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Abstract—Ocean renewable energy, particularly wave 

energy, is experiencing rapid growth in recent years. There is 

significant interest in moving ocean renewable technologies to 

offshore regions, given the higher resources (e.g., wave and 

wind), large area for deployment, less turbulence, and less 

negative environmental impacts. The mooring systems are the 

key functional component to guarantee the long-term reliability 

of floating structures, which, however, are prone to different 

types of failures. In addition to being consistently exposed to 

dynamic loads from waves and currents, the mooring lines are 

also exposed to damages from corrosion, biofouling, and bottom 

segment displacement. Therefore, it is critical to monitor the 

condition of the mooring lines' reliability for timely health 

management and maintenance and to avoid catastrophic 

failures. This research aims to achieve this objective by 

developing a new fault diagnosis framework that combines the 

Autoregressive (AR) model with Convolutional Neural 

Networks (CNN) to classify fault types and severity under 

random sea conditions. Two main fault types are considered in 

this study, including corrosion and biofouling, which are 

reflected in the numerical model developed for the RM3 Wave 

Energy Converter (specifically, stiffness decrease and mass 

increase for the mooring lines). The dynamic responses (surge, 

heave, pitch motions, and mooring line tensions) generated from 

this model will be utilized in the proposed fault diagnosis 

framework, with the AR model extracting features from time-

domain data and being used as inputs to CNN for classification. 

It is noted that this approach not only addresses the challenges 

posed by random phase shifts in ocean waves but also 

significantly reduces the computational demand, thereby 

streamlining the training process and improving the accuracy of 

fault detection. The simulation results indicate an accurate 

prediction of the fault type and severity under highly random 

sea conditions, which demonstrates the feasibility of the 

proposed method. 

Keywords—Wave Energy Converters, Mooring Health 

Monitoring, Autoregressive model, Convolutional Neural 

Network,  

I. INTRODUCTION  

Wave energy stands out among renewable sources for its 

high-power density and consistent power sources [1]. There 

has been significant research interest in developing wave 

energy conversion technologies over the past decades. 

Various types of Wave Energy Converters (WECs) have been 

proposed, many of which target deep water applications [2]-

[3]. Moreover, offshore deployment of WECs offers 

significant benefits, including abundant wave resources, 

fewer environmental barriers, larger deployment areas, 

reduced turbulence, and diminished negative environmental 

and social impacts compared to onshore locations [4]. In this 

case, ensuring the long-term reliability of WEC mooring 

systems becomes critical for the stability of the entire system. 

In a marine environment, mooring lines are subjected to 

significant dynamic loads from waves and currents. 

Additionally, these lines experience salt-water corrosion, 

accumulation of marine organisms, and bottom segment 

displacement [5]. Failure of these lines could lead to disasters 

with significant economic, environmental, and social 

consequences. This is evidenced by more than 30 reported 

accidents over the past decades [6,7]. Therefore, accurate and 

reliable monitoring of the operational conditions of mooring 

lines is critical for the safety of offshore structures. Study [8] 

provided a comprehensive summary of potential activities for 

condition control of mooring lines, including annual 

underwater inspections using ROVs, winch maintenance, 

periodic changes of fairlead contact, measurement of line 

diameter, monitoring of structure motions and tension, and 

non-destructive testing of line segments. While these 

approaches enhance the safety of permanently installed 

mooring lines, the cost and risk of human intervention 

associated with these activities cannot be ignored [9]. 

Therefore, there is a strong need to develop an automated 

fault detection framework that can detect and quantify faults 

in a timely, reliable, and cost-effective manner. 

This research aims to address this challenge by developing a 

novel fault detection framework for WECs capable of 

accurately and robustly detecting and quantifying different 

types of faults, considering the randomness of ocean waves. 

Physically, changes in stiffness and damping are important 

indicators of the structural integrity of mooring lines, which, 

in turn, significantly impact the dynamic response of WECs. 

More specifically, mooring system stiffness may be altered 

by various factors, including rope creep, damage to the rope 

structure, seabed trenching, loss of clump weights on the 

mooring line, and excessive marine growth, among others 

[10]. Similarly, the damping characteristics of the mooring 

lines can be significantly influenced by factors like biomass 

accumulation, which also affects line diameter and mass [11]. 

To date, despite the existence of model-based approaches to 



detect and quantify damage and severity in structures, the 

application of data-driven machine learning (ML) approaches 

has been insufficiently studied. 

Convolutional Neural Networks (CNNs) are one of the most 

popular deep learning algorithms, broadly applied in the field 

of damage detection due to their advanced capabilities in 

feature extraction and pattern recognition. Traditionally, 

CNNs have been used to predict structural conditions through 

image processing. However, image processing-based 

approaches may not be well-suited for WEC mooring 

applications given the difficulty and cost of obtaining 

sampling images. To address this challenge, it has been found 

that vibration measurement-based signals offer significant 

damage-related insights into mooring lines. More 

specifically, the stiffness and damping characteristics of the 

mooring system shape the time-series dynamic responses—

such as displacement, acceleration of the WEC's floating 

body, and tensions within the mooring lines—thereby 

providing distinctive patterns that can be utilized as features 

for damage detection. This feature has been leveraged by a 

few recent studies on the damage detection of mooring lines 

of Floating Offshore Wind Turbines (FOWT). For example, 

study [12] investigated the fault diagnosis of FOWT mooring 

lines by applying CNN to time-domain system responses, 

including motion responses and mooring tensions. A 

decrease in the mooring stiffness in three different lines is 

considered in the numerical model to represent the fault. The 

results demonstrate a good prediction of the fault type and 

severity. Moreover, study [13] proposed a new fault diagnosis 

framework by employing both the AR model and CNN to 

compress the data and enhance damage-sensitive 

characteristics in the input for CNNs. 

AR models are widely applied for creating compact datasets 

that adeptly localize damage-sensitive data points within 

larger time-series datasets. This model is particularly 

effective when the data is assumed to be normally distributed, 

which holds true for the WEC dynamic responses. Moreover, 

employing AR coefficients as the CNN inputs effectively 

mitigates the impact of the random phase shift of irregular 

ocean waves (superposed by many regular wave 

components). This is important for fault diagnosis techniques 

for offshore infrastructures exposed to constantly changing 

sea conditions. Therefore, in this research, the AR model is 

adopted in the proposed fault diagnosis framework to extract 

damage-intensive features and mitigate the impact of 

constantly changing sea conditions. To further overcome the 

ocean wave randomness, we propose to incorporate wave 

characteristics (significant wave height and peak period) in 

addition to the AR coefficients as inputs to the CNN model 

to detect and quantify the faults. In addition, the CNN 

architecture needs to be carefully designed to combine these 

two types of features effectively. Two types of faults are 

considered in this research, including corrosion and 

biofouling (reflected as a decrease in stiffness and an increase 

in mass in the numerical model). The simulation framework 

is developed in MATLAB, integrating RM3 WEC 

hydrodynamics with MoorDyn, which represents the 

mooring dynamics by applying the lumped mass assumption. 

Dynamic response data are generated from this simulation 

framework under varied fault and wave conditions. 

The paper is organized as follows. Section II covers the 

methodology, where we first present the WEC 

hydrodynamics, AR model, and CNN model, and finally 

establish the system framework. In Section III, we present 

and discuss the results, and Section IV draws the conclusion 

and future work. 

II. METHODOLOGY 

This section is divided into four subsections to sequentially 

discuss the methodology. First, we present the WEC 

hydrodynamic model; then we discuss the AR and CNN 

models in the second and third sections. In the last section, 

we present the overall fault diagnosis framework. 

A. Numerical model of the WEC and its mooring system 

The hydrodynamics of the WEC can be expressed by using 

the Cummins equation [14]. 

(𝑴
𝒓
+ 𝑴∞)𝑥⃗ = ̈ 𝐹⃗ 𝑒 + 𝐹⃗ 𝑃𝑇𝑂+ 𝐹⃗ 𝑟 + 𝐹⃗ 𝑠 + 𝐹⃗ 𝑚   (1) 

where 𝑥⃗ = [x, y, z, ϕ, θ, ψ] is the state vector which 

represents the 6 degrees of freedom (DoF) displacement 

(surge, sway, heave, roll, pitch, yaw) expressed in the body-

fixed frame. The matrix 𝑴𝒓 is the rigid body mass and matrix 

𝑴∞ is the added mass at infinite frequency. Moreover, 𝐹⃗ 𝑃𝑇𝑂 

represents the Power Take-Off (PTO) force, 𝐹⃗ 𝑠 denotes the 

linear hydrostatic restoring force, 𝐹⃗ 𝑟 represents the radiation 

force vector [15]. The excitation force 𝐹⃗ 𝑒 subject to irregular 

ocean waves can be computed as the summation of regular 

wave components as: 

𝐹⃗ 𝑒 =  ℜ{𝑅𝑓(𝑡)∑ 𝐹⃗̃ 𝑒(𝜔𝑖)𝜂
𝑁
𝑖=1 (𝜔𝑖)𝑒

𝑖(𝜔𝑖)𝑡+ 𝜙𝑖) }   (2) 

where 𝑅𝑓(𝑡)  is the ramp function, 𝜔𝑖  and 𝜙
𝑖
  denotes the 

wave frequency and random phase shift of the 𝑖th ocean 

wave. Moreover, 𝜂(𝜔) denotes the frequency-dependent 

wave elevation which can be computed from specific wave 

spectrums and 𝐹⃗̃ 𝑒(𝜔𝑖)  is the complex excitation force 

coefficient which can also be obtained from BEM software 

WAMIT. It is noted that the randomness of the system 

responses is mainly contributed by the wave excitation force, 

which is the challenge we are trying to address. 𝐹⃗ 𝑚 denotes 

the mooring force vector which is calculated by MoorDyn in 

WEC-Sim which applies a lumped-mass based finite element 

model to model the mooring dynamics [16]. In the lumped-

mass formulation, the cable's mass is discretized into point 

masses located at each node. Here, each node is assigned half 

the total mass of the two adjacent cable segments. The 3x3 

mass matrix for node ‘i’ can be described as follows: 

𝒎𝒊 =
𝜋

4
𝑑2𝑙𝜌𝑙𝑰  (3) 

where 𝑰 is the identity matrix. The complete equation of 

motion for each node i is given by: 

[𝒎𝒊 + 𝒂𝒊]𝒓𝑖̈ = 𝑻
𝑖+(

1

2
)
− 𝑻

𝑖−(
1

2
)
+ 𝑪

𝑖+(
1

2
)
−

𝑪
𝑖−(

1

2
)
+ 𝑾𝑖 + 𝑩𝑖 + 𝑫𝑝𝑖 + 𝑫𝑞𝑖  (16) 

(4) 

where 𝒂𝒊 is the added mass matrix, 𝑻
𝑖+(

1

2
)
 and 𝑻

𝑖−(
1

2
)
  is the 

tension in cable,  𝑪
𝑖+(

1

2
)

 and 𝑪
𝑖−(

1

2
)

  are internal damping 

force in the cable segment 𝑖 +
1

2
 and 𝑖 −

1

2
 respectively. 𝑾𝑖 is 



the net buoyancy at node ‘i’ and 𝑩𝑖  is the force due to 

interaction between nodes. 𝑫𝑝𝑖 and 𝑫𝑞𝑖 are the transverse and 

tangential drag force. The key parameters of RM3 and the 

mooring system are presented in Table 1. Fig. 1 illustrates the 

RM3 with its three mooring lines connected. 

Table 1: Key parameters of RM3 WEC and mooring system 

RM3 Float 

Mass (kg) 749110 

Moment of Inertia (x) (kg.m2) 20907301 

Moment of Inertia (y) (kg.m2) 21306090.66 

Moment of Inertia (z) (kg.m2) 37085481.11 

RM3 Spar 

Mass (kg) 876420 

Moment of Inertia (x) (kg.m2) 94419614.57 

Moment of Inertia (y) (kg.m2) 94407091.24 

Moment of Inertia (z) (kg.m2) 28542224.82 

Mooring Lines 

Diameter (m) 0.144       

Mass per unit length (kg/m) 126.0 

Stiffness (N) 583376000 

B. AR Model 

The dynamic responses of the WEC and the mooring tensions 

are then fitted by using the AR model. To prepare the data, 

the time series signals are normalized as follows: 

𝑥(𝑡) =  
𝑥(𝑡)− 𝜇

𝜎̂
              (5) 

where, 𝑥(𝑡) is the normalized signal, 𝜇 and 𝜎 are the mean 

and standard deviation of the raw signal representing the 

system’s dynamic response. AR model with an order ‘p’ can 

be represented as: 

𝑥(𝑡) = 𝐶 + ∑ 𝜙𝑖𝑥𝑡−𝑖
𝑝
𝑖= + 𝜀𝑡    (6) 

where 𝜙
𝑖
 represent the ‘p’ values of AR coefficients, 𝐶 is the 

bias or constant term and 𝜀𝑡 represent Gaussian white noise 

with a constant arbitrary variance (varies with x(t)). 

Essentially, the value fitted by the AR model at time ‘t’ is 

weighted summation of past ‘p’ time-stamped values along 

with a bias and Gaussian white noise with a constant arbitrary 

variance. This process can be envisioned to be a filtering 

technique where the white noise is filtered out by the AR 

coefficients. Broadly, three main processes are involved to 

effectively perform AR modelling, (1) to find the model order 

‘p’; (2) to estimate the AR coefficients; (3) to assess the 

applicability of the model to ensure it is not overfitting and 

the residuals are not corelated. Residuals can be defined as 

the error incurred between the actual time-series signals and 

fitted data by the AR model and can be represented as: 

𝑒̂(𝑡) = 𝑥(𝑡) − ∑ 𝜙
𝑖̂
𝑥𝑡−𝑖

𝑝
𝑖= − 𝐶̂ −  𝜀𝑡    (7) 

where . ̂denote the estimated quantity. In this research, to find 

the AR modelling order, we assess the convergence of the 

modified Akaike Information Criterion (AIC) with model 

order. According to [17], the AIC is defined as: 

𝐴𝐼𝐶 = 2𝑘 − 𝑙𝑛(𝐿̂)             

𝑘 = 2 ∗ (𝑃 + 1)                    

(8a) 

 (8b) 

where k represents the number of estimated parameters and 

𝑙𝑛(𝐿̂)  represent the maximum value of the log-likelihood 

function for the fitted AR model. Typically, the random 

process follows a Gaussian random process and the log-

likelihood of a Gaussian random process [18] is defined as: 

𝑙𝑛(𝐿̂) =  
−𝑁

2
− 

−𝑁

2
𝑙𝑛(𝜆̂) −  

𝑁

2
ln (2𝜋)       (9a) 

 

𝜆̂ =  
1

𝑁
∑ 𝑒̂(𝑡)2                                             (9b) 

In this equation, N is the number of samples in the time series 

data. We assume that the residuals 𝑒̂(𝑡)  are distributed 

according to independent identical normal distributions (with 

zero mean). Accordingly, 𝜆̂ is the variance of the residuals 

computed using (7). Equation (8a) can be modified and re-

written as: 

𝐴𝐼𝐶(𝑃) = 2(𝑃 + 1)/𝑁 + 𝑙𝑛(𝜆̂)                            (10) 

where the constant terms from (8a) are not considered as we 

are only concerned about the change in AIC values with 

increasing model order. The first term in (10) penalizes the 

AIC value with increasing model order while the second term 

quantifies the model’s log-likelihood. It is noted that (10) will 

represent a converging curve of the AIC. The model order is 

then determined where the AIC values for all the dynamic 

response (including motion response and mooring tensions) 

Fig 1: RM3 and its mooring system 



converge and stabilize. Once the appropriate model order is 

found using the AIC plots for all the dynamic responses, the 

AR coefficients [𝜙
1
, 𝜙

2
, 𝜙

3
…𝜙

𝑃
] in (6) is estimated using 

the Burg method which is also called as method of maximum 

entropy estimates [19, 20]. The applicability of the derived 

AR model is then evaluated based on the stationarity of the 

residuals. Ideally, the residuals should exhibit characteristics 

of that of a Stationary Gaussian White Noise (SGWN). This 

can be evaluated by plotting the Auto Correlation Function 

(ACF) plots for the residual. The residuals can be 

approximated to be stationary if all the residuals come within 

95% confidence bound [21].  

C. CNN Model 

1D-CNN has been used in this research to extract features 

from AR coefficients. Fundamentally, 1D-CNN layers excel 

in processing spatial sequence of data and identify key 

patterns to distinguish features required for the subsequent 

layers to process [22]. Mathematically, they convolve the 

sequence of input data with trained filters (convolution 

kernels or weights) of pre-defined arbitrary size to extract key 

features and provide a pathway for the underlying layers of 

the network to associate the inputs with the target outputs in 

a supervised learning setup. the convolutional operation of 

layer 𝑙  and its output 𝑥𝑖
(𝑙+1)

 is expressed as a sum of 

convolutional operations across multiple input channels from 

the previous layer 𝑥(𝑙) each with its own set of updated filters 

or weights 𝑤𝑖𝑗
(𝑙)

 which can be represented as: 

𝑥𝑖
(𝑙+1)

= 𝑓(∑ 𝐶𝑜𝑛𝑣1𝐷(𝑤𝑖𝑗
(𝑙)

 , 𝑥𝑗
(𝑙)

) + 𝑏𝑖
(𝑙)

)𝑀(𝑙)

𝑗=1         (11) 

Where, 𝑥𝑖
(𝑙+1)

 is the output of the 𝑖 − 𝑡ℎ feature map at layer 

(𝑙 + 1); 𝑤𝑖𝑗
(𝑙)

 is the convolution filter that connects the 𝑗 − 𝑡ℎ 

feature map at layer (𝑙) with the 𝑖 − 𝑡ℎ feature map at layer 

(𝑙 + 1); 𝑥𝑗
(𝑙)

 is the 𝑗 − 𝑡ℎ input channel from layer (𝑙); 𝑏𝑖
(𝑙)

 is 

the bias associated with the 𝑖 − 𝑡ℎ feature map at layer (𝑙 +

1); 𝑀(𝑙) is the total number of input channels in layer (𝑙). The 

function ‘𝑓()’ is an activation function, such as Rectified 

Linear Unit (ReLU), sigmoid or tanh applied element wise. 

The activation function adds a non-linearity to identify 

relationships between two layers. In our study we have used 

ReLU activation function which is particularly prominent 

[23] represented as: 

𝑓(𝑥) = max(0, 𝑥)    (12) 

1D-CNN plays a pivotal role in extracting key features from 

signals and mastering complex relationships within the data 

sequence. Their proficiency in identifying patterns and 

spatial connections enables them to reveal critical insights 

from the inputs. This skill also includes the ability to 

recognize inverse relationships, thus boosting their 

effectiveness in tasks that require a deep understanding of the 

interactions among various elements of the sequential data. 

Typically, a pooling layer follows a convolution layer which 

helps in removing insignificant features from the most 

prominent one by reducing the dimensionality. Max-pooling 

is preferred to implement the DL network in this research 

which only selects the maximum values in the layer 𝑥𝑖
(𝑙+1)

 

and which can be represented as: 

𝑦
𝑖
(𝑙+1) = max (𝑥𝑖

(𝑙)
, 𝑥𝑖+1

(𝑙)
, 𝑥𝑖+2

(𝑙)
, … . . , 𝑥𝑖+𝐾−1

(𝑙)
)  (13) 

where K is the size of the pooling window. Finally, to map 

the target output with the derived feature from the overlying 

convolution layers, a Fully Connected (FC) dense layer is 

used. It can be mathematically represented as: 

𝑧𝑖
(𝑙+1)

= 𝑓(𝑤𝑖𝑗

(𝑙)
. 𝑥𝑗

(𝑙)
) +  𝑏𝑖

(𝑙)
                 (14) 

where 𝑧𝑖
(𝑙+1)

 represents the 𝑖 − 𝑡ℎ output in layer (𝑙 + 1) ; 

𝑤𝑖𝑗

(𝑙)
 is the weight associated to connect 𝑗 − 𝑡ℎ node in layer 

(𝑙) (𝑥𝑗
(𝑙))   to the 𝑖 − 𝑡ℎ  output in layer (𝑙 + 1); 𝑏𝑖

(𝑙)
 is the 

bias term to relate the 𝑖 − 𝑡ℎ output in layer (𝑙 + 1). We have 

Fig 2: Overall System Framework 



used Sigmoid activation function for the FC layer to enable 

continuous prediction of the outputs for a supervised 

regression problem. The sigmoid activation function can be 

represented as: 

𝑓(𝑥) =  
1

1+𝑒−𝑥  (15) 

To initiate the backpropagation algorithm and update the 

weights, we define the Mean Square Error (MSE) as the loss 

function which is a common practice for a regression 

problem. The MSE can be represented as: 

MSE = 
1

𝑁𝑡
∑ (𝑦

𝑖
− 𝑦̂

𝑖
)
2𝑁𝑡

𝑖=1   (16) 

where, Nt is the number of data points in the training sample 

set, 𝑦
𝑖
 is the 𝑖 − 𝑡ℎ target output and 𝑦̂

𝑖
  is the predicted value 

for the 𝑖 − 𝑡ℎ data point. The gradient of the MSE loss is 

computed with respect to the output to start with as:   

𝜕𝑀𝑆𝐸

𝜕𝑦𝑖̂

= 2
1

𝑁𝑡
(𝑦

𝑖
− 𝑦̂

𝑖
)             (17) 

The gradient of the loss w.r.t. a weight (𝑤𝑖𝑗
(𝑙)

) during the k-th 

epoch during training in the network is computed using the 

chain rule as: 

𝑔
𝑖𝑗
(𝑙) =  

𝜕𝑀𝑆𝐸

𝜕𝑦𝑖̂

.
𝜕𝑦𝑖̂

𝜕𝑤𝑖𝑗
(𝑙)              

(18) 

The update rule of the weights follows Adam optimization 

algorithm in this work which uses an adaptive learning rate 

approach by having personalized learning rates for each 

parameter [24]. 

D. The Fault Diagnosis Framework 

The overall fault diagnosis framework is depicted in Fig. 2. 

As shown in the figure, dynamic responses of the RM3 WEC 

(including the motion responses and mooring tensions) are 

collected from the numerical simulation framework under 

varied fault and ocean conditions. More specifically, two 

fault conditions are considered: (1) a reduction in stiffness by 

0% to 10% due to corrosion, and (2) an increase in mass from 

0% to 10% due to biofouling, in 1% increments. It is noted 

that in this research, we assume uniform degradation across 

all three mooring lines. 

The collected data will then be normalized and separated into 

the training/validation set and the testing set. The 

training/validation data will be fitted with the AR model to 

identify the AR coefficients. These coefficients, along with 

the wave characteristics (significant wave height and peak 

period), will be used as the inputs of the CNN model, paired 

with the associated faults as outputs to train the CNN model. 

Once the model is trained, the performance of the CNN 

model will be validated with the testing data (never seen 

during training and validation) which are selected from the 

overall dataset with random fault and wave conditions. 

III. RESULTS 

Numerical simulation results are presented in this section. 

The WEC dynamic responses are analyzed first to understand 

their sensitivity to faults. Next, the identification of the AR 

model is shown. Finally, the training and testing of the CNN 

model for fault diagnosis are demonstrated. 

A. WEC dynamic responses 

The WEC dynamic responses are analyzed in this section. 

Fig. 3 shows nine dynamic responses generated from the 

developed simulation framework, which include 6-DoF 

motion responses as well as the mooring tensions under an 

irregular wave with a PM spectrum, a significant wave height 

of 4.33 m, and a peak period of 13.42 s. The signals generated 

from a healthy state are compared with those from a damaged 

state with a 10% increase in mass to analyze the impact of 

faults on the system responses. We can clearly tell from the 

figure that the RM3 WEC has dominant responses in surge, 

heave, and pitch, which are significantly impacted by the 

Fig 3: Comparison of the dynamic response of healthy mooring system with 10% increase in mass of mooring lines 



faults, while the sway, roll, and yaw responses are negligible. 

Moreover, it is not surprising that the mooring tensions are 

significantly influenced by the faults since they directly 

reflect any changes in mooring structure integrity. In this 

context, it is reasonable to select surge, heave, pitch 

Fig 5: AIC evaluation with increasing model order for all the 6 dynamic responses 

Fig 4: ACF plots of residuals for all the 6 dynamic response 



responses, and mooring tensions as the signal inputs for fault 

diagnosis. 

B. AR model Identification 

As introduced earlier, an AR model will next be identified for 

each of the system responses. The measurements collected 

under a healthy state with a significant wave height of 4.33m 

and a peak period of 13.42s are utilized as the baseline dataset 

to select the order of the AR model, which will then be used 

for the AR model for other signals. This standardization 

ensures a consistent model order across the dataset and allows 

for the formulation of AR coefficients for faulty 

measurements relative to the healthy state. 

The selection of the AR model order primarily relies on the 

analysis of the AIC criterion (Eq. (10)). It is noted that this 

criterion combines the likelihood and the penalty of the 

model order, indicating that the user should select a model 

order such that the AIC is minimized (representing a small 

variance of the residuals) and the model order is relatively 

low (to save computational cost). Fig. 4 illustrates the AIC 

values for various system responses with an increasing model 

order. The figure shows the convergence of AIC values 

across all six dynamic responses, leading to the selection of a 

model order of P = 8.  

After the AR model is identified, it is critical to inspect the 

AutoCorrelation Function (ACF) for the residuals between 

the actual and fitted signals, as presented in Fig. 5. It is clearly 

visible in the figure that the residuals of surge, heave, and 

pitch responses are well within the 95% confidence bound. 

Regarding the mooring tensions, a small number of lags 

(accounting for 3.3% to 5%) are outside the 95% confidence 

bounds. Overall, the signals predicted using the AR model 

with the identified model order have a good agreement with 

the actual data, which is presented in Fig. 6 (original data 

versus fitted for three motion responses and mooring 

tensions). 

C. Training and testing of CNN model 

As presented in Fig. 2, the CNN model accepts the AR 

coefficients as inputs. In addition, the wave characteristics, 

including the significant wave height and peak period, are 

also considered in the inputs to further address the challenge 

of fault diagnosis subject to ocean wave randomness. 

Accordingly, we will have two sets of inputs to the DL 

architecture: Input 1 will be an 8 × 6  array of AR 

coefficients, where 8 represents the AR model order (as 

identified in the last section) and 6 represents the 6 system 

responses; Input 2 will be a (2 × 1) array of [Hp, Ts]. 

In the design of the DL architecture, the first set of inputs is 

processed with two CNN layers and two MaxPooling layers. 

This is imperative as they contain temporal differences, 

which are essential for feature extraction. The second set of 

inputs helps the DL model determine the state of the ocean 

wave, which influences the dynamic responses. Therefore, 

the second set of inputs is processed with a single layer of 

CNN and a MaxPooling layer with a relatively smaller 

number of kernels. The final DL architecture is defined as 

follows: 
Layer 1: Input1(8,6) 

Layer 2: 1D-CNN (ReLU, (3× 1), 64 filters)  

Layer 3: MaxPooling (2× 1)(Layer2) 

Layer 4: 1D-CNN (ReLU, (3× 1), 128 filters 

Layer 5: MaxPooling (2× 1) 

Layer 6: Input2 (2,1) 

Layer 7: 1D-CNN (ReLU, (3× 1), 16 filters 

Layer 8: MaxPooling (2× 1) 

Layer 9: Concatenate ( Layer 5, Layer 8) 

Layer 10: Dense (Sigmoid, (2× 1)) 

Fig 6: AR model fitting after normalization of signals 



Layer 1 to Layer 5 process the AR coefficients, and Layer 6 
to Layer 8 process the ocean states. The nodes of Layer 5 and 
Layer 8 are flattened to form a 1D array before being 
concatenated in Layer 9. Thus, Layer 9 includes the 
contribution of the AR coefficients and the features extracted 
from the ocean states. Finally, the concatenated feature set 
from both inputs is fully connected to predict the two outputs: 
Stiffness Reduction and Accumulation of Mass. TensorFlow 
and Keras were used to implement the DL model. 

To evaluate the performance of the trained DL model, 
common regression evaluation metrics such as Mean Square 
Error (MSE), Mean Absolute Error (MAE), and coefficient of 
determination (R2) are used: 

𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
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(19c) 

where N denotes the total number of sample, 𝑦𝑖 represents the 
ground truth value, 𝑦̂𝑖 represents the predicted value and 𝑦𝑖̅ is 
the mean of the ground truth values. 

Table 2: Wave Conditions 

Wave Condition Significant Wave 

Height (Hs) (m) 

Peak Period 

(Tp) (s) 

Wave Condition 1 1 8 

Wave Condition 2 1.65 8.81 

Wave Condition 3 4.33 13.97 

Wave Condition 4 1.96 16.42 

Wave Condition 5 2.19 11.92 

Overall, 605 samples are collected from numerical 

simulations, accounting for 11 × 11  fault conditions for 

reduced stiffness and increased mooring line mass, 

respectively. Moreover, 5 sea states are considered in the 

overall dataset, which are presented in Table 2. It is noted that 

wave conditions 2 to 5 are adopted from the representative 

real sea states of PacWave, Oregon [25]. Each data set is 

simulated by the developed model for 2000 seconds at a 

sampling rate of 40Hz. The first 500 seconds are discarded 

due to transient responses, and the remaining 1500 seconds 

are utilized for fault diagnosis and are downsampled to 5Hz.  

The overall dataset is then split into training and test set 

randomly. The test set here includes random coupling of the 

faults along with random ocean states presented in Table 2. 

The remaining samples are split into a training and validation 

set randomly with 80 validation samples. The training is set 

to be performed for 2000 epochs with an early stopping 

condition set on the validation losses. The learning rate for 

the model is defined as 1e-4 and the Adam optimization 

parameters 𝛽1 is set to 0.9, 𝛽2 is set to 0.999, decay is set to 

0. The history of training and validation losses is presented in 

Fig. 7. The figure shows the training and validation loss 

continuously decreased during the training process. The 

model undergoes normal fitting without overfitting which is 

evident from the validation loss curve. The model stops 

training after 350 epochs due to the early stopping condition 

imposed on the model. The model took approximately 129.9 

seconds to train 26,530 parameters for the DL model on a 

64bit, 32GB and 2.1 Ghz hardware. At the end of training, 

the validation loss is slightly more than the training loss. 

Once the training is concluded the model is tested with the 

test sample which was randomly picked from the overall data 

set. It should be noted that the combination of faults and the 

ocean condition present in the test sample is never seen 

during the training or validation. Fig. 8 shows the test results 

where the predicted outputs are plotted against the ground 

Fig 8: Training History of DL model 

Fig 7: Testing Results 



truth values for both the mooring faults. The figure clearly 

demonstrates that the DL model can predict the faults well. 

Table 3 shows the performance metrics evaluated during 

testing. The R2 values yielded during testing for the 

prediction of both the mooring faults are close to 1 (0.994 for 

stiffness predictions and 0.997 for mass accumulation 

predictions) which serves as a strong validation of the 

proposed model. Moreover, it should be noted that the dataset 

collected was simulated using irregular ocean waves with 

random phase shifts. The coupling of AR coefficients and 

wave characteristics as the inputs for CNN evidently 

addresses the randomness introduced by ocean conditions. 

Table 3: Test Results 

Performance 

Metric 

Mooring Fault 1 

(Stiffness 

Reduction) 

Mooring Fault 

2(Mass 

Accumulation 

MSE 0.00059167633 0.00028773324 

MAE 0.01895002 0.013178647 

R2 0.9945779 0.996992 

IV. CONCLUSION 

This study successfully demonstrates the capability of a 

combined AR and CNN framework to effectively diagnose 

faults in WEC mooring systems. By adapting machine 

learning algorithms to process and analyze AR coefficients 

derived from dynamic response data, we have established a 

robust system capable of accurately identifying damage 

under varying conditions. The AR model efficiently captures 

temporal features which are enhanced through CNN’s spatial 

pattern recognition capabilities, providing a comprehensive 

tool for SHM. The simulations have validated the model’s 

efficacy, with results showing high accuracy and the ability 

to handle real-world oceanic variabilities. Future work will 

aim to predict mooring system behavior under any ocean 

state. While the current study focuses on uniform degradation 

across three mooring lines, future research will aim to 

individualize the assessment for each mooring line. We also 

aim to improve robustness of the model to noises in the 

signal. 
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