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Integral non-group-theoretical modular
categories of dimension p?g°

César Galindo Julia Plavnik Eric C. Rowell

Abstract

We construct all integral non-group-theoretical modular categories of dimen-
sion p?q?, where p and q are distinct prime numbers, establishing that a nec-
essary and sufficient condition for their existence is that p | g + 1, and their

2_
rank is p2 + %.

1 Introduction

While integral non-group-theoretical modular categories of dimension 44% with g
an odd prime were constructed in [13], a sign error in [3] led to the mistaken con-
clusion that for odd primes p, g there were no non-group-theoretical categories
of dimension p?¢%. Recently this error was pointed out to us by Palcoux, with a
potential rank 17 counterexample for p = 3, g = 5 described in [1].

We correct this oversight here by explicitly constructing all non-group theoretical
modular categories of dimension p?4? for g an odd prime with p a prime dividing
g+ 1. The case where p divides g — 1 was already handled in [3], but here we deal
with all cases simultaneously. Therefore, our construction covers all integral non-
group-theoretical modular categories of dimension p?4? including dimension 442
for any odd g, and C(sly, q,6) and their zestings, [8].

The paper is organized as follows. In Section 2, we recall some basic defini-
tions necessary for the general construction of modular categories associated with

Received by the editors in April 2024 - In revised form in August 2024.
Communicated by L. Vendramin.

DOI : 10.36045/j.bbms.240415.

2020 Mathematics Subject Classification : Primary 18M20.

Key words and phrases : Modular categories; fusion categories.

Bull. Belg. Math. Soc. Simon Stevin 31 (2024), 516-526



Integral non-group-theoretical modular categories of dimension p?g? 517

faithful actions of cyclic groups on metric groups. In Section 3, for each quadratic
extension of a finite field, we construct an anisotropic metric group whose orthog-
Z/pZ

onal group is a dihedral group. With this we define (Vecéi:a , N)) the family
q 7

of integral non-group-theoretical modular categories of dimension p?42. In Sec-
Z/pZ

tion 4, we parameterize the simple objects of <Vec;éif‘ , N)> and prove that

q 4

it is non-group-theoretical. Finally, in Section 5, we show that group-theoretical

modular categories of dimension p?4? are either the representations of a twisted

Drinfeld double of a non-abelian group of order pq or pointed, providing a com-

plete description of them.

2 Preliminaries

By a fusion category, we mean a C-linear rigid semisimple tensor category with
finitely many isomorphism classes of simple objects and simple unit object 1.
For basic definitions, including those of braided fusion categories, modular cate-
gories, and the 2-category of (bi)module categories over a fusion category, along
with their properties and examples, we refer the reader to [10].

An object X in a fusion category is called invertible if X @ X* = X* @ X = 1. A
fusion category B is called pointed if every simple object is invertible. Up to tensor
equivalence, every pointed fusion category is equivalent to Vec?, the category
of finite-dimensional G-graded vector spaces, where G is a finite group and the
associativity constraint is given by a 3-cocycle w € Z3(G,C*). A fusion category
C is called group-theoretical if it is Morita equivalent to a pointed fusion category,
this means if there exists a C-module category M such that End¢ (M) is a pointed
fusion category, see [11].

For a braided fusion category D and a braided inclusion Rep(G) — D, let Dg
be the braided G-crossed category constructed through de-equivariantization, as
described in [7]. Additionally, G acts on B := (Dg).—the trivial component of
the associated G-crossed braided category—via braided tensor autoequivalences.
This action establishes a group homomorphism G — Aut%r(B).

Conversely, if we start with a non-degenerate braided fusion category B and a
group homomorphism G — Aut%r(B ), the method known as gauging (see [6], [2])
enables us to build a braided G-crossed category called B*/C. Following this, a
non-degenerate braided category D, obtained through the G-equivariantization
of B*C contains Rep(G). The categories B*/C are classified by pairs (M, a),
where M and « are elements of torsors over H*(G,Inv(B)) and H3(G,C>), re-
spectively. This classification relies on the vanishing of some cohomological ob-
structions, 03(p) € H3(G,Inv(B)) and 04(p, M) € H*(G,C*) [12].

In the case where G = Z/nZ with n coprime to the size of Inv(B), the cor-
responding non-degenerate modular categories are uniquely characterized by
H3(Z/nZ,C*) = Z /nZ. Their existence is guaranteed as H"(Z /nZ,Inv(C)) =
0and H*(Z/nZ,C*) = 0.
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Based on the preceding discussion and in order to establish notation, we intro-
duce the following definition, which precisely corresponds to the type of modular
categories we are interested in constructing.

Definition 2.1. Let B be a non-degenerate braided fusion category. For a cyclic
subgroup (T) C AutX(B) of order n, coprime to | Inv(B)]|, we denote by B({T)#)
the corresponding braided Z /nZ-crossed extension of 13, where « is an element
of H3(Z/nZ,C*) = Z /nZ. Additionally, we denote by (B(T*))Z/"Z the asso-
ciated non-degenerate braided fusion category.

Recall that a metric group is a pair (A, t), where A is a finite abelian group and
t: A — C* is anon-degenerate quadratic form. This means that the map defined

by (a,b) — tt((;)i(l;)) is a non-degenerate bicharacter and t(a) = t(—a). A pointed
modular category B gives rise to a metric group by taking A = Inv(B), the set
of isomorphism classes of invertible objects, and t : A — C* given by c;, =
t(a)idseq. Conversely, every metric group has an associated pointed modular
category (see [7] for details).

A key example of a metric group, and consequently of a pointed modular cate-
gory, is constructed as follows: let V be a finite-dimensional vector space over a
finite field IF of characteristic p, and let Q : V' — FF be an ordinary non-degenerate
quadratic form. We then define the metric group (V,t) where

27tiN(Q(v))
tlvy=e ¢ ,

with N : F, — F, being the field norm. This construction provides an associated
metric group and, consequently, a pointed modular category.

The group of braided tensor autoequivalences of a pointed modular category
with associated metric group (A, t) is naturally isomorphic to Aut(A, t), the group
of automorphisms of A that fix t. In the case of a non-degenerate quadratic IF-
linear space (V,Q), it holds that O(V,Q) C Aut(V,t). Therefore, given a cyclic
subgroup of O(V, Q) of order relatively prime to p, we can construct a modular
category via gauging, as in Definition 2.1. This method constructs the family of
non-group-theoretical modular categories of dimension p?4>.

3 Definition of modular categories (Veczif‘z N)
q 7

Let g be a prime and let F; C F2 denote a finite Galois extension, where F; and
F,. are fields with g and g? elements, respectively. We denote the generator of

q
the Galois group by 0 : F» — Fp2, so 0(v) = o7, for v € Fp,. The field norm

N : F, — F is defined by

N(v) = vo(v) = 07t}
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which establishes an anisotropic plane, that is a 2-dimensional F,-vector space
equipped with the quadratic form N satisfying N(v) = 0 if and only if v = 0.
This norm induces a group epimorphism N : F;z — F;, with ker(N) being a

cyclic group of order g. The assignment
p : ker(N) — SO(Fp2,N), ¢ [oc:0 > co],

defines a group isomorphism. Now, since ¢ € O(Fp2, N) with det(c) = —1

(for g = 2 Dickson’s pseudodetermiant is non-trivial) and ¢? = 1d, it follows
that O(F2, N) = SO(F., N) x (¢). Consequently, O(F, N) is isomorphic to the
dihedral group of order 2(g + 1).

g2

Definition 3.1. Let p and ¢ be primes with p | g+ 1. Given1 # ¢ € F_ such

that N(c) = 1 and ¢? = 1, we define Vec’(q]if‘z Ny Where a € H3(Z/pZ,C*) =
2

Z./pZ, as the associated braided Z/pZ-crossed modular category. We denote

by (Vecf]gi7 2, N) > o

equivariantization.

the corresponding modular category obtained by Z/pZ-

p.&x
(F2,N)

is integral. Consequently, its equivariantization, the modular category

(Vecﬁi:“m)> o

q
gory has a unique spherical structure with quantum dimensions matching

the Frobenius-Perron dimensions, this category is indeed modular.

Remark 3.2. 1. Aswe will see in Proposition 4.1, the fusion category Vec

, is also integral. Given that every integral fusion cate-

2. Since the orthogonal group of (F,2, N) is a dihedral group, every odd cyclic
subgroup is completely determined by its order and for order two they cor-

respond to reflections. Hence, <Vecp - does not depend on the

(F2,N)

choice of c in the case of p odd and for p = 2 the category Vec!":

corre-
(F2,N)

sponds to a Tambara-Yamagami category.

Z/pZ
3. The modular category (Vecf]if , N)) is Z/ pZ-graded, with trivial com-
q 4
Z/qZ

ponent Vec (F 2N

gory of representations of the semi-direct product F,» x. Z/pZ, where F

) The trivial component can be realized simply as the cate-

is considered only as an abelian group and thus F» = (Z/q9Z)>.

Z/vZ . .
) is a minimal modular extension of

p.x
4. The modular category (Vec(qule)
Z/qZ
Vec (F2.N)

by elements in H3(Z /pZ,C*) = Z/ pZ, see [15].

, and this minimal modular extensions are unique up to twisting
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Example 3.3. 1. If g = 2, then F; = F»[a], with a®> + « + 1 = 0. In this case,
F, = (1,a) as an abelian group and #(1) = t(a) = —1. Taking ¢ = &, we
have that p(c) has order three. Consequently, Vec(Z]F/4 3%) is equivalent to the

representation category of Fy x Z /37 = 53 with a nc;n-symmetric braiding.

7/37
Hence, (Vec3’“ )

(FuN) is braided equivalent to C(sly,q,6) or one of their

zesting, [8].

2,0
(Iqu rN)
is a Tambara-Yamagami category. The associated modular category corre-
sponds to the elliptic case of [13, Example 5.3].

2. Ifgisan odd prime and p = 2, the braided Z /2Z-crossed category Vec

. px
4 Properties of VeC(Jqu,N)

From now on, we will assume that p and g are odd primes, since the even cases
were already discussed in Example 3.3 and correspond to well-known examples
of integral non-group-theoretical modular categories.

We denote by F;‘z = Hompg, (F2, F;) and O(F» & F:;z, Q) the split orthogonal group,

where Q : F» @ F;‘Z — Fis given by Q(v, ) = a(v).

Let B(v,w) = 3[N(v+ w) — N(v) — N(w)] be the associated bilinear form of
(Fp, (=) : Fpa = Fiy, with 6(w) =
B(v,w) forallw € F.

Then, we have orthogonal injections

N). Since B is non-degenerate, it defines a map (—) : F,

(Fp, N) = (Fa ©F, Q), v (0,9),
(Fp, —N) = (Fz ® F,Q), v (v, —5).

There exists a unique injective group homomorphism

a:O(Fp,N) = O(Fp @F, Q),

q*
_

characterized by a¢ (v, 0) = (v,0) and ag(v, —0) = (g(v), —g(v)), see [9]. Then

(0,8 = a (Gl +0,5+8)+(0-0-@- )

= S0+, 5+) + (5(0) ~ g(w), —(3(0) ~ 3(w))]

= %[((Id +8)(v), (Id = g)(v)) + ((Id = g)(w), (Id + g) (w))].

Hence, we can write
x B *
‘Xg = (,-), 5) € O(Fq2 S FqZI Q)/ (41)

where
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=3 +g), B(@) = 5(1d - g)(w),
1(0) = 314~ g(0), (@) = 21+ g(w),

and « : Fo—Fp, B: F;‘z —Fp,v:Fp — F:;z, and ¢ : F;z — F;z.

p,x
(]FquN)
by F 2, which correspond to the group of (isomorphism classes of) invertibles in 15, and
non-invertibles Xy, . .., X, 1, which are g-dimensional. The fusion rules are given by

Proposition 4.1. The simple objects in the fusion category B := Vec are given

a®b:a+b, EI®X1':XZ'®EI:XI', X;F:Xp,i,

and
X; X = U
Y {Zaepqza ifitj=p

foralla,b € Fp.

Proof. Since BB has dimension pq?, by [14, Prop. 3.1], we only need to verify that
B = %(Id — g), as defined in (4.1), is invertible. In our case,

(Id - g)(v) = (1 = c")o,

forallv € F» and 0 < m < p. Since ¢ has order p and the operator Fdd—g)is
invertible, the criteria are satisfied. n

Z/pZ

- p 2 g+l
Proposition 4.2. The modular category (Vec(IqulN)> has rank p* + == The

following is a complete list of simple objects and their dimensions:

(1) There are exactly p invertible objects (1, x), indexed by x € Z//p\Z The corre-
sponding object to (1, x) is the unit object 1 with equivariant structure x(a)idy :
1—-1

(2) There are exactly ‘727_1 simple objects of dimension p, parameterized by the Z./ g-
orbits of F 2. The corresponding object to an orbit O is the object Xo = Ppeo
with equivariant structure idx,,.

(3) There are exactly (p — 1)p simple objects of dimension q, parameterized by pairs

(Xi, x), wherei € Z/pZ* and x € Z/pZ. The corresponding object to the pair
(X, x) is the object X; with equivariant structure x(a)idx, : X; — X;.
Proof. Since Vecéif; 2N) is a braided Z/pZ-crossed category, the Z /pZ-action re-
spects the grading. Therefore, at the level of objects, it acts trivially on Xj;, and in
the trivial component, the action is given by p. : F2 — F.2. Then, the description
of the simple objects follows from straightforward computations, see [5]. n
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p.x

The following criterion will be useful in determining whether Vec (F is non-
q

2 /N )
group-theoretical.

Proposition 4.3. Let p and q be odd primes such that p | g+ 1. Let A = (Z/qZ)? and

M = (f’; g) € O(A® A%, Q), (thesplit orthogonal group)
a matrix of order p, where w : A — A, B: A* - A, y: A— A", and : A* — A%,
and B is invertible. Then the Z./ pZ-graded extensions of Vec, associated with M are
group-theoretical if and only if u1/p2 € Fy, where py, pp € FZZ are the eigenvalues of

o+ ,3(5/3*1.
Proof. By [14, Theorem 3.2], we have

(3026 D - (4 feonera

Now consider

(D Y ) Y

The matrix S has the form required for applying the criterion in the proof of [14,
Theorem 1.1], meaning that S;; and Sp; are simultaneously diagonalizable. If we
denote the eigenvalues of Syj as y1 = —A, uo = —A71 then Ay/A; = A. Then by
[14, Claim 4.2], the associated Z / pZ-extension is group-theoretical if and only if
A € Fg, that s, if the quotient (in any order) of the eigenvalues of 511 liesin F;. =

is non-group theoretical.

Theorem 4.4. The fusion category Ve C?Ii:(xz "
q 4

Proof. We will apply the criterion of Proposition 4.3 to the matrix
x B "
OCg = (,)/ 5) < O(qu D Fq2, Q),

where ¢(v) = cv. Note that in our specific situation, a + 6! = Id + g. Hence,
we need to ascertain whether % ¢ F;, where y; are the eigenvalues of Id + g.

As g is orthogonal, its eigenvalues have the form g and !, where B ¢ F, since g
is not diagonalizable over F,;. Note that the action of the Galois group permutes
the eigenvalues of g, thus o(8) = B~!. Now, as the eigenvalues of Id + ¢ are

1+ B and 1+ B, the criterion is based on checking whether A = 11;@ r (or
1+p!

equivalently A = —~ B ) is fixed by the action of the Galois group. Assume that

1+ _ 14p71
+pt o 1+B

c(A) = A, meaning ; which is equivalent to

pr42p%—28—-1=0. (4.2)
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However,
2 -2 —1=(x+1)3(x - 1),

then (4.2) implies that B = 1 or B = —1, which is a contradiction. The contradic-
tion arose from assuming that A € F.

Therefore, by Proposition 4.3, the category Vech’Fa ,

2N) is non-group-theoretical. =

Corollary 4.5. The modular category (Vecp -

(F »,N) is non-group-theoretical.
q 4

Proof. The de-equivariantization functor defines a surjective tensor functor

Z/pZ
(Vecp’a ) — Vec?

(H:qz,N) (]FquN) )
Z/pZ
Hence, if (Vecﬁif;m)> is group-theoretical, it follows from [11, Prop. 8.44]
that Vecfﬁfz ) is also group-theoretical, which contradicts Theorem 4.4. n
2

Theorem 4.6. Let p and q be odd primes with p < q. If there exists a non-group-
theoretical modular category of dimension p*>q?, then p | (q + 1), and the non-group-

theoretical modular categories are of the form

pu Z/pz 3 %\ o
(Vec(]FZ N)> , forsomen € H°(Z/pZ,C*) = Z/pZ.
q 7

Proof. Let B a non-group-theoretical modular category of dimension p?¢*. Using
the same ideas of [3, Theorem 4.2] we have that the item (c) is corrected as: p|(g% —
1) and FPdim(By;) = p.

Now By cannot be modular, since then B = B, X B,; as braided fusion cate-
gories and then group-theoretical. Hence, B; is Tannakian and we have that the
Z./ pZ-condensation [Bz,,z]. is a modular category of dimension g%, which must
be pointed, i.e. a metric group category of the form C(Z/4*Z,Q) or C((Z/q)?, P)
where Q, P are non-degenerate quadratic forms [10, Section 8.4].

Thus B is a Z/pZ-gauging of one of the above metric group categories. Since
O(Z/4*Z,Q) = (&id), it admits only the trivial Z/pZ-action, resulting in a
group-theoretical modular category. Consequently, B is a Z/pZ-gauging of
C((Z/q)? P). Here, we encounter two distinct quadratic forms up to equiva-
lence: an anisotropic (or elliptic) quadratic form corresponding to (F.2, N) and

an isotropic (or hiperbolic) form of the form t(x1,x2) = x3 + x3. The isotropic
orthogonal group is a dihedral group of order 2(g — 1), explicitly given by

-1
{ (g agl) (rotations), (2 aO ) (reflections) : a € ]F;;} )

Therefore, in order to have a non-trivial Z/ pZ-action, p must divide 4 — 1. How-
ever, according to [3, Theorem 4.8] (with the additional condition p | g — 1), B
would be group-theoretical. Consequently, since B is non-group-theoretical, it
follows that p divides g + 1. Therefore, we only need to consider the anisotropic
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case where the orthogonal group is a dihedral group of order 2(g + 1). Since ev-
ery cyclic subgroup of odd order in a dihedral group is unique, there is basically
a unique Z/pZ-action, which corresponds to the modular categories described
in Definition 3.1. n

5 Group-theoretical modular categories

The canonical example of a group-theoretical modular category is the Drinfeld
center of a pointed fusion category Vec. These categories correspond to the cat-
egory of representations of the twisted Drinfeld double. However, there are sev-
eral examples of group-theoretical modular categories that are not Drinfeld cen-
ters. The simplest example corresponds to pointed modular categories of prime
dimension. Yet, it is also possible to construct non-pointed, group-theoretical
modular categories that are not Drinfeld centers. For example, Z /2Z-extensions
associated with fermions of Drinfeld centers can be considered, since they change
the central charge, [4].

The next result shows that in the case of group-theoretical modular categories of
dimension p24%, we only have the pointed ones and the twisted Drinfeld centers
of non-abelian groups of order pg, studied in detail in [16].

Proposition 5.1. If B is a group-theoretical modular category of dimension p>q?, where
p and q are distinct primes, then B is either pointed or is the twisted Drinfeld double of a
non-abelian group.

Proof. By [6, Proposition 10], it is known that every group-theoretical modular
category B can be obtained as a gauging of a pointed modular category P by the
trivial homomorphisms G — Pic(P), and the dimension of B is |P||G/|?.

If B has dimension p?q®> where p < g, then (|G|, |P|) = 1so H?>(G,A) = 0, and
then B = P X Z(Vect) as braided tensor categories. Now, if P # Vec, then the
order of G is trivial or prime, hence G is either the trivial group or a cyclic group,
and Z(Vecy) is pointed. Therefore, B is pointed. ]
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