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Integral non-group-theoretical modular
categories of dimension p2q2

César Galindo Julia Plavnik Eric C. Rowell

Abstract

We construct all integral non-group-theoretical modular categories of dimen-
sion p2q2, where p and q are distinct prime numbers, establishing that a nec-
essary and sufficient condition for their existence is that p | q + 1, and their
rank is p2 + q2−1

p .

1 Introduction

While integral non-group-theoretical modular categories of dimension 4q2 with q
an odd prime were constructed in [13], a sign error in [3] led to the mistaken con-
clusion that for odd primes p, q there were no non-group-theoretical categories
of dimension p2q2. Recently this error was pointed out to us by Palcoux, with a
potential rank 17 counterexample for p = 3, q = 5 described in [1].
We correct this oversight here by explicitly constructing all non-group theoretical
modular categories of dimension p2q2 for q an odd prime with p a prime dividing
q+ 1. The case where p divides q− 1 was already handled in [3], but here we deal
with all cases simultaneously. Therefore, our construction covers all integral non-
group-theoretical modular categories of dimension p2q2 including dimension 4q2

for any odd q, and C(sl2, q, 6) and their zestings, [8].
The paper is organized as follows. In Section 2, we recall some basic defini-
tions necessary for the general construction of modular categories associated with
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faithful actions of cyclic groups on metric groups. In Section 3, for each quadratic
extension of a finite field, we construct an anisotropic metric group whose orthog-

onal group is a dihedral group. With this we define
(

Vecp,α
(Fq2 ,N)

)Z/pZ

the family

of integral non-group-theoretical modular categories of dimension p2q2. In Sec-

tion 4, we parameterize the simple objects of
(

Vecp,α
(Fq2 ,N)

)Z/pZ

and prove that

it is non-group-theoretical. Finally, in Section 5, we show that group-theoretical
modular categories of dimension p2q2 are either the representations of a twisted
Drinfeld double of a non-abelian group of order pq or pointed, providing a com-
plete description of them.

2 Preliminaries

By a fusion category, we mean a C-linear rigid semisimple tensor category with
finitely many isomorphism classes of simple objects and simple unit object 1.
For basic definitions, including those of braided fusion categories, modular cate-
gories, and the 2-category of (bi)module categories over a fusion category, along
with their properties and examples, we refer the reader to [10].
An object X in a fusion category is called invertible if X ⊗ X∗ ∼= X∗ ⊗ X ∼= 1. A
fusion category B is called pointed if every simple object is invertible. Up to tensor
equivalence, every pointed fusion category is equivalent to Vecω

G , the category
of finite-dimensional G-graded vector spaces, where G is a finite group and the
associativity constraint is given by a 3-cocycle ω ∈ Z3(G, C×). A fusion category
C is called group-theoretical if it is Morita equivalent to a pointed fusion category,
this means if there exists a C-module categoryM such that EndC(M) is a pointed
fusion category, see [11].
For a braided fusion category D and a braided inclusion Rep(G) ↪→ D, let DG
be the braided G-crossed category constructed through de-equivariantization, as
described in [7]. Additionally, G acts on B := (DG)e—the trivial component of
the associated G-crossed braided category—via braided tensor autoequivalences.
This action establishes a group homomorphism G → Autbr

⊗ (B).
Conversely, if we start with a non-degenerate braided fusion category B and a
group homomorphism G → Autbr

⊗ (B), the method known as gauging (see [6], [2])
enables us to build a braided G-crossed category called B×,G. Following this, a
non-degenerate braided category D, obtained through the G-equivariantization
of B×,G contains Rep(G). The categories B×,G are classified by pairs (M, α),
where M and α are elements of torsors over H2(G, Inv(B)) and H3(G, C×), re-
spectively. This classification relies on the vanishing of some cohomological ob-
structions, o3(ρ) ∈ H3(G, Inv(B)) and o4(ρ, M) ∈ H4(G, C×) [12].
In the case where G = Z/nZ with n coprime to the size of Inv(B), the cor-
responding non-degenerate modular categories are uniquely characterized by
H3(Z/nZ, C×) ∼= Z/nZ. Their existence is guaranteed as Hn(Z/nZ, Inv(C)) =
0 and H4(Z/nZ, C×) = 0.
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Based on the preceding discussion and in order to establish notation, we intro-
duce the following definition, which precisely corresponds to the type of modular
categories we are interested in constructing.

Definition 2.1. Let B be a non-degenerate braided fusion category. For a cyclic
subgroup 〈T〉 ⊆ Autbr

⊗ (B) of order n, coprime to | Inv(B)|, we denote by B(〈T〉,α)
the corresponding braided Z/nZ-crossed extension of B, where α is an element
of H3(Z/nZ, C×) ∼= Z/nZ. Additionally, we denote by (B(〈T〉,α))Z/nZ the asso-
ciated non-degenerate braided fusion category.

Recall that a metric group is a pair (A, t), where A is a finite abelian group and
t : A→ C× is a non-degenerate quadratic form. This means that the map defined
by (a, b) 7→ t(a+b)

t(a)t(b) is a non-degenerate bicharacter and t(a) = t(−a). A pointed
modular category B gives rise to a metric group by taking A = Inv(B), the set
of isomorphism classes of invertible objects, and t : A → C× given by ca,a =
t(a) ida⊗a. Conversely, every metric group has an associated pointed modular
category (see [7] for details).
A key example of a metric group, and consequently of a pointed modular cate-
gory, is constructed as follows: let V be a finite-dimensional vector space over a
finite field F of characteristic p, and let Q : V → F be an ordinary non-degenerate
quadratic form. We then define the metric group (V, t) where

t(v) = e
2πiN(Q(v))

p ,

with N : Fp → Fp being the field norm. This construction provides an associated
metric group and, consequently, a pointed modular category.
The group of braided tensor autoequivalences of a pointed modular category
with associated metric group (A, t) is naturally isomorphic to Aut(A, t), the group
of automorphisms of A that fix t. In the case of a non-degenerate quadratic F-
linear space (V, Q), it holds that O(V, Q) ⊂ Aut(V, t). Therefore, given a cyclic
subgroup of O(V, Q) of order relatively prime to p, we can construct a modular
category via gauging, as in Definition 2.1. This method constructs the family of
non-group-theoretical modular categories of dimension p2q2.

3 Definition of modular categories
(

Vecp,α
(Fq2 ,N)

)Z/pZ

Let q be a prime and let Fq ⊂ Fq2 denote a finite Galois extension, where Fq and
Fq2 are fields with q and q2 elements, respectively. We denote the generator of
the Galois group by σ : Fq2 → Fq2 , so σ(v) = vq, for v ∈ Fq2 . The field norm
N : Fq2 → Fq is defined by

N(v) = vσ(v) = vq+1,
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which establishes an anisotropic plane, that is a 2-dimensional Fq-vector space
equipped with the quadratic form N satisfying N(v) = 0 if and only if v = 0.
This norm induces a group epimorphism N : F∗q2 → F∗q , with ker(N) being a

cyclic group of order q2. The assignment

ρ : ker(N)→ SO(Fq2 , N), c 7→ [ρc : v 7→ cv],

defines a group isomorphism. Now, since σ ∈ O(Fq2 , N) with det(σ) = −1
(for q = 2 Dickson’s pseudodetermiant is non-trivial) and σ2 = Id, it follows
that O(Fq2 , N) = SO(Fq2 , N)o 〈σ〉. Consequently, O(Fq2 , N) is isomorphic to the
dihedral group of order 2(q + 1).

Definition 3.1. Let p and q be primes with p | q + 1. Given 1 6= c ∈ Fq2 such
that N(c) = 1 and cp = 1, we define Vecp,α

(Fq2 ,N)
, where α ∈ H3(Z/pZ, C∗) ∼=

Z/pZ, as the associated braided Z/pZ-crossed modular category. We denote

by
(

Vecp,α
(Fq2 ,N)

)Z/pZ

the corresponding modular category obtained by Z/pZ-

equivariantization.

Remark 3.2. 1. As we will see in Proposition 4.1, the fusion category Vecp,α
(Fq2 ,N)

is integral. Consequently, its equivariantization, the modular category(
Vecp,α

(Fq2 ,N)

)Z/pZ

, is also integral. Given that every integral fusion cate-

gory has a unique spherical structure with quantum dimensions matching
the Frobenius-Perron dimensions, this category is indeed modular.

2. Since the orthogonal group of (Fq2 , N) is a dihedral group, every odd cyclic
subgroup is completely determined by its order and for order two they cor-

respond to reflections. Hence,
(

Vecp,α
(Fq2 ,N)

)Z/pZ

does not depend on the

choice of c in the case of p odd and for p = 2 the category Vecp,α
(Fq2 ,N)

corre-

sponds to a Tambara-Yamagami category.

3. The modular category
(

Vecp,α
(Fq2 ,N)

)Z/pZ

is Z/pZ-graded, with trivial com-

ponent VecZ/qZ

(Fq2 ,N)
. The trivial component can be realized simply as the cate-

gory of representations of the semi-direct product Fq2 oc Z/pZ, where Fq2

is considered only as an abelian group and thus Fq2 ∼= (Z/qZ)2.

4. The modular category
(

Vecp,α
(Fq2 ,N)

)Z/pZ

is a minimal modular extension of

VecZ/qZ

(Fq2 ,N)
, and this minimal modular extensions are unique up to twisting

by elements in H3(Z/pZ, C×) ∼= Z/pZ, see [15].
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Example 3.3. 1. If q = 2, then F4 = F2[α], with α2 + α + 1 = 0. In this case,
F4 = 〈1, α〉 as an abelian group and t(1) = t(α) = −1. Taking c = α, we
have that ρ(c) has order three. Consequently, VecZ/3Z

(F4,N)
is equivalent to the

representation category of F4 oZ/3Z ∼= S3 with a non-symmetric braiding.

Hence,
(

Vec3,α
(F4,N)

)Z/3Z

is braided equivalent to C(sl2, q, 6) or one of their
zesting, [8].

2. If q is an odd prime and p = 2, the braided Z/2Z-crossed category Vec2,α
(Fq2 ,N)

is a Tambara-Yamagami category. The associated modular category corre-
sponds to the elliptic case of [13, Example 5.3].

4 Properties of Vecp,α
(Fq2 ,N)

From now on, we will assume that p and q are odd primes, since the even cases
were already discussed in Example 3.3 and correspond to well-known examples
of integral non-group-theoretical modular categories.
We denote by F∗q2 = HomFq(Fq2 , Fq) and O(Fq2 ⊕ F∗q2 , Q) the split orthogonal group,
where Q : Fq2 ⊕ F∗q2 → Fq is given by Q(v, α) = α(v).

Let B(v, w) = 1
2 [N(v + w) − N(v) − N(w)] be the associated bilinear form of

(Fq2 , N). Since B is non-degenerate, it defines a map (̂−) : Fq2 → F∗q2 , with v̂(w) =

B(v, w) for all w ∈ Fq2 .
Then, we have orthogonal injections

(Fq2 , N)→ (Fq2 ⊕ F∗q2 , Q), v 7→ (v, v̂),

(Fq2 ,−N)→ (Fq2 ⊕ F∗q2 , Q), v 7→ (v,−v̂).

There exists a unique injective group homomorphism

α : O(Fq2 , N)→ O(Fq2 ⊕ F∗q2 , Q),

characterized by αg(v, v̂) = (v, v̂) and αg(v,−v̂) = (g(v),−ĝ(v)), see [9]. Then

αg(v, ŵ) = αg

(
1
2
[(v + w, v̂ + ŵ) + (v− w,−(v̂− ŵ))]

)
=

1
2
[(v + w, v̂ + ŵ) + (g(v)− g(w),−(ĝ(v)− ĝ(w)))]

=
1
2
[((Id + g)(v), ̂(Id− g)(v)) + ((Id− g)(w), ̂(Id + g)(w))].

Hence, we can write

αg =

(
α β
γ δ

)
∈ O(Fq2 ⊕ F∗q2 , Q), (4.1)

where
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α =
1
2
(Id + g), β(ŵ) =

1
2
(Id− g)(w),

γ(v) =
1
2

̂Id− g(v), δ(ŵ) =
1
2

̂Id + g(w),

and α : Fq2 → Fq2 , β : F∗q2 → Fq2 , γ : Fq2 → F∗q2 , and δ : F∗q2 → F∗q2 .

Proposition 4.1. The simple objects in the fusion category B := Vecp,α
(Fq2 ,N)

are given

by Fq2 , which correspond to the group of (isomorphism classes of) invertibles in B, and
non-invertibles X1, . . . , Xp−1, which are q-dimensional. The fusion rules are given by

a⊗ b = a + b, a⊗ Xi = Xi ⊗ a = Xi, X∗i = Xp−i,

and

Xi ⊗ Xj =

{
qXi+j if i + j 6= p,
∑a∈Fq2

a if i + j = p,

for all a, b ∈ Fq2 .

Proof. Since B has dimension pq2, by [14, Prop. 3.1], we only need to verify that
β = 1

2(Id− g), as defined in (4.1), is invertible. In our case,

(Id− g)(v) = (1− cm)v,

for all v ∈ Fq2 and 0 ≤ m < p. Since c has order p and the operator 1
2(Id− g) is

invertible, the criteria are satisfied.

Proposition 4.2. The modular category
(

Vecp,α
(Fq2 ,N)

)Z/pZ

has rank p2 + q+1
p . The

following is a complete list of simple objects and their dimensions:

(1) There are exactly p invertible objects (1, χ), indexed by χ ∈ Ẑ/pZ. The corre-
sponding object to (1, χ) is the unit object 1 with equivariant structure χ(a) id1 :
1→ 1.

(2) There are exactly q2−1
p simple objects of dimension p, parameterized by the Z/q-

orbits of Fq2 . The corresponding object to an orbit O is the object XO =
⊕

a∈O a
with equivariant structure idXO .

(3) There are exactly (p− 1)p simple objects of dimension q, parameterized by pairs
(Xi, χ), where i ∈ Z/pZ∗ and χ ∈ Ẑ/pZ. The corresponding object to the pair
(Xi, χ) is the object Xi with equivariant structure χ(a) idXi : Xi → Xi.

Proof. Since Vecp,α
(Fq2 ,N)

is a braided Z/pZ-crossed category, the Z/pZ-action re-

spects the grading. Therefore, at the level of objects, it acts trivially on Xi, and in
the trivial component, the action is given by ρc : Fq2 → Fq2 . Then, the description
of the simple objects follows from straightforward computations, see [5].
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The following criterion will be useful in determining whether Vecp,α
(Fq2 ,N)

is non-

group-theoretical.

Proposition 4.3. Let p and q be odd primes such that p | q + 1. Let A = (Z/qZ)2 and

M =

(
α β
γ δ

)
∈ O(A⊕ A∗, Q), (the split orthogonal group)

a matrix of order p, where α : A → A, β : A∗ → A, γ : A → A∗, and δ : A∗ → A∗,
and β is invertible. Then the Z/pZ-graded extensions of VecA associated with M are
group-theoretical if and only if µ1/µ2 ∈ Fq, where µ1, µ2 ∈ F∗q2 are the eigenvalues of

α + βδβ−1.

Proof. By [14, Theorem 3.2], we have(
Id 0
−δβ−1 Id

)(
α β
γ δ

)(
Id 0

δβ−1 Id

)
=

(
α− βδβ−1 β

β−1∗ 0

)
∈ O(A⊕ A∗, Q).

Now consider(
Id 0
0 β

)(
α− βδβ−1 β

β−1∗ 0

)(
Id 0
0 β−1

)
=

(
α− βδβ−1 Id

ββ−1∗ 0

)
:= S.

The matrix S has the form required for applying the criterion in the proof of [14,
Theorem 1.1], meaning that S11 and S21 are simultaneously diagonalizable. If we
denote the eigenvalues of S21 as µ1 = −λ, µ2 = −λ−1, then λ2/λ1 = λ. Then by
[14, Claim 4.2], the associated Z/pZ-extension is group-theoretical if and only if
λ ∈ Fq, that is, if the quotient (in any order) of the eigenvalues of S11 lies in Fq.

Theorem 4.4. The fusion category Vecp,α
(Fq2 ,N)

is non-group theoretical.

Proof. We will apply the criterion of Proposition 4.3 to the matrix

αg =

(
α β
γ δ

)
∈ O(Fq2 ⊕ F∗q2 , Q),

where g(v) = cv. Note that in our specific situation, α + βδβ−1 = Id + g. Hence,
we need to ascertain whether µ1

µ2
/∈ Fq, where µi are the eigenvalues of Id + g.

As g is orthogonal, its eigenvalues have the form β and β−1, where β /∈ Fq since g
is not diagonalizable over Fq. Note that the action of the Galois group permutes
the eigenvalues of g, thus σ(β) = β−1. Now, as the eigenvalues of Id + g are
1 + β and 1 + β−1, the criterion is based on checking whether λ = 1+β

1+β−1 (or

equivalently λ = 1+β−1

1+β ) is fixed by the action of the Galois group. Assume that

σ(λ) = λ, meaning 1+β

1+β−1 = 1+β−1

1+β , which is equivalent to

β4 + 2β3 − 2β− 1 = 0. (4.2)
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However,
x4 + 2x3 − 2x− 1 = (x + 1)3(x− 1),

then (4.2) implies that β = 1 or β = −1, which is a contradiction. The contradic-
tion arose from assuming that λ ∈ Fq.
Therefore, by Proposition 4.3, the category Vecp,α

(Fq2 ,N)
is non-group-theoretical.

Corollary 4.5. The modular category
(

Vecp,α
(Fq2 ,N)

)Z/pZ

is non-group-theoretical.

Proof. The de-equivariantization functor defines a surjective tensor functor(
Vecp,α

(Fq2 ,N)

)Z/pZ

→ Vecp,α
(Fq2 ,N)

.

Hence, if
(

Vecp,α
(Fq2 ,N)

)Z/pZ

is group-theoretical, it follows from [11, Prop. 8.44]

that Vecp,α
(Fq2 ,N)

is also group-theoretical, which contradicts Theorem 4.4.

Theorem 4.6. Let p and q be odd primes with p < q. If there exists a non-group-
theoretical modular category of dimension p2q2, then p | (q + 1), and the non-group-
theoretical modular categories are of the form(

Vecp,α
(Fq2 ,N)

)Z/pZ

, for some α ∈ H3(Z/pZ, C∗) ∼= Z/pZ.

Proof. Let B a non-group-theoretical modular category of dimension p2q2. Using
the same ideas of [3, Theorem 4.2] we have that the item (c) is corrected as: p|(q2−
1) and FPdim(Bpt) = p.
Now Bpt cannot be modular, since then B = Bpt � Bad as braided fusion cate-
gories and then group-theoretical. Hence, Bpt is Tannakian and we have that the
Z/pZ-condensation [BZ/pZ]e is a modular category of dimension q2, which must
be pointed, i.e. a metric group category of the form C(Z/q2Z, Q) or C((Z/q)2, P)
where Q, P are non-degenerate quadratic forms [10, Section 8.4].
Thus B is a Z/pZ-gauging of one of the above metric group categories. Since
O(Z/q2Z, Q) = 〈± id〉, it admits only the trivial Z/pZ-action, resulting in a
group-theoretical modular category. Consequently, B is a Z/pZ-gauging of
C((Z/q)2, P). Here, we encounter two distinct quadratic forms up to equiva-
lence: an anisotropic (or elliptic) quadratic form corresponding to (Fq2 , N) and
an isotropic (or hiperbolic) form of the form t(x1, x2) = x2

1 + x2
2. The isotropic

orthogonal group is a dihedral group of order 2(q− 1), explicitly given by{(
a 0
0 a−1

)
(rotations),

(
0 a−1

a 0

)
(reflections) : a ∈ F∗q

}
.

Therefore, in order to have a non-trivial Z/pZ-action, p must divide q− 1. How-
ever, according to [3, Theorem 4.8] (with the additional condition p | q − 1), B
would be group-theoretical. Consequently, since B is non-group-theoretical, it
follows that p divides q + 1. Therefore, we only need to consider the anisotropic
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case where the orthogonal group is a dihedral group of order 2(q + 1). Since ev-
ery cyclic subgroup of odd order in a dihedral group is unique, there is basically
a unique Z/pZ-action, which corresponds to the modular categories described
in Definition 3.1.

5 Group-theoretical modular categories

The canonical example of a group-theoretical modular category is the Drinfeld
center of a pointed fusion category Vecω

G . These categories correspond to the cat-
egory of representations of the twisted Drinfeld double. However, there are sev-
eral examples of group-theoretical modular categories that are not Drinfeld cen-
ters. The simplest example corresponds to pointed modular categories of prime
dimension. Yet, it is also possible to construct non-pointed, group-theoretical
modular categories that are not Drinfeld centers. For example, Z/2Z-extensions
associated with fermions of Drinfeld centers can be considered, since they change
the central charge, [4].
The next result shows that in the case of group-theoretical modular categories of
dimension p2q2, we only have the pointed ones and the twisted Drinfeld centers
of non-abelian groups of order pq, studied in detail in [16].

Proposition 5.1. If B is a group-theoretical modular category of dimension p2q2, where
p and q are distinct primes, then B is either pointed or is the twisted Drinfeld double of a
non-abelian group.

Proof. By [6, Proposition 10], it is known that every group-theoretical modular
category B can be obtained as a gauging of a pointed modular category P by the
trivial homomorphisms G → Pic(P), and the dimension of B is |P||G|2.
If B has dimension p2q2 where p < q, then (|G|, |P|) = 1 so H2(G, A) = 0, and
then B ∼= P �Z(Vecω

G) as braided tensor categories. Now, if P 6= Vec, then the
order of G is trivial or prime, hence G is either the trivial group or a cyclic group,
and Z(Vecω

G) is pointed. Therefore, B is pointed.
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