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Abstract. In Houston, Texas, nitrogen dioxide (NO3) air pollution disproportionately affects
Black, Latinx, and Asian communities, and high ozone (Os3) days are frequent. There is limited
knowledge of how NO: inequalities vary in urban air quality contexts, in part from the lack of
time-varying neighborhood-level NO> measurements. First, we demonstrate that daily TROPOMI
NO: tropospheric vertical column densities (TVCDs) resolve a major portion of census tract-scale
NO: inequalities in Houston, comparing NO> inequalities based on TROPOMI TVCDs and
spatiotemporally coincident airborne remote sensing (250 m X 560 m) from the NASA TRacking
Aerosol Convection ExpeRiment—Air Quality (TRACER-AQ). We further evaluate the
application of daily TROPOMI TVCDs to census tract-scale NO; inequalities (May 2018—
November 2022). This includes explaining differences between mean daily NO; inequalities and
those based on TVCDs oversampled to 0.01° % 0.01° and showing daily NO> column-surface
relationships weaken as a function of observation separation distance. Second, census tract-scale
NO: inequalities, city-wide high O3, and mesoscale airflows are found to covary using principal
component and cluster analysis. A generalized additive model of O3 mixing ratios versus NO2
inequalities reproduces established nonlinear relationships between O; production and NO»
concentrations, providing observational evidence that neighborhood-level NO; inequalities and O3
are coupled. Consequently, emissions controls specifically in Black, Latinx, and Asian

communities will have co-benefits, reducing both NO, disparities and high O3 days city wide.
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Synopsis. Most neighborhood-level NO inequalities can be observed with daily TROPOMI

observations; the unequal NO: distribution affects O3 chemistry in Houston, Texas.

Keywords. Nitrogen dioxide, ozone, TROPOMI, urban air pollution, environmental racism

1 INTRODUCTION

Houston, Texas is a large U.S. city and center for petrochemical refining that faces multiple air
quality challenges. Historical and contemporary policies and practices continue to
disproportionately offload the environmental costs of industry and transportation on Black, Latinx,
and Asian communities,> 2 causing measurable inequalities in the distribution of nitrogen dioxide
(NO.) and other primary pollutants.’ Houston is also currently ranked among the top-ten most
ozone (O3) polluted cities in the U.S., with residents experiencing frequent exceedances of health-

based O3 standards city wide.!” Recent analytical advances have produced more spatially detailed

11-15 16-18

descriptions of neighborhood-level urban air pollution inequalities, including for NOo.
However, enhanced spatial information has generally relied on time-averaged and/or short-
duration observations, representing conditions that potentially infrequently occur and limiting our
understanding of relationships between NO> inequalities and broader urban air quality issues such

as O;. This has policy relevance as states have regulatory authority around O3 compliance that they

often lack or decline to use regarding air pollution environmental injustice.

NO:z is a criteria pollutant regulated by the U.S. Environmental Protection Agency (EPA). NO; is
a primary pollutant (or pseudo-primary pollutant) with a summertime atmospheric lifetime as short
as a few hours. Primary pollutants are highly spatiotemporally variable, exhibiting atmospheric
dispersion gradients of hundreds of meters to 1-2 km.!' 1?20 NO; is emitted as NOx (= NO + NO»),

with vehicles and electricity generation being major NOx sources in U.S. cities.?!* Houston is
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also a global hub for petrochemical manufacturing, where refineries and industrial activities
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contribute a large portion of NOx emissions,?*?¢ especially in the Houston Ship Channel,?*2¢ a

residential and industrial area along the Buffalo Bayou River, connecting downtown to Galveston

Bay and the Gulf of Mexico (Figure 1). Associated with numerous adverse?’-3!

and unequal health
impacts,?® NO> is a common proxy for toxic combustion and traffic air pollution mixtures in health
studies.* High-volume roadways and heavy-duty diesel truck traffic overburden communities of

33,34

color, and living near roadways is linked to asthma-related urgent medical visits, pediatric

asthma, preeclampsia and preterm birth, and cardiac and pulmonary mortality.3>-4

Neighborhood-level NO» inequalities with race and ethnicity can be observed from space using
the TROPOspheric Monitoring Instrument (TROPOMI).> !6:41-45 This was first demonstrated by
Demetillo et al.,> who showed relative census tract-scale NO, inequalities based on TROPOMI
tropospheric vertical column densities (TVCDs) oversampled to 0.01° % 0.01° agreed with results
from fine-scale (250 m % 500 m) airborne remote sensing during the NASA Deriving Information
on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air
Quality (DISCOVER-AQ) in Houston. In addition, spatial patterns in oversampled TROPOMI
TVCDs reflected NO» distributions at the surface, a conclusion based on comparisons with in-situ
aircraft NO, vertical profiles from DISCOVER-AQ and surface measurements.® In a subsequent
analysis of 52 U.S. cities, Demetillo et al.'® reported oversampled TROPOMI NO:> inequalities
were invariant with urban racial segregation structure,>* meaning that TROPOMI resolves inter-
tract NO> differences even when segregated tracts do not spatially aggregate into larger regions.
Dressel et al.*! found mean daily TROPOMI observations (3.5 km x 5.5 km at nadir) without
oversampling also captured a majority of tract-scale NO inequalities compared to fine-scale (250

m x 250 m) airborne remote sensing and agreed with relative NO> inequalities based on TVCDs
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oversampled to 0.01° x 0.01° to within associated uncertainties, at least in New York City, New
York and Newark, New Jersey. Daily NO; inequalities, when uncertainties are well-characterized,

can be analyzed statistically and situated within our broader understanding of urban air quality.*!

NO:z is an O3 precursor and temporary Os reservoir (Ox = NO; + O3), with Oz production chemistry
varying nonlinearly with NO; and the reactivity of volatile organic compounds (VOCs) with
hydroxyl radical (OH). O3 pollution in Houston is attributed in large part to the combination of
high NOx and reactive VOC emissions by industries in the Ship Channel and gulf breeze
airflows.?% 431 While O3 air quality has improved,>?* exceedances of the health-based maximum
daily average 8-h (MDAS) O3 National Ambient Air Quality Standard (NAAQS) of 70 ppb are
frequent, with 141 exceedance days in the Houston Metropolitan Statistical Area (MSA) over May
2018—November 2022 (our study period). O3 is a secondary and intermediately long-lived
pollutant. As a result, O3 exhibits less intraurban heterogeneity than NO2 and is not generally
associated with neighborhood-level disparities.>> However, because NO, and VOC concentrations
are spatiotemporally variable, O3 production (PO3) chemistry is as well,>*>® with NO; inequalities
and city-wide O3 potentially coupled. In Houston, the largest NO» inequalities during DISCOVER-
AQ corresponded to a severe O3 event with MDAS8 O3 of 124 ppb (LaPorte Sylvan Beach, 25
September 2013).3> In New York City—Newark, tract-scale NO, inequalities were positively
associated with summertime MDAS8 O3 (2018-2021), with Spearman correlation coefficients of

0.41-0.55 for different population groups.*!

Here, we describe census tract-scale TROPOMI NO; inequalities and investigate relationships
with MDAS8 O3 in Houston. As a first step, we evaluate daily TROPOMI NO; inequalities with
race-ethnicity, advancing our understanding of the application of mean daily TROPOMI NO;

TVCDs to NO; inequalities developed in New York City—Newark.*! We compare daily TROPOMI
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NO:> inequalities against measurements of spatiotemporally coincident airborne remote sensing
(250 m x 560 m) during the NASA TRacking Aerosol Convection ExpeRiment—Air Quality
(TRACER-AQ) in September 2021, discuss differences between relative and absolute mean daily
and oversampled TROPOMI NO; inequalities, and present column-surface relationships as a
function of measurement separation distance and surface wind conditions. Second, we statistically
analyze TROPOMI NO; inequalities (May 2018—November 2022), interpreting covariations
between neighborhood-level NO» inequalities, overall NO» pollution, and urban O3 air quality in

ways that have policy implications.
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Figure 1. Example of census tract-scale GCAS NO: columns (molecules cm2) collected on 25
September 2021 at 2—5 pm (a), TROPOMI TVCDs on the same day, with a mean pixel size of 21
+ 0.6 km? (b), and oversampled TROPOMI TVCDs (0.01° x 0.01°) over May 2018—November
2022 (c). Also shown, the percent population for the largest race-ethnicity group in each census
tract for Black and African Americans (blue), Hispanics and Latinos (green), and Asians (orange)
(d). The inner and outer black lines are the Urbanized Area (UA) and Metropolitan Statistical Area
(MSA) boundaries, respectively. The thick black box is the Houston Ship Channel (a). Background
map data: Landsat 8 composite (January 2017—June 2018). Corresponding wind conditions are
presented in Figure S1.

2 MEASUREMENTS AND METHODS

TROPOMI. TROPOMI is a hyperspectral spectrometer onboard the sun-synchronous European

Space Agency Copernicus Sentinel-5 Precursor (S-5P) satellite.>® % NO, is retrieved by fitting the

Black and African Americans
Hispanics and Latinos
Asians

=

70
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405—465 nm spectral band based on an updated Dutch OMI (Ozone Monitoring Instrument) NO»
(DOMINO) algorithm and work from the Quality Assurance for Essential Climate Variables
project.5-6> NO, observations are converted to TVCDs via an air mass factor (AMF), which relies
on spatially and temporally coarse inputs, e.g., clouds, surface albedo, and NO; profile shape, that
can bias NO> TVCDs low under high NO> conditions.’® The application of TROPOMI NO,
TVCDs to census tract-scale NO; inequalities has been evaluated through comparison with
airborne remote sensing that resolves NO» distance decay gradients, both in terms of TVCDs first
oversampled to 0.01° x 0.01°3 and daily TVCDs,*! with TROPOMI capturing similar relative but
lower absolute population-weighted census tract-scale NO» inequalities. While the sensitivity of
TROPOMI is lower near the surface,®”> %8 there are no physical processes in the free troposphere
that maintain intraurban gradients corresponding to neighborhood-level race-ethnicity. TROPOMI
TVCDs have been shown to reflect intraurban spatiotemporal NO» variability at the surface, a
critical analytical requirement for informing decision making around environmental racism.> 164!
Based on 144 in-situ NO; vertical profiles throughout Houston from DISCOVER-AQ, Demetillo
et al.? reported that the slope of the linear fit between the measured full column (extending up to 3
km) and NO; column within the convective boundary layer was 0.98 + 0.15 (» = 0.99), with no
significant location-specific differences. Multiple authors have shown TROPOMI and OMI NO»
TVCDs correlate with surface-level nitrogen dioxide (NO:*) measurements and, more
importantly, that correlation coefficients decrease with increasing spatial separation between

columns and monitors on the scales of NO; spatial variability.3 164169

From 1 May 2018 to 5 August 2019, the TROPOMI nadir spatial resolution was 3.5 km % 7 km;
from 6 August 2019 to present, the nadir spatial resolution improved to 3.5 km x 5.5 km.” The S-

5P satellite crosses the equator at ~1:30 pm local time (LT) and overflies Houston at 12-3 pm LT,
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typically once but occasionally twice daily. When there are two TROPOMI overpasses over
Houston on the same day, we use the first overflight only. We use current Level 2 NO> TVCDs
(version 02.04.00) with quality assurance values >0.75, as recommended,’! from operationally
reprocessed (RPRO, collection identified: ‘03°, 1 May 2018-25 July 2022) and offline (OFFL, 26
July 2022-30 November 2022) products. A key update in version 02.04.00 is the use of a surface
albedo climatology derived from TROPOMI observations rather than the coarse spatial resolution
OMI surface albedo climatology (0.5° x 0.5°).”! TROPOMI NO; inequalities can be sensitive to
product version; for example, Dressel et al.*! found census tract-scale NO> inequalities based on
NO:; TVCDs reprocessed on the S-5P Products Algorithm Laboratory (S5P-PAL) system were 3—
6 points (10-20%) higher over the New York City—Newark urbanized area (UA) than those
computed using a then current version of operational product (version 01.02.02). We compared
NO: inequalities using version 02.04.00 (RPRO) and S5P-PAL reprocessed TVCDs over January—

December 2019 but find results were statistically indistinguishable.

GCAS. The Geostationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator
(GCAS) makes hyperspectral nadir-looking measurements of backscattered solar radiation in the
ultraviolet and visible in two channels at wavelengths 300490 nm (optimized for air quality) and
480-900 nm (optimized for ocean color).”? Each channel uses a two-dimensional (2D) charge-
coupled device (CCD) array detector, where one CCD dimension provides spectral coverage and
the other the cross-track spatial coverage across a ~45° field of view in the air quality channel.
GCAS was developed as a technology-demonstration instrument for the GEOstationary Coastal
and Air Pollution Events (GEO-CAPE) decadal survey and functions as a satellite analog in NASA
airborne research. GCAS NO: column retrievals are validated over urban areas and consist of a

two-step approach similar to algorithms used for other major satellite instruments, including
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TROPOMI.*75 Briefly, NO> differential slant columns are retrieved fitting across 425—460 nm
using the QDOAS spectral fitting package’® and a reference spectrum measured at a nearby
location away from NOx emissions sources. The AMF is largely a function of viewing and solar
geometries, surface reflectance, and atmospheric and trace gas vertical profiles.” 7 GCAS
retrievals for TRACER-AQ use the NASA GEOS-CF model analyses (0.25° x 0.25°).7® Other
components of the retrieval follow Judd et al.,”” where column uncertainties over New York City—
Newark were £25% and unbiased compared to coincident Pandora measurements, ground-based
total NO2 columns with relatively low uncertainties from AMFs that do not vary with NO» vertical
profile shape or surface albedo.” During TRACER-AQ, GCAS NO> columns were averaged to
250 m (cross-track) x 560 m (along track). GCAS flew onboard the NASA Johnson Space Center
Gulfstream V (JSC GV) research aircraft on 11 days in September 2021. We use measurements
from the 27 cloud-free flights sampling at least 60% of census tracts in the Houston MSA (Table
S1). GCAS flew a repeated flight pattern in the morning (~9-11:30 am LT), midday (~11:30 am—
2 pm LT), and afternoon (~2:30-5 pm LT), sampling 83 + 4% (+10) of tracts with similar, but not

identical, demographics to the MSA (Tables S2-S3).

Surface NO:*, O3, and Meteorological Measurements. NO>* observations are collected at 23
stations across the MSA (Figure S2a) and provided through the U.S. EPA Air Quality System.?°
NO>* is mostly measured by decomposing NO; to NO over a heated molybdenum catalyst and
detecting NO by chemiluminescence, a technique with a known positive interference from other
nitrogen compounds, which also thermally decompose across the catalyst at non-unity
efficiency.®"®3 The term NO>* acknowledges this interference, which, while affecting accuracy,
has a smaller effect on precision.®* Two stations in the MSA are near-roadway monitors. We use

O3 mixing ratios measured at 21 stations, many of which also house NO>* instruments (Figure
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S2b), converted to MDAS Os. We use 1-h measurements of wind speed (resultant), wind direction,
and air temperature and daily maximum temperatures collected at 23 stations (Figure S2c) with
observations on at least 50% of days during O3 season, defined in Houston as March-November,3

when MDAS O3 NAAQS exceedances are most likely to occur.

Census Tract-Scale Inequalities. We calculate area-weighted mean NO> TVCDs within 2020
census tract polygons across the Houston UA and MSA and population weight tract-average
TVCDs using race and ethnicity data from the U.S. Census 5-year 2020 American Community
Survey (ACS). The ACS subsamples census unit populations and applies a complex weighting
process to account for variability in tract-level sampling rates and differential group response rates.
The weighting process prioritizes accuracy over precision, which we manage using population-
weighting and aggregation across the UA and MSA %87 Tract-scale NO; inequalities with race-
ethnicity are reported as relative (%) and absolute (molecules cm2) differences between
population-weighted NO> TVCDs (eq. S13 '8 3%) for non-Hispanic/Latino Black and African
Americans, Hispanics and Latinos of all races, and non-Hispanic/Latino Asians compared to non-
Hispanic/Latino whites in tracts with populations equal to or greater than the mean across tracts

with observations. NO> differences with race and ethnicity are treated as a proxy for racism.

3 RESULTS AND DISCUSSION

Evaluating Daily TROPOMI NO: Inequalities in Houston, Texas. We first compare spatially
and temporally coincident daily census tract-scale TROPOMI NO; inequalities against those
computed using GCAS NO: columns, which have sufficient spatial resolution to observe NO>
dispersion gradients. Correspondence between daily TROPOMI and GCAS inequalities is

described using Pearson correlation coefficients and slopes derived from an unweighted bivariate

10
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linear regression of simultaneous observations, defined as occurring within +30 minutes (Figure
2). TROPOMI and GCAS NO: inequalities are strongly correlated, with » values of 0.70-0.83
(relative) and 0.87-0.91 (absolute), indicating daily TROPOMI NO> TVCDs reflect the variability
of spatially detailed GCAS observations day to day. Regression slopes are 0.66 + 0.15 to 1.08 £
0.25 for relative and 0.56 + 0.11 to 0.77 + 0.14 for absolute inequalities; therefore, daily TROPOMI
NO; TVCDs capture a major portion of tract-scale inequalities in Houston. Slopes for relative
inequalities are larger than for absolute inequalities, with relative differences easier to distinguish
using measurements coarser than distance decay gradients. This is consistent with results from
daily observations in New York City—Newark*! and reinforces conclusions based on oversampled
TVCDs in Houston by Demetillo et al.,> where TROPOMI resolved comparable relative but lower

absolute inequalities than GCAS during DISCOVER-AQ.

Black and African Americans Hispanics and Latinos Asians
GCAS Inequality (%) GCAS Inequality (%) GCAS Inequality (%)
0 20 40 60 0 20 40 60 0 20 40 60
30 : ‘ ‘ ‘ ; ; ‘ ‘ ‘ 60
@ (b) | ©
3 520 m =1.08 + 0.25 | m=0.66 +0.15 m=0.80 +0.17 20
o 8 | r=073 r=0.70 r=0.83
23 i
- 3 o
= 2510 20
O £
ok ] 0 ]
E = m=0.77 £ 0.14 m =0.56 + 0.11 m=0.70 £ 0.15
x 0 r=091] r=091] r=087]°
0 10 20 30 0 10 20 30 0 10 20 30
GCAS Inequality GCAS Inequality GCAS Inequality

(x1 0% molecules cm_2) (x1014 molecules cm_z) (x1014 molecules cm_z)

Figure 2. Spatiotemporally coincident (£30 min) relative (%) (blue circles) and absolute
(molecules cm™) (green diamonds) GCAS and TROPOMI NO; inequalities during TRACER-AQ
for Black and African Americans (a), Hispanics and Latinos (b), and Asians (c) in comparison to
non-Hispanic/Latino whites with slopes (m), based on an unweighted bivariate linear regression,
and Pearson correlation coefficients (r) of relative (blue) and absolute (green) inequalities.

We test the sensitivity of daily TROPOMI census tract-scale NO: inequalities to TROPOMI

observation spatial resolution by comparing NO> inequalities across the natural variability in daily

11

TROPOMI Inequality (%)
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mean TROPOMI pixel size, ranging 20-89 km? with a mean of 39 + 16 km? (+lc standard
deviation) UA wide (May 2018—November 2022). Because daily inequalities are sensitive to
observation coverage, we first remove days with NO, observations in fewer than 20% of tracts in
the domain (discussed below). We group observations according to thresholds defined by pixel-
size quintiles, comparing mean inequalities for each threshold to those derived from the smallest
20% of pixels using 95% confidence intervals from bootstrapped distributions sampled with
replacement 10* times (Table S4). We do not observe statistically significant differences in mean
daily TROPOMI inequalities outside of the 95% confidence intervals compared to the smallest
pixels. The lack of pixel area dependence suggests most city-wide NO> inequalities, and those that
are observed by TROPOMI, are driven by spatially clustered NOy sources. TROPOMI pixels are
larger than the length scales of individual dispersion gradients; however, when NOx sources are
clustered into source regions, their gradients also spatially aggregate. TROPOMI resolves NO»
gradients on the scale of these source regions, if not individual sources, with the latter causing the

information loss compared to GCAS.

Observed NO; inequalities based on TVCDs are sensitive to the number of census tracts with NO»
measurements across the domain (UA or MSA).*! When observation coverage is low, inequalities
tend to be based on TVCDs in census tracts less representative of city-wide demographics. In this
case, census tracts where high numbers of residents are in population groups in the majority with
respect to city area (not necessarily population count) are overrepresented in the calculation. The
net effect is that population-weighted inequalities are based on census tracts that have higher
populations of non-Hispanic whites than in the domain on average. In New York City—Newark,
Dressel et al.*! found low observation coverage biased NO, inequalities low by 6—7 percentage

points and, as a result, identified minimum coverage threshold requirements for daily mean NO;

12
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inequalities. We test sensitivity of mean daily TROPOMI NO; inequalities in Houston, first
applying a minimum coverage requirement of 20% of census tract with observations, then binning
daily TVCDs by >20%, >40%, >60%, and >80% census tracts with observations. When bootstrap
95% confidence intervals (calculated with replacement 10* times) for a lower coverage bin do not
overlap with the 95% confidence interval for the >80% coverage bin, we identify a significant
difference between inequalities. We select thresholds separately for each metric as the lowest
coverage bin without a significant difference. Coverage thresholds range 20—40% for relative and
absolute inequalities for each metric (Table S5) and are applied throughout. Mean daily TROPOMI
NO: inequalities in Houston exhibit less observational coverage sensitivity than in New York

City—Newark.*!

We compare mean daily NO> inequalities to results based on NO, TVCDs on the same subset of
days oversampled to 0.01° x 0.01° (~1 km x 1 km) using a physics-based algorithm® prior to
census tract averaging (Table 1). Oversampling averages measurements over time with large and
overlapping pixels to a finer grid, allowing sub-pixel-scale spatial features to be recovered.®® The
oversampling approach used here treats pixel-level observations as sensitivity distributions using
a generalized two-dimensional super Gaussian spatial response function, appropriate for imaging
grating spectrometers like TROPOMI. Relative mean daily and oversampled NO- inequalities are
equal to within associated uncertainties; however, absolute NO> inequalities in mean daily TVCDs,
which are already low relative to fine-scale airborne remote sensing (Figure 2), are as much as
~30% higher than oversampled TVCDs. We see multiple possible explanations for this:
oversampling is not enhancing spatial gradients relevant to describing census tract-scale NO»

inequality, which is instead determined by the spatial resolving power set by pixel size; there is

13
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limited NO; variability on scales of 1-4 km as relevant to NO: inequalities; and/or there is

compensating information in the daily inequalities lost through time averaging.

First, we compare NO; inequalities based on oversampled TVCDs over a range of grid sizes,
finding no significant differences in relative or absolute inequalities when we oversample to 0.01°
% 0.01°, 0.02° x 0.02°, 0.04° x 0.04° (the approximate TROPOMI nadir resolution), and 0.06° x
0.06°. In an analysis of 52 major U.S. UAs, Demetillo et al.'¢ also reported small differences in
relative and absolute census tract-scale NO; inequalities using TROPOMI TVCDs oversampled to
0.01° x 0.01° and 0.04° x 0.04°, with the exceptions of the narrow coastal Californian cities of
Oakland, San Diego, and San Francisco, where NO> inequalities based on TVCDs oversampled to
0.04° x 0.04° were biased low by 8-22% compared to TVCDs oversampled to 0.01° x 0.01°,
suggesting oversampling enhances spatial gradients from coarser pixels when that variability
exists.!® Second, we take advantage of the natural variability in TROPOMI pixel orientations,
separately comparing NO> inequalities based on oversampled TVCDs to mean NO, TVCDs
collected within individual S-5P orbits, thus eliminating the oversampling pixel overlap
requirement. On average, for the 15 S-5P satellite orbits that fully cover the Houston UA, relative
NO: inequalities from oversampled and mean NO, TVCDs are similar; however, absolute NO>
inequalities of mean TVCDs are ~30% higher than oversampled TVCDs for Black and African
Americans and Hispanics and Latinos (Table 1; Table S6), indicating the information loss is not
simply because of time averaging, but smoothing during oversampling. In Figure 3, we compare
mean and median distributions of tract-scale daily and oversampled (0.01° % 0.01°) TROPOMI
TVCDs, fit assuming distributions are lognormal as is characteristic for NO>. Mean daily
measurements span a wider range of NO; conditions and retain more observations in the high tail

of the distribution than oversampled TVCDs, with high NO» values driving inequalities. Sun et

14



308  al.® report that oversampling, including with the physics-based algorithm used here, is more
309 accurate when the grid is fine relative to a gradient with a smooth spatial response, for example, a
310 city edge, while pixel means are more accurate for coarse grids and sharper spatial responses. Our
311  results suggest absolute census tract-scale NO> inequalities are more accurately represented using
312  means, with TROPOMI pixels and typical oversampling grids being large relative to scale of
313  dispersion. Research using oversampled NO> TVCDs to identify NOx point sources and infer NOx
314  emissions and NOs lifetimes have improved absolute estimates by rotating spatially variable NO>

90-93

315  plumes to a common wind direction, an aspatial solution not applicable to describing census

316 tract-scale NO: inequalities, although potentially useful for informing related decision-making.
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318 Figure 3. Lognormal distributions of census tract-average TROPOMI NO; TVCDs in the Houston
319 UA (May 2018-November 2022). Left axis: TVCDs oversampled to 0.01° x 0.01° (black line).
320 Right axis: mean (brown filled circles) and median (cyan open circles) of distributions of daily
321  observations.

322 Table 1. Mean daily TROPOMI NO: inequalities at the MSA and UA level (May 2018—November
323  2022) on days meeting observation coverage thresholds, inequalities based on TROPOMI NO;
324  TVCDs oversampled to 0.01° x 0.01°, 0.02° x 0.02°, 0.04° x 0.04°, and 0.06° x 0.06°, and average
325  inequalities of the 15 TROPOMI orbit patterns that cover the Houston UA separately from means
326  and oversampled TVCDs (0.01° x 0.01°). Uncertainties are expressed as standard mean errors.

l\]/“llié(l;lplg)?\l/ﬁ] Oversampled TROPOMI Separatelyobr }k]) I ROPOMI
MSA UA MSA UA UA
0.01° x 0.01° x 0.02° x 0.04° x 0.06° x Mean Oversampled
0.01° 0.01° 0.02° 0.04° 0.06° (0.01° x 0.01°)

Relative Inequalities (%)
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Black and African

: 171 81 181 9% 1 9% 1 81 81 9% 1 9% 1
Americans
Hispanics and Latinos 23+1 16+1 25+1 17+1 17+1 17+1 16+1 18+1 16+1
Asians 9+ 1 11 111 01 11 11 241 411 241

Absolute Inequalities (x10'* molecules cm2)

Black and Affican 64+05 36+03  50£03 27403 27403 26+03 26+£04  37£05 2.8+0.4
Americans
Hispanics and Latinos 88£0.5 68+04  72+04 54403 54+03 53+03 52404  73%05 53+04
Asians 37404 03+04 29403 0.1£03 0.1£03 0.4+04 0.5£04 0205 0404

327

328 To describe spatiotemporal variability in column-surface relationships, we compare daily tract-

329 average TROPOMI TVCDs and daytime (12—3 pm LT) NOy* surface mixing ratios across the

330 MSA as a function of their separation distance using Pearson correlation coefficients (7) over May

331  2018-November 2022 (Figure 4).> 1641 6 We require NO»* mixing ratio data at four or more

332  monitors in each 1-km distance bin per day and exclude near-roadway monitors, which are subject

333 to hyperlocal effects. Surface NO>* and directly overhead TVCDs (defined as tract center points

334  within 1 km of an NO2* monitor) are strongly correlated, with median r values of 0.62. Correlation

335 coefficients decrease as the distance between observations increases, falling to 0.54 on average

336  when tract-average TVCDs are 2—6 km from the nearest monitor and 0.48 at 7—10 km. This 7-

337 distance dependence indicates spatial variability in daily TROPOMI TVCDs follows NOy*

338 patterns at the surface, with 7 decreases at 1-2 km consistent with length scales of NO- dispersion

339  gradients. If we consider uncertainties as standard mean errors based on the number of days with

340 observations included in the daily average, uncertainties in » are typically £0.01 and mean

341  differences in » with distance are significant. However, column-surface relationships are variable

342  daily, with standard deviations (15) of ~0.3 in each distance bin. Daily correlation coefficients are

343  lower than for oversampled TROPOMI TVCDs as reported in Demetillo et al., especially at 1 km,

344  meaning time averaging masks temporal variability in column-surface agreement. We also sort

345  daily observations in the highest (>3.9 m s™!) and lowest (<2 m s~!) UA-wide mean daytime (123

346 pm LT) surface wind quartiles as a function of distance, as wind is a physical control over the
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362

inter-tract NOz distribution. Daily column-surface correlations covary with wind speeds physically
realistically, with stronger r values for slower winds and smaller » values with faster winds at all

observation separation distances.

0.7 |

All Days ol
Slow Wind Days ‘
Fast Wind Days "0

Pearson Correlation Coefficient

1 2 3 4 5 6 7 8 9 10
Observations Separation Distance (km)

Figure 4. Median daily Pearson correlation coefficients between tract-averaged NO> TVCDs and
surface NO>* mixing ratios as a function of observation separation distance (km) on all days over
May 2018—November 2022 (brown solid line) and on days in low (light blue dashed line) and high
(black dotted line) quartile winds. We indicate the mean number of census tracts in the daily
correlation at that distance each day, with similar statistics on low and high wind days.
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Figure 5. Daily UA-level TROPOMI NO: inequalities (May 2018—November 2022). Relative (%)
and absolute (molecules cm2) inequalities on all days (light blue and light green, respectively) and
on days meeting metric-specific coverage thresholds (bright blue and dark green, respectively) for
Black and African Americans (a), Hispanics and Latinos (b), and Asians (c). Bootstrap mean
inequalities, sampled with replacement 10* times, are reported with uncertainties as 95%
confidence intervals.
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Daily NO; Inequalities. We calculate daily TROPOMI census tract-average NO: inequalities over
May 2018—September 2022 across the Houston UA and MSA (Table 1; Figure 5). Mean daily UA-
level population-weighted NO> TVCDs are 8 + 1% and 16 + 1% higher for Black and African
Americans and Hispanics and Latinos compared to non-Hispanic/Latino whites, respectively.
Neighborhoods near the Houston Ship Channel (Figure 1) with large populations of Black and
African Americans and Hispanics and Latinos, e.g., Pasadena, Fifth Ward, Harrisburg/Manchester,
and Galena Park, often have the highest NO; concentrations. Mean population-weighted NO»
TVCDs for each group including non-Hispanic/Latino whites are shown in Table S7. Inequalities
for Black and African Americans and Hispanics and Latinos increase to 17 + 1% and 23 + 1%,
respectively, at the MSA level. Mean daily population-weighted NO> TVCDs for Asians equal
those for non-Hispanic/Latino whites within the UA but are 9 + 1% higher across the MSA, mainly
due to the inclusion of the large Asian population around Sugar Land in southwest Houston (Figure
1d). We observe larger inequalities at the MSA level, reflecting urban-suburban differences,
compared to the UA, representing intraurban NO, differences.> ** UA and MSA-level relative (r
= 0.83-0.92) and absolute ( = 0.88—0.95) inequalities are strongly correlated (Figure S3). Errors
for mean inequalities are 95% confidence intervals, which we derive from bootstrapped
distributions sampled with replacement 10* times. Absolute census tract-scale NO, inequalities are
often lower than the precision of individual TROPOMI NO; TVCDs, which have a median daily
pixel-level precision 0f 9.9 x 10! molecules cm (approximately 30% of mean NO, TVCDs) over
May 2018—November 2022 in the Houston UA. However, this imprecision improves through
spatial and temporal averaging,”> done here through population weighting over all census tracts in
the UA or MSA and by reporting daily inequality results as means over many days. Sampling and

nonsampling (e.g., measurement, coverage, nonresponse, and processing errors) errors in the ACS
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influence the accuracy and precision of tract-scale NO> inequalities as well and, when random,

also improve through averaging to higher geographic levels.

We report NO» inequalities during 27 TRACER-AQ flights using GCAS separately in the late
morning, midday, and afternoon (Table 2). Relative inequalities are not statistically significantly
different with time of daytime, although there may be a tendency toward lower relative inequalities
at midday. Absolute NO; inequalities are significantly higher in the morning than midday and
afternoon, and there are multiple factors that could influence these differences. While wind speeds
are similar on average during all flights, the atmosphere is typically more stable in morning than
at midday, affecting the NO» distribution in the nearfield of NOx sources,'® with convective mixing
common in the afternoon in Houston. The surface mixed layer height is typically shallower in the
morning than afternoon; however, this will have a larger effect on surface concentrations than
TVCDs. We also expect higher rush hour NOx emissions and longer NO> chemical lifetimes®® in
the morning and late afternoon compared to midday. Diurnal variability in absolute inequalities
has implications for interpreting observations from TROPOMI, which collects measurements at
12-3 pm LT over Houston, and the recently-launched TEMPO (Tropospheric Emissions:
Monitoring of Pollution) instrument, which scans North America hourly during daylight hours
from onboard a geostationary satellite.”” Our analysis in the New York City—Newark UA found
fewer statistically significant morning-afternoon differences in absolute NO, inequalities,*!
suggesting there is more to learn from TEMPO concerning temporal variability in the NO»
distribution. Because GCAS subsampled the MSA, we also report mean daily TROPOMI NO»
inequalities (May 2018—November 2022) along a representative TRACER-AQ flight for

comparison (Table 2).
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408 Table 2. Relative and absolute mean GCAS NO:> inequalities in the Houston MSA during
409 TRACER-AQ in the morning (9—-11:30 am LT), at midday (11:30 am—2 pm LT), and afternoon
410 (2:30-5 pm LT). Relative and absolute mean daily TROPOMI NO: inequalities (May 2018—
411  November 2022) along a representative TRACER-AQ flight raster (afternoon, 25 September
412 2021). GCAS inequalities along spatially coincident TRACER-AQ and DISCOVER-AQ tracts
413  during TRACER-AQ (2021) and DISCOVER-AQ (2013). Airborne and TROPOMI uncertainties
414  are 95% confidence intervals of bootstrap mean inequalities, sampled with replacement 10* times.

GCAS GCAS GCAS TROPOMI along 2021 GCAS 2013 GCAS
TRACER-AQ TRACER-AQ TRACER-AQ TRACER-AQ (TRACER- (DISCOVER-
morning midday afternoon raster AQ) AQ)
Relative Inequalities (%)
Black and African Americans 17+7 12+6 13+4 13+1 9+8 10+6
Hispanics and Latinos 27+4 20+ 6 25+2 22+1 24+ 6 20£5
Asians 12+ 10 13+£10 11+4 3+£2 9+6 11+4
Absolute Inequalities (x10'* molecules cm™2)
Black and African Americans 144+5.8 6.8+3.9 82+2.6 6.0+0.7 49+4.6 10.9+6.3
Hispanics and Latinos 22.7+4.4 11.9+34 16.0+3.6 10.6 1.0 16.4+3.7 19.3+£59
Asians 170+ 12.9 9.2+£6.9 7.6+3.8 25+1.0 9.6 +£6.2 94+37

415

416  GCAS NO; measurements in Houston collected during TRACER-AQ and DISCOVER-AQ offer
417  observational insight into trends from 2013 to 2021 (Table 2). We compare weekday population-
418  weighted, tract-average NO> columns in spatially coincident census tracts along representative
419 TRACER-AQ and DISCOVER-AQ flight patterns (SI Appendix 1, Figure S4; Tables S8—S11).
420 We calculate inequalities using the 2020 ACS for both DISCOVER-AQ and TRACER-AQ to
421  allow comparisons across the same tracts and isolate effects of changes in NO; concentrations
422  from demographics. We find relative NO: inequalities are statistically indistinguishable, with
423  overlapping 95% confidence intervals for NO; inequalities in 2013 and 2021 and by the Wilcoxon
424  rank sum test, a non-parametric two-sample t-test. While absolute inequalities were always lower
425  during TRACER-AQ than DISCOVER-AQ, they were variable day to day, in addition to the
426  relatively small number of aircraft observations, such that we lack the precision on their means
427  (not the observations themselves) to interpret the differences. UA-wide mean NO>* mixing ratios
428  were slightly higher and more variable during DISCOVER-AQ (6.7 = 6.2 ppb) than TRACER-

429  AQ flights (6.0 = 4.3 ppb); winds were slower during TRACER-AQ (2.1 + 0.8 m s!) than
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DISCOVER-AQ (3.1 + 1.2 m s7!). Slower mean winds during TRACER-AQ may have worsened
inequalities, while lower NO>* corresponds to lower absolute inequalities (discussed below).
Previous work has shown downward NOx emissions trends have not reduced relative NO:
inequalities in U.S. cities using NO> empirical models;'? 3 however, this has not yet been

demonstrated with observations directly to our knowledge.

Relationships between daily UA-level census tract-scale TROPOMI NO; inequalities, surface
winds, and overall NO; pollution (Table 3; Figures S5-S7) underscore the need for locally targeted
controls over sector-based approaches to reducing NO» disparities. Absolute NO» inequalities are
moderately negatively associated with wind speeds for most groups, as faster winds distribute NO:
away from NOx sources, showing NO; inequalities arise from the distribution of NOx sources, as
well as that daily NO; inequalities vary meaningfully with relevant atmospheric conditions.
Absolute NO; inequalities moderately correlate with UA-mean surface NO>* and NO, TVCDs in
the winter and during O3 season for most metrics. At the same time, relative inequalities are more-
weakly associated with overall NO,. Differences in these correlations for absolute and relative
NO: inequalities manifest from NOx sources being systematically located in Black and African
American and Hispanic and Latino, as NO> concentrations in the nearfield of emitters are more
temporally variable than the physical locations of NOx sources. As a consequence, emissions
reductions that maintain unequal source distributions, such as sector-based approaches, lower
overall NO> pollution and absolute differences between groups but have little effect on relative

inequalities, which require location-specific policy interventions.”®

Table 3. Spearman rank correlation coefficients (2018-2022) with p < 0.050 in winter and O3
season: daily absolute TROPOMI inequalities and daytime (12-3 pm LT) surface wind speed,
NO2* mixing ratios, and daily UA-level TROPOMI NO; TVCDs and daily relative TROPOMI
inequalities and daytime NO>* mixing ratios and UA-level TROPOMI NO> TVCDs.
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Absolute Inequality Correlations Relative Inequality Correlations

Wind Speed Surface NO»* NO, TVCDs Surface NO»* NO, TVCDs

Winter (December—February)
Black and African Americans —0.40 0.44 0.55 0.25 0.26
Hispanics and Latinos —0.62 0.67 0.67 0.31 0.17
Asians 0.21 0.21

O3 Season (March—November)
Black and African Americans —0.34 0.48 0.65 0.17 0.20
Hispanics and Latinos —0.51 0.61 0.77 0.24 0.26
Asians —0.17 0.15 0.07

454

455 NO:; Inequalities and O3 Air Quality. We use daily observations of NO: inequalities to
456  investigate relationships between neighborhood-level NO> distributions and O3 air quality. First,
457  applying an established approach to understanding the influence of meteorology on O3 variability
458 in Houston, we disaggregate observations by winds using principal component and cluster

459  analysis,* 33 99-103

presenting cluster characteristics that include census tract-scale NO;
460 inequalities. We generate one two-dimensional principal component for mean daytime (12-3 pm
461 LT) u and v resultant winds during O3 season, which captures 88% of the observed variability in
462 u and v components. We then apply k-means clustering with 1,000 iterations to generate eight
463  wind clusters, with the first centroid selected at random, from the iteration with the lowest total
464  sum of distances (Figure 6; Table 4). We selected the optimal number of clusters, allowed to range
465  1-10, using the Calinski-Harabasz criterion, maximizing the ratio of the between-cluster variance
466  to the within-cluster variance with respect to the number of clusters.!** We confirmed the identified
467  number of clusters using the elbow method with 10? iterations, with the optimal number of clusters
468  based on the variance explained.!® Eight clusters balances clarity and complexity relevant to
469 relationships between NO; inequalities and MDAS Os. Missing daytime winds are filled using
470  measurements from the closest proximity monitor with observations. We renamed the clusters 1—
471 8 from most to least frequent MDAS8 O3 NAAQS exceedances. The analysis reproduces results in

472  the literature, with high O3 days associated with easterly and east-southeasterly winds.*3- 33 100. 103
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473  Figure 6 highlights the variability in NO; spatial distributions lost through averaging (Figure 1c),

474  with results based on long-term or annual averages representing conditions that infrequently occur.
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475

476  Figure 6. Distinct mean daytime (12-3 pm LT) wind clusters during O3 season (March—
477  November) over May 2018—November 2022 in the Houston MSA. Corresponding TROPOMI NO»
478 TVCDs oversampled to 0.01° x 0.01°. Wind vector length is proportional to wind speed, with
479  mean wind speeds given in Table 4. The W.A. Parrish Generating Station is indicated with an x
480 and the Houston Ship Channel with a thick black box in cluster 1. The thin inner gray and outer
481  black lines are the UA and MSA boundaries, respectively.

482 MDAS O3 NAAQS exceedances are most frequent in cluster 1, when winds are on average slow
483  and easterly—corresponding to the largest absolute daily TROPOMI race-ethnicity inequalities
484  (Table 4). Cluster 1 is the primary wind condition in which we observe statistically significant
485  UA-level inequalities for Asians, with NO> from the Ship Channel transported toward Sugar Land
486  in southwest Houston and stagnant NOyx emissions around the nearby coal-fired W.A. Parrish
487  Generating Station. This explains why NO: inequalities for Asians are not strongly correlated with

488  wind speed or overall NO: pollution level (Table 3). MDA8 O3 NAAQS exceedances are also
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common in clusters 2—4, when winds are slow (~1.6 m s™!) and east-southeasterly, southerly, and
westerly, with elevated UA-level absolute daily TROPOMI NO; inequalities for all groups except
Asians. Clusters 5-8 include the fewest number of O3 NAAQS exceedances, occurring on <5% of
days. These clusters are characterized by faster winds, lower UA-mean NO*, and lower absolute
tract-scale daily TROPOMI NO; inequalities. Wind conditions have less influence on relative NO;
inequalities, as winds do not affect the locations NOx sources. Observed correspondence between
MDAS8 O3 and absolute census tract-scale NO: inequalities indicates similar atmospheric

conditions exacerbate both phenomena and/or high O3 and NO: inequalities are linked chemically.
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Table 4. Mean daytime wind cluster characteristics: number of days in each cluster; MSA-mean wind speed (£1c) and direction; MSA-
level MDAS O3 NAAQS exceedances, both number and frequency; UA-mean NO>* (+1c); and mean daily TROPOMI relative and
absolute inequalities based on bootstrapped distributions sampled with replacement 10* times with uncertainties as 95% confidence

intervals.
Cluster 1 2 3 4 5 6 7 8
Number of days 186 279 193 112 170 48 162 136
Wind speed (m s™') 0.7 1.2 2.2 1.3 3.7 4.2 3.5 2.5

. . . cast
Wind direction easterly southerly southeasterly westerly southeasterly northwesterly  southerly = northwesterly
Temperature (°C) 28 32 27 30 28 23 30 23
03 NAAQS exceedances 49 38 22 12 9 2 5 4
8/30 )exceedance frequency 2 14 1 1 5 4 3 3
NO,* (ppb) 7.4 6.6 7.2 6.1 5.1 5.5 3.9 6.7
UA
Mean Daily Relative Inequalities (%)
Black and African =1 13+1 102 9+3 942 343 1041 6+2
Americans
Hispanics and Latinos 19+2 22+2 17+2 18+ 6 14+2 14+3 13+2 9+2
Asians 9+2 0+1 142 —6+£2 3+£2 -15+4 —0+£1 442
Mean Daily Absolute Inequalities (x10"* molecules cm2)

Black and African 59411  50+08 37406 33409 23406  -07+£05  21£03  21+05
Americans
Hispanics and Latinos 95+14 9.1+14 6.9+0.8 81+15 3.7+£0.6 41+0.8 29+04 29+05
Asians 53+£15 -0.1+£0.5 —04+£1.0 —09+14 —0.7+04 -3.1+£0.5 —0.0+0.3 1.8+0.7
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PO; varies nonlinearly with NO> concentrations (Figure 7a); therefore, NO; inequalities and city-
wide Oj air quality are potentially coupled chemically. Briefly, POs3 increases with increasing NOx
when NO is the limiting reagent in Os-forming radical cycling (PO3 chemistry is NOx limited).
PO; decreases with increasing NOx when NO; predominately combines with OH to produce nitric
acid, reducing Os-forming reactions between OH and VOCs (POs is NOx suppressed). This
nonlinear chemistry has important regulatory consequences, as NOx decreases improve O3 air
quality when chemistry is NOx limited, while the same reductions worsen NOx-suppressed Os.
When PO3 dominates the O3 mass balance, MDAS8 Os varies as the integral of PO3 across the
intraurban NO; heterogeneity, and, in Houston, NOx-limited and suppressed conditions are both
present.’® Because PO3 depends nonlinearly on NO», we describe Os-season relationships between
NO: inequalities and the highest daily MSA-level MDAS O3 using a generalized additive model
(GAM), a regression approach previously applied to nonlinear systems, including O3.!%6-119 PQ;
also depends nonlinearly on VOC reactivity to OH, defined as the sum of the product of VOC
concentrations and their bimolecular reaction rate with OH.!'! Temperature is a proxy for VOC-
OH reactivity where a major portion of VOC emissions are temperature dependent, verifiable
through the observed O3-NO, dependence under different temperatures.!!'? To consider VOC-OH
reactivity, we apply the GAM separately under low (<25°C), moderate (25-28°C), and high
(>28°C) daytime mean temperatures conditions. Results informing GAM selection and evaluation

are available in the Supporting Information (SI Appendix 2; Tables S12—13; Figures S§8-S16).

GAMs of MDAS O3 versus NO> inequalities reproduce the nonlinear dependence of PO3 on NO»
concentrations (Figure 7). The highest MDAS Os occur hot days, i.e., under higher VOC-OH
reactivity conditions, and when absolute NO; inequalities are large. We observe lower MDAS O3

when temperatures are moderate (lower VOC-OH reactivity) and NO; inequalities are large, with
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similar MDAS O3 to hot days when NO; is more evenly distributed (POs3 is NOy limited). At low
temperatures, relationships between MDAS8 Os and NO; inequalities suggest a more limited role
for PO; on MDAS Os. A key observation is that the transition between NOx-limited and NOx-
suppressed PO3 chemistry that is near peak MDAS O3 occurs at higher absolute NO> inequalities
under higher temperature conditions, consistent with hotter temperatures corresponding to higher
VOC-OH reactivities, which in turn require more NO; to drive nitric acid production.!!? While at
very high NO concentrations O3 can be titrated to NO,, Os titration does not have the same

functional form as PO3; with VOC-OH reactivity versus NO».

The GAMs demonstrate that NO: inequalities affect POz chemistry and not merely that MDAS O3
and NO: inequalities covary under certain atmospheric conditions. We note, it is not the
inequalities per se, but the unequal NO, distributions resulting from NOy sources being
disproportionately located in a subset of neighborhoods that drives PO;3. That said, NOx emission
sources overburden communities of color because of environmental racism in historical and
contemporary decision-making. Past research has already shown that PO; chemistry is spatially

heterogenous within Houston,*6- 4% 36 113, 114

and, because POs3 chemistry is nonlinear, it follows
logically that the same NOx emission reductions applied evenly across a city would be less
effective than a series of localized controls responsive to specific PO3 mechanisms (NOx limited
versus NOy suppressed) as they vary in space. Wang et al.’® used the adjoint of the Community
Multiscale Air Quality model focused on California to determine that POs is disproportionately
sensitive to spatially localized controls. Our work implies that NOx emissions controls that
eliminate neighborhood-level NO> inequalities will have O3 air quality co-benefits, with regulatory

decision-making consolidating NOx sources in a subset of Houston neighborhoods hindering O3

NAAQS compliance. While MDAS O3 is largely NOx limited with respect to NO> inequalities on
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high temperature days, MDAS O3 is more NOx suppressed as a function of NO2 inequalities when
temperatures are moderate, meaning even steeper NOx reductions that also have the effect of
decreasing NO» inequalities are required to lower O3 under these conditions. Based on observed
differences in correlations between absolute and relative NO: inequalities with overall NO; (Table
3), decreases in NOy inequalities, and hence MDAS O3, require locally targeted NOx reductions in

neighborhoods where residents are primarily Black, Latinx, and Asian.

Black and African Americans Hispanics and Latinos Asians
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Figure 7. Analytical model demonstrating relationships between PO3, NOyx, and VOC-OH
reactivity (a). GAMs of daily MSA-level absolute TROPOMI NO; inequalities (molecules cm™2)
versus highest daily MDAS8 O3 (ppb) during Os-season (March—November 2018-2022) on days
meeting coverage thresholds under moderate (purple) and high (orange) daily maximum
temperatures for Black and African Americans (b), Hispanics and Latinos (c), and Asians (d).
Envelopes are 95% confidence intervals.

Implications. In Houston, daily TROPOMI NO; TVCDs capture a major portion of census tract-
scale NO> inequalities compared to spatiotemporally coincident GCAS measurements that resolve
length scales of dispersion. Mean daily TROPOMI NO; inequalities are insensitive to TROPOMI
pixel size after the initial information loss with respect to GCAS. In Houston, and other U.S. cities,

communities of color are statistically overburdened by air pollution sources,’®: 115 116

including
NOx sources.'® This is a consequence of historical (e.g., redlining) and contemporary (e.g.,

permitting) decision-making that clusters emission sources in a subset of city neighborhoods,
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creating source regions such as the Houston Ship Channel, in combination with historical and
contemporary policies and practices causing and reinforcing housing segregation,! including white
violence, housing discrimination, and separating communities with freeways.!'7"12! When NOx
sources are in close proximity, their individual pollutant decay gradients also spatially aggregate;
as a result, a major portion of inequalities persist over spatial scales greater than length scales of
dispersion, the physical process motivating the application of very-high spatial resolution models
and measurements. Fine-scale observations are therefore not always required as evidence of air
pollution inequalities or to inform related policy making and accountability. While daily TVCDs
are coarse (20-89 km?), they retain a wider range of NO; values, especially in the high tail of the
NO: distribution, which drive inequalities. Daily mean NO2 TVCDs result in higher, and therefore
more accurate, absolute NO; inequalities than oversampled TVCDs (0.01° % 0.01°), as TROPOMI
pixels and oversampling grids are large relative to the scale of dispersion. This has relevance to
future work based on TEMPO observations, which are not anticipated to meet the pixel overlap

requirements for oversampling.

We find that neighborhood-level NO- inequalities and city-wide O3 are coupled air quality issues
in Houston. GAMs relating NO» inequalities and MDAS8 O3 under different temperature conditions
reproduce established nonlinear relationships between PO3, NO», and VOC-OH reactivity. This
has policy consequences, producing empirical evidence that MDAS Os is sensitive to the spatial
distribution of NOyx emissions reductions. O3z control is typically approached through sector-based
NOx and VOC emissions reductions without also considering distributive inequalities in O3
precursors.!?> However, we find that targeted NOx emissions reductions where NOx sources are
clustered—in communities of color—would lower both NO; inequalities and city-wide MDAS O3

in Houston, especially on hot days when MDAS O; is highest. This means that permitting and
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other policies concentrating sources in a subset of Houston neighborhoods affect O; NAAQS
attainment and calls for a reconceptualization of decision-making to include facility/emissions

location.

While there is growing evidence that locally-targeted regulatory interventions are required to
reduce and eliminate air pollution disparities,*!- *® there are barriers to their adoption, as
community-focused air quality plans and recommendations potentially cannot be pursued through
policy making at any level.!?> Houston and Pasadena (which is in the Houston UA) are among the
few major U.S. municipalities without formal zoning, an established tool for localities to influence
their own land use, including air pollution source distribution, through the institution of bans,
programs, and environmental review processes.!?* Additionally, Houston’s efforts to address air
quality concerns through the local ordinance process have been invalidated by the Texas Supreme
Court,'?> 126 further limiting the city from regulating emissions from facilities permitted by the
Texas Commission on Environmental Quality (TCEQ). TCEQ does not have an office or staff
focused on environmental justice, chooses not to use that term (any relevant activities are instead
described as Title VI compliance), and continues to issue permits without considering cumulative
impacts, including facility clustering. However, TCEQ does have a commitment to O3
compliance,'?” making this a politically available pathway for addressing inequality in absence of
other approaches. Here, we demonstrate that MDAS O3 varies as a function of these neighborhood-
level NO> inequalities, with locally-targeted NOx emissions controls required to address NO»
disparities and having substantial O3 air quality co-benefits. This conclusion has policy relevance
as the state has the authority, resources, and initiative to meet the O3 NAAQS and is also evidence
that TCEQ must contend with practices and policies of environmental racism to improve O; air

quality.
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Supporting Information. Surface wind roses corresponding the Figure 1, surface monitor
locations, detailed TRACER-AQ inequality results, population weighting equation, TROPOMI
inequalities as a function of observation coverage and pixel area, comparison of oversampled and
time-averaged inequalities by S-5P orbit, mean daily TROPOMI population-weighted NO-,
correlations between daily UA and MSA-level inequalities, details for the comparison between
DISCOVER-AQ and TRACER-AQ inequalities, scatterplots of NO, inequalities versus surface
winds and NO>*, and technical details on generalized additive model (GAM) construction,

including comparisons of GAM methods.
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