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Abstract—Ocean renewable energy, particularly wave
energy, is experiencing rapid growth in recent years. There is
significant interest in moving ocean renewable technologies to
offshore regions, given the higher resources (e.g., wave and
wind), large area for deployment, less turbulence, and less
negative environmental impacts. The mooring systems are the
key functional component to guarantee the long-term reliability
of floating structures, which, however, are prone to different
types of failures. In addition to being consistently exposed to
dynamic loads from waves and currents, the mooring lines are
also exposed to damages from corrosion, biofouling, and bottom
segment displacement. Therefore, it is critical to monitor the
condition of the mooring lines' reliability for timely health
management and maintenance and to avoid catastrophic
failures. This research aims to achieve this objective by
developing a new fault diagnosis framework that combines the
Autoregressive (AR) model with Convolutional Neural
Networks (CNN) to classify fault types and severity under
random sea conditions. Two main fault types are considered in
this study, including corrosion and biofouling, which are
reflected in the numerical model developed for the RM3 Wave
Energy Converter (specifically, stiffness decrease and mass
increase for the mooring lines). The dynamic responses (surge,
heave, pitch motions, and mooring line tensions) generated from
this model will be utilized in the proposed fault diagnosis
framework, with the AR model extracting features from time-
domain data and being used as inputs to CNN for classification.
It is noted that this approach not only addresses the challenges
posed by random phase shifts in ocean waves but also
significantly reduces the computational demand, thereby
streamlining the training process and improving the accuracy of
fault detection. The simulation results indicate an accurate
prediction of the fault type and severity under highly random
sea conditions, which demonstrates the feasibility of the
proposed method.

Keywords—Wave Energy Converters, Mooring Health
Monitoring, Autoregressive model, Convolutional Neural
Network,

I. INTRODUCTION

Wave energy stands out among renewable sources for its
high-power density and consistent power sources [1]. There
has been significant research interest in developing wave
energy conversion technologies over the past decades.
Various types of Wave Energy Converters (WECs) have been
proposed, many of which target deep water applications [2]-
[3]. Moreover, offshore deployment of WECs offers
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significant benefits, including abundant wave resources,
fewer environmental barriers, larger deployment areas,
reduced turbulence, and diminished negative environmental
and social impacts compared to onshore locations [4]. In this
case, ensuring the long-term reliability of WEC mooring
systems becomes critical for the stability of the entire system.

In a marine environment, mooring lines are subjected to
significant dynamic loads from waves and currents.
Additionally, these lines experience salt-water corrosion,
accumulation of marine organisms, and bottom segment
displacement [5]. Failure of these lines could lead to disasters
with significant economic, environmental, and social
consequences. This is evidenced by more than 30 reported
accidents over the past decades [6,7]. Therefore, accurate and
reliable monitoring of the operational conditions of mooring
lines is critical for the safety of offshore structures. Study [8]
provided a comprehensive summary of potential activities for
condition control of mooring lines, including annual
underwater inspections using ROVs, winch maintenance,
periodic changes of fairlead contact, measurement of line
diameter, monitoring of structure motions and tension, and
non-destructive testing of line segments. While these
approaches enhance the safety of permanently installed
mooring lines, the cost and risk of human intervention
associated with these activities cannot be ignored [9].
Therefore, there is a strong need to develop an automated
fault detection framework that can detect and quantify faults
in a timely, reliable, and cost-effective manner.

This research aims to address this challenge by developing a
novel fault detection framework for WECs capable of
accurately and robustly detecting and quantifying different
types of faults, considering the randomness of ocean waves.
Physically, changes in stiffness and damping are important
indicators of the structural integrity of mooring lines, which,
in turn, significantly impact the dynamic response of WECs.
More specifically, mooring system stiffness may be altered
by various factors, including rope creep, damage to the rope
structure, seabed trenching, loss of clump weights on the
mooring line, and excessive marine growth, among others
[10]. Similarly, the damping characteristics of the mooring
lines can be significantly influenced by factors like biomass
accumulation, which also affects line diameter and mass [11].
To date, despite the existence of model-based approaches to



detect and quantify damage and severity in structures, the
application of data-driven machine learning (ML) approaches
has been insufficiently studied.

Convolutional Neural Networks (CNNs) are one of the most
popular deep learning algorithms, broadly applied in the field
of damage detection due to their advanced capabilities in
feature extraction and pattern recognition. Traditionally,
CNNs have been used to predict structural conditions through
image processing. However, image processing-based
approaches may not be well-suited for WEC mooring
applications given the difficulty and cost of obtaining
sampling images. To address this challenge, it has been found
that vibration measurement-based signals offer significant
damage-related insights into mooring lines. More
specifically, the stiffness and damping characteristics of the
mooring system shape the time-series dynamic responses—
such as displacement, acceleration of the WEC's floating
body, and tensions within the mooring lines—thereby
providing distinctive patterns that can be utilized as features
for damage detection. This feature has been leveraged by a
few recent studies on the damage detection of mooring lines
of Floating Offshore Wind Turbines (FOWT). For example,
study [12] investigated the fault diagnosis of FOWT mooring
lines by applying CNN to time-domain system responses,
including motion responses and mooring tensions. A
decrease in the mooring stiffness in three different lines is
considered in the numerical model to represent the fault. The
results demonstrate a good prediction of the fault type and
severity. Moreover, study [13] proposed a new fault diagnosis
framework by employing both the AR model and CNN to
compress the data and enhance damage-sensitive
characteristics in the input for CNN.

AR models are widely applied for creating compact datasets
that adeptly localize damage-sensitive data points within
larger time-series datasets. This model is particularly
effective when the data is assumed to be normally distributed,
which holds true for the WEC dynamic responses. Moreover,
employing AR coefficients as the CNN inputs effectively
mitigates the impact of the random phase shift of irregular
ocean waves (superposed by many regular wave
components). This is important for fault diagnosis techniques
for offshore infrastructures exposed to constantly changing
sea conditions. Therefore, in this research, the AR model is
adopted in the proposed fault diagnosis framework to extract
damage-intensive features and mitigate the impact of
constantly changing sea conditions. To further overcome the
ocean wave randomness, we propose to incorporate wave
characteristics (significant wave height and peak period) in
addition to the AR coefficients as inputs to the CNN model
to detect and quantify the faults. In addition, the CNN
architecture needs to be carefully designed to combine these
two types of features effectively. Two types of faults are
considered in this research, including corrosion and
biofouling (reflected as a decrease in stiffness and an increase
in mass in the numerical model). The simulation framework
is developed in MATLAB, integrating RM3 WEC
hydrodynamics with MoorDyn, which represents the
mooring dynamics by applying the lumped mass assumption.
Dynamic response data are generated from this simulation
framework under varied fault and wave conditions.

The paper is organized as follows. Section II covers the
methodology, where we first present the WEC
hydrodynamics, AR model, and CNN model, and finally
establish the system framework. In Section III, we present
and discuss the results, and Section IV draws the conclusion
and future work.

II. METHODOLOGY

This section is divided into four subsections to sequentially
discuss the methodology. First, we present the WEC
hydrodynamic model; then we discuss the AR and CNN
models in the second and third sections. In the last section,
we present the overall fault diagnosis framework.

A. Numerical model of the WEC and its mooring system

The hydrodynamics of the WEC can be expressed by using
the Cummins equation [14].

(M, + M)% =F, + Fppo+ F, + F + F, (M

where X = [x,y,z,¢,0,] is the state vector which
represents the 6 degrees of freedom (DoF) displacement
(surge, sway, heave, roll, pitch, yaw) expressed in the body-
fixed frame. The matrix M, is the rigid body mass and matrix

M, is the added mass at infinite frequency. Moreover, ﬁpm
represents the Power Take-Off (PTO) force, FS denotes the
linear hydrostatic restoring force, Fr represents the radiation

force vector [15]. The excitation force Fe subject to irregular
ocean waves can be computed as the summation of regular
wave components as:

F, = RER (O T F (o) (@) 00y D

where R(t) is the ramp function, w; and ¢, denotes the
wave frequency and random phase shift of the ith ocean
wave. Moreover, n(w) denotes the frequency-dependent
wave elevation which can be computed from specific wave

spectrums and F,(w;) is the complex excitation force
coefficient which can also be obtained from BEM software
WAMIT. It is noted that the randomness of the system
responses is mainly contributed by the wave excitation force,

which is the challenge we are trying to address. I_:)m denotes
the mooring force vector which is calculated by MoorDyn in
WEC-Sim which applies a lumped-mass based finite element
model to model the mooring dynamics [16]. In the lumped-
mass formulation, the cable's mass is discretized into point
masses located at each node. Here, each node is assigned half
the total mass of the two adjacent cable segments. The 3x3
mass matrix for node ‘i’ can be described as follows:

m; = %dzlpll 3)

where I is the identity matrix. The complete equation of
motion for each node i is given by:
e+ @i =Ty = T+ Cug) ~ @

Ci—(%) + Wi + Bi + Dpi + in (16)

where a; is the added mass matrix, T, (1) and T, (l) is the
i+ 2 = 2
tension in cable, Ci+(l) and Cl-_(l) are internal damping
2 2
force in the cable segment i + % and [ — % respectively. W, is
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the net buoyancy at node ‘i’ and B; is the force due to

interaction between nodes. D,,; and D ; are the transverse and

tangential drag force. The key parameters of RM3 and the

mooring system are presented in Table 1. Fig. 1 illustrates the

RM3 with its three mooring lines connected.

Table 1: Key parameters of RM3 WEC and mooring system
RM3 Float

Mass (kg) 749110
Moment of Inertia (x) (kg.m?) 20907301
Moment of Inertia (y) (kg.m?) 21306090.66

Moment of Inertia (z) (kg.m?) 37085481.11

RM3 Spar
Mass (kg) 876420
Moment of Inertia (x) (kg.m?) 94419614.57

94407091.24
28542224.82

Moment of Inertia (y) (kg.m?)
Moment of Inertia (z) (kg.m?)

Mooring Lines

Diameter (m) 0.144
Mass per unit length (kg/m) 126.0
Stiffness (N) 583376000
B. AR Model

The dynamic responses of the WEC and the mooring tensions
are then fitted by using the AR model. To prepare the data,
the time series signals are normalized as follows:

x(t) = "(?T‘” ©)
where, x(t) is the normalized signal, 4 and o are the mean
and standard deviation of the raw signal representing the
system’s dynamic response. AR model with an order ‘p’ can
be represented as:

x(t)=C+ Ef: bixe_; + & (6)
where ¢, represent the ‘p’ values of AR coefficients, C is the
bias or constant term and &, represent Gaussian white noise
with a constant arbitrary variance (varies with x(t)).
Essentially, the value fitted by the AR model at time ‘t’ is

weighted summation of past ‘p’ time-stamped values along
with a bias and Gaussian white noise with a constant arbitrary

variance. This process can be envisioned to be a filtering
technique where the white noise is filtered out by the AR
coefficients. Broadly, three main processes are involved to
effectively perform AR modelling, (1) to find the model order
‘P’; (2) to estimate the AR coefficients; (3) to assess the
applicability of the model to ensure it is not overfitting and
the residuals are not corelated. Residuals can be defined as
the error incurred between the actual time-series signals and
fitted data by the AR model and can be represented as:

) =x)- X pxi— C— g (7

where " denote the estimated quantity. In this research, to find
the AR modelling order, we assess the convergence of the
modified Akaike Information Criterion (AIC) with model
order. According to [17], the AIC is defined as:

AIC = 2k — In(L) (8a)

k=2%/P+1) (8b)
WheAre k represents the number of estimated parameters and
In(L) represent the maximum value of the log-likelihood
function for the fitted AR model. Typically, the random

process follows a Gaussian random process and the log-
likelihood of a Gaussian random process [18] is defined as:

in(L) = == = in(2) - In (2m) (%a)

1= =~%e)? (b)

In this equation, N is the number of samples in the time series
data. We assume that the residuals e(t) are distributed
according to independent identical normal distributions (with
zero mean). Accordingly, A is the variance of the residuals
computed using (7). Equation (8a) can be modified and re-
written as:

AIC(P) = 2(P + 1)/N + In(A) (10)

where the constant terms from (8a) are not considered as we
are only concerned about the change in AIC values with
increasing model order. The first term in (10) penalizes the
AIC value with increasing model order while the second term
quantifies the model’s log-likelihood. It is noted that (10) will
represent a converging curve of the AIC. The model order is
then determined where the AIC values for all the dynamic
response (including motion response and mooring tensions)
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Fig 1: RM3 and its mooring system



converge and stabilize. Once the appropriate model order is
found using the AIC plots for all the dynamic responses, the
AR coefficients [¢,, p,, P5...¢p] in (6) is estimated using
the Burg method which is also called as method of maximum
entropy estimates [19, 20]. The applicability of the derived
AR model is then evaluated based on the stationarity of the
residuals. Ideally, the residuals should exhibit characteristics
of that of a Stationary Gaussian White Noise (SGWN). This
can be evaluated by plotting the Auto Correlation Function
(ACF) plots for the residual. The residuals can be
approximated to be stationary if all the residuals come within
95% confidence bound [21].

C. CNN Model

1D-CNN has been used in this research to extract features
from AR coefficients. Fundamentally, 1D-CNN layers excel
in processing spatial sequence of data and identify key
patterns to distinguish features required for the subsequent
layers to process [22]. Mathematically, they convolve the
sequence of input data with trained filters (convolution
kernels or weights) of pre-defined arbitrary size to extract key
features and provide a pathway for the underlying layers of
the network to associate the inputs with the target outputs in

a supervised learning setup. the convolutional operation of

layer [ and its output xglﬂ) is expressed as a sum of

convolutional operations across multiple input channels from
the previous 1ayer x® each with its own set of updated filters

or weights W ) which can be represented as:
0} O}
)+ b))

is the output of the i — th feature map at layer

(l+1) f(ZM() ConvlD (Wl(,l) x (11)

Where, xl.l )
L+ 1wy
feature map at layer (1) with the i — th feature map at layer
1+ 1), x](.l) is the j — th input channel from layer (1); bl@ is
the bias associated with the i — th feature map at layer (I +

is the convolution filter that connects the j — th

1); MO is the total number of input channels in layer (1). The
function ‘f()’ is an activation function, such as Rectified
Linear Unit (ReLU), sigmoid or tanh applied element wise.
The activation function adds a non-linearity to identify
relationships between two layers. In our study we have used
ReLU activation function which is particularly prominent
[23] represented as:

f) (12)
1D-CNN plays a pivotal role in extracting key features from
signals and mastering complex relationships within the data
sequence. Their proficiency in identifying patterns and
spatial connections enables them to reveal critical insights
from the inputs. This skill also includes the ability to
recognize inverse relationships, thus boosting their
effectiveness in tasks that require a deep understanding of the
interactions among various elements of the sequential data.
Typically, a pooling layer follows a convolution layer which
helps in removing insignificant features from the most
prominent one by reducing the dimensionality. Max-pooling

is preferred to implement the DL network in this research
(+1)

= max(0, x)

which only selects the maximum values in the layer x;
and which can be represented as:

o, 1(91' L(Jlr)z' e xgk—l (13)

where K is the size of the pooling window. Finally, to map
the target output with the derived feature from the overlying
convolution layers, a Fully Connected (FC) dense layer is

used. It can be mathematically represented as:
I+1 DI l
( )—f(w() ())+ bi()

where Z-(l

()

y* = max (x;

(14)

represents the i — th output in layer (I + 1);
is the weight associated to connect j — th node in layer

(l) (x]-(l)) to the i — th output in layer (I + 1); bi() is the
bias term to relate the i — th output in layer (I + 1). We have

Data Collection from wecSim integrated with RM3 WEC and
Moor Dyn Mooring system in MATLAB.
3-DoF displacement of float plate and 3 tensions of mooring lines

}
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Fig 2: Overall System Framework



used Sigmoid activation function for the FC layer to enable
continuous prediction of the outputs for a supervised
regression problem. The sigmoid activation function can be
represented as:
feo) = m (15)

To initiate the backpropagation algorithm and update the
weights, we define the Mean Square Error (MSE) as the loss
function which is a common practice for a regression
problem. The MSE can be represented as:

MSE = — 3 (y, - )’ (16)
where, Nt is the number of data points in the training sample
set, y, is the i — th target outputand y, is the predicted value

for the i — th data point. The gradient of the MSE loss is
computed with respect to the output to start with as:

MSE 2 iy — % (17
05;1‘ _th(yi yl)

The gradient of the loss w.r.t. a weight (Wl-(jl)) during the k-th
epoch during training in the network is computed using the
chain rule as:

o _ aMSE 63’1 (18)

gl} ayl (l)

The update rule of the weights follows Adam optimization
algorithm in this work which uses an adaptive learning rate
approach by having personalized learning rates for each
parameter [24].

D. The Fault Diagnosis Framework

The overall fault diagnosis framework is depicted in Fig. 2.
As shown in the figure, dynamic responses of the RM3 WEC
(including the motion responses and mooring tensions) are
collected from the numerical simulation framework under
varied fault and ocean conditions. More specifically, two

10718 Hs =4.33m Tp =13.97s

fault conditions are considered: (1) a reduction in stiffness by
0% to 10% due to corrosion, and (2) an increase in mass from
0% to 10% due to biofouling, in 1% increments. It is noted
that in this research, we assume uniform degradation across
all three mooring lines.

The collected data will then be normalized and separated into
the training/validation set and the testing set. The
training/validation data will be fitted with the AR model to
identify the AR coefficients. These coefficients, along with
the wave characteristics (significant wave height and peak
period), will be used as the inputs of the CNN model, paired
with the associated faults as outputs to train the CNN model.
Once the model is trained, the performance of the CNN
model will be validated with the testing data (never seen
during training and validation) which are selected from the
overall dataset with random fault and wave conditions.

III. RESULTS

Numerical simulation results are presented in this section.
The WEC dynamic responses are analyzed first to understand
their sensitivity to faults. Next, the identification of the AR
model is shown. Finally, the training and testing of the CNN
model for fault diagnosis are demonstrated.

A. WEC dynamic responses

The WEC dynamic responses are analyzed in this section.
Fig. 3 shows nine dynamic responses generated from the
developed simulation framework, which include 6-DoF
motion responses as well as the mooring tensions under an
irregular wave with a PM spectrum, a significant wave height
0f4.33 m, and a peak period of 13.42 s. The signals generated
from a healthy state are compared with those from a damaged
state with a 10% increase in mass to analyze the impact of
faults on the system responses. We can clearly tell from the
figure that the RM3 WEC has dominant responses in surge,
heave, and pitch, which are significantly impacted by the
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Fig 3: Comparison of the dynamic response of healthy mooring system with 10% increase in mass of mooring lines



faults, while the sway, roll, and yaw responses are negligible.
Moreover, it is not surprising that the mooring tensions are
significantly influenced by the faults since they directly

reflect any changes in mooring structure integrity. In this
context, it is reasonable to select surge, heave, pitch

AIC Values for Increasing Model Order
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responses, and mooring tensions as the signal inputs for fault
diagnosis.

B. AR model Identification

As introduced earlier, an AR model will next be identified for
each of the system responses. The measurements collected
under a healthy state with a significant wave height of 4.33m
and a peak period of 13.42s are utilized as the baseline dataset
to select the order of the AR model, which will then be used
for the AR model for other signals. This standardization
ensures a consistent model order across the dataset and allows
for the formulation of AR coefficients for faulty
measurements relative to the healthy state.

The selection of the AR model order primarily relies on the
analysis of the AIC criterion (Eq. (10)). It is noted that this
criterion combines the likelihood and the penalty of the
model order, indicating that the user should select a model
order such that the AIC is minimized (representing a small
variance of the residuals) and the model order is relatively
low (to save computational cost). Fig. 4 illustrates the AIC
values for various system responses with an increasing model
order. The figure shows the convergence of AIC values
across all six dynamic responses, leading to the selection of a
model order of P = 8.

After the AR model is identified, it is critical to inspect the
AutoCorrelation Function (ACF) for the residuals between
the actual and fitted signals, as presented in Fig. 5. It is clearly
visible in the figure that the residuals of surge, heave, and
pitch responses are well within the 95% confidence bound.
Regarding the mooring tensions, a small number of lags
(accounting for 3.3% to 5%) are outside the 95% confidence
bounds. Overall, the signals predicted using the AR model
with the identified model order have a good agreement with
the actual data, which is presented in Fig. 6 (original data
versus fitted for three motion responses and mooring
tensions).

C. Training and testing of CNN model

As presented in Fig. 2, the CNN model accepts the AR
coefficients as inputs. In addition, the wave characteristics,
including the significant wave height and peak period, are
also considered in the inputs to further address the challenge
of fault diagnosis subject to ocean wave randomness.
Accordingly, we will have two sets of inputs to the DL
architecture: Input 1 will be an 8 X 6 array of AR
coefficients, where 8 represents the AR model order (as
identified in the last section) and 6 represents the 6 system
responses; Input 2 will be a (2 X 1) array of [Hp, Ts].

In the design of the DL architecture, the first set of inputs is
processed with two CNN layers and two MaxPooling layers.
This is imperative as they contain temporal differences,
which are essential for feature extraction. The second set of
inputs helps the DL model determine the state of the ocean
wave, which influences the dynamic responses. Therefore,
the second set of inputs is processed with a single layer of
CNN and a MaxPooling layer with a relatively smaller
number of kernels. The final DL architecture is defined as
follows:

Layer 1: Inputl(8,6)

Layer 2: ID-CNN (ReLU, (3% 1), 64 filters)
Layer 3: MaxPooling (2X 1)(Layer2)

Layer 4: ID-CNN (ReLU, (3X 1), 128 filters
Layer 5: MaxPooling (2% 1)

Layer 6: Input2 (2,1)

Layer 7: ID-CNN (ReLU, (3% 1), 16 filters
Layer 8: MaxPooling (2X 1)

Layer 9: Concatenate ( Layer 5, Layer 8)
Layer 10: Dense (Sigmoid, (2X 1))



Layer 1 to Layer 5 process the AR coefficients, and Layer 6
to Layer 8 process the ocean states. The nodes of Layer 5 and
Layer 8 are flattened to form a 1D array before being
concatenated in Layer 9. Thus, Layer 9 includes the
contribution of the AR coefficients and the features extracted
from the ocean states. Finally, the concatenated feature set
from both inputs is fully connected to predict the two outputs:
Stiffness Reduction and Accumulation of Mass. TensorFlow
and Keras were used to implement the DL model.

To evaluate the performance of the trained DL model,
common regression evaluation metrics such as Mean Square
Error (MSE), Mean Absolute Error (MAE), and coefficient of
determination (R?) are used:

1 ~
MSE = ;Z’L i — 9)? (19a)
1 ~
MAE = ;Z?]: ly; — 9:I? (19b)
RZ = 1 _ Zmaim 90 (19¢)

N - y0?

where N denotes the total number of sample, y; represents the
ground truth value, ¥; represents the predicted value and y, is
the mean of the ground truth values.

Table 2: Wave Conditions

Wave Condition Significant =~ Wave | Peak Period
Height (Hs) (m) (Tp) (s)

Wave Condition 1 1 8

Wave Condition 2 1.65 8.81

Wave Condition 3 4.33 13.97

Wave Condition 4 1.96 16.42

Wave Condition 5 2.19 11.92

Overall, 605 samples are collected from numerical

simulations, accounting for 11 X 11 fault conditions for
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Fig 8: Training History of DL model
B

reduced stiffness and increased mooring line mass,
respectively. Moreover, 5 sea states are considered in the
overall dataset, which are presented in Table 2. It is noted that
wave conditions 2 to 5 are adopted from the representative
real sea states of PacWave, Oregon [25]. Each data set is
simulated by the developed model for 2000 seconds at a
sampling rate of 40Hz. The first 500 seconds are discarded
due to transient responses, and the remaining 1500 seconds
are utilized for fault diagnosis and are downsampled to SHz.
The overall dataset is then split into training and test set
randomly. The test set here includes random coupling of the
faults along with random ocean states presented in Table 2.
The remaining samples are split into a training and validation
set randomly with 80 validation samples. The training is set
to be performed for 2000 epochs with an early stopping
condition set on the validation losses. The learning rate for
the model is defined as le* and the Adam optimization
parameters 1 is set to 0.9, B2 is set to 0.999, decay is set to
0. The history of training and validation losses is presented in
Fig. 7. The figure shows the training and validation loss
continuously decreased during the training process. The
model undergoes normal fitting without overfitting which is
evident from the validation loss curve. The model stops
training after 350 epochs due to the early stopping condition
imposed on the model. The model took approximately 129.9
seconds to train 26,530 parameters for the DL model on a
64bit, 32GB and 2.1 Ghz hardware. At the end of training,
the validation loss is slightly more than the training loss.
Once the training is concluded the model is tested with the
test sample which was randomly picked from the overall data
set. It should be noted that the combination of faults and the
ocean condition present in the test sample is never seen
during the training or validation. Fig. 8 shows the test results
where the predicted outputs are plotted against the ground
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Fig 7: Testing Results



truth values for both the mooring faults. The figure clearly
demonstrates that the DL model can predict the faults well.
Table 3 shows the performance metrics evaluated during
testing. The R? values yielded during testing for the
prediction of both the mooring faults are close to 1 (0.994 for
stiffness predictions and 0.997 for mass accumulation
predictions) which serves as a strong validation of the
proposed model. Moreover, it should be noted that the dataset
collected was simulated using irregular ocean waves with
random phase shifts. The coupling of AR coefficients and
wave characteristics as the inputs for CNN evidently
addresses the randomness introduced by ocean conditions.
Table 3: Test Results

Performance Mooring Fault 1 | Mooring Fault
Metric (Stiftness 2(Mass

Reduction) Accumulation
MSE 0.00059167633 0.00028773324
MAE 0.01895002 0.013178647
R? 0.9945779 0.996992

IV. CONCLUSION

This study successfully demonstrates the capability of a
combined AR and CNN framework to effectively diagnose
faults in WEC mooring systems. By adapting machine
learning algorithms to process and analyze AR coefficients
derived from dynamic response data, we have established a
robust system capable of accurately identifying damage
under varying conditions. The AR model efficiently captures
temporal features which are enhanced through CNN’s spatial
pattern recognition capabilities, providing a comprehensive
tool for SHM. The simulations have validated the model’s
efficacy, with results showing high accuracy and the ability
to handle real-world oceanic variabilities. Future work will
aim to predict mooring system behavior under any ocean
state. While the current study focuses on uniform degradation
across three mooring lines, future research will aim to
individualize the assessment for each mooring line. We also
aim to improve robustness of the model to noises in the
signal.
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