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Abstract. In Houston, Texas, nitrogen dioxide (NO2) air pollution disproportionately affects 23 

Black, Latinx, and Asian communities, and high ozone (O3) days are frequent. There is limited 24 

knowledge of how NO2 inequalities vary in urban air quality contexts, in part from the lack of 25 

time-varying neighborhood-level NO2 measurements. First, we demonstrate that daily TROPOMI 26 

NO2 tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale 27 

NO2 inequalities in Houston, comparing NO2 inequalities based on TROPOMI TVCDs and 28 

spatiotemporally coincident airborne remote sensing (250 m × 560 m) from the NASA TRacking 29 

Aerosol Convection ExpeRiment–Air Quality (TRACER-AQ). We further evaluate the 30 

application of daily TROPOMI TVCDs to census tract-scale NO2 inequalities (May 2018–31 

November 2022). This includes explaining differences between mean daily NO2 inequalities and 32 

those based on TVCDs oversampled to 0.01° × 0.01° and showing daily NO2 column-surface 33 

relationships weaken as a function of observation separation distance. Second, census tract-scale 34 

NO2 inequalities, city-wide high O3, and mesoscale airflows are found to covary using principal 35 

component and cluster analysis. A generalized additive model of O3 mixing ratios versus NO2 36 

inequalities reproduces established nonlinear relationships between O3 production and NO2 37 

concentrations, providing observational evidence that neighborhood-level NO2 inequalities and O3 38 

are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian 39 

communities will have co-benefits, reducing both NO2 disparities and high O3 days city wide. 40 
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Synopsis. Most neighborhood-level NO2 inequalities can be observed with daily TROPOMI 41 

observations; the unequal NO2 distribution affects O3 chemistry in Houston, Texas. 42 

Keywords. Nitrogen dioxide, ozone, TROPOMI, urban air pollution, environmental racism  43 

1 INTRODUCTION 44 

Houston, Texas is a large U.S. city and center for petrochemical refining that faces multiple air 45 

quality challenges. Historical and contemporary policies and practices continue to 46 

disproportionately offload the environmental costs of industry and transportation on Black, Latinx, 47 

and Asian communities,1, 2 causing measurable inequalities in the distribution of nitrogen dioxide 48 

(NO2) and other primary pollutants.3-9 Houston is also currently ranked among the top-ten most 49 

ozone (O3) polluted cities in the U.S., with residents experiencing frequent exceedances of health-50 

based O3 standards city wide.10 Recent analytical advances have produced more spatially detailed 51 

descriptions of neighborhood-level urban air pollution inequalities,11-15 including for NO2.16-18 52 

However, enhanced spatial information has generally relied on time-averaged and/or short-53 

duration observations, representing conditions that potentially infrequently occur and limiting our 54 

understanding of relationships between NO2 inequalities and broader urban air quality issues such 55 

as O3. This has policy relevance as states have regulatory authority around O3 compliance that they 56 

often lack or decline to use regarding air pollution environmental injustice. 57 

NO2 is a criteria pollutant regulated by the U.S. Environmental Protection Agency (EPA). NO2 is 58 

a primary pollutant (or pseudo-primary pollutant) with a summertime atmospheric lifetime as short 59 

as a few hours. Primary pollutants are highly spatiotemporally variable, exhibiting atmospheric 60 

dispersion gradients of hundreds of meters to 1–2 km.11, 19, 20 NO2 is emitted as NOx (≡ NO + NO2), 61 

with vehicles and electricity generation being major NOx sources in U.S. cities.21-23 Houston is 62 
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also a global hub for petrochemical manufacturing, where refineries and industrial activities 63 

contribute a large portion of NOx emissions,24-26 especially in the Houston Ship Channel,24-26 a 64 

residential and industrial area along the Buffalo Bayou River, connecting downtown to Galveston 65 

Bay and the Gulf of Mexico (Figure 1). Associated with numerous adverse27-31 and unequal health 66 

impacts,28 NO2 is a common proxy for toxic combustion and traffic air pollution mixtures in health 67 

studies.32 High-volume roadways and heavy-duty diesel truck traffic overburden communities of 68 

color,33, 34 and living near roadways is linked to asthma-related urgent medical visits, pediatric 69 

asthma, preeclampsia and preterm birth, and cardiac and pulmonary mortality.35-40  70 

Neighborhood-level NO2 inequalities with race and ethnicity can be observed from space using 71 

the TROPOspheric Monitoring Instrument (TROPOMI).3, 16, 41-45 This was first demonstrated by 72 

Demetillo et al.,3 who showed relative census tract-scale NO2 inequalities based on TROPOMI 73 

tropospheric vertical column densities (TVCDs) oversampled to 0.01° × 0.01° agreed with results 74 

from fine-scale (250 m × 500 m) airborne remote sensing during the NASA Deriving Information 75 

on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air 76 

Quality (DISCOVER-AQ) in Houston. In addition, spatial patterns in oversampled TROPOMI 77 

TVCDs reflected NO2 distributions at the surface, a conclusion based on comparisons with in-situ 78 

aircraft NO2 vertical profiles from DISCOVER-AQ and surface measurements.3 In a subsequent 79 

analysis of 52 U.S. cities, Demetillo et al.16 reported oversampled TROPOMI NO2 inequalities 80 

were invariant with urban racial segregation structure,34 meaning that TROPOMI resolves inter-81 

tract NO2 differences even when segregated tracts do not spatially aggregate into larger regions. 82 

Dressel et al.41 found mean daily TROPOMI observations (3.5 km × 5.5 km at nadir) without 83 

oversampling also captured a majority of tract-scale NO2 inequalities compared to fine-scale (250 84 

m × 250 m) airborne remote sensing and agreed with relative NO2 inequalities based on TVCDs 85 
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oversampled to 0.01° × 0.01° to within associated uncertainties, at least in New York City, New 86 

York and Newark, New Jersey. Daily NO2 inequalities, when uncertainties are well-characterized, 87 

can be analyzed statistically and situated within our broader understanding of urban air quality.41  88 

NO2 is an O3 precursor and temporary O3 reservoir (Ox ≡ NO2 + O3), with O3 production chemistry 89 

varying nonlinearly with NO2 and the reactivity of volatile organic compounds (VOCs) with 90 

hydroxyl radical (OH). O3 pollution in Houston is attributed in large part to the combination of 91 

high NOx and reactive VOC emissions by industries in the Ship Channel and gulf breeze 92 

airflows.26, 46-51 While O3 air quality has improved,52-54 exceedances of the health-based maximum 93 

daily average 8-h (MDA8) O3 National Ambient Air Quality Standard (NAAQS) of 70 ppb are 94 

frequent, with 141 exceedance days in the Houston Metropolitan Statistical Area (MSA) over May 95 

2018–November 2022 (our study period). O3 is a secondary and intermediately long-lived 96 

pollutant. As a result, O3 exhibits less intraurban heterogeneity than NO2 and is not generally 97 

associated with neighborhood-level disparities.55 However, because NO2 and VOC concentrations 98 

are spatiotemporally variable, O3 production (PO3) chemistry is as well,56-58 with NO2 inequalities 99 

and city-wide O3 potentially coupled. In Houston, the largest NO2 inequalities during DISCOVER-100 

AQ corresponded to a severe O3 event with MDA8 O3 of 124 ppb (LaPorte Sylvan Beach, 25 101 

September 2013).3 In New York City–Newark, tract-scale NO2 inequalities were positively 102 

associated with summertime MDA8 O3 (2018–2021), with Spearman correlation coefficients of 103 

0.41–0.55 for different population groups.41 104 

Here, we describe census tract-scale TROPOMI NO2 inequalities and investigate relationships 105 

with MDA8 O3 in Houston. As a first step, we evaluate daily TROPOMI NO2 inequalities with 106 

race-ethnicity, advancing our understanding of the application of mean daily TROPOMI NO2 107 

TVCDs to NO2 inequalities developed in New York City–Newark.41 We compare daily TROPOMI 108 
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NO2 inequalities against measurements of spatiotemporally coincident airborne remote sensing 109 

(250 m × 560 m) during the NASA TRacking Aerosol Convection ExpeRiment–Air Quality 110 

(TRACER-AQ) in September 2021, discuss differences between relative and absolute mean daily 111 

and oversampled TROPOMI NO2 inequalities, and present column-surface relationships as a 112 

function of measurement separation distance and surface wind conditions. Second, we statistically 113 

analyze TROPOMI NO2 inequalities (May 2018–November 2022), interpreting covariations 114 

between neighborhood-level NO2 inequalities, overall NO2 pollution, and urban O3 air quality in 115 

ways that have policy implications.  116 

 117 

Figure 1. Example of census tract-scale GCAS NO2 columns (molecules cm−2) collected on 25 118 
September 2021 at 2−5 pm (a), TROPOMI TVCDs on the same day, with a mean pixel size of 21 119 
± 0.6 km2 (b), and oversampled TROPOMI TVCDs (0.01° × 0.01°) over May 2018−November 120 
2022 (c). Also shown, the percent population for the largest race-ethnicity group in each census 121 
tract for Black and African Americans (blue), Hispanics and Latinos (green), and Asians (orange) 122 
(d). The inner and outer black lines are the Urbanized Area (UA) and Metropolitan Statistical Area 123 
(MSA) boundaries, respectively. The thick black box is the Houston Ship Channel (a). Background 124 
map data: Landsat 8 composite (January 2017–June 2018). Corresponding wind conditions are 125 
presented in Figure S1. 126 

2 MEASUREMENTS AND METHODS 127 

TROPOMI. TROPOMI is a hyperspectral spectrometer onboard the sun-synchronous European 128 

Space Agency Copernicus Sentinel-5 Precursor (S-5P) satellite.59, 60 NO2 is retrieved by fitting the 129 
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405–465 nm spectral band based on an updated Dutch OMI (Ozone Monitoring Instrument) NO2 130 

(DOMINO) algorithm and work from the Quality Assurance for Essential Climate Variables 131 

project.61-65 NO2 observations are converted to TVCDs via an air mass factor (AMF), which relies 132 

on spatially and temporally coarse inputs, e.g., clouds, surface albedo, and NO2 profile shape, that 133 

can bias NO2 TVCDs low under high NO2 conditions.66 The application of TROPOMI NO2 134 

TVCDs to census tract-scale NO2 inequalities has been evaluated through comparison with 135 

airborne remote sensing that resolves NO2 distance decay gradients, both in terms of TVCDs first 136 

oversampled to 0.01° × 0.01°3 and daily TVCDs,41 with TROPOMI capturing similar relative but 137 

lower absolute population-weighted census tract-scale NO2 inequalities. While the sensitivity of 138 

TROPOMI is lower near the surface,67, 68 there are no physical processes in the free troposphere 139 

that maintain intraurban gradients corresponding to neighborhood-level race-ethnicity. TROPOMI 140 

TVCDs have been shown to reflect intraurban spatiotemporal NO2 variability at the surface, a 141 

critical analytical requirement for informing decision making around environmental racism.3, 16, 41 142 

Based on 144 in-situ NO2 vertical profiles throughout Houston from DISCOVER-AQ, Demetillo 143 

et al.3 reported that the slope of the linear fit between the measured full column (extending up to 3 144 

km) and NO2 column within the convective boundary layer was 0.98 ± 0.15 (r = 0.99), with no 145 

significant location-specific differences. Multiple authors have shown TROPOMI and OMI NO2 146 

TVCDs correlate with surface-level nitrogen dioxide (NO2*) measurements and, more 147 

importantly, that correlation coefficients decrease with increasing spatial separation between 148 

columns and monitors on the scales of NO2 spatial variability.3, 16, 41, 69  149 

From 1 May 2018 to 5 August 2019, the TROPOMI nadir spatial resolution was 3.5 km × 7 km; 150 

from 6 August 2019 to present, the nadir spatial resolution improved to 3.5 km × 5.5 km.70 The S-151 

5P satellite crosses the equator at ~1:30 pm local time (LT) and overflies Houston at 12–3 pm LT, 152 
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typically once but occasionally twice daily. When there are two TROPOMI overpasses over 153 

Houston on the same day, we use the first overflight only. We use current Level 2 NO2 TVCDs 154 

(version 02.04.00) with quality assurance values >0.75, as recommended,71 from operationally 155 

reprocessed (RPRO, collection identified: ‘03’, 1 May 2018–25 July 2022) and offline (OFFL, 26 156 

July 2022–30 November 2022) products. A key update in version 02.04.00 is the use of a surface 157 

albedo climatology derived from TROPOMI observations rather than the coarse spatial resolution 158 

OMI surface albedo climatology (0.5° × 0.5°).71 TROPOMI NO2 inequalities can be sensitive to 159 

product version; for example, Dressel et al.41 found census tract-scale NO2 inequalities based on 160 

NO2 TVCDs reprocessed on the S-5P Products Algorithm Laboratory (S5P-PAL) system were 3–161 

6 points (10–20%) higher over the New York City–Newark urbanized area (UA) than those 162 

computed using a then current version of operational product (version 01.02.02). We compared 163 

NO2 inequalities using version 02.04.00 (RPRO) and S5P-PAL reprocessed TVCDs over January–164 

December 2019 but find results were statistically indistinguishable. 165 

GCAS. The Geostationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator 166 

(GCAS) makes hyperspectral nadir-looking measurements of backscattered solar radiation in the 167 

ultraviolet and visible in two channels at wavelengths 300–490 nm (optimized for air quality) and 168 

480–900 nm (optimized for ocean color).72 Each channel uses a two-dimensional (2D) charge-169 

coupled device (CCD) array detector, where one CCD dimension provides spectral coverage and 170 

the other the cross-track spatial coverage across a ~45° field of view in the air quality channel. 171 

GCAS was developed as a technology-demonstration instrument for the GEOstationary Coastal 172 

and Air Pollution Events (GEO-CAPE) decadal survey and functions as a satellite analog in NASA 173 

airborne research. GCAS NO2 column retrievals are validated over urban areas and consist of a 174 

two-step approach similar to algorithms used for other major satellite instruments, including 175 
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TROPOMI.73-75 Briefly, NO2 differential slant columns are retrieved fitting across 425−460 nm 176 

using the QDOAS spectral fitting package76 and a reference spectrum measured at a nearby 177 

location away from NOx emissions sources. The AMF is largely a function of viewing and solar 178 

geometries, surface reflectance, and atmospheric and trace gas vertical profiles.73, 77 GCAS 179 

retrievals for TRACER-AQ use the NASA GEOS-CF model analyses (0.25° × 0.25°).78 Other 180 

components of the retrieval follow Judd et al.,77 where column uncertainties over New York City–181 

Newark were ±25% and unbiased compared to coincident Pandora measurements, ground-based 182 

total NO2 columns with relatively low uncertainties from AMFs that do not vary with NO2 vertical 183 

profile shape or surface albedo.79 During TRACER-AQ, GCAS NO2 columns were averaged to 184 

250 m (cross-track) × 560 m (along track). GCAS flew onboard the NASA Johnson Space Center 185 

Gulfstream V (JSC GV) research aircraft on 11 days in September 2021. We use measurements 186 

from the 27 cloud-free flights sampling at least 60% of census tracts in the Houston MSA (Table 187 

S1). GCAS flew a repeated flight pattern in the morning (~9–11:30 am LT), midday (~11:30 am–188 

2 pm LT), and afternoon (~2:30–5 pm LT), sampling 83 ± 4% (±1s) of tracts with similar, but not 189 

identical, demographics to the MSA (Tables S2–S3). 190 

Surface NO2*, O3, and Meteorological Measurements. NO2* observations are collected at 23 191 

stations across the MSA (Figure S2a) and provided through the U.S. EPA Air Quality System.80 192 

NO2* is mostly measured by decomposing NO2 to NO over a heated molybdenum catalyst and 193 

detecting NO by chemiluminescence, a technique with a known positive interference from other 194 

nitrogen compounds, which also thermally decompose across the catalyst at non-unity 195 

efficiency.81-83 The term NO2* acknowledges this interference, which, while affecting accuracy, 196 

has a smaller effect on precision.84 Two stations in the MSA are near-roadway monitors. We use 197 

O3 mixing ratios measured at 21 stations, many of which also house NO2* instruments (Figure 198 
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S2b), converted to MDA8 O3. We use 1-h measurements of wind speed (resultant), wind direction, 199 

and air temperature and daily maximum temperatures collected at 23 stations (Figure S2c) with 200 

observations on at least 50% of days during O3 season, defined in Houston as March–November,85 201 

when MDA8 O3 NAAQS exceedances are most likely to occur.  202 

Census Tract-Scale Inequalities. We calculate area-weighted mean NO2 TVCDs within 2020 203 

census tract polygons across the Houston UA and MSA and population weight tract-average 204 

TVCDs using race and ethnicity data from the U.S. Census 5-year 2020 American Community 205 

Survey (ACS). The ACS subsamples census unit populations and applies a complex weighting 206 

process to account for variability in tract-level sampling rates and differential group response rates. 207 

The weighting process prioritizes accuracy over precision, which we manage using population-208 

weighting and aggregation across the UA and MSA.86, 87 Tract-scale NO2 inequalities with race-209 

ethnicity are reported as relative (%) and absolute (molecules cm–2) differences between 210 

population-weighted NO2 TVCDs (eq. S13, 18, 88) for non-Hispanic/Latino Black and African 211 

Americans, Hispanics and Latinos of all races, and non-Hispanic/Latino Asians compared to non-212 

Hispanic/Latino whites in tracts with populations equal to or greater than the mean across tracts 213 

with observations. NO2 differences with race and ethnicity are treated as a proxy for racism.  214 

3 RESULTS AND DISCUSSION 215 

Evaluating Daily TROPOMI NO2 Inequalities in Houston, Texas. We first compare spatially 216 

and temporally coincident daily census tract-scale TROPOMI NO2 inequalities against those 217 

computed using GCAS NO2 columns, which have sufficient spatial resolution to observe NO2 218 

dispersion gradients. Correspondence between daily TROPOMI and GCAS inequalities is 219 

described using Pearson correlation coefficients and slopes derived from an unweighted bivariate 220 
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linear regression of simultaneous observations, defined as occurring within ±30 minutes (Figure 221 

2). TROPOMI and GCAS NO2 inequalities are strongly correlated, with r values of 0.70–0.83 222 

(relative) and 0.87–0.91 (absolute), indicating daily TROPOMI NO2 TVCDs reflect the variability 223 

of spatially detailed GCAS observations day to day. Regression slopes are 0.66 ± 0.15 to 1.08 ± 224 

0.25 for relative and 0.56 ± 0.11 to 0.77 ± 0.14 for absolute inequalities; therefore, daily TROPOMI 225 

NO2 TVCDs capture a major portion of tract-scale inequalities in Houston. Slopes for relative 226 

inequalities are larger than for absolute inequalities, with relative differences easier to distinguish 227 

using measurements coarser than distance decay gradients. This is consistent with results from 228 

daily observations in New York City–Newark41 and reinforces conclusions based on oversampled 229 

TVCDs in Houston by Demetillo et al.,3 where TROPOMI resolved comparable relative but lower 230 

absolute inequalities than GCAS during DISCOVER-AQ.  231 

 232 

Figure 2. Spatiotemporally coincident (±30 min) relative (%) (blue circles) and absolute 233 
(molecules cm−2) (green diamonds) GCAS and TROPOMI NO2 inequalities during TRACER-AQ 234 
for Black and African Americans (a), Hispanics and Latinos (b), and Asians (c) in comparison to 235 
non-Hispanic/Latino whites with slopes (m), based on an unweighted bivariate linear regression, 236 
and Pearson correlation coefficients (r) of relative (blue) and absolute (green) inequalities.  237 

We test the sensitivity of daily TROPOMI census tract-scale NO2 inequalities to TROPOMI 238 

observation spatial resolution by comparing NO2 inequalities across the natural variability in daily 239 
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mean TROPOMI pixel size, ranging 20–89 km2 with a mean of 39 ± 16 km2 (±1s standard 240 

deviation) UA wide (May 2018–November 2022). Because daily inequalities are sensitive to 241 

observation coverage, we first remove days with NO2 observations in fewer than 20% of tracts in 242 

the domain (discussed below). We group observations according to thresholds defined by pixel-243 

size quintiles, comparing mean inequalities for each threshold to those derived from the smallest 244 

20% of pixels using 95% confidence intervals from bootstrapped distributions sampled with 245 

replacement 104 times (Table S4). We do not observe statistically significant differences in mean 246 

daily TROPOMI inequalities outside of the 95% confidence intervals compared to the smallest 247 

pixels. The lack of pixel area dependence suggests most city-wide NO2 inequalities, and those that 248 

are observed by TROPOMI, are driven by spatially clustered NOx sources. TROPOMI pixels are 249 

larger than the length scales of individual dispersion gradients; however, when NOx sources are 250 

clustered into source regions, their gradients also spatially aggregate. TROPOMI resolves NO2 251 

gradients on the scale of these source regions, if not individual sources, with the latter causing the 252 

information loss compared to GCAS. 253 

Observed NO2 inequalities based on TVCDs are sensitive to the number of census tracts with NO2 254 

measurements across the domain (UA or MSA).41 When observation coverage is low, inequalities 255 

tend to be based on TVCDs in census tracts less representative of city-wide demographics. In this 256 

case, census tracts where high numbers of residents are in population groups in the majority with 257 

respect to city area (not necessarily population count) are overrepresented in the calculation. The 258 

net effect is that population-weighted inequalities are based on census tracts that have higher 259 

populations of non-Hispanic whites than in the domain on average. In New York City–Newark, 260 

Dressel et al.41 found low observation coverage biased NO2 inequalities low by 6–7 percentage 261 

points and, as a result, identified minimum coverage threshold requirements for daily mean NO2 262 
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inequalities. We test sensitivity of mean daily TROPOMI NO2 inequalities in Houston, first 263 

applying a minimum coverage requirement of 20% of census tract with observations, then binning 264 

daily TVCDs by >20%, >40%, >60%, and >80% census tracts with observations. When bootstrap 265 

95% confidence intervals (calculated with replacement 104 times) for a lower coverage bin do not 266 

overlap with the 95% confidence interval for the >80% coverage bin, we identify a significant 267 

difference between inequalities. We select thresholds separately for each metric as the lowest 268 

coverage bin without a significant difference. Coverage thresholds range 20–40% for relative and 269 

absolute inequalities for each metric (Table S5) and are applied throughout. Mean daily TROPOMI 270 

NO2 inequalities in Houston exhibit less observational coverage sensitivity than in New York 271 

City–Newark.41 272 

We compare mean daily NO2 inequalities to results based on NO2 TVCDs on the same subset of 273 

days oversampled to 0.01° × 0.01° (~1 km × 1 km) using a physics-based algorithm89 prior to 274 

census tract averaging (Table 1). Oversampling averages measurements over time with large and 275 

overlapping pixels to a finer grid, allowing sub-pixel-scale spatial features to be recovered.89 The 276 

oversampling approach used here treats pixel-level observations as sensitivity distributions using 277 

a generalized two-dimensional super Gaussian spatial response function, appropriate for imaging 278 

grating spectrometers like TROPOMI. Relative mean daily and oversampled NO2 inequalities are 279 

equal to within associated uncertainties; however, absolute NO2 inequalities in mean daily TVCDs, 280 

which are already low relative to fine-scale airborne remote sensing (Figure 2), are as much as 281 

~30% higher than oversampled TVCDs. We see multiple possible explanations for this: 282 

oversampling is not enhancing spatial gradients relevant to describing census tract-scale NO2 283 

inequality, which is instead determined by the spatial resolving power set by pixel size; there is 284 
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limited NO2 variability on scales of 1–4 km as relevant to NO2 inequalities; and/or there is 285 

compensating information in the daily inequalities lost through time averaging.  286 

First, we compare NO2 inequalities based on oversampled TVCDs over a range of grid sizes, 287 

finding no significant differences in relative or absolute inequalities when we oversample to 0.01° 288 

× 0.01°, 0.02° × 0.02°, 0.04° × 0.04° (the approximate TROPOMI nadir resolution), and 0.06° × 289 

0.06°. In an analysis of 52 major U.S. UAs, Demetillo et al.16 also reported small differences in 290 

relative and absolute census tract-scale NO2 inequalities using TROPOMI TVCDs oversampled to 291 

0.01° × 0.01° and 0.04° × 0.04°, with the exceptions of the narrow coastal Californian cities of 292 

Oakland, San Diego, and San Francisco, where NO2 inequalities based on TVCDs oversampled to 293 

0.04° × 0.04° were biased low by 8–22% compared to TVCDs oversampled to 0.01° × 0.01°, 294 

suggesting oversampling enhances spatial gradients from coarser pixels when that variability 295 

exists.16 Second, we take advantage of the natural variability in TROPOMI pixel orientations, 296 

separately comparing NO2 inequalities based on oversampled TVCDs to mean NO2 TVCDs 297 

collected within individual S-5P orbits, thus eliminating the oversampling pixel overlap 298 

requirement. On average, for the 15 S-5P satellite orbits that fully cover the Houston UA, relative 299 

NO2 inequalities from oversampled and mean NO2 TVCDs are similar; however, absolute NO2 300 

inequalities of mean TVCDs are ~30% higher than oversampled TVCDs for Black and African 301 

Americans and Hispanics and Latinos (Table 1; Table S6), indicating the information loss is not 302 

simply because of time averaging, but smoothing during oversampling. In Figure 3, we compare 303 

mean and median distributions of tract-scale daily and oversampled (0.01° × 0.01°) TROPOMI 304 

TVCDs, fit assuming distributions are lognormal as is characteristic for NO2. Mean daily 305 

measurements span a wider range of NO2 conditions and retain more observations in the high tail 306 

of the distribution than oversampled TVCDs, with high NO2 values driving inequalities. Sun et 307 
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al.89 report that oversampling, including with the physics-based algorithm used here, is more 308 

accurate when the grid is fine relative to a gradient with a smooth spatial response, for example, a 309 

city edge, while pixel means are more accurate for coarse grids and sharper spatial responses. Our 310 

results suggest absolute census tract-scale NO2 inequalities are more accurately represented using 311 

means, with TROPOMI pixels and typical oversampling grids being large relative to scale of 312 

dispersion. Research using oversampled NO2 TVCDs to identify NOx point sources and infer NOx 313 

emissions and NO2 lifetimes have improved absolute estimates by rotating spatially variable NO2 314 

plumes to a common wind direction,90-93 an aspatial solution not applicable to describing census 315 

tract-scale NO2 inequalities, although potentially useful for informing related decision-making.  316 

 317 

Figure 3. Lognormal distributions of census tract-average TROPOMI NO2 TVCDs in the Houston 318 
UA (May 2018–November 2022). Left axis: TVCDs oversampled to 0.01° × 0.01° (black line). 319 
Right axis: mean (brown filled circles) and median (cyan open circles) of distributions of daily 320 
observations. 321 

Table 1. Mean daily TROPOMI NO2 inequalities at the MSA and UA level (May 2018–November 322 
2022) on days meeting observation coverage thresholds, inequalities based on TROPOMI NO2 323 
TVCDs oversampled to 0.01° × 0.01°, 0.02° × 0.02°, 0.04° × 0.04°, and 0.06° × 0.06°, and average 324 
inequalities of the 15 TROPOMI orbit patterns that cover the Houston UA separately from means 325 
and oversampled TVCDs (0.01° × 0.01°). Uncertainties are expressed as standard mean errors. 326 

  Mean Daily 
TROPOMI Oversampled TROPOMI Separately by TROPOMI 

Orbit 
 MSA UA MSA UA UA 

      0.01° × 
0.01° 

0.01° × 
0.01° 

0.02° × 
0.02° 

0.04° × 
0.04° 

0.06° × 
0.06° Mean Oversampled 

(0.01° × 0.01°) 
  Relative Inequalities (%)     
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Black and African 
Americans 17 ± 1 8 ± 1 18 ± 1 9 ± 1 9 ± 1 8 ± 1 8 ± 1 9 ± 1 9 ± 1 

Hispanics and Latinos 23 ± 1 16 ± 1 25 ± 1 17 ± 1 17 ± 1 17 ± 1 16 ± 1 18 ± 1 16 ± 1 
Asians 9 ± 1 –1 ± 1 11 ± 1 0 ± 1 1 ± 1 1 ± 1 2 ± 1 4 ± 1 2 ± 1 

  Absolute Inequalities (×1014 molecules cm–2)     
Black and African 
Americans 6.4 ± 0.5 3.6 ± 0.3 5.0 ± 0.3 2.7 ± 0.3 2.7 ± 0.3 2.6 ± 0.3 2.6 ± 0.4 3.7 ± 0.5 2.8 ± 0.4 

Hispanics and Latinos 8.8 ± 0.5 6.8 ± 0.4 7.2 ± 0.4 5.4 ± 0.3 5.4 ± 0.3 5.3 ± 0.3 5.2 ± 0.4 7.3 ± 0.5 5.3 ± 0.4 
Asians 3.7 ± 0.4 0.3 ± 0.4 2.9 ± 0.3 0.1 ± 0.3 0.1 ± 0.3 0.4 ± 0.4 0.5 ± 0.4 0.2 ± 0.5 0.4 ± 0.4 

 327 

To describe spatiotemporal variability in column-surface relationships, we compare daily tract-328 

average TROPOMI TVCDs and daytime (12−3 pm LT) NO2* surface mixing ratios across the 329 

MSA as a function of their separation distance using Pearson correlation coefficients (r) over May 330 

2018–November 2022 (Figure 4).3, 16, 41, 69 We require NO2* mixing ratio data at four or more 331 

monitors in each 1-km distance bin per day and exclude near-roadway monitors, which are subject 332 

to hyperlocal effects. Surface NO2* and directly overhead TVCDs (defined as tract center points 333 

within 1 km of an NO2* monitor) are strongly correlated, with median r values of 0.62. Correlation 334 

coefficients decrease as the distance between observations increases, falling to 0.54 on average 335 

when tract-average TVCDs are 2−6 km from the nearest monitor and 0.48 at 7−10 km. This r-336 

distance dependence indicates spatial variability in daily TROPOMI TVCDs follows NO2* 337 

patterns at the surface, with r decreases at 1–2 km consistent with length scales of NO2 dispersion 338 

gradients. If we consider uncertainties as standard mean errors based on the number of days with 339 

observations included in the daily average, uncertainties in r are typically ±0.01 and mean 340 

differences in r with distance are significant. However, column-surface relationships are variable 341 

daily, with standard deviations (1s) of ~0.3 in each distance bin. Daily correlation coefficients are 342 

lower than for oversampled TROPOMI TVCDs as reported in Demetillo et al.,3 especially at 1 km, 343 

meaning time averaging masks temporal variability in column-surface agreement. We also sort 344 

daily observations in the highest (>3.9 m s–1) and lowest (<2 m s–1) UA-wide mean daytime (12−3 345 

pm LT) surface wind quartiles as a function of distance, as wind is a physical control over the 346 
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inter-tract NO2 distribution. Daily column-surface correlations covary with wind speeds physically 347 

realistically, with stronger r values for slower winds and smaller r values with faster winds at all 348 

observation separation distances.  349 

 350 

Figure 4. Median daily Pearson correlation coefficients between tract-averaged NO2 TVCDs and 351 
surface NO2* mixing ratios as a function of observation separation distance (km) on all days over 352 
May 2018–November 2022 (brown solid line) and on days in low (light blue dashed line) and high 353 
(black dotted line) quartile winds. We indicate the mean number of census tracts in the daily 354 
correlation at that distance each day, with similar statistics on low and high wind days.  355 

 356 

Figure 5. Daily UA-level TROPOMI NO2 inequalities (May 2018–November 2022). Relative (%) 357 
and absolute (molecules cm–2) inequalities on all days (light blue and light green, respectively) and 358 
on days meeting metric-specific coverage thresholds (bright blue and dark green, respectively) for 359 
Black and African Americans (a), Hispanics and Latinos (b), and Asians (c). Bootstrap mean 360 
inequalities, sampled with replacement 104 times, are reported with uncertainties as 95% 361 
confidence intervals.  362 
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Daily NO2 Inequalities. We calculate daily TROPOMI census tract-average NO2 inequalities over 363 

May 2018–September 2022 across the Houston UA and MSA (Table 1; Figure 5). Mean daily UA-364 

level population-weighted NO2 TVCDs are 8 ± 1% and 16 ± 1% higher for Black and African 365 

Americans and Hispanics and Latinos compared to non-Hispanic/Latino whites, respectively. 366 

Neighborhoods near the Houston Ship Channel (Figure 1) with large populations of Black and 367 

African Americans and Hispanics and Latinos, e.g., Pasadena, Fifth Ward, Harrisburg/Manchester, 368 

and Galena Park, often have the highest NO2 concentrations. Mean population-weighted NO2 369 

TVCDs for each group including non-Hispanic/Latino whites are shown in Table S7. Inequalities 370 

for Black and African Americans and Hispanics and Latinos increase to 17 ± 1% and 23 ± 1%, 371 

respectively, at the MSA level. Mean daily population-weighted NO2 TVCDs for Asians equal 372 

those for non-Hispanic/Latino whites within the UA but are 9 ± 1% higher across the MSA, mainly 373 

due to the inclusion of the large Asian population around Sugar Land in southwest Houston (Figure 374 

1d). We observe larger inequalities at the MSA level, reflecting urban-suburban differences, 375 

compared to the UA, representing intraurban NO2 differences.3, 94 UA and MSA-level relative (r 376 

= 0.83–0.92) and absolute (r = 0.88–0.95) inequalities are strongly correlated (Figure S3). Errors 377 

for mean inequalities are 95% confidence intervals, which we derive from bootstrapped 378 

distributions sampled with replacement 104 times. Absolute census tract-scale NO2 inequalities are 379 

often lower than the precision of individual TROPOMI NO2 TVCDs, which have a median daily 380 

pixel-level precision of 9.9 × 1014 molecules cm–2 (approximately 30% of mean NO2 TVCDs) over 381 

May 2018–November 2022 in the Houston UA. However, this imprecision improves through 382 

spatial and temporal averaging,95 done here through population weighting over all census tracts in 383 

the UA or MSA and by reporting daily inequality results as means over many days. Sampling and 384 

nonsampling (e.g., measurement, coverage, nonresponse, and processing errors) errors in the ACS 385 
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influence the accuracy and precision of tract-scale NO2 inequalities as well and, when random, 386 

also improve through averaging to higher geographic levels.  387 

We report NO2 inequalities during 27 TRACER-AQ flights using GCAS separately in the late 388 

morning, midday, and afternoon (Table 2). Relative inequalities are not statistically significantly 389 

different with time of daytime, although there may be a tendency toward lower relative inequalities 390 

at midday. Absolute NO2 inequalities are significantly higher in the morning than midday and 391 

afternoon, and there are multiple factors that could influence these differences. While wind speeds 392 

are similar on average during all flights, the atmosphere is typically more stable in morning than 393 

at midday, affecting the NO2 distribution in the nearfield of NOx sources,19 with convective mixing 394 

common in the afternoon in Houston. The surface mixed layer height is typically shallower in the 395 

morning than afternoon; however, this will have a larger effect on surface concentrations than 396 

TVCDs. We also expect higher rush hour NOx emissions and longer NO2 chemical lifetimes96 in 397 

the morning and late afternoon compared to midday. Diurnal variability in absolute inequalities 398 

has implications for interpreting observations from TROPOMI, which collects measurements at 399 

12–3 pm LT over Houston, and the recently-launched TEMPO (Tropospheric Emissions: 400 

Monitoring of Pollution) instrument, which scans North America hourly during daylight hours 401 

from onboard a geostationary satellite.97 Our analysis in the New York City–Newark UA found 402 

fewer statistically significant morning-afternoon differences in absolute NO2 inequalities,41 403 

suggesting there is more to learn from TEMPO concerning temporal variability in the NO2 404 

distribution. Because GCAS subsampled the MSA, we also report mean daily TROPOMI NO2 405 

inequalities (May 2018–November 2022) along a representative TRACER-AQ flight for 406 

comparison (Table 2). 407 
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Table 2. Relative and absolute mean GCAS NO2 inequalities in the Houston MSA during 408 
TRACER-AQ in the morning (9–11:30 am LT), at midday (11:30 am–2 pm LT), and afternoon 409 
(2:30–5 pm LT). Relative and absolute mean daily TROPOMI NO2 inequalities (May 2018–410 
November 2022) along a representative TRACER-AQ flight raster (afternoon, 25 September 411 
2021). GCAS inequalities along spatially coincident TRACER-AQ and DISCOVER-AQ tracts 412 
during TRACER-AQ (2021) and DISCOVER-AQ (2013). Airborne and TROPOMI uncertainties 413 
are 95% confidence intervals of bootstrap mean inequalities, sampled with replacement 104 times. 414 

  
GCAS 

TRACER-AQ 
morning 

GCAS 
TRACER-AQ 

midday 

GCAS 
TRACER-AQ 

afternoon 

TROPOMI along 
TRACER-AQ 

raster 

2021 GCAS 
(TRACER-

AQ) 

2013 GCAS 
(DISCOVER-

AQ) 
  Relative Inequalities (%) 
Black and African Americans 17 ± 7 12 ± 6 13 ± 4 13 ± 1 9 ± 8 10 ± 6 
Hispanics and Latinos 27 ± 4 20 ± 6 25 ± 2 22 ± 1 24 ± 6 20 ± 5 
Asians 12 ± 10 13 ± 10 11 ± 4 3 ± 2 9 ± 6 11 ± 4 

 Absolute Inequalities (×1014 molecules cm–2) 
Black and African Americans 14.4 ± 5.8 6.8 ± 3.9 8.2 ± 2.6 6.0 ± 0.7 4.9 ± 4.6 10.9 ± 6.3 
Hispanics and Latinos 22.7 ± 4.4 11.9 ± 3.4 16.0 ± 3.6 10.6 ± 1.0 16.4 ± 3.7 19.3 ± 5.9 
Asians 17.0 ± 12.9 9.2 ± 6.9 7.6 ± 3.8 2.5 ± 1.0 9.6 ± 6.2 9.4 ± 3.7 

 415 

GCAS NO2 measurements in Houston collected during TRACER-AQ and DISCOVER-AQ offer 416 

observational insight into trends from 2013 to 2021 (Table 2). We compare weekday population-417 

weighted, tract-average NO2 columns in spatially coincident census tracts along representative 418 

TRACER-AQ and DISCOVER-AQ flight patterns (SI Appendix 1; Figure S4; Tables S8–S11). 419 

We calculate inequalities using the 2020 ACS for both DISCOVER-AQ and TRACER-AQ to 420 

allow comparisons across the same tracts and isolate effects of changes in NO2 concentrations 421 

from demographics. We find relative NO2 inequalities are statistically indistinguishable, with 422 

overlapping 95% confidence intervals for NO2 inequalities in 2013 and 2021 and by the Wilcoxon 423 

rank sum test, a non-parametric two-sample t-test. While absolute inequalities were always lower 424 

during TRACER-AQ than DISCOVER-AQ, they were variable day to day, in addition to the 425 

relatively small number of aircraft observations, such that we lack the precision on their means 426 

(not the observations themselves) to interpret the differences. UA-wide mean NO2* mixing ratios 427 

were slightly higher and more variable during DISCOVER-AQ (6.7 ± 6.2 ppb) than TRACER-428 

AQ flights (6.0 ± 4.3 ppb); winds were slower during TRACER-AQ (2.1 ± 0.8 m s–1) than 429 
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DISCOVER-AQ (3.1 ± 1.2 m s–1). Slower mean winds during TRACER-AQ may have worsened 430 

inequalities, while lower NO2* corresponds to lower absolute inequalities (discussed below). 431 

Previous work has shown downward NOx emissions trends have not reduced relative NO2 432 

inequalities in U.S. cities using NO2 empirical models;12, 88 however, this has not yet been 433 

demonstrated with observations directly to our knowledge.  434 

Relationships between daily UA-level census tract-scale TROPOMI NO2 inequalities, surface 435 

winds, and overall NO2 pollution (Table 3; Figures S5–S7) underscore the need for locally targeted 436 

controls over sector-based approaches to reducing NO2 disparities. Absolute NO2 inequalities are 437 

moderately negatively associated with wind speeds for most groups, as faster winds distribute NO2 438 

away from NOx sources, showing NO2 inequalities arise from the distribution of NOx sources, as 439 

well as that daily NO2 inequalities vary meaningfully with relevant atmospheric conditions. 440 

Absolute NO2 inequalities moderately correlate with UA-mean surface NO2* and NO2 TVCDs in 441 

the winter and during O3 season for most metrics. At the same time, relative inequalities are more-442 

weakly associated with overall NO2. Differences in these correlations for absolute and relative 443 

NO2 inequalities manifest from NOx sources being systematically located in Black and African 444 

American and Hispanic and Latino, as NO2 concentrations in the nearfield of emitters are more 445 

temporally variable than the physical locations of NOx sources. As a consequence, emissions 446 

reductions that maintain unequal source distributions, such as sector-based approaches, lower 447 

overall NO2 pollution and absolute differences between groups but have little effect on relative 448 

inequalities, which require location-specific policy interventions.98 449 

Table 3.  Spearman rank correlation coefficients (2018–2022) with p < 0.050 in winter and O3 450 
season: daily absolute TROPOMI inequalities and daytime (12–3 pm LT) surface wind speed, 451 
NO2* mixing ratios, and daily UA-level TROPOMI NO2 TVCDs and daily relative TROPOMI 452 
inequalities and daytime NO2* mixing ratios and UA-level TROPOMI NO2 TVCDs. 453 



 22 

  Absolute Inequality Correlations Relative Inequality Correlations 
  Wind Speed Surface NO2* NO2 TVCDs Surface NO2* NO2 TVCDs 

 Winter (December–February) 
Black and African Americans –0.40 0.44 0.55 0.25 0.26 
Hispanics and Latinos –0.62 0.67 0.67 0.31 0.17 
Asians   0.21  0.21 

 O3 Season (March–November) 
Black and African Americans –0.34 0.48 0.65 0.17 0.20 
Hispanics and Latinos –0.51 0.61 0.77 0.24 0.26 
Asians –0.17  0.15  0.07 

 454 

NO2 Inequalities and O3 Air Quality. We use daily observations of NO2 inequalities to 455 

investigate relationships between neighborhood-level NO2 distributions and O3 air quality. First, 456 

applying an established approach to understanding the influence of meteorology on O3 variability 457 

in Houston, we disaggregate observations by winds using principal component and cluster 458 

analysis,48, 53, 99-103 presenting cluster characteristics that include census tract-scale NO2 459 

inequalities. We generate one two-dimensional principal component for mean daytime (12–3 pm 460 

LT) u and v resultant winds during O3 season, which captures 88% of the observed variability in 461 

u and v components. We then apply k-means clustering with 1,000 iterations to generate eight 462 

wind clusters, with the first centroid selected at random, from the iteration with the lowest total 463 

sum of distances (Figure 6; Table 4). We selected the optimal number of clusters, allowed to range 464 

1–10, using the Calinski-Harabasz criterion, maximizing the ratio of the between-cluster variance 465 

to the within-cluster variance with respect to the number of clusters.104 We confirmed the identified 466 

number of clusters using the elbow method with 103 iterations, with the optimal number of clusters 467 

based on the variance explained.105 Eight clusters balances clarity and complexity relevant to 468 

relationships between NO2 inequalities and MDA8 O3. Missing daytime winds are filled using 469 

measurements from the closest proximity monitor with observations. We renamed the clusters 1–470 

8 from most to least frequent MDA8 O3 NAAQS exceedances. The analysis reproduces results in 471 

the literature, with high O3 days associated with easterly and east-southeasterly winds.48, 53, 100, 103 472 
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Figure 6 highlights the variability in NO2 spatial distributions lost through averaging (Figure 1c), 473 

with results based on long-term or annual averages representing conditions that infrequently occur.  474 

 475 

Figure 6. Distinct mean daytime (12–3 pm LT) wind clusters during O3 season (March–476 
November) over May 2018–November 2022 in the Houston MSA. Corresponding TROPOMI NO2 477 
TVCDs oversampled to 0.01° × 0.01°. Wind vector length is proportional to wind speed, with 478 
mean wind speeds given in Table 4. The W.A. Parrish Generating Station is indicated with an ´ 479 
and the Houston Ship Channel with a thick black box in cluster 1. The thin inner gray and outer 480 
black lines are the UA and MSA boundaries, respectively. 481 

MDA8 O3 NAAQS exceedances are most frequent in cluster 1, when winds are on average slow 482 

and easterly—corresponding to the largest absolute daily TROPOMI race-ethnicity inequalities 483 

(Table 4). Cluster 1 is the primary wind condition in which we observe statistically significant 484 

UA-level inequalities for Asians, with NO2 from the Ship Channel transported toward Sugar Land 485 

in southwest Houston and stagnant NOx emissions around the nearby coal-fired W.A. Parrish 486 

Generating Station. This explains why NO2 inequalities for Asians are not strongly correlated with 487 

wind speed or overall NO2 pollution level (Table 3). MDA8 O3 NAAQS exceedances are also 488 
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common in clusters 2–4, when winds are slow (~1.6 m s–1) and east-southeasterly, southerly, and 489 

westerly, with elevated UA-level absolute daily TROPOMI NO2 inequalities for all groups except 490 

Asians. Clusters 5–8 include the fewest number of O3 NAAQS exceedances, occurring on <5% of 491 

days. These clusters are characterized by faster winds, lower UA-mean NO2*, and lower absolute 492 

tract-scale daily TROPOMI NO2 inequalities. Wind conditions have less influence on relative NO2 493 

inequalities, as winds do not affect the locations NOx sources. Observed correspondence between 494 

MDA8 O3 and absolute census tract-scale NO2 inequalities indicates similar atmospheric 495 

conditions exacerbate both phenomena and/or high O3 and NO2 inequalities are linked chemically.  496 
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Table 4. Mean daytime wind cluster characteristics: number of days in each cluster; MSA-mean wind speed (±1s) and direction; MSA-497 
level MDA8 O3 NAAQS exceedances, both number and frequency; UA-mean NO2* (±1s); and mean daily TROPOMI relative and 498 
absolute inequalities based on bootstrapped distributions sampled with replacement 104 times with uncertainties as 95% confidence 499 
intervals. 500 

Cluster 1 2 3 4 5 6 7 8 
Number of days 186 279 193 112 170 48 162 136 
Wind speed (m s–1) 0.7 1.2 2.2 1.3 3.7 4.2 3.5 2.5 

Wind direction easterly southerly east 
southeasterly westerly southeasterly northwesterly southerly northwesterly 

Temperature (°C) 28 32 27 30 28 23 30 23 
O3 NAAQS exceedances 49 38 22 12 9 2 5 4 
O3 exceedance frequency 
(%) 26 14 11 11 5 4 3 3 

NO2* (ppb) 7.4 6.6 7.2 6.1 5.1 5.5 3.9 6.7 
  UA 
    Mean Daily Relative Inequalities (%) 
Black and African 
Americans 11 ± 1 13 ± 1  10 ± 2 9 ± 3  9 ± 2 –3 ± 3 10 ± 1  6 ± 2 

Hispanics and Latinos 19 ± 2 22 ± 2 17 ± 2 18 ± 6 14 ± 2 14 ± 3 13 ± 2 9 ± 2 
Asians 9 ± 2 0 ± 1 –1 ± 2 –6 ± 2 –3 ± 2 –15 ± 4 –0 ± 1  4 ± 2 
    Mean Daily Absolute Inequalities (×1014 molecules cm–2) 
Black and African 
Americans 5.9 ± 1.1 5.0 ± 0.8 3.7 ± 0.6 3.3 ± 0.9 2.3 ± 0.6 –0.7 ± 0.5 2.1 ± 0.3 2.1 ± 0.5 

Hispanics and Latinos 9.5 ± 1.4 9.1 ± 1.4 6.9 ± 0.8 8.1 ± 1.5 3.7 ± 0.6 4.1 ± 0.8 2.9 ± 0.4 2.9 ± 0.5 
Asians 5.3 ± 1.5 –0.1 ± 0.5 –0.4 ± 1.0 –0.9 ± 1.4 –0.7 ± 0.4 –3.1 ± 0.5 –0.0 ± 0.3 1.8 ± 0.7 

501 
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PO3 varies nonlinearly with NO2 concentrations (Figure 7a); therefore, NO2 inequalities and city-502 

wide O3 air quality are potentially coupled chemically. Briefly, PO3 increases with increasing NOx 503 

when NO is the limiting reagent in O3-forming radical cycling (PO3 chemistry is NOx limited). 504 

PO3 decreases with increasing NOx when NO2 predominately combines with OH to produce nitric 505 

acid, reducing O3-forming reactions between OH and VOCs (PO3 is NOx suppressed). This 506 

nonlinear chemistry has important regulatory consequences, as NOx decreases improve O3 air 507 

quality when chemistry is NOx limited, while the same reductions worsen NOx-suppressed O3. 508 

When PO3 dominates the O3 mass balance, MDA8 O3 varies as the integral of PO3 across the 509 

intraurban NO2 heterogeneity, and, in Houston, NOx-limited and suppressed conditions are both 510 

present.56 Because PO3 depends nonlinearly on NO2, we describe O3-season relationships between 511 

NO2 inequalities and the highest daily MSA-level MDA8 O3 using a generalized additive model 512 

(GAM), a regression approach previously applied to nonlinear systems, including O3.106-110 PO3 513 

also depends nonlinearly on VOC reactivity to OH, defined as the sum of the product of VOC 514 

concentrations and their bimolecular reaction rate with OH.111 Temperature is a proxy for VOC-515 

OH reactivity where a major portion of VOC emissions are temperature dependent, verifiable 516 

through the observed O3-NO2 dependence under different temperatures.112 To consider VOC-OH 517 

reactivity, we apply the GAM separately under low (<25°C), moderate (25–28°C), and high 518 

(>28°C) daytime mean temperatures conditions. Results informing GAM selection and evaluation 519 

are available in the Supporting Information (SI Appendix 2; Tables S12–13; Figures S8–S16). 520 

GAMs of MDA8 O3 versus NO2 inequalities reproduce the nonlinear dependence of PO3 on NO2 521 

concentrations (Figure 7). The highest MDA8 O3 occur hot days, i.e., under higher VOC-OH 522 

reactivity conditions, and when absolute NO2 inequalities are large. We observe lower MDA8 O3 523 

when temperatures are moderate (lower VOC-OH reactivity) and NO2 inequalities are large, with 524 



 27 

similar MDA8 O3 to hot days when NO2 is more evenly distributed (PO3 is NOx limited). At low 525 

temperatures, relationships between MDA8 O3 and NO2 inequalities suggest a more limited role 526 

for PO3 on MDA8 O3. A key observation is that the transition between NOx-limited and NOx-527 

suppressed PO3 chemistry that is near peak MDA8 O3 occurs at higher absolute NO2 inequalities 528 

under higher temperature conditions, consistent with hotter temperatures corresponding to higher 529 

VOC-OH reactivities, which in turn require more NO2 to drive nitric acid production.112 While at 530 

very high NO concentrations O3 can be titrated to NO2, O3 titration does not have the same 531 

functional form as PO3 with VOC-OH reactivity versus NO2.  532 

The GAMs demonstrate that NO2 inequalities affect PO3 chemistry and not merely that MDA8 O3 533 

and NO2 inequalities covary under certain atmospheric conditions. We note, it is not the 534 

inequalities per se, but the unequal NO2 distributions resulting from NOx sources being 535 

disproportionately located in a subset of neighborhoods that drives PO3. That said, NOx emission 536 

sources overburden communities of color because of environmental racism in historical and 537 

contemporary decision-making. Past research has already shown that PO3 chemistry is spatially 538 

heterogenous within Houston,46, 49, 56, 113, 114 and, because PO3 chemistry is nonlinear, it follows 539 

logically that the same NOx emission reductions applied evenly across a city would be less 540 

effective than a series of localized controls responsive to specific PO3 mechanisms (NOx limited 541 

versus NOx suppressed) as they vary in space. Wang et al.58 used the adjoint of the Community 542 

Multiscale Air Quality model focused on California to determine that PO3 is disproportionately 543 

sensitive to spatially localized controls. Our work implies that NOx emissions controls that 544 

eliminate neighborhood-level NO2 inequalities will have O3 air quality co-benefits, with regulatory 545 

decision-making consolidating NOx sources in a subset of Houston neighborhoods hindering O3 546 

NAAQS compliance. While MDA8 O3 is largely NOx limited with respect to NO2 inequalities on 547 
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high temperature days, MDA8 O3 is more NOx suppressed as a function of NO2 inequalities when 548 

temperatures are moderate, meaning even steeper NOx reductions that also have the effect of 549 

decreasing NO2 inequalities are required to lower O3 under these conditions. Based on observed 550 

differences in correlations between absolute and relative NO2 inequalities with overall NO2 (Table 551 

3), decreases in NO2 inequalities, and hence MDA8 O3, require locally targeted NOx reductions in 552 

neighborhoods where residents are primarily Black, Latinx, and Asian.  553 

 554 

Figure 7. Analytical model demonstrating relationships between PO3, NOx, and VOC-OH 555 
reactivity (a). GAMs of daily MSA-level absolute TROPOMI NO2 inequalities (molecules cm–2) 556 
versus highest daily MDA8 O3 (ppb) during O3-season (March–November 2018–2022) on days 557 
meeting coverage thresholds under moderate (purple) and high (orange) daily maximum 558 
temperatures for Black and African Americans (b), Hispanics and Latinos (c), and Asians (d). 559 
Envelopes are 95% confidence intervals. 560 

Implications. In Houston, daily TROPOMI NO2 TVCDs capture a major portion of census tract-561 

scale NO2 inequalities compared to spatiotemporally coincident GCAS measurements that resolve 562 

length scales of dispersion. Mean daily TROPOMI NO2 inequalities are insensitive to TROPOMI 563 

pixel size after the initial information loss with respect to GCAS. In Houston, and other U.S. cities, 564 

communities of color are statistically overburdened by air pollution sources,98, 115, 116 including 565 

NOx sources.16 This is a consequence of historical (e.g., redlining) and contemporary (e.g., 566 

permitting) decision-making that clusters emission sources in a subset of city neighborhoods, 567 
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creating source regions such as the Houston Ship Channel, in combination with historical and 568 

contemporary policies and practices causing and reinforcing housing segregation,1 including white 569 

violence, housing discrimination, and separating communities with freeways.117-121 When NOx 570 

sources are in close proximity, their individual pollutant decay gradients also spatially aggregate; 571 

as a result, a major portion of inequalities persist over spatial scales greater than length scales of 572 

dispersion, the physical process motivating the application of very-high spatial resolution models 573 

and measurements. Fine-scale observations are therefore not always required as evidence of air 574 

pollution inequalities or to inform related policy making and accountability. While daily TVCDs 575 

are coarse (20–89 km2), they retain a wider range of NO2 values, especially in the high tail of the 576 

NO2 distribution, which drive inequalities. Daily mean NO2 TVCDs result in higher, and therefore 577 

more accurate, absolute NO2 inequalities than oversampled TVCDs (0.01° × 0.01°), as TROPOMI 578 

pixels and oversampling grids are large relative to the scale of dispersion. This has relevance to 579 

future work based on TEMPO observations, which are not anticipated to meet the pixel overlap 580 

requirements for oversampling. 581 

We find that neighborhood-level NO2 inequalities and city-wide O3 are coupled air quality issues 582 

in Houston. GAMs relating NO2 inequalities and MDA8 O3 under different temperature conditions 583 

reproduce established nonlinear relationships between PO3, NO2, and VOC-OH reactivity. This 584 

has policy consequences, producing empirical evidence that MDA8 O3 is sensitive to the spatial 585 

distribution of NOx emissions reductions. O3 control is typically approached through sector-based 586 

NOx and VOC emissions reductions without also considering distributive inequalities in O3 587 

precursors.122 However, we find that targeted NOx emissions reductions where NOx sources are 588 

clustered—in communities of color—would lower both NO2 inequalities and city-wide MDA8 O3 589 

in Houston, especially on hot days when MDA8 O3 is highest. This means that permitting and 590 
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other policies concentrating sources in a subset of Houston neighborhoods affect O3 NAAQS 591 

attainment and calls for a reconceptualization of decision-making to include facility/emissions 592 

location.  593 

While there is growing evidence that locally-targeted regulatory interventions are required to 594 

reduce and eliminate air pollution disparities,41, 98 there are barriers to their adoption, as 595 

community-focused air quality plans and recommendations potentially cannot be pursued through 596 

policy making at any level.123 Houston and Pasadena (which is in the Houston UA) are among the 597 

few major U.S. municipalities without formal zoning, an established tool for localities to influence 598 

their own land use, including air pollution source distribution, through the institution of bans, 599 

programs, and environmental review processes.124 Additionally, Houston’s efforts to address air 600 

quality concerns through the local ordinance process have been invalidated by the Texas Supreme 601 

Court,125, 126 further limiting the city from regulating emissions from facilities permitted by the 602 

Texas Commission on Environmental Quality (TCEQ). TCEQ does not have an office or staff 603 

focused on environmental justice, chooses not to use that term (any relevant activities are instead 604 

described as Title VI compliance), and continues to issue permits without considering cumulative 605 

impacts, including facility clustering. However, TCEQ does have a commitment to O3 606 

compliance,127 making this a politically available pathway for addressing inequality in absence of 607 

other approaches. Here, we demonstrate that MDA8 O3 varies as a function of these neighborhood-608 

level NO2 inequalities, with locally-targeted NOx emissions controls required to address NO2 609 

disparities and having substantial O3 air quality co-benefits. This conclusion has policy relevance 610 

as the state has the authority, resources, and initiative to meet the O3 NAAQS and is also evidence 611 

that TCEQ must contend with practices and policies of environmental racism to improve O3 air 612 

quality. 613 
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Supporting Information. Surface wind roses corresponding the Figure 1, surface monitor 614 

locations, detailed TRACER-AQ inequality results, population weighting equation, TROPOMI 615 

inequalities as a function of observation coverage and pixel area, comparison of oversampled and 616 

time-averaged inequalities by S-5P orbit, mean daily TROPOMI population-weighted NO2, 617 

correlations between daily UA and MSA-level inequalities, details for the comparison between 618 

DISCOVER-AQ and TRACER-AQ inequalities, scatterplots of NO2 inequalities versus surface 619 

winds and NO2*, and technical details on generalized additive model (GAM) construction, 620 

including comparisons of GAM methods. 621 
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