

1 Evaluation of Methods of Design for Strongback Braced Frames

2 Peter C. Talley, S.M.ASCE¹; Mark D. Denavit, Ph.D., M.ASCE²; Nicholas. E. Wierschem, Ph.D.,
3 A.M.ASCE³

4

5 ¹ Graduate Research Assistant, University of Tennessee, Knoxville.

6 ² Associate Professor, University of Tennessee, Knoxville. Email: mdenavit@utk.edu

7 ³ Associate Professor, University of Tennessee, Knoxville.

8 ABSTRACT

9 Strongback braced frames (SBF) are a relatively new structural system intended to reduce structural damage
10 during seismic events and improve resilience. SBFs combine buckling-restrained braces, which provide the
11 primary lateral resistance and energy dissipation, with a stiff elastic spine to distribute demands across the
12 height of the structure and prevent the formation of weak- and soft-story mechanisms. Designing the spine
13 is challenging, as higher mode effects and partial yield mechanisms have been shown to be significant.
14 These effects, and their interaction, are not fully accounted for by standardized design methods. It is also
15 unclear how stiff and strong the spine must be in order to achieve the desired behaviors. There are proposed
16 procedures for designing SBFs, however they have not been broadly evaluated and they have not been
17 compared. This work evaluates two proposed design procedures, the simplified modal pushover analysis
18 (SMPA) and generalized modified modal superposition (GMMS), with a “control” procedure based on
19 current standardized capacity design procedures. A total of nine frames were designed for three buildings
20 using the three procedures. Nonlinear response history analyses were performed to evaluate the differences
21 in behavior resulting from the different design methods. To determine the effect of the strength and stiffness
22 of the strongback, the yield strength and elastic modulus of the strongback members were varied and the
23 analyses repeated. The results of this work show that the GMMS and SMPA design procedures are generally
24 well-calibrated and provide benefit over current standardized procedures in several ways: collapse
25 performance is improved, and yielding in the strongback and residual drifts are reduced. The GMMS
26 procedure results in larger members, but provides similar outcomes to the more-complicated-to-implement
27 SMPA. The insights from this work will assist engineers when implementing these design methods, and
28 support the codification of strongback braced frames in design standards.

29 **Keywords:** strongback braced frame, elastic spine, nonlinear analysis, design

30 **INTRODUCTION**

31 Modern seismic design provisions focus on preventing collapse and ensuring the survival of the occupants
32 of a structure during an earthquake. These minimum goals, however, do not ensure that structures are able
33 to be used after a significant seismic event. As a result, the structure may not be useable for habitation or
34 other vital services, and can require significant repairs or even complete demolition. More resilient
35 structures, ones which have reduced risk of collapse and experience less structural damage, can reduce the
36 downtime after a seismic event and reduce long-term costs associated with repair and refit (Bruneau and
37 Reinhorn 2006).

38 Important structures, such as the hospitals and fire stations assigned to ASCE 7-22 Risk Category IV,
39 can, in effect, be designed to be more resilient by increasing the design-level demands but otherwise
40 following a design procedure based predominantly on collapse prevention (ASCE 2022). A more explicit
41 evaluation of resilience can be made through performance-based design, such as the procedures available
42 in ASCE 41-17 or Chapter 16 of ASCE 7-22 (ASCE 2017, 2022). Some seismic force resisting systems,
43 that are specifically intended to reduce damage during an earthquake, can result in buildings that are
44 intrinsically more resilient.

45 Spine systems are a class of seismic force resisting-systems intended to reduce overall structural
46 damage during an earthquake by preventing the accrual of damage in a single story or set of stories. In these
47 systems, an elastic spine runs the entire height of the structure, providing vertical continuity between all
48 levels and energy-dissipating mechanisms. Examples of spine systems include steel rocking frames
49 (Eatherton et al. 2014; Roke 2010), concrete rocking walls (Kurama et al. 1999; Priestley et al. 1978, 1999)
50 and strongback braced frames (Lai and Mahin 2014; Simpson 2018; Tremblay 2003).

51 Strongback braced frames (SBF) are a variation on concentrically braced frames and buckling-
52 restrained braced frames, using one half of the frame as the energy-dissipating component and the other
53 half as the spine (here termed the strongback). An example SBF is shown in Fig. 1.

54 The most common energy-dissipating component proposed for SBFs are buckling-restrained braces
55 (BRB), though other components such as conventional braces and viscous dampers have also been studied
56 (Abolghasemi et al. 2024; Lai and Mahin 2014; Palermo et al. 2021). In this work, BRBs are used to provide
57 both the primary lateral resistance and the primary energy dissipation capacity of the frame.

58 The spine in SBFs is configured as a steel truss, with tie braces to provide vertical continuity between
59 levels in the spine. Under severe ground motions, the spine is intended to remain elastic and pivot about its
60 base while the BRBs yield, imposing a first-mode deformation pattern (Lai and Mahin 2014). As the full
61 yielding mechanism develops, demands are transferred between stories through the spine, allowing the
62 BRBs at all levels to participate concurrently, and preventing runaway damage concentrations caused by
63 the loss of stiffness due to yielding. The buckling-restrained braces and the spine are tightly integrated,
64 allowing the BRBs at all levels to be fully engaged, with demands distributed vertically by the strongback.
65 With a strong and stiff enough spine, SBFs allow full development of the BRB hysteresis and significant
66 energy dissipation at every level, while preventing accumulation of damage in a single story.

67 The remaining beams and columns in the frame serve primarily to support gravity loads and complete
68 the load path of the seismic force-resisting system. The beams also serve as a secondary source of energy
69 dissipation, through plastic hinging at the face of the strongback. The opposing column is not expected to
70 see significant inelastic demands. The connections throughout the frame are standard braced frame
71 connections. Within the strongback itself, the connections are expected to experience less ductility demand
72 than those in a conventional braced frame, due to the strongback remaining elastic.

73 Designing a strongback braced frame to achieve its intended behavior can be challenging. Current linear
74 seismic design methods (ASCE 2022) and traditional capacity design (AISC 2016b) do not sufficiently
75 account for the demands on the strongback. As the spine is intended to remain elastic and distribute demand
76 after the buckling-restrained braces yield, (1) demands on the spine are not limited by yielding and (2) a
77 significant proportion of the demand is associated with higher mode response (Gioiella et al. 2018; Simpson
78 2020). The higher mode response can be mitigated by modifications to the frame, such as by using multiple
79 rocking or pivoting segments in the spine (Broujerdian and Mohammadi Dehcheshmeh 2022; Wiebe and

80 Christopoulos 2009). The beams are also subject to significant rotational demand at the face of the
81 strongback. It has been suggested that the beam rotations at the face of the strongback be designed as
82 displacement-controlled actions, thus incorporating them directly into the energy dissipation system by
83 allowing them to yield, with their size limited either by explicitly evaluated displacement limits or implicitly
84 through force reduction (Simpson and Mahin 2018).

85 While it is possible to evaluate the demands on the strongback using nonlinear dynamic analysis, this
86 requires significant time, resources, and expertise, which may not be available to most design firms. Thus,
87 it is strongly desirable to have a simpler method for determining demands on the spine. Several simplified
88 methods have been proposed for the design of SBFs in specific and spine frames in general, varying from
89 analytical estimations of the story shear and overturning moment (Wiebe and Christopoulos 2015) to more
90 complicated modal analyses (Bosco et al. 2018; Martin and Deierlein 2021; Roke et al. 2009; Steele and
91 Wiebe 2016), to nonlinear analysis of the frame (Simpson and Rivera Torres 2021). Investigated here are
92 the simplified modal pushover analysis (SMPA) procedure (Simpson and Rivera Torres 2021) and the
93 generalized modified modal superposition (GMMS) procedure (Martin and Deierlein 2021).

94 The SMPA procedure (Simpson and Rivera Torres 2021), developed as a simplification of modal
95 pushover analysis (Chopra and Goel 2002), explicitly considers the plastic mechanism of the SBF. A
96 displacement-controlled analysis is used in the first mode, and load-controlled analyses up to a per-mode
97 base shear are used in the higher modes. There are several options for modeling of the plastic behavior,
98 ranging from highly detailed asymmetric hysteretic response to neglecting nonlinear behavior entirely.
99 Simpson and Rivera Torres (2021) recommend using elastic-perfectly-plastic materials for the BRBs in the
100 first mode and elastic materials in the higher modes, with post-analysis checks to ensure that behavior
101 remains within the design strength range.

102 The GMMS procedure (Martin and Deierlein 2021) is simpler than the SMPA procedure, as no inelastic
103 analysis is performed. GMMS was developed as an extension of the modified modal superposition
104 procedure (Martin et al. 2019; Priestley and Amaris 2003) to steel rocking and pivoting spine frames, and
105 is similar to other modal response-spectrum based procedures (Roke et al. 2009; Steele and Wiebe 2016).

106 Unlike SMPA, GMMS does not provide information about the design of displacement-controlled
107 components in the frame (i.e., the members and connections designed to experience inelasticity), and is
108 instead solely used for the design of the spine and other force-controlled components (i.e., the members and
109 connections expected to remain essentially elastic). It was developed and tested primarily on rocking frames
110 and is less well-defined for strongback braced frames. The procedure uses an equivalent single-degree-of-
111 freedom system to estimate the system stiffness at the maximum considered earthquake (MCE), and
112 replaces the energy-dissipating elements with equivalent stiffness springs. These springs are sized to
113 provide the same system overturning resistance at MCE, with stiffness kept proportional to the stiffness of
114 the elements they are replacing.

115 Of these two approaches, it is unknown which provides the best required strengths for design. It also
116 remains unclear precisely how stiff and strong the strongback must be to enforce the desired behavior.
117 Neither the SMPA nor the GMMS procedure includes an explicit check to ensure the strongback enforces
118 near-uniform drifts. Furthermore, while the spine is generally specified to remain elastic to avoid damage
119 to it during a seismic event, its members are designed using the AISC *Specification* (AISC 2016a) and
120 AISC *Seismic Provisions* (AISC 2016b), which provide no guarantee of truly elastic response.

121 The objectives of this work are to (1) determine how the performance of the frames produced by the
122 design methods compare to one another; and (2) determine how the performance varies when the strength
123 and stiffness of the strongback are varied. These objectives were achieved by designing frames according
124 to both SMPA and GMMS, and comparing them to frames designed by standard linear response spectrum
125 analysis according to ASCE 7-22 (ASCE 2022) with capacity design by AISC 341-16 (AISC 2016b). The
126 frames were analyzed using nonlinear pushover, response history, and incremental dynamic analyses, with
127 both nominal strength and stiffness as well as a range of modified strength and stiffness values for
128 strongback members.

129 **METHODS**

130 **Building Configurations**

131 Three building configurations of varying heights (2, 4, and 8 stories), all using the same floor plan shown
132 in Fig. 2, were investigated in this work. Elevation views are shown in Fig. 3. The seismic force resisting
133 system consists of four total SBFs, two in each direction. The SBFs have a strongback occupying 1/3 the
134 width of the bay; this configuration was identified by Simpson (2018) as reducing excessive inelastic
135 demand on the beams and BRBs, without making the strongback too narrow. Each configuration was
136 designed using the three design procedures, for a total of nine frame designs. The four SBFs and their
137 tributary mass are the same regardless of orientation, so only one was designed and analyzed.

138 Gravity loads on the building were determined based on an assumed office occupancy, and are listed
139 in Table 1. Member self-weight is included in the per-area dead load. Loads from the penthouse were
140 “smeared” across the entire roof. No snow or wind loads were included in the design. Seismic hazard
141 parameters were taken from the FEMA P695 seismic design category D_{max} (FEMA 2009). The buildings
142 were assigned Risk Category II, for an importance factor $I_e = 1.0$ (ASCE 2022). Eccentricity due to
143 accidental torsion was ignored.

144 **Frame Design**

145 The strongback braced frames for each of the three building configurations were designed following the
146 procedures described in this section. These procedures were developed based primarily on current standards
147 for design, such as ASCE 7-22 and AISC 360-16, and recommended approaches for design of spine frames,
148 specifically, simplified modal pushover analysis (SMPA) and generalized modified modal superposition
149 (GMMS). In some instances, additional decisions had to be made to cover cases not covered by current
150 standards or recommended procedures, such as how to handle modeling the deformation-controlled beams
151 in the equivalent linear model used by the GMMS procedure. These cases are described as they arise in the
152 following sections.

153 The general process started with sizing the energy-dissipating components (i.e., the BRBs and the
154 beams). Then, for trial designs, member strength evaluation was performed for non-capacity and capacity
155 load combinations. Member sizes were selected through an iterative process to achieve least weight within
156 the constraints. The selection of member sizes was manual, and a formal optimization was not performed.
157 Seismic drift limits and stability coefficient checks from ASCE 7-22 (ASCE 2022) were also performed.

158 The frames consist of ASTM A992 wide-flange members with specified minimum yield strength $F_y =$
159 345 MPa (50 ksi) and expected yield strength $R_y F_y = 380$ MPa (55 ksi) for beams, columns, and
160 conventional braces. The buckling-restrained braces have a specified yield strength of 290 MPa (42 ksi);
161 stiffness factor $Q = 1.4$, which accounts for the additional stiffness due to the end regions; and hardening
162 parameters $\beta = 1.2$ and $\omega = 1.46$, which are used to determine the capacity-limited force from the BRB.
163 The BRB hardening parameters are the same as used for the calibrated BRB model described by Simpson
164 (2018). For design purposes, column splices were assumed to occur every two stories, but were not directly
165 modeled in the analyses.

166 All analysis models used in this work, including those for design, were developed using OpenSees
167 v3.4.0 (McKenna et al. 2010). Only the overview of each procedure and selected design variables are
168 described here; full details are available online at <https://doi.org/10.17603/ds2-jrcm-2c58>.

169 *Strength design*

170 The initial phase of design consisted of sizing the energy-dissipating mechanisms of the frames—the core
171 area A_{sc} of the BRBs and the member size of the beams—based on the equivalent lateral force (ELF) base
172 shear.

173 The ELF base shear V was calculated using $R = 8$ (Simpson 2018). The approximate fundamental period
174 T was calculated according to Eq. (1) following the guidelines from FEMA P695 (FEMA 2009):

$$175 \quad T = \min(C_u C_t h_n^x, 0.25 \text{ s}) \quad (1)$$

176 where C_u is the coefficient for the upper limit on calculated period from ASCE 7-22, equal to 1.4 for seismic
177 design category D_{max} (ASCE 2022); C_t and x are approximate period coefficients from ASCE 7-22; and h_n

178 is the ground-to-level height of the roof in meters. For the strongback braced frames, values of $C_t = 0.0731$
179 ($C_t = 0.03$ when h_n is in feet) and $x = 0.75$ were selected due to the similarity to buckling-restrained braced
180 frames.

181 To size the energy-dissipating mechanisms, the cross-sectional area of the BRB core was selected to be
182 the same at each story. While standard braced frame design procedures call for BRBs to be sized
183 proportional to the first-mode story shear profile, the elastic spine in SBFs offers the opportunity to use a
184 single BRB size, simplifying construction and taking advantage of the ability of the strongback to
185 redistribute internal forces (Simpson 2018). Assuming the strongback is stiff and strong enough to engage
186 all levels of the structure fully, a uniform story drift profile is imposed, with corresponding uniform strain
187 demands at all levels. Using the recommendation from Simpson (2018), the BRBs at each level were sized
188 for a constant shear demand at each level equal to 80% of the ELF base shear. Since the first story is taller
189 than the others, and thus the resultant axial force in the BRB is different, this method results in a different
190 required steel core area $A_{sc,r}$ for different story heights. The average of the required area over the stories
191 was used instead of the required area at each story to keep the BRB core area the same at each level. The
192 actual core area sizes were selected to be the next 323 mm^2 (0.5 in.^2) above the required area; these design
193 values are listed in Table 2.

194 Available member strengths for the force-controlled elements (columns and conventional braces) were
195 determined using the effective length method with effective length factor, $K = 1.0$ (AISC 2016a). Axial,
196 flexure, and axial-flexure interaction limit states were considered, according to AISC Specification
197 Chapters E, F, and Section H1.1, respectively (AISC 2016a). Initial required strengths and sizes were
198 determined from elastic second-order analysis under ELF loads, with final required strengths and sizes from
199 the individual design procedures.

200 For non-capacity-limited load combinations, required strengths were determined using ASCE 7-22
201 Section 2.3.6 basic load combinations (6) and (7):

$$\begin{aligned} 202 \quad & 1.2D + 0.5L + E_v + E_h \\ & 0.9D - E_v + E_h \end{aligned} \quad (2)$$

203 where D is the dead load, L is the live load, E_v is the vertical earthquake load equal to $0.2S_{DS}D$, and E_h is
204 the horizontal earthquake load, as determined by the specific analysis procedure. The gravity load portion
205 of these load combinations was always directly included in the analysis. Load combination (6) usually calls
206 for a 1.0 live load factor, but the use of 0.5 is permitted for distributed live loads less than or equal to 4.78
207 kPa (100 psf). Live load reduction was calculated in accordance with ASCE 7-22 (ASCE 2022) and applied
208 to the model using the technique described by Ziemian and McGuire (1992). AISC 360-16 notional loads
209 were included as 0.002 times the gravity load.

210 A two-dimensional second-order elastic model was used for determining ELF drifts and required
211 strengths. The model consists of centerline beam-column elements with elastic fiber sections (to ensure that
212 elastic properties remained the same between the ELF model and the models described later incorporating
213 material nonlinearity). The BRBs were modeled with truss elements, with amplified elastic modulus QE_s .

214 The frames were also designed for capacity-limited demands and higher mode dynamic effects, using
215 three different procedures to evaluate the differences between the procedures. The three procedures are 1)
216 simplified modal pushover analysis, or SMPA (Simpson and Rivera Torres 2021); 2) generalized modified
217 modal superposition, or GMMS (Martin and Deierlein 2021); and 3) linear response spectrum analysis
218 according to ASCE 7-22 with capacity analysis by AISC 341-16, or RSAC (AISC 2016b; ASCE 2022).

219 *Simplified modal pushover analysis*

220 The SMPA procedure determines the forces on the spine through a combination of a displacement-
221 controlled pushover analysis in mode 1 and load-controlled static analyses in higher modes.

222 Three models are required for the SMPA procedure: a pushover model with expected material strengths
223 (used in mode 1), a pushover model with specified minimum material strengths (used in the higher modes),
224 and an elastic design model (used for design criteria required to be determined by the equivalent lateral
225 force procedure).

226 The pushover models used for SMPA, shown schematically in Fig. 4, are based on the numerical model
227 developed by Simpson (2018), incorporating simplifications described by Simpson and Rivera Torres

228 (2021) for the “PP” configuration, where force-controlled actions are modeled as elastic responses, and
 229 displacement-controlled actions are modeled as elastic perfectly-plastic. The model uses centerline force-
 230 based beam-column elements with distributed plasticity, using two elements per member and five Gauss-
 231 Lobatto integration points per element. The BRBs are modeled using corotational truss elements with area
 232 equal to A_{sc} and modified elastic modulus equal to QE_s . The beams are connected to the columns with
 233 rotational springs representing the shear tabs. The connections have a moment strength of $0.3M_p$ at “bare”
 234 shear tabs and $0.7M_p$ at shear tabs that are partially restrained by a brace gusset plate, where M_p is the plastic
 235 moment strength of the beam (AISC 2016a). The shear tabs are assumed to yield at a rotation of 0.005
 236 radians. Rigid offsets representing connection regions were incorporated for all members based on member
 237 geometry and the location of brace gusset plates. As specific gusset plate sizes were not designed or
 238 detailed, offsets based on a percentage of the workpoint-to-workpoint length were used instead. At member
 239 ends where a gusset plate would restrain the rotation, a rigid offset equal to 15% of the member length was
 240 used. At member ends where no gusset plate is present, a rigid offset representing the physical offset from
 241 the workpoint due to the connecting member’s size was used (e.g., beams are offset from workpoints by
 242 half the column depth).

243 The SMPA procedure requires determination of target roof drifts, $\theta_{R,i}$, and target base shears, $V_{b,i}$, for
 244 each mode i up to a minimum of 95% modal mass participation. The first-mode displacement-controlled
 245 analysis only requires a target roof drift, while the force-controlled analyses in the higher modes use a target
 246 base shear as the primary target, with the target roof drift as a secondary limit indicating insufficient
 247 stiffness. The target values are determined from spectral displacements and eigenvalue analysis of the
 248 pushover model; see (Simpson and Rivera Torres 2021) for details on calculation of $\theta_{R,i}$ and $V_{b,i}$. These
 249 values are listed in Table 3.

250 The modal combination for SMPA response to determine E_h is given by

$$251 \quad E_h = \pm \left(|r_1| + \sqrt{r_2^2 + \dots + r_N^2} \right) \quad (3)$$

252 where r_i is the response (axial, shear, moment, etc.) to SMPA demands from mode i ; and N is the number
253 of modes being considered. Note that the signs of the individual responses are lost due to the modal
254 combination.

255 Member sizes resulting from the SMPA procedure are shown in Table 4.

256 *Generalized modified modal superposition*

257 The GMMS procedure determines the forces on the spine using an equivalent linear model that represents
258 the pivoting response of the spine at peak displacement under MCE-level shaking. Two models are required
259 for the GMMS procedure: an equivalent linear model used to determine GMMS modal responses, and the
260 elastic design model used for ELF design criteria.

261 The GMMS procedure uses an equivalent linear model to estimate the demands on the force-controlled
262 elements by replacing the deformation-controlled elements with equivalent stiffness springs. An iterative
263 procedure is used to estimate the roof drift ratio at MCE, θ_{MCE} , and an equivalent SDOF rotational stiffness,
264 K_{eq} . The equivalent stiffness is equal to the secant stiffness M_{MCE}/θ_{MCE} , multiplied by the equivalent stiffness
265 modification parameter λ ; λ is based on a linear regression of rocking frame data, and may not be
266 appropriately calibrated for SBFs, as they have different response characteristics to rocking frames. M_{MCE}
267 is the estimated overturning moment at MCE, which, for SBFs, Martin and Deierlein (2021) recommend to
268 be based on the capacity-limited forces in the BRBs. The stiffness of the individual equivalent stiffness
269 springs is then determined by rational analysis, such that the global frame overturning stiffness is equal to
270 K_{eq} . Response spectrum analysis, with a modified modal combination rule, is then used to apply forces to
271 the equivalent model and determine required strengths.

272 The GMMS equivalent linear model for strongback braced frames as described by Martin and Deierlein
273 (2021) does not include the secondary energy dissipation provided by beam bending at the face of the
274 strongback. Initially for this work, the beams were to be modeled as force-controlled elements to stay
275 consistent. However, initial design analysis showed that the beams could not be sized appropriately, as
276 larger beams simply attracted more force. For this work, the procedure was modified to include equivalent

277 stiffness rotational springs at the face of the strongback in order to model the beam yielding, as well as the
278 standard equivalent stiffness springs for the BRBs. A schematic of the equivalent linear model is shown in
279 Fig. 5.

280 The modal combination for GMMS responses to determine E_h is given by

281

$$E_h = \pm 1.3 \left(\frac{|r_1|}{R_1} + \sqrt{r_2^2 + \dots + r_N^2} \right) \quad (4)$$

282 where R_1 is the GMMS reduction factor for mode 1, which for unstacked frames is equal to the GMMS
283 equivalent stiffness modification parameter λ ; r_i is the response to GMMS demands from mode i ; N is the
284 number of modes being considered; and the 1.3 factor comes from the suggested load combination for
285 GMMS (Martin and Deierlein 2021). No specific number of modes or level of modal mass participation is
286 specified in the description of the GMMS procedure; for consistency with SMPA, the same number of
287 modes were considered. Design variables for the GMMS procedure are shown in Table 5.

288 Member sizes resulting from the GMMS procedure are shown in Table 6.

289 *Response spectrum analysis with capacity design*

290 To provide a control case based on current seismic design practice, a response spectrum analysis with
291 capacity design (RSAC) procedure was used. The RSAC procedure requires two models: the elastic design
292 model, used for the response spectrum analysis and ELF design criteria, and a capacity design model, where
293 the BRBs and beam plastic hinges (at the face of the strongback) are replaced with equivalent capacity-
294 limited forces and moments. The capacity design model, shown schematically in Fig. 6, only incorporates
295 the effects from mode 1. Capacity-limited BRB forces in compression, P_c , and in tension, P_t , were
296 calculated using the equations from AISC 341-16 (AISC 2016b):

297

$$\begin{aligned} P_c &= \omega \beta R_y F_{ysc} A_{sc} \\ P_t &= \omega R_y F_{ysc} A_{sc} \end{aligned} \quad (5)$$

298 where ω and β are the BRB hardening parameters, $R_y F_{ysc}$ is the expected yield strength of the steel core =
299 42 ksi, and A_{sc} is the area of the steel core. Capacity-limited moments from the beams were conservatively

300 assumed to be equal to the full expected plastic moment $M_{pe} = R_y F_y Z_x$, where $R_y = 1.1$ for ASTM A992
301 members (AISC 2016b).

302 Member sizes resulting from the RSAC procedure are listed in Table 7.

303 *Other design checks*

304 Beam, column, and conventional brace members were also designed to satisfy ductility requirements from
305 AISC 341-16. SBFs have not yet been codified in AISC 341-16, so the required ductility categories were
306 selected based on the expected role of the members. Since the beams form part of the energy dissipation
307 system, they were selected to be highly ductile members, while columns and braces were selected to be
308 moderately ductile since they are intended to remain elastic.

309 The equivalent lateral force procedure with $C_d = 5$ was used to check the ASCE 7-22 limits on stability
310 coefficient θ and story drift Δ . This is the same C_d as for buckling-restrained braced frames (ASCE 2022),
311 since SBFs have not been assigned performance factors. The stability coefficient was calculated using Eq.
312 (G19-2) from (Charney et al. 2020), where two analyses are performed, one with P- Δ effects included and
313 one without. Simple limits of $\theta_{max} = 0.1$ and $\Delta_a = 0.02h_s$ were used. The only case where stability checks
314 controlled the design was RSAC-8, where story drift limits were exceeded in the intermediate stories under
315 a purely strength-based design.

316 **Nonlinear Analysis**

317 To evaluate the resulting designs, nonlinear static pushover and nonlinear dynamic analyses were
318 performed. Three performance variables for the strongback were investigated: (1) resistance to collapse,
319 measured by the collapse margin ratio calculated from incremental dynamic analysis; (2) ability to
320 distribute drift demands across stories under MCE-level shaking, measured using the maximum “marginal
321 drift”; and (3) ability of the strongback to remain elastic under MCE-level shaking, measured using the total
322 strain energy absorbed by the strongback over the duration of the ground motion. To investigate the required
323 strength and stiffness of the strongback, and to evaluate how the different design methods compare to each
324 other, these variables were measured for a range of stiffness and strength modifications made to the

325 strongback members. While these performance variables do not directly measure resilience, they are used
326 in this study as surrogate metrics to quantify the effect of strongback parameters and design on the system's
327 resilience to structural damage. Each of them is related to resilience: for example, a structure not collapsing
328 or otherwise being less damaged can enable a quicker return to normal operation after a seismic event.

329 The model used for the nonlinear analyses is similar to the one used for the SMPA design procedure
330 (Fig. 4), but incorporates additional sources of nonlinearity. Wide-flange members were represented using
331 centerline beam-column elements using the force-based formulation, 5 integration points per element, and
332 2 elements per member, with fiber cross sections utilizing the Steel02 uniaxial material model. Residual
333 stresses were incorporated for wide-flange members using the Lehigh pattern (Galambos and Ketter 1959).
334 Buckling restrained braces were represented using truss elements with a Steel4 non-symmetric hysteretic
335 model and Fatigue wrapper, with parameters taken from the BRB material model calibration in (Simpson
336 2018). All materials used the expected yield strength R_yF_y for the "nominal" yield stress. Geometric
337 nonlinearity was incorporated using corotational truss elements and a corotational transformation for the
338 beam-column elements. Both the strongback base and the opposite column base were modeled as pinned.
339 Tributary gravity loads equal to $1.05D + 0.25L$ were lumped at brace workpoints. Mass based on $1.0D$ was
340 distributed in the same fashion as the gravity loads. P- Δ effects were included through leaning columns
341 which carried the remaining gravity load not directly tributary to the frame. The leaning columns were
342 connected to the rest of the frame by constraining their lateral displacements to the corresponding
343 workpoint.

344 To investigate the effect of the strongback's strength and stiffness, the strongback members (here
345 comprising the strongback column as well as the diagonal and tie braces, but excluding the beams) were
346 modeled with varying yield strength F_y and elastic modulus E . F_y and E were selected as the parameters for
347 the strongback's strength and stiffness due to their ease of modification and, in contrast to cross-section
348 properties, their relative ability to decouple strength and stiffness. A range between 0.1 and 10 times as stiff
349 or strong was identified as the range of interest through preliminary analysis. Further analysis showed that
350 significant strength reduction led to poor, unrealistic seismic performance, so a range between 0.6 and 10

351 times was utilized when varying strength. A total of 810 frames were evaluated: the 9 base designs were
352 evaluated at nominal strength and stiffness, with 34 values of strength and stiffness varied together, 29
353 values of stiffness varied alone, and 26 values of strength varied alone.

354 The collapse performance of the overall structure was measured using incremental dynamic analyses
355 (IDA), following the FEMA P695 methodology, to determine the adjusted collapse margin ratio, $ACMR$,
356 for each configuration. An $ACMR$ of 1.0 indicates a 50% probability of collapse at the MCE intensity, with
357 increasing values of $ACMR$ corresponding to decreasing probability of collapse. Following FEMA P695
358 Appendix F for collapse evaluation of individual buildings, a 10% probability of collapse at MCE was
359 considered the minimum acceptable collapse performance, evaluated by comparing the $ACMR$ to the
360 minimum acceptable $ACMR$ for a 10% probability of collapse, $ACMR_{10\%}$. Collapse was not directly
361 simulated, and instead defined using a story drift limit of 5%. This limit is based on experimental tests of
362 column drift capacities, which showed capacities of 7–9% (Newell and Uang 2006), and conservative
363 estimates of braced frame drift capacities (Uriz and Mahin 2008). A full FEMA P695 study requires
364 identification of performance groups and a broader set of configurations than investigated here; this study
365 is thus strictly a subset of a full FEMA P695 study of strongback braced frames.

366 The strongback's ability to distribute demands under MCE-level shaking was measured using the
367 maximum “marginal drift” L . Here, marginal drift is defined as the difference between the story drift ratio
368 and the average story drift ratio of the other stories. The maximum value of this marginal drift is defined
369 by Eq. (6):

$$370 \quad L = \max_{i,t} \left(\theta_i(t) - \frac{1}{N-1} \sum_{j=1, j \neq i}^N \theta_j(t) \right) \quad (6)$$

371 where $\theta_i(t)$ is the absolute value of the story drift ratio at story i and time t , and N is the number of stories.
372 This measure identifies when drift concentrations occur, and avoids misleading results that can occur at
373 small drift levels.

374 The strongback's ability to remain elastic under MCE-level shaking was measured using the total
375 energy absorbed by the strongback members through deformation, calculated cumulatively over the

376 duration of the ground motion. The total energy was calculated from element-level forces and deformations,
377 which has the limitation of including elastic energy from locked-in stresses. The elastic contribution to the
378 strain energy is small relative to the plastic and hardening contributions at the MCE-level shaking
379 considered. A primary goal of the strongback is to remain elastic and limit damage under severe shaking to
380 specified locations in the frame (i.e., the primary energy dissipation mechanism); if significant yielding and
381 hardening occurs, then the strongback may need to be repaired as well. Furthermore, detailing requirements
382 for SBFs have not been established—if significant yielding occurs in the strongback, requirements should
383 be established to ensure a ductile global response.

384 *Nonlinear static pushover analysis*

385 Nonlinear static pushover analysis was used to identify the period-based ductility, μ_T , of the frames. This
386 quantity is required to determine the spectral shape factor, SSF , and the total system uncertainty, β_{TOT} , which
387 are used in the FEMA P695 collapse evaluation procedure (FEMA 2009).

388 The pushover analysis was performed using a first-mode distribution of lateral forces

$$389 \quad f_i \propto m_i \phi_i \quad (7)$$

390 where m_i is the mass at node i and ϕ_i is the x -direction eigenvector for mode 1 at node i (determined by
391 eigenvalue analysis of the model), until a drop in force of 20% was detected. The maximum base shear V_{max}
392 and the ultimate displacement δ_u were recorded. V_{max} was used to calculate the effective yield displacement
393 $\delta_{y,eff}$ per FEMA P695 Eq. (6-7) and (6-8). μ_T is then defined as the ratio of δ_u to $\delta_{y,eff}$.

394 Due to convergence issues, not all pushover analyses reached the specified 20% drop in force. These
395 convergence issues were associated with BRB fracture. Thus, it was concluded that the failed analyses still
396 accurately captured V_{max} and $\delta_{y,eff}$, but may underpredict δ_u and μ_T (e.g., if a single BRB fracture does not
397 result in a 20% drop in strength). Values of μ_T are high enough, however, that this potential underprediction
398 does not impact the results, as SSF is constant with respect to μ_T when $\mu_T > 8.0$ and β_{TOT} is constant with
399 respect to μ_T when $\mu_T > 3.0$, and all the analyses that potentially underpredict μ_T have $\mu_T > 8.0$.

400 *Nonlinear dynamic analysis*

401 Response history analyses and incremental dynamic analyses were performed using the 22 ground motion
402 pairs of the FEMA P695 far-field record set, which provides a set of site-independent strong ground motions
403 suitable for collapse evaluation (FEMA 2009). The ground motions were scaled as shown in Eq. (8):

$$404 \quad \ddot{x}_g = SF \cdot \frac{S_{MT}}{\hat{S}_{NRT}} \cdot NM \cdot \ddot{x}_{g,recorded} \quad (8)$$

405 where SF is a selectable scale factor, S_{MT} is the spectral intensity of the MCE at the fundamental period of
406 the building, \hat{S}_{NRT} is the median spectral intensity of the normalized record set at the fundamental period of
407 the building, and NM is the normalization factor for the specific ground motion. NM is calculated for each
408 ground motion as the median peak ground velocity (PGV) of the record set divided by the PGV of the
409 ground motion. The fundamental period used for calculation of these values is the approximate fundamental
410 period listed in Table 2. Values of S_{MT}/\hat{S}_{NRT} and NM are tabulated in FEMA P695, and a value of $SF = 1.0$
411 provides the ground motion scaled to MCE. For incremental dynamic analysis, SF was increased until
412 collapse was detected (using the non-simulated collapse limit of 5% story drift).

413 Using the results of the IDAs, the adjusted collapse margin ratio, $ACMR$, was determined. $ACMR$ is the
414 product of the collapse margin ratio, CMR , and the spectral shape factor, SSF , as defined in FEMA P695
415 (FEMA 2009). The collapse margin ratio is the ratio of the median collapse intensity \hat{S}_{CT} to the intensity of
416 the maximum considered earthquake S_{MT} . Given the scaling used in this work (Eq. (8)), the collapse margin
417 ratio is equal to the scaling factor, SF , that results in half the ground motions causing collapse.

418 The spectral shape factor, SSF , depends on the record set, the fundamental period of the building (Table
419 2), seismic design category, and the period-based ductility, μ_T , determined from static pushover analysis.
420 Values of SSF are tabulated in FEMA P695 Table 7-1 (FEMA 2009).

421 Calculating the acceptable $ACMR$ for a 10% collapse probability, $ACMR_{10\%}$, requires an assessment of
422 uncertainty in the evaluation. This requires rating the quality of (1) the nonlinear model, (2) the design
423 requirements, and (3) the available test data. For this work, all “good” ratings were used. The nonlinear
424 model captures important collapse-related behaviors (e.g., P- Δ , BRB fracture, yielding and residual

425 stresses), but does not capture all potentially collapse-related behavior (e.g., fracture of conventional braces
426 or connections). The design requirements are based in sound principle and build from well-established
427 requirements for structural steel systems, but aspects specific to strongback systems have not been
428 significantly tested. Significant amounts of test data exist for the individual components, though full-scale
429 testing of strongbacks is limited. While other system uncertainty ratings could be justifiable, these
430 selections are similar to previous SBF studies and align with previous FEMA P695 studies (Korlapati et al.
431 2021; Simpson 2018). The final component of the uncertainty is the record-to-record variability, which is
432 constant when $\mu_T \geq 3.0$. Given these ratings, and since $\mu_T \geq 3.0$ for all configurations, the total system
433 collapse uncertainty $\beta_{TOT} = 0.525$. This gives an acceptable value of the adjusted collapse margin ratio for
434 a 10% collapse probability, $ACMR_{10\%}$, of 1.96.

435 **RESULTS AND DISCUSSION**

436 The presentation of results and discussion thereof is divided into topics of collapse resistance, distribution
437 of demands, and strongback inelasticity. The plots in Fig. 7–Fig. 9 show the median value of the frame
438 responses when subjected to the 22 ground motion pairs of the FEMA P695 far-field record set.

439 **Collapse Resistance**

440 The plots in Fig. 7 show the adjusted collapse margin ratio, $ACMR$, for the frames as a function of the
441 modulus of elasticity, E , and steel yield stress, F_y , used for the strongback members, as well as the
442 acceptable value of the adjusted collapse margin ratio for a 10% collapse probability, $ACMR_{10\%}$, of 1.96,
443 plotted as a horizontal dot-dashed line.

444 At nominal strength and stiffness, the design methods provide acceptable collapse performance (i.e.,
445 $ACMR \geq ACMR_{10\%}$) except for the 4-story frame designed using the RSAC method. The RSAC method is
446 a simple method that captures higher-mode effects and yield mechanisms independently; it is used in this
447 work as a point of comparison to the other methods that more rigorously capture these behaviors and their
448 interaction, including partial yield mechanisms. That the RSAC method provides sufficiently collapse-
449 resistant designs for the 2- and 8-story frames indicates the novel design methods (i.e., SMPA and GMMS)

450 are not necessary to provide collapse resistance for all SBF configurations. Furthermore, the results indicate
451 that the 4-story frame occupies a “mid-range” where the combination of higher-mode effects and partial
452 yielding mechanisms—a combination not accounted for by RSAC—is substantial. This is especially noted
453 by the smaller column sizes produced by the RSAC method, for which the SMPA and GMMS methods
454 predict significantly higher moment demands. Investigation of a broader range of frames is necessary to
455 confirm the existence of this mid-range for SBFs in general.

456 The 8-story frames all have similarly high collapse resistance, with $ACMR$ exceeding $ACMR_{10\%}$ by 50%
457 at nominal strength and stiffness for all three methods. The 8-story RSAC-designed frame is notably
458 different from the other 8-story frames, despite providing equivalent collapse performance. RSAC-8 was
459 controlled by drift limits, leading to larger member sizes than would have been obtained from strength
460 design alone (the frames designed by the other methods were not controlled by drift limits). The RSAC
461 frames also consistently have larger opposite columns than strongback columns; while this is also seen in
462 SMPA-2 and SMPA-4, the difference is larger in the RSAC frames.

463 $ACMR$ increases when increasing strongback stiffness and strength together. For the 2- and 4-story
464 buildings, a plateau is reached at 2-3 times the nominal strength and stiffness. For the 8-story buildings, no
465 plateau is observed within the ratios investigated. Increasing strength or stiffness individually also provides
466 benefit. The collapse resistance is more sensitive to changes in strength than stiffness, though very large
467 increases in strength provide less benefit proportionally and eventually reach a plateau at 2-7 times the
468 nominal strength. Changes to stiffness affect the results across the entire range.

469 The fact that collapse resistance varies, especially with strongback strength, indicates that the
470 strongback with nominal E and F_y does not remain elastic at the median collapse intensity. This is expected
471 in part because the design methods target elastic behavior at MCE, not collapse. If the strongback were
472 stronger, such that it did remain elastic, the collapse resistance would increase by as much as 78% (in the
473 case of RSAC-4). The $ACMR$ for the stronger strongback is significantly higher than the acceptable value,
474 $ACMR_{10\%}$; this implies, for example, that fewer or smaller BRBs could be used with a stronger strongback
475 while still achieving the desired collapse performance. However, using smaller BRBs decreases the

476 demands on the strongback predicted by the design methods. Thus, the design methods investigated here
477 for the strongback are satisfactory only for the BRBs sizes generated by the initial assumptions about the
478 strongback, and not for the general case of arbitrary BRB sizes and distributions. Further work is needed to
479 develop rigorous and broadly applicable BRB size selection criteria.

480 With nominal parameters, and generally across the parameter range, the 2- and 4- story GMMS frames
481 have higher collapse resistance than the other design methods; this is expected because the GMMS-
482 designed frames have bigger members (see Table 8). For the 8-story configuration, the GMMS frame
483 performs very similarly to the SMPA frame. With the exception of the 0.1 stiffness factor in the 4-story
484 building, $ACMR$ is greater than $ACMR_{10\%}$ for all variations of the GMMS frames, indicating that GMMS
485 produces larger members than necessary for SBFs; thus, details of the method, such as the 1.3 factor in Eq.
486 (4), could be revisited for SBFs.

487 **Distribution of Demands under MCE-level Shaking**

488 One of the defining features of a strongback is its ability to more uniformly distribute demands along the
489 height of the building. The strongback's ability to distribute demands under MCE-level shaking is shown
490 in Fig. 8. The median value at MCE of the maximum marginal drift—see Eq. (6)—is plotted.

491 For all buildings and design methods, except for RSAC-4, the marginal drift remains the same when
492 strength is increased from nominal, indicating that only minimal yielding is occurring at MCE in the
493 strongback in the other frames at nominal strength and stiffness. Marginal drift will increase rapidly when
494 strength is reduced sufficiently, indicating failure of the strongback to maintain vertical continuity and the
495 formation of a soft story. This increase in marginal drift was not observed for the GMMS frames, but it is
496 reasonable to assume that it would see the same rapid increase in maximum marginal drift if strength was
497 decreased further. This further indicates that the GMMS procedure produces larger members than
498 necessary.

499 Changing stiffness corresponds to changes in marginal drift across the entire range of factors
500 investigated. Decreasing stiffness increases marginal drifts, though not as rapidly as decreasing strength.

501 Increasing stiffness reduces marginal drifts, approaching zero marginal drift at 10 times nominal stiffness,
502 indicating near-uniform drifts over the entire duration of the ground motion.

503 Changing stiffness and strength together simply shows a combination of the above behaviors, with
504 reductions in strength and stiffness compounding with each other.

505 For the 2-story building, the RSAC and SMPA methods result in similar median behavior, while
506 GMMS has slightly lower marginal drifts. For the 8-story building, all design methods provide similar
507 behavior over the whole range of factors investigated, with GMMS and SMPA providing nearly identical
508 median results while RSAC performs slightly worse than the novel design methods. The similarity of the
509 GMMS and SMPA results can be attributed to the similarity of the strongback members, especially the
510 strongback braces, which are the primary contributor to the shear-type response of the strongback.

511 **Strongback Inelasticity under MCE-level Shaking**

512 Strongbacks are expected to remain essentially elastic under ground shaking at the MCE level. The
513 strongback's ability to remain elastic under MCE-level shaking is shown in Fig. 9 as the ratio of the strain
514 energy absorbed by the strongback to the total strain energy absorbed by the frame. As noted previously,
515 this measure includes some amount of "locked-in" elastic energy, but the dominant source is dissipation
516 through yielding.

517 At nominal strength and stiffness, the strain energy absorbed by the strongback is less than 1% of the
518 strain energy absorbed by the frame as a whole (except for RSAC-4, which is ~5%). The strain energy ratio
519 increases rapidly with reductions in strength, while increases in strength provide only marginal reductions.
520 When increasing stiffness alone, the share of the strain energy in the strongback tends to increase. As the
521 strain energy decreases when increasing both strength and stiffness, the increase with stiffness alone is not
522 attributable simply to large amounts of stored elastic energy, and is indicative of the stiffer strongback
523 attracting greater demands.

524 Comparing design procedures, the control design method (RSAC) shows more yielding in the
525 strongback across all building heights and modifications. GMMS generally shows less yielding, though

526 GMMS and SMPA show very similar behavior for the 8-story structure. This indicates that the novel design
527 methods are more effective at producing designs that remain essentially elastic during MCE-level shaking.

528 **Other Results**

529 For brevity, the results shown in this section are for a subset of the frames; complete figure sets are available
530 online at <https://doi.org/10.17603/ds2-jrcm-2c58>.

531 Fig. 10 shows the median strain energy absorbed by all the components of the 2-, 4-, and 8-story SMPA
532 frames at MCE, grouped by element type. As expected, the BRBs are the primary source of energy
533 dissipation, far exceeding the combined contribution of the other elements. The beams, despite being
534 designated as a secondary energy dissipator, do not contribute significantly to the energy dissipation of the
535 frames. For the 2- and 4-story frames at nominal strength and stiffness, the strongback, which is designed
536 to remain essentially elastic, absorbs as much energy as the beams; noting that the strongback is
537 significantly larger and thus has much more strain energy capacity. Similar results are seen for the frames
538 designed by the other design methods.

539 Fig. 11 shows the median strain energy ratios of the different elements of the strongback itself at MCE.
540 The diagonal braces are the most significantly affected by changes to strongback strength and stiffness. At
541 low strength and stiffness, large buckling deformations lead to significant increases in the strain energy
542 handled by the braces. This indicates that, for these frames, as the strongback becomes stiffer and stronger,
543 the response transitions from a shear-dominated response to a flexure-dominated response. Notably, the
544 ties do not contribute significantly to the dissipation in the strongback. Similar results are seen for the
545 frames designed by the other design methods.

546 Fig. 12 shows median values of the maximum residual story drift at MCE for all the frames when
547 varying strength and stiffness together. The maximum residual story drift was taken as the maximum value
548 of the drift at each story at the end of the analysis, with time allowed at the end of the ground motion (equal
549 to 10% of the ground motion duration) for the model to settle. The design methods all provide acceptable
550 residual drift control at nominal strength and stiffness, with median residual drifts under 1%. Similar to

551 story drift concentration, reductions in strength and stiffness quickly lead to large increases in residual drift.
552 The residual drifts of the GMMS frames are largely insensitive to changes in strength and stiffness over the
553 range investigated. Overall, the SBFs are very capable at controlling residual drift, indicating their
554 usefulness in improving resilience to seismic events.

555 **CONCLUSIONS**

556 In this work, three design methods for strongback braced frames were evaluated for three buildings of
557 varying heights. The design methods were evaluated using nonlinear analysis across a range of
558 modifications to the strength and stiffness of the resulting frames. The methods were evaluated for their
559 ability to (1) provide collapse resistance, (2) limit story drift concentrations at MCE, and (3) limit yielding
560 in the strongback spine itself at MCE. The results show that there is utility in the use of novel design
561 methods for the design of strongback braced frames. The key observations from this work are:

- 562 • The simplified modal pushover analysis (SMPA) and generalized modified modal superposition
563 (GMMS) procedures are generally well-calibrated and provide value above the simpler response
564 spectrum analysis with capacity design (RSAC).
- 565 • Frames designed according to SMPA and GMMS have acceptable *ACMR*, and the strongback
566 behaves as expected with minimal drift concentration and yielding.
- 567 • GMMS is more conservative, resulting in a heavier strongback, but also improved performance.
568 The 1.3 factor on the GMMS loads—see Eq. (4)—could be revisited for strongbacks.
- 569 • For all measures observed in this study, the greatest impact was from not having enough strength
570 in the strongback. Reductions in strongback strength led to rapid loss of collapse resistance, and
571 large increases in drift concentration and strongback inelasticity at MCE-level shaking. With the
572 exception of RSAC-4, the frames saw minimal benefit to MCE-level responses when strength was
573 increased from nominal. All frames saw reductions in story drift concentrations from increased
574 stiffness, but increased stiffness also led to increased strongback yielding, especially for RSAC-4
575 and RSAC-8.

576 • The BRBs, as expected, provide the vast majority of the energy dissipation in the structure. The
577 beams, despite being designated as secondary energy dissipators, do not provide large amounts of
578 energy dissipation.

579 Overall, this work furthers the development of the SBF system as a viable seismic force-resisting system
580 for highly resilient buildings. Several lines of inquiry for future work remain, including:

581 • Further work is needed to develop rigorous and broadly applicable BRB size selection criteria.
582 While the SMPA and GMMS design methods can provide good predictions of the strongback
583 demands, they are reliant on the initial BRB design step in order to provide sufficient lateral
584 resistance. Prediction of strongback demands and selection of BRB sizes are inherently coupled,
585 but the current methods for selecting BRB size for SBFs rely on assumptions about the overall
586 frame behavior that cannot be applied to generalized BRB distributions.
587 • Further work is needed to clarify the role of the beams in strongback braced frames and to develop
588 criteria for sizing beams in strongback braced frames.

589 **DATA AVAILABILITY STATEMENT**

590 All data, models, and code generated or used during the study are available in a repository online at
591 <https://doi.org/10.17603/ds2-jrcm-2c58> in accordance with funder data retention policies.

592 **ACKNOWLEDGMENTS**

593 This material is based upon work supported by the National Science Foundation under Grant No. 1940197.
594 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
595 author(s) and do not necessarily reflect the views of the National Science Foundation. The computation for
596 this work was performed on the University of Tennessee Infrastructure for Scientific Applications and
597 Advanced Computing (ISAAC) computational resources.

598 **REFERENCES**

599 Abolghasemi, S., N. E. Wierschem, and M. D. Denavit. 2024. "Impact of strongback on structure with
600 varying damper and stiffness irregularity arrangements." *Journal of Constructional Steel Research*,
601 213: 108333. <https://doi.org/10.1016/j.jcsr.2023.108333>.

602 AISC. 2016a. *Specification for structural steel buildings*. Chicago, Illinois: American Institute of Steel
603 Construction.

604 AISC. 2016b. *Seismic provisions for structural steel buildings*. Chicago, Illinois: American Institute of
605 Steel Construction.

606 ASCE. 2017. *Seismic evaluation and retrofit of existing buildings*. Reston, Virginia: American Society of
607 Civil Engineers.

608 ASCE. 2022. *Minimum design loads and associated criteria for buildings and other structures*. Reston,
609 Virginia: American Society of Civil Engineers.

610 Bosco, M., E. M. Marino, and P. P. Rossi. 2018. "A design procedure for pin-supported rocking buckling-
611 restrained braced frames." *Earthquake Engng Struct Dyn*, 47 (14): 2840–2863.
612 <https://doi.org/10.1002/eqe.3112>.

613 Broujerdi, V., and E. Mohammadi Dehcheshmeh. 2022. "Locating the rocking section in self-centering
614 bi-rocking walls to achieve the best seismic performance." *Bull Earthquake Eng*, 20 (5): 2441–
615 2468. <https://doi.org/10.1007/s10518-022-01325-y>.

616 Bruneau, M., and A. Reinhorn. 2006. "Overview of the resilience concept." *Proceedings of the 8th U.S.*
617 *National Conference on Earthquake Engineering*. San Francisco, California.

618 Charney, F. A., T. F. Heausler, and J. D. Marshall. 2020. *Seismic loads: guide to the seismic load provisions*
619 *of ASCE 7-16*. Reston, Virginia: American Society of Civil Engineers.

620 Chopra, A. K., and R. K. Goel. 2002. "A modal pushover analysis procedure for estimating seismic
621 demands for buildings." *Earthq Engng Struct Dyn*, 31 (3): 561–582.
622 <https://doi.org/10.1002/eqe.144>.

623 Eatherton, M. R., X. Ma, H. Krawinkler, G. G. Deierlein, and J. F. Hajjar. 2014. "Quasi-static cyclic
624 behavior of controlled rocking steel frames." *J. Struct. Eng.*, 140 (11): 04014083.
625 [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0001005](https://doi.org/10.1061/(ASCE)ST.1943-541X.0001005).

626 FEMA. 2009. *Quantification of building seismic performance factors*. Federal Emergency Management
627 Agency.

628 Galambos, T. V., and R. L. Ketter. 1959. "Columns under combined bending and thrust." *J. Engrg. Mech.*
629 *Div.*, 85 (2): 1–30. <https://doi.org/10.1061/JMCEA3.0000084>.

630 Gioiella, L., E. Tubaldi, F. Gara, L. Dezi, and A. Dall'Asta. 2018. "Modal properties and seismic behaviour
631 of buildings equipped with external dissipative pinned rocking braced frames." *Engineering*
632 *Structures*, 172: 807–819. <https://doi.org/10.1016/j.engstruct.2018.06.043>.

633 Korlapati, S. C. R., R. Raman, and M. Bruneau. 2021. "Modeling and test data uncertainty factors used in
634 prior FEMA P695 studies." *J. Struct. Eng.*, 147 (2): 06020009.
635 [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002906](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002906).

636 Kurama, Y., S. Pessiki, R. Sause, and L.-W. Lu. 1999. "Seismic behavior and design of unbonded post-
637 tensioned precast concrete walls." *PCI Journal*, 44 (3): 72–89.
638 <https://doi.org/10.15554/pcij.05011999.72.89>.

639 Lai, J.-W., and S. A. Mahin. 2014. "Strongback system: A way to reduce damage concentration in steel-
640 braced frames." *Journal of Structural Engineering*, 141 (9): 04014223.

641 Martin, A., and G. G. Deierlein. 2021. "Generalized modified modal superposition procedure for seismic
642 design of rocking and pivoting steel spine systems." *Journal of Constructional Steel Research*, 183:
643 106745. <https://doi.org/10.1016/j.jcsr.2021.106745>.

644 Martin, A., G. G. Deierlein, and X. Ma. 2019. "Capacity design procedure for rocking braced frames using
645 modified modal superposition method." *J. Struct. Eng.*, 145 (6): 04019041.
646 [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0002329](https://doi.org/10.1061/(ASCE)ST.1943-541X.0002329).

647 McKenna, F., M. H. Scott, and G. L. Fenves. 2010. "Nonlinear finite-element analysis software architecture
648 using object composition." *J. Comput. Civ. Eng.*, 24 (1): 95–107.
649 [https://doi.org/10.1061/\(ASCE\)CP.1943-5487.0000002](https://doi.org/10.1061/(ASCE)CP.1943-5487.0000002).

650 Newell, J., and C.-M. Uang. 2006. *Cyclic behavior of steel columns with combined high axial load and drift
651 demand*. San Diego, California: University of California, San Diego.

652 Palermo, M., V. Laghi, G. Gasparini, S. Silvestri, and T. Trombetti. 2021. "Seismic design and
653 performances of frame structures connected to a strongback system and equipped with different
654 configurations of supplemental viscous dampers." *Front. Built Environ.*, 7: 748087.
655 <https://doi.org/10.3389/fbuil.2021.748087>.

656 Priestley, M. J. N., and A. Amaris. 2003. "Dynamic amplification of seismic moments and shear forces in
657 cantilever walls." *Proceedings of the FIB Symposium*, 196–197. Athens.

658 Priestley, M. J. N., R. J. Evison, and A. J. Carr. 1978. "Seismic response of structures free to rock on their
659 foundations." *BNZSEE*, 11 (3): 141–150. <https://doi.org/10.5459/bnzsee.11.3.141-150>.

660 Priestley, M. J. N., S. (Sri) Sritharan, J. R. Conley, and S. Stefano Pampanin. 1999. "Preliminary results
661 and conclusions from the PRESSS five-story precast concrete test building." *PCI Journal*, 44 (6):
662 42–67. <https://doi.org/10.15554/pcij.11011999.42.67>.

663 Roke, D. A. 2010. "Damage-free seismic-resistant self-centering concentrically-braced frames." Ph.D.
664 Dissertation. Lehigh University.

665 Roke, D., R. Sause, J. M. Ricles, and N. Gonner. 2009. "Design concepts for damage-free seismic-resistant
666 self-centering steel concentrically braced frames." *Structures Congress 2009*.

667 Simpson, B. G. 2018. "Design development for steel strongback braced frames to mitigate concentrations
668 of damage." Ph.D. Dissertation. University of California, Berkeley.

669 Simpson, B. G. 2020. "Higher-mode force response in multi-story strongback-braced frames." *Earthquake
670 Engng Struct Dyn*, 49 (14): 1406–1427. <https://doi.org/10.1002/eqe.3310>.

671 Simpson, B. G., and S. A. Mahin. 2018. "Experimental and numerical investigation of strongback braced
672 frame system to mitigate weak story behavior." *Journal of Structural Engineering*, 144 (2):
673 04017211. [https://doi.org/10.1061/\(ASCE\) ST.1943-541X.0001960](https://doi.org/10.1061/(ASCE) ST.1943-541X.0001960).

674 Simpson, B. G., and D. Rivera Torres. 2021. "Simplified modal pushover analysis to estimate first- and
675 higher-mode force demands for design of strongback-braced frames." *J. Struct. Eng.*, 147 (12):
676 04021196. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0003163](https://doi.org/10.1061/(ASCE)ST.1943-541X.0003163).

677 Steele, T. C., and L. D. A. Wiebe. 2016. "Dynamic and equivalent static procedures for capacity design of
678 controlled rocking steel braced frames." *Earthquake Engng Struct. Dyn.*, 45 (14): 2349–2369.
679 <https://doi.org/10.1002/eqe.2765>.

680 Tremblay, R. 2003. "Achieving a stable inelastic seismic response for multi-story concentrically braced
681 steel frames." *Engineering Journal*, 40 (2): 111–129.

682 Uriz, P., and S. A. Mahin. 2008. *Toward earthquake-resistant design of concentrically braced steel-frame
683 structures*.

684 Wiebe, L., and C. Christopoulos. 2009. "Mitigation of higher mode effects in base-rocking systems by
685 using multiple rocking sections." *Journal of Earthquake Engineering*, 13 (S1): 83–108.
686 <https://doi.org/10.1080/13632460902813315>.

687 Wiebe, L., and C. Christopoulos. 2015. "A cantilever beam analogy for quantifying higher mode effects in
688 multistorey buildings." *Earthquake Engng Struct. Dyn.*, 44 (11): 1697–1716.
689 <https://doi.org/10.1002/eqe.2549>.

690 Ziemian, R. D., and W. McGuire. 1992. "A method for incorporating live load reduction provisions in
691 frame analysis." *Engineering Journal*, 29 (1): 1–3.

692 **FIGURE CAPTION LIST**

693 • Fig. 1. Strongback braced frame. Shaded region indicates the members comprising the strongback.

694 • Fig. 2. Floor plan. Dashed lines indicate location of SBFs. Shaded area indicates location of penthouse.

695 • Fig. 3. Elevation view of SBFs.

696 • Fig. 4. Schematic of pushover model for SMPA procedure.

697 • Fig. 5. Schematic of equivalent linear model for GMMS procedure.

698 • Fig. 6. Schematic of capacity design model to accompany response spectrum analysis.

699 • Fig. 7. Adjusted collapse margin ratio. (a) Varying strength and stiffness; (b) varying stiffness, F_y
700 remains nominal; (c) varying strength, E remains nominal. Left-to-right: 2, 4, and 8 stories

701 • Fig. 8. Story drift concentration at MCE, measured by maximum marginal drift. (a) Varying strength
702 and stiffness; (b) varying stiffness, F_y remains nominal; (c) varying strength, E remains nominal. Left-
703 to-right: 2, 4, and 8 stories

704 • Fig. 9. Strain energy stored in and dissipated by the strongback at MCE, as a ratio of the total frame
705 strain energy. (a) Varying strength and stiffness; (b) varying stiffness, F_y remains nominal; (c) varying
706 strength, E remains nominal. Left-to-right: 2, 4, and 8 stories

707 • Fig. 10. Median strain energy stored in and dissipated by the various components of the SMPA frames
708 at MCE, varying strength and stiffness together. Left-to-right: 2, 4, and 8 stories

709 • Fig. 11. Median strain energy stored in and dissipated by the components of the strongback in the
710 SMPA frames at MCE, varying strength and stiffness together. Left-to-right: 2, 4, and 8 stories

711 • Fig. 12. Median value of maximum residual drift at MCE, varying strength and stiffness together. Left-
712 to-right: 2, 4, and 8 stories

713 **TABLES**

714 Table 1: Per-area gravity loads. Roof loads include “smeared” penthouse load.

Load Type	Typ. Floor [kPa (psf)]	Roof [kPa (psf)]
Dead	3.83 (80)	3.76 (78.5)
Dead (Wall/Parapet)	1.20 (25)	1.20 (25)
Live	3.83 (80)	0.800 (16.7)
Partition	0.718 (15)	—
Roof Live	—	0.397 (18.3)

715

716

Table 2: Initial design values

Number of Stories	Approximate Period, T [s]	ELF Base Shear, V [kN (kip)]	Required BRB Size, $A_{sc,r}$ [mm^2 (in. ²)]	BRB Size, A_{sc} [mm^2 (in. ²)]
2	0.578	1190 (268)	4630 (7.18)	4840 (7.5)
4	0.939	1530 (344)	5980 (9.27)	6130 (9.5)
8	1.55	1860 (418)	7200 (11.2)	7420 (11.5)

Table 3: Target roof drifts and base shears for SMPA procedure.

Building	Mode	Target roof drift, $\theta_{R,i}$ [%]	Target base shear, $V_{b,i}$ [kN (kip)]
SMPA-2	1	1.20	—
	2	0.0289	673 (151)
SMPA-4	1	1.04	—
	2	0.0591	2810 (631)
	3	0.00757	404 (90.8)
	4	0.000204	41.8 (9.39)
SMPA-8	1	0.987	—
	2	0.106	6400 (1440)
	3	0.0125	1550 (348)
	4	0.00118	75.0 (16.9)

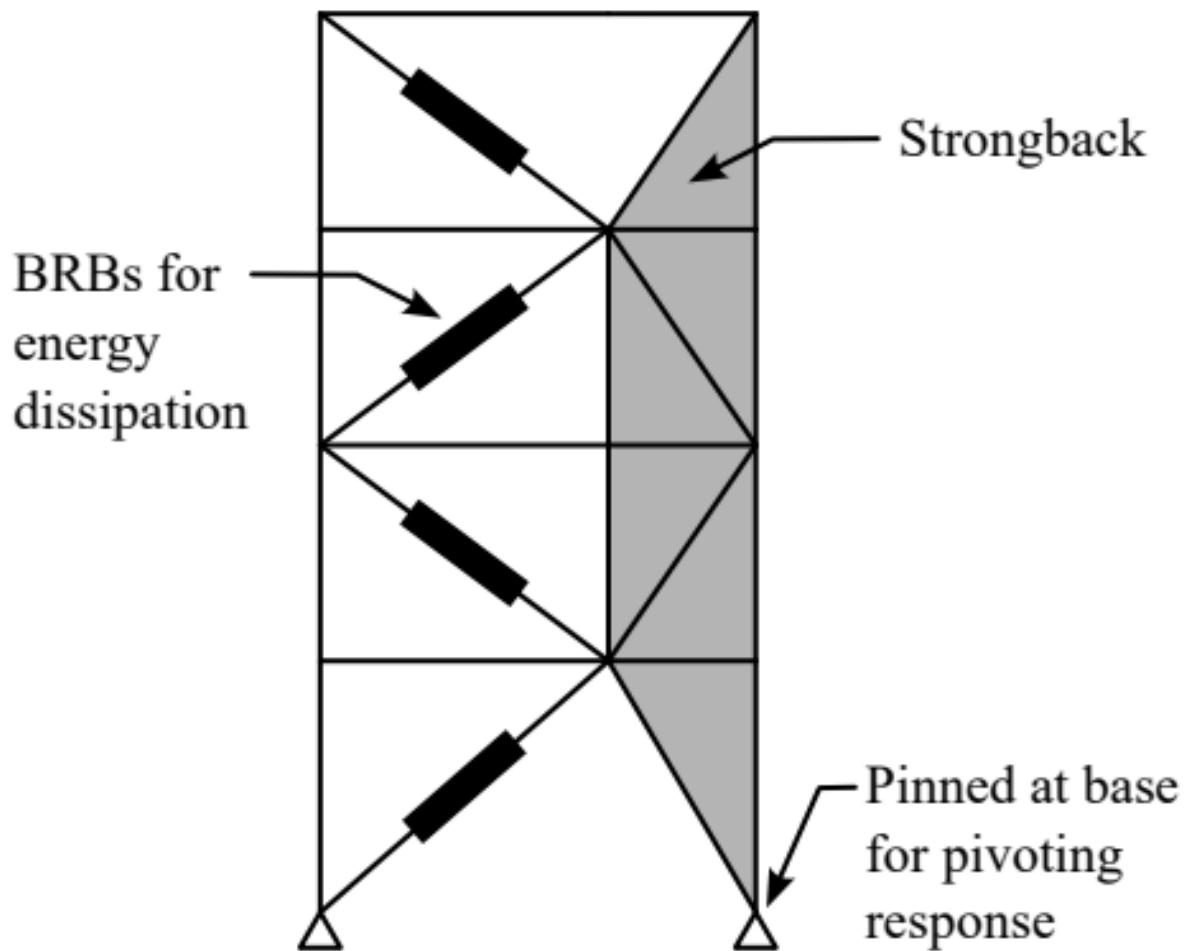
Table 4: Member sizes for frames determined using the SMPA procedure.

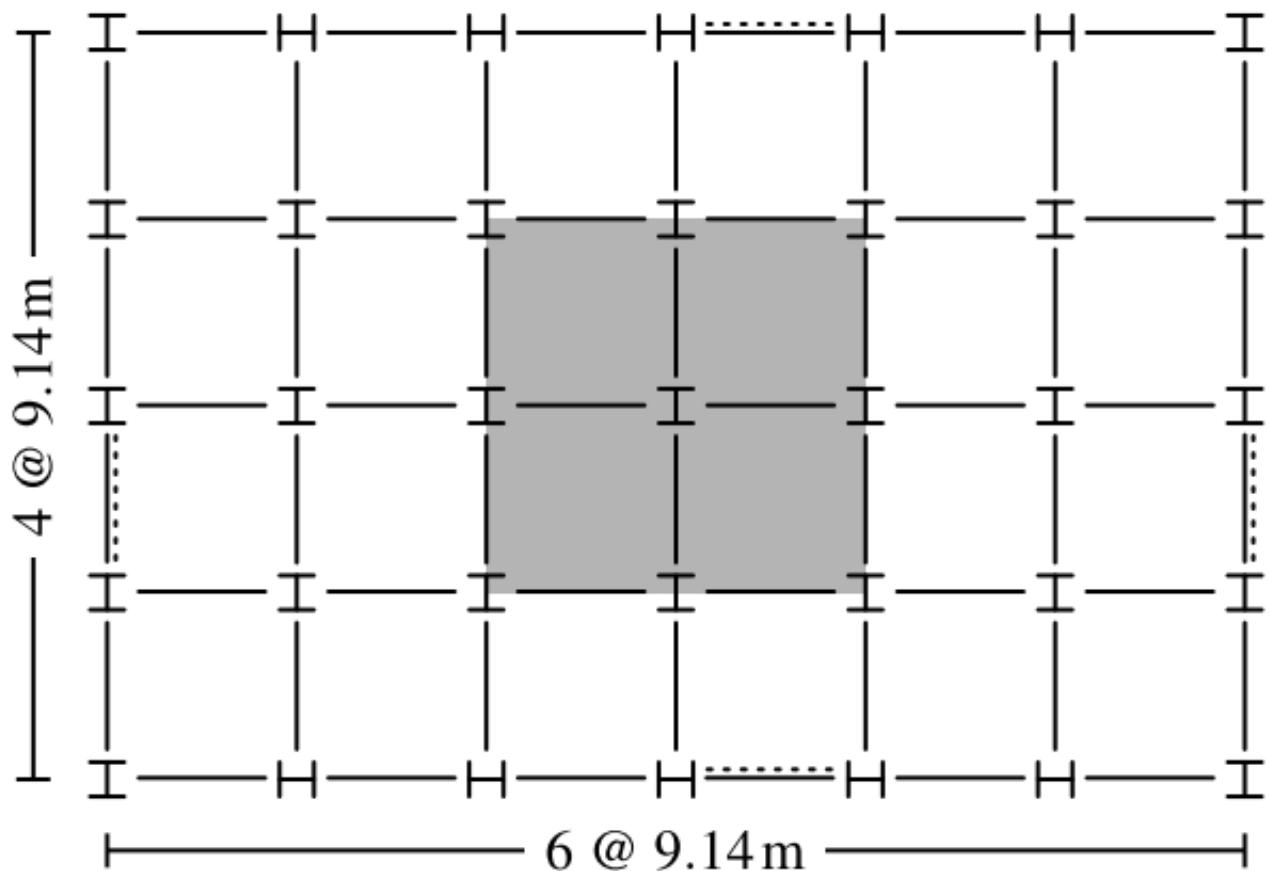
Building	Story	BRB Size [mm² (in.²)]	Beam	Left Column	Strongba ck Brace	Strongback Column	Tie Brace
SMPA-2	1	4840 (7.5)	W12×96	W12×72	W12×96	W12×53	—
	2	4840 (7.5)	W12×96	W12×72	W12×53	W12×53	—
SMPA-4	1	6130 (9.5)	W12×96	W12×170	W12×210	W12×170	—
	2	6130 (9.5)	W12×96	W12×170	W12×79	W12×170	W12×106
	3	6130 (9.5)	W12×96	W12×96	W12×79	W12×79	W12×106
	4	6130 (9.5)	W12×96	W12×96	W12×79	W12×79	—
SMPA-8	1	7420 (11.5)	W12×120	W14×426	W14×426	W14×500	—
	2	7420 (11.5)	W12×120	W14×426	W14×342	W14×500	W14×426
	3	7420 (11.5)	W12×120	W14×342	W14×193	W14×500	W14×426
	4	7420 (11.5)	W12×120	W14×342	W14×176	W14×500	W14×426
	5	7420 (11.5)	W12×120	W14×311	W14×159	W14×342	W14×426
	6	7420 (11.5)	W12×120	W14×311	W14×159	W14×342	W14×257
	7	7420 (11.5)	W12×120	W14×159	W14×145	W14×159	W14×257
	8	7420 (11.5)	W12×120	W14×159	W14×132	W14×159	—

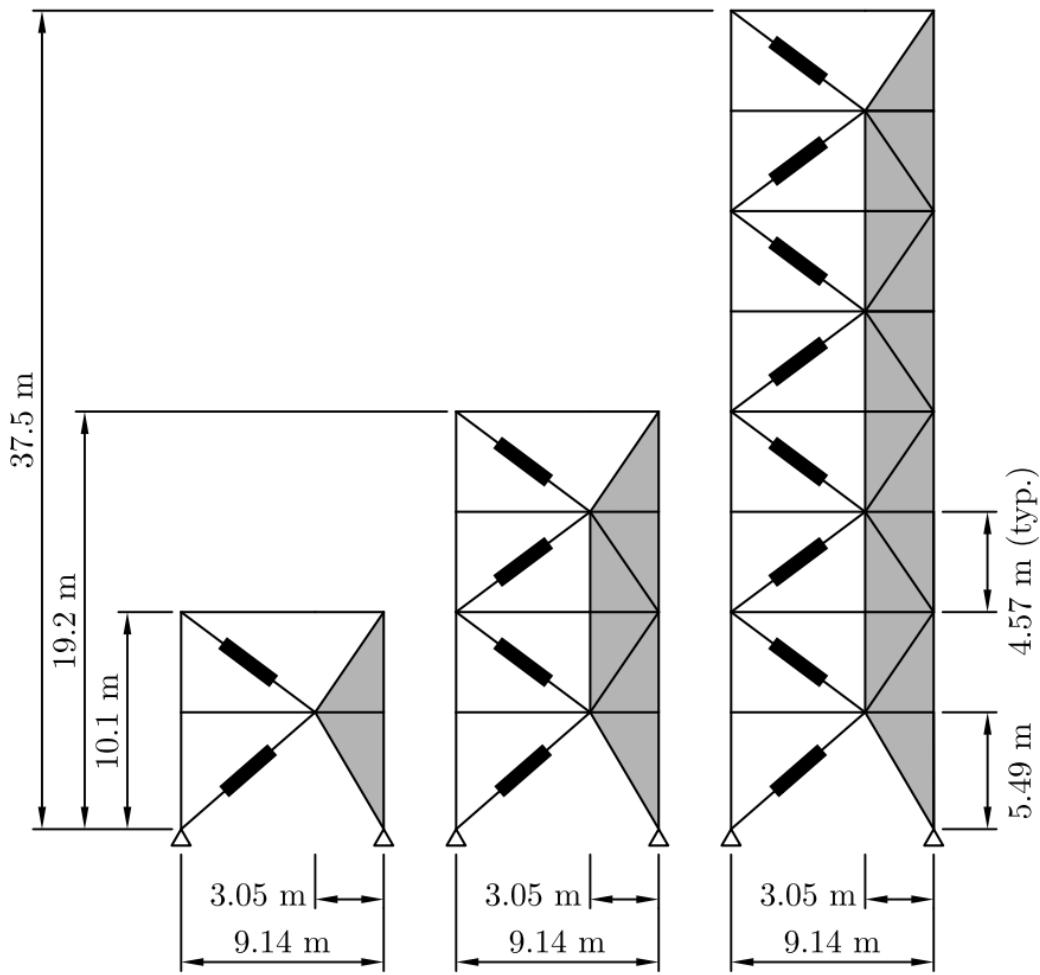
Table 5: GMMS design variables

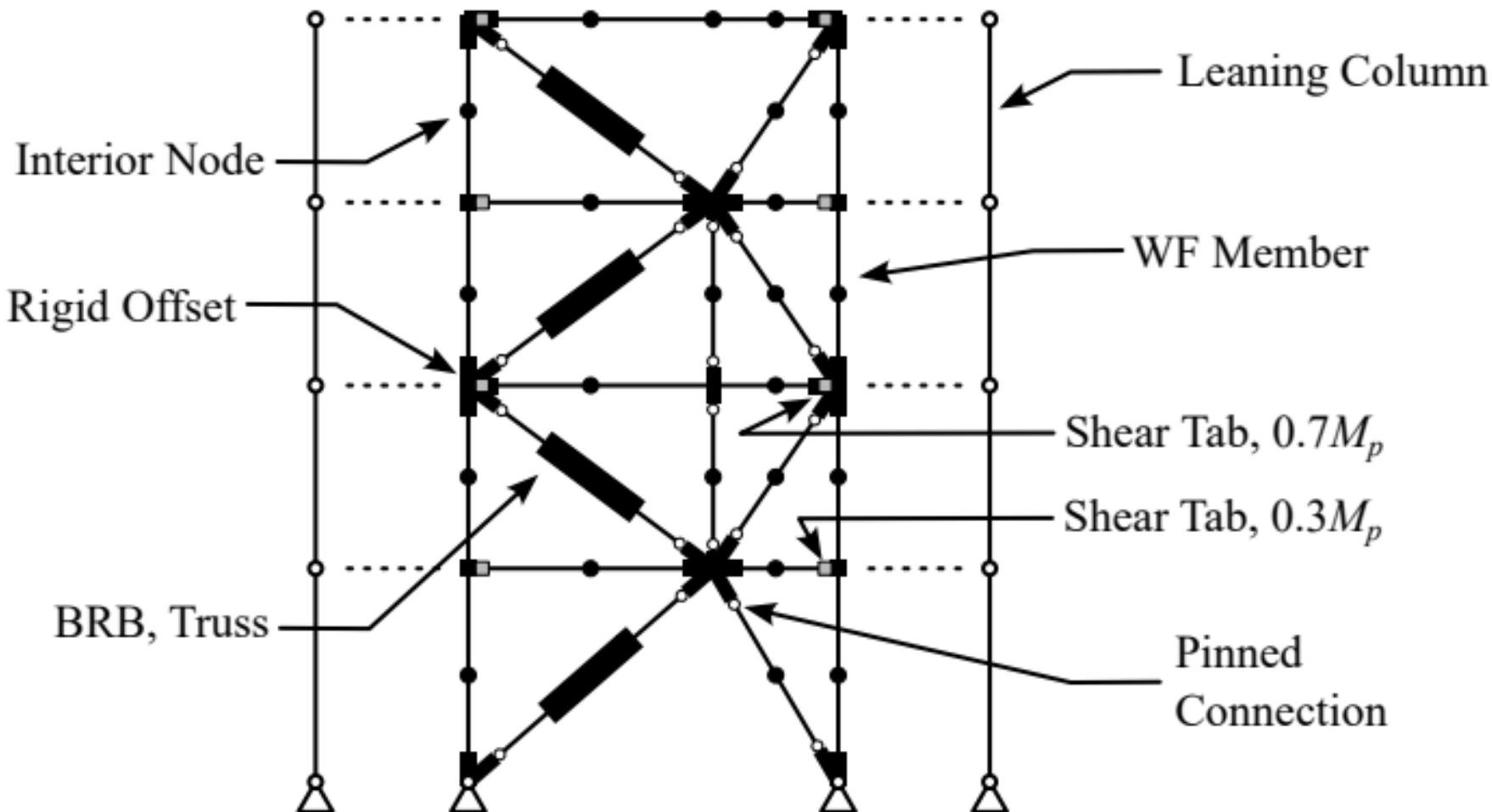
Building	Equivalent SDOF Stiffness, K_{eq} [10^6 kN m/rad (10^6 kip in/rad)]	Roof Drift Ratio at MCE, θ_{MCE} (%)	λ	N
GMMS-2	1.35 (12.0)	2.40	1.14	2
GMMS-4	3.84 (34.0)	1.95	1.08	4
GMMS-8	8.78 (77.7)	1.78	0.948	4

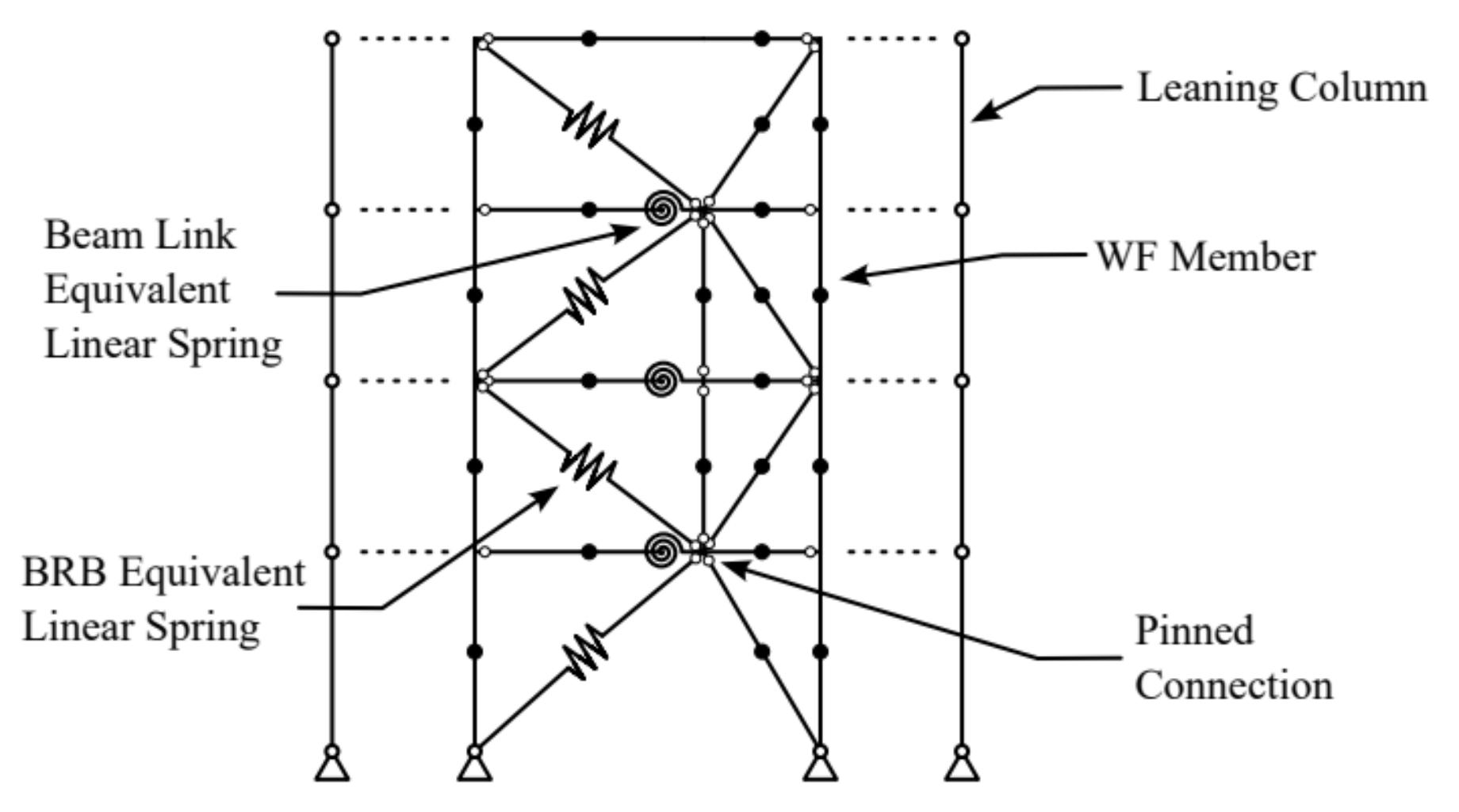
Table 6: Member sizes for frames determined using the GMMS procedure.

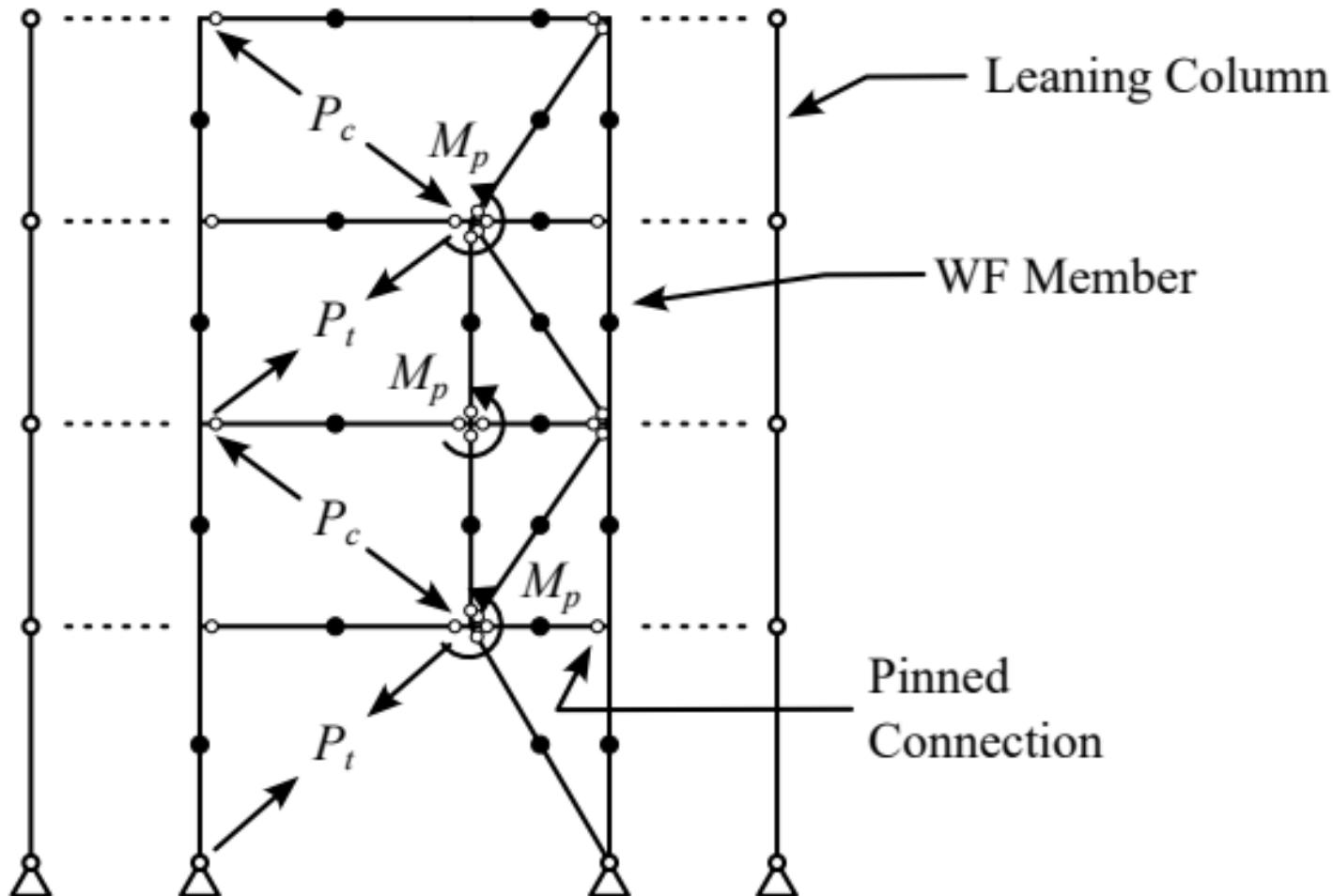

Building	Story	BRB Size [mm² (in.²)]	Beam	Left Column	Strongbac k Brace	Strongbac k Column	Tie Brace
GMMS-2	1	4840 (7.5)	W12×96	W12×72	W12×170	W12×72	—
	2	4840 (7.5)	W12×96	W12×72	W12×72	W12×72	—
GMMS-4	1	6130 (9.5)	W12×96	W12×230	W12×305	W12×279	—
	2	6130 (9.5)	W12×96	W12×230	W12×152	W12×279	W12×210
	3	6130 (9.5)	W12×96	W12×79	W12×152	W12×136	W12×210
	4	6130 (9.5)	W12×96	W12×79	W12×152	W12×136	—
GMMS-8	1	7420 (11.5)	W12×120	W14×550	W14×426	W14×665	—
	2	7420 (11.5)	W12×120	W14×550	W14×342	W14×665	W14×426
	3	7420 (11.5)	W12×120	W14×398	W14×257	W14×550	W14×426
	4	7420 (11.5)	W12×120	W14×398	W14×193	W14×550	W14×426
	5	7420 (11.5)	W12×120	W14×311	W14×193	W14×398	W14×426
	6	7420 (11.5)	W12×120	W14×311	W14×176	W14×398	W14×283
	7	7420 (11.5)	W12×120	W14×159	W14×159	W14×159	W14×283
	8	7420 (11.5)	W12×120	W14×159	W14×159	W14×159	—

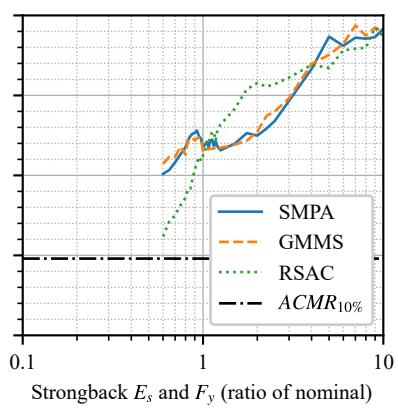
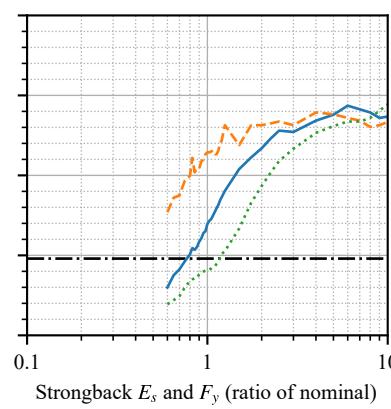
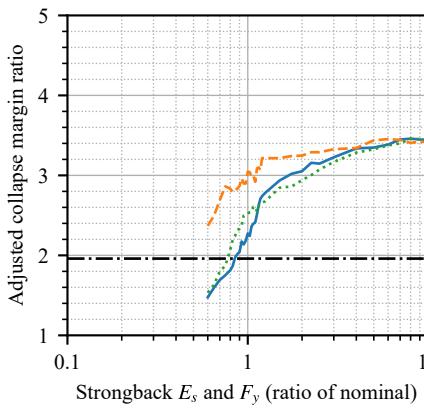

Table 7: Member sizes for frames determined using the RSAC procedure.

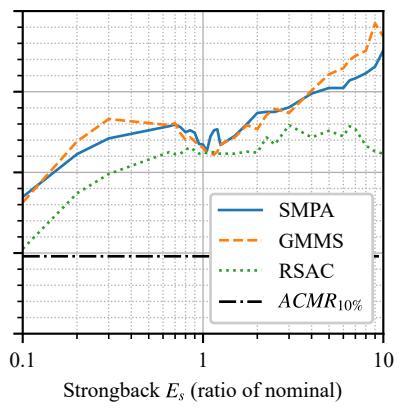
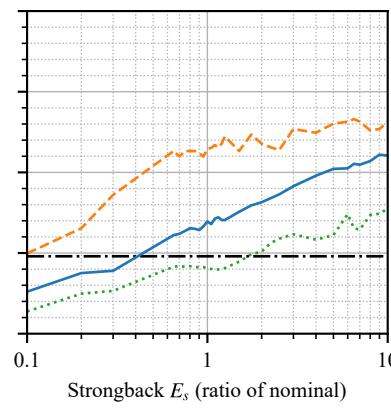
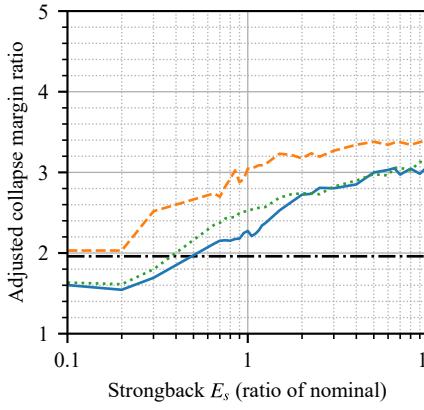

Building	Story	BRB Size [mm² (in.²)]	Beam	Left Column	Strongbac k Brace	Strongbac k Column	Tie Brace
RSAC-2	1	4840 (7.5)	W12×96	W12×72	W12×106	W12×45	—
	2	4840 (7.5)	W12×96	W12×72	W12×50	W12×45	—
RSAC-4	1	6130 (9.5)	W12×96	W12×190	W12×190	W12×106	—
	2	6130 (9.5)	W12×96	W12×190	W12×53	W12×106	W12×58
	3	6130 (9.5)	W12×96	W12×72	W12×72	W12×45	W12×53
	4	6130 (9.5)	W12×96	W12×72	W12×53	W12×45	—
RSAC-8	1	7420 (11.5)	W12×120	W14×398	W14×342	W14×283	—
	2	7420 (11.5)	W12×120	W14×398	W14×159	W14×283	W14×233
	3	7420 (11.5)	W12×120	W14×283	W14×159	W14×159	W14×233
	4	7420 (11.5)	W12×120	W14×283	W14×159	W14×159	W14×159
	5	7420 (11.5)	W12×120	W14×211	W14×159	W14×145	W14×159
	6	7420 (11.5)	W12×120	W14×211	W14×159	W14×145	W14×82
	7	7420 (11.5)	W12×120	W14×159	W14×159	W14×82	W14×82
	8	7420 (11.5)	W12×120	W14×159	W14×159	W14×82	—

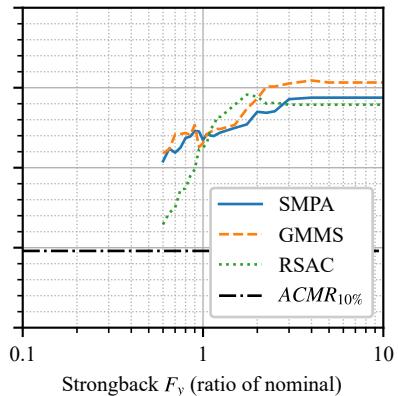
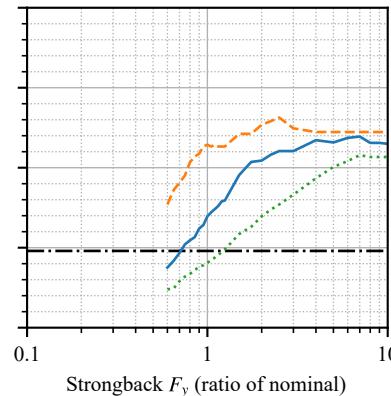
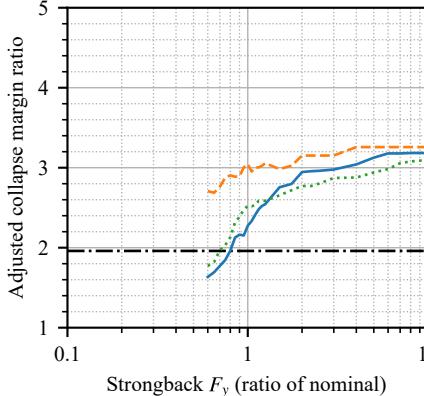

Table 8: Weight of strongback braced frame

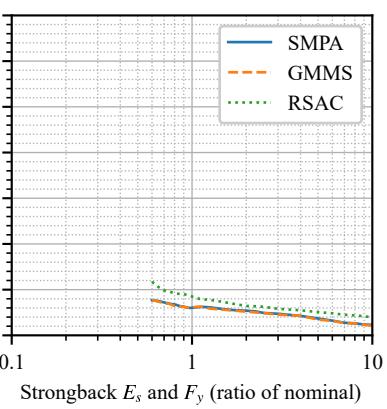
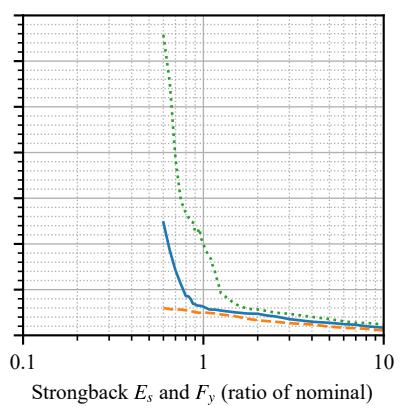
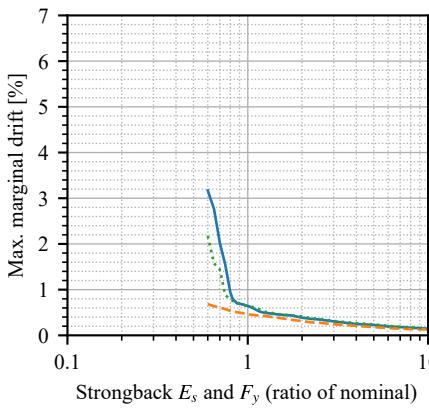

Building	Member Weight [kN]	Member Weight : RSAC Weight
SMPA-2	57.0	1.01
SMPA-4	177	1.18
SMPA-8	798	1.47
GMMS-2	66.5	1.18
GMMS-4	232	1.55
GMMS-8	863	1.59
RSAC-2	56.5	1.0
RSAC-4	149	1.0
RSAC-8	542	1.0

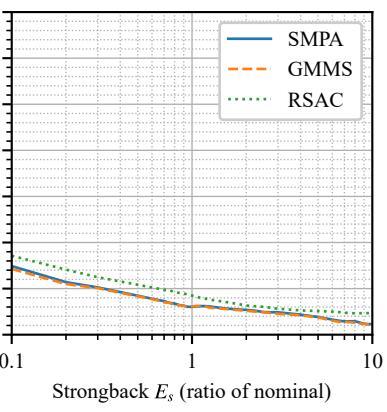
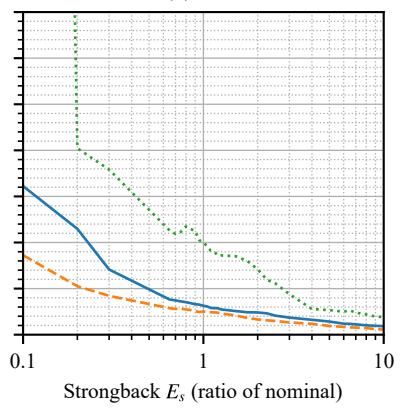
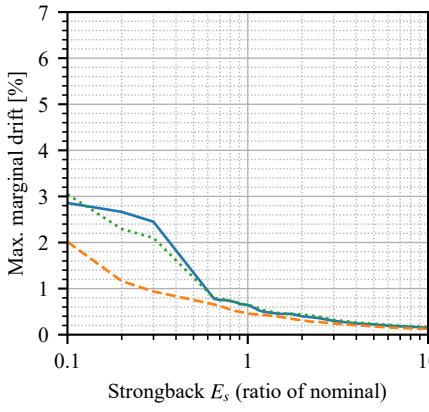


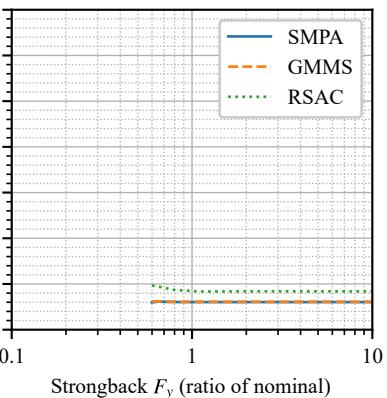
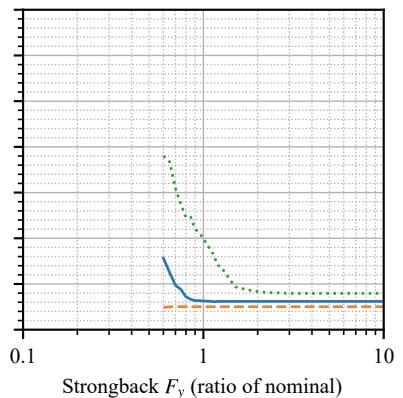
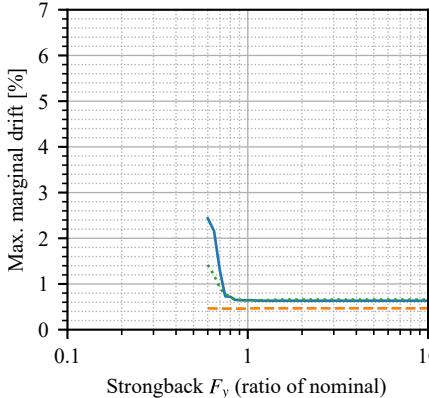




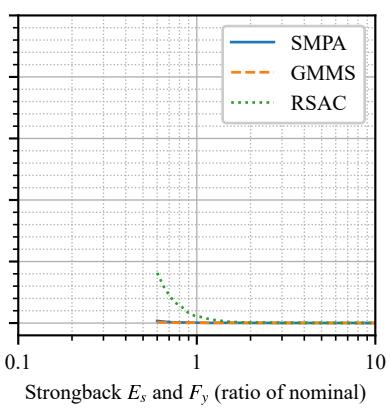
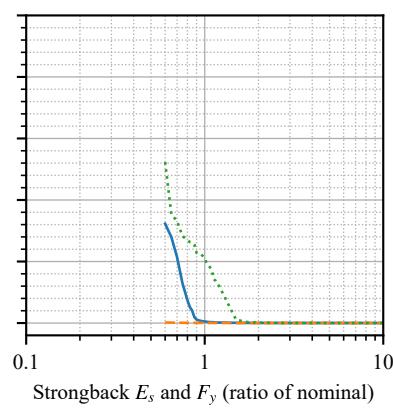
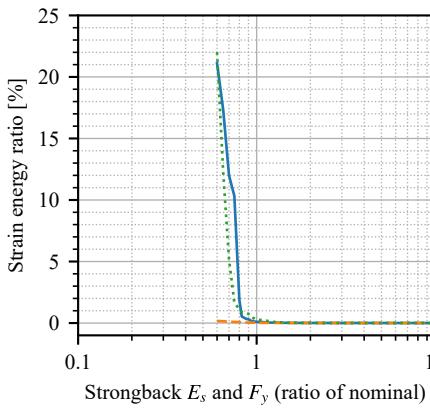




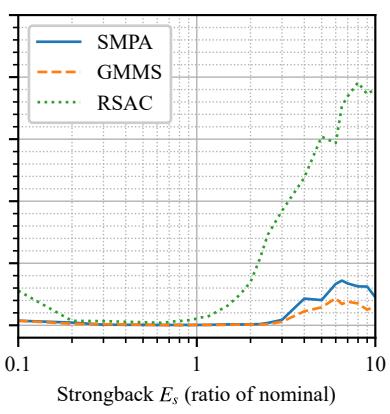
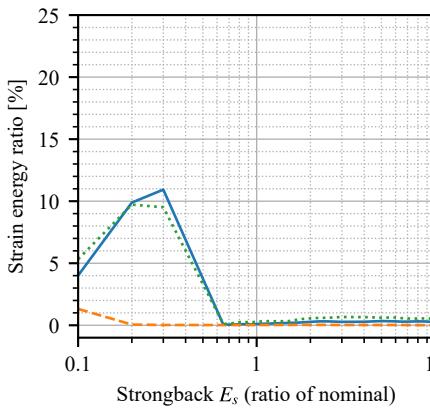




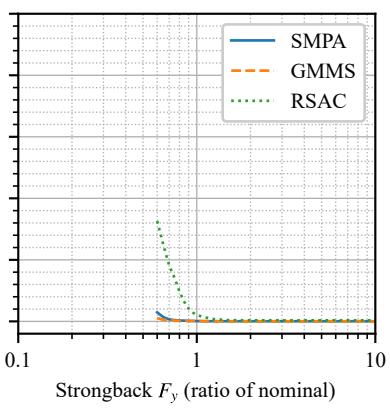
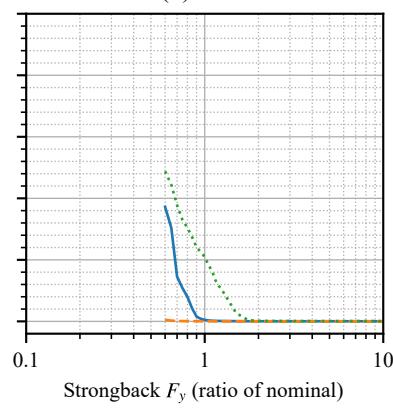
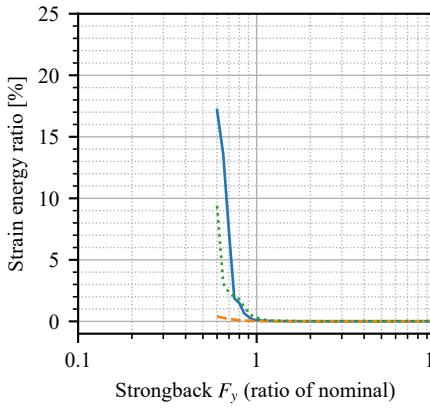



(a)

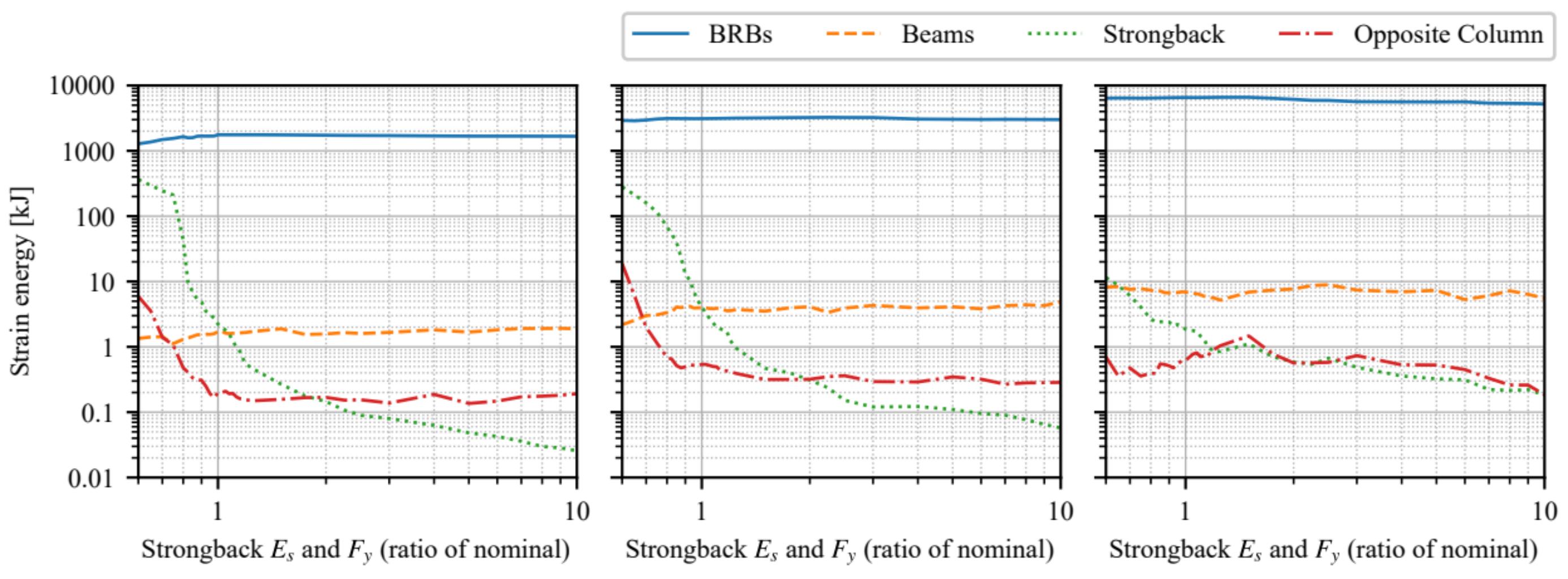



(b)

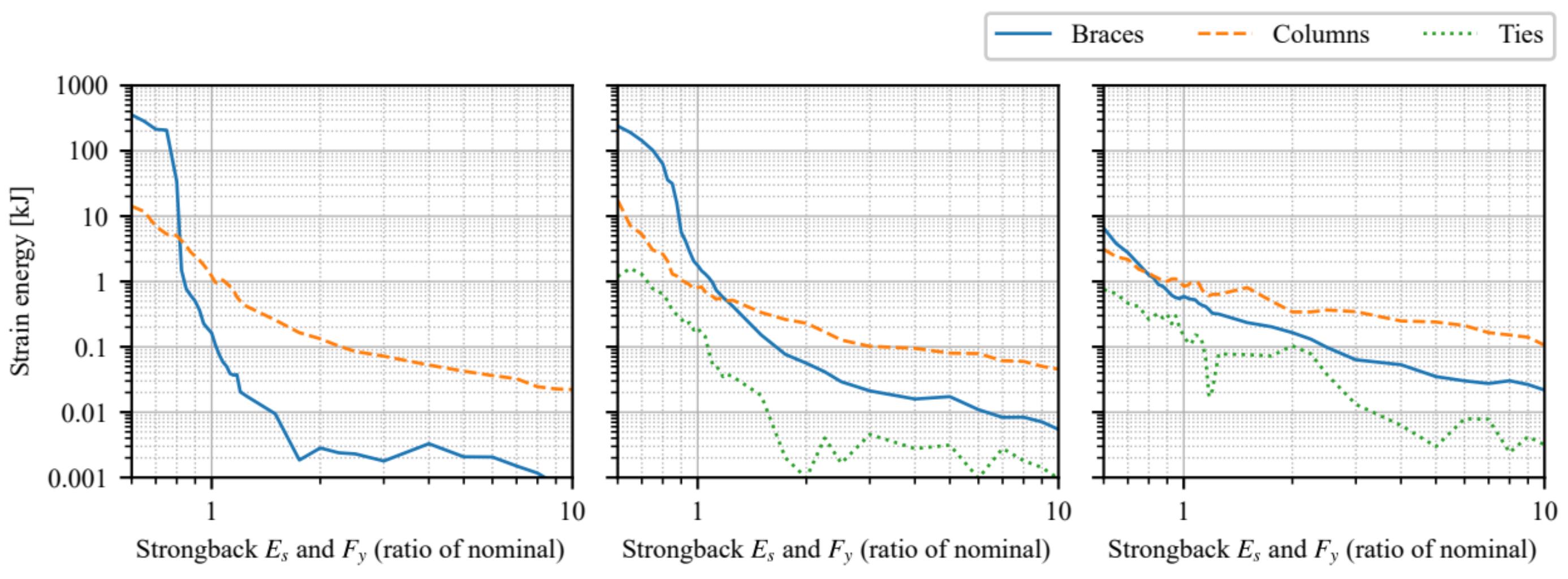



(c)

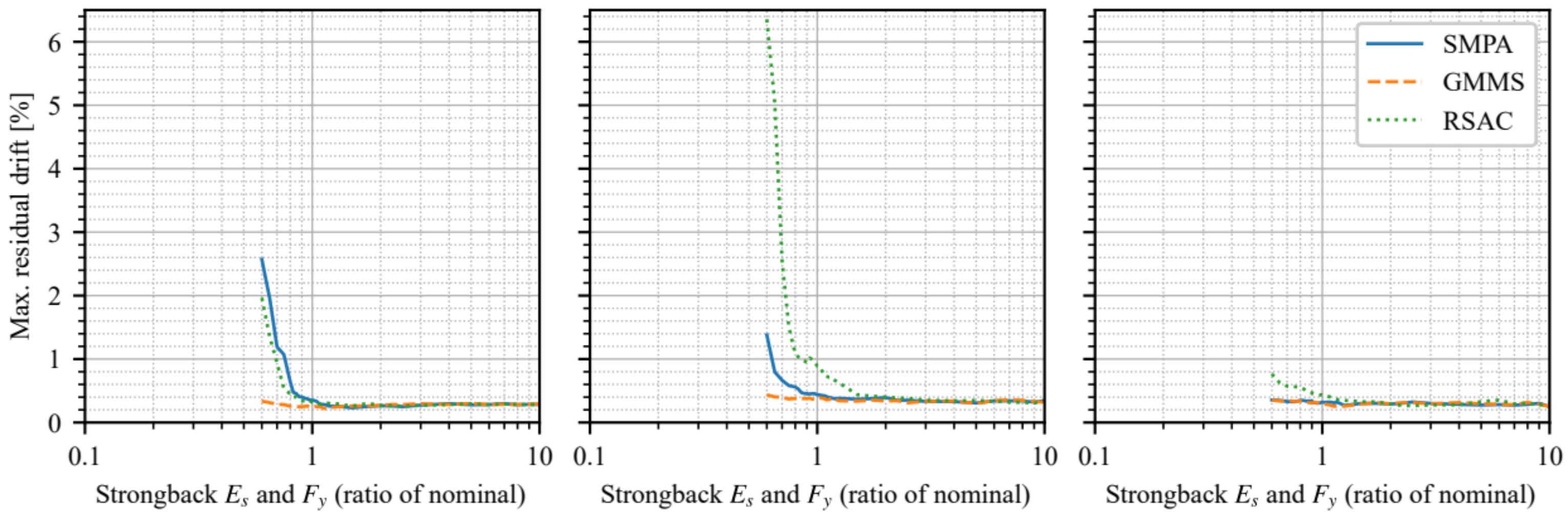



(a)



(b)




(c)


(a)




(b)

(c)

