Replicate Hybrid Zones to Understand the Genomic Basis of Adaptive
Divergence.” Molecular Ecology 30: 3797-3814.

Wiens, B. J,, and J. P. Colella. 2024. “triangulaR: An R Package for
Identifying AIMs and Building Triangle Plots Using Snp Data From
Hybrid Zones.” bioRxiv. 2024.

Yang, B., Z. Zhang, C. Q. Yang, et al. 2022. “Identification of Species
by Combining Molecular and Morphological Data Using Convolutional
Neural Networks.” Systematic Biology 71: 690-705.

Zhang, L., S. Chaturvedi, C. C. Nice, L. K. Lucas, and Z. Gompert. 2023.
“Population Genomic Evidence of Selection on Structural Variants in a
Natural Hybrid Zone.” Molecular Ecology 32: 1497-1514.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section.

20 of 20

Ecology and Evolution, 2024

ASUADIT SUOWIO)) dANEAI) d[qearidde o) Aq pauraAoS aIe sa[dNIE Y 1asn Jo So[nI 10§ AIRIqIT AUIUQ AJ[IAY UO (SUOHIPUOD-PUB-SULIA} WO’ AAIm  KIRIqI[ouT[uo//:sdit) SUONIPUOD) pue SWIS], A 99§ *[SZ0T/H0/T] U0 ATeiqr] auruQ K[IA ‘8+S0L €999/2001°01/10p/wod Kafim Kreqrjaur[uoy/:sdny woiy papeofumod ‘11 ‘#20T ‘8SLLSHOT



