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Support varieties for finite tensor categories: the

tensor product property

Petter Andreas Bergh, Julia Yael Plavnik and Sarah Witherspoon

ABSTRACT. We show that in a finite tensor category, the tensor product property holds for support
varieties if and only if it holds between indecomposable periodic objects. We apply this result to
deduce the tensor product property for a large class of categories, those of modules for skew group
algebras formed by exterior algebras with certain finite group actions. These include the symmetric
finite tensor categories over algebraically closed fields of characteristic zero, thus giving a new proof
of the tensor product property for these categories.

1. INTRODUCTION

Given a finite tensor category %, one can attach a support variety Viz(X) to each object
X, using the spectrum of the cohomology ring. It has been conjectured by Etingof and
Ostrik that every finite tensor category has finitely generated cohomology. As shown in
our paper [9], whenever this holds, the support varieties encode homological properties
of the objects, in much the same way as do cohomological support varieties over group
algebras, more general cocommutative Hopf algebras, and commutative complete intersec-
tion rings. A parallel development of support varieties for module categories over tensor
triangulated categories, with complementary results, is given by Buan, Krause, Snashall,
and Solberg [12].

When does the tensor product property hold for support varieties? That is, what
conditions — if any — will guarantee that

Ve(X @Y) = Vg (X) N Ve (Y)
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for all objects X, Y € ¥7 This property always holds for support varieties over group
algebras of finite groups and more generally finite dimensional cocommutative Hopf alge-
bras [21] as well as a number of other Hopf algebras (e.g. [24, 25, 29]). There are classes
of examples for which it does not hold [6, 10, 30]. One reason why one would seek such
a property is to classify thick tensor ideals in the stable category; the tensor product
property is used in classifying such thick tensor ideals in a number of settings. Nakano,
Vashaw, and Yakimov [24] proposed a modified version of this tensor product property
that may also be used, and is known to hold more generally, but we will not pursue that
direction here.

Our main theorem (Theorem 3.5) states that when % is braided, the tensor product
property holds for all objects if and only if it holds between indecomposable periodic objects.
In other words, we show that if Vi (X ® V) = Vig(X) N Vg(Y) for all indecomposable
periodic X,Y € ¥, then the tensor product property holds for all objects. Thus the
question of whether the tensor product property holds reduces to indecomposable periodic
objects, or, equivalently, to indecomposable objects of complexity one. We prove this
reduction in the more general setting of a module category over ¥. To the best of our
knowledge, this reduction to complexity one is new; we are not aware of such an approach
to prove a tensor product property in any setting in the literature.

A refinement of our main theorem is Theorem 3.6, stating that it is sufficient to show
for each pair of indecomposable periodic objects whose support varieties coincide, that
their tensor product (or module product) is not projective. In some settings, there are
representation theoretic tools strong enough to check this condition directly.

We illustrate the utility of our main theorems by verifying the tensor product property
for some braided categories of modules over skew group algebras. This involves a careful
comparison to modules for a subalgebra and some periodic cyclic modules having irre-
ducible support varieties. This method is reminiscent of rank varieties, in particular those
in [2, 4, 8, 28], and indeed the theory of rank varieties could be developed further to apply
here. We choose instead to develop only what is needed to demonstrate the tensor product
property for these examples as a consequence of our main theorems. As a special case,
we give a new approach to the tensor product property for any symmetric finite tensor
category over an algebraically closed field of characteristic zero, relying on Deligne’s clas-
sification: these categories are equivalent to those of finitely generated modules of certain
skew group algebras over exterior algebras. We thus recover a result of Drupieski and
Kujawa [16], namely the tensor product property for finite dimensional cocommutative
Hopf superalgebras in characteristic 0. By contrast, our result is largely orthogonal to
that of Benson, Iyengar, Krause, and Pevtsova [5], the tensor product property for unipo-
tent finite dimensional cocommutative Hopf superalgebras in odd characteristic, since our
skew group algebras are typically not unipotent and we assume the characteristic does not
divide the order of the group.

2. PRELIMINARIES

Let us fix from the very beginning the categories that we will be working with throughout
the whole paper. We follow the definitions and conventions from the book [19].

Notation 2.1. We fix a field £ — not necessarily algebraically closed — together with
a finite tensor k-category (%,®,1) and an exact left module category (.#,x) over €.
Furthermore, we make the assumptions that .# has a finite set of isomorphism classes of
simple objects.
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Thus € and .# are both locally finite k-linear abelian categories, and % has a finite
set of isomorphism classes of simple objects, each of which admits a projective cover.
Moreover, there are associative (up to functorial isomorphisms) bifunctors

R :ExEC =€ and *x:EC X M — M

called the tensor product and the module product, which are compatible with the abelian
structures of the categories, together with a unit object 1 € ¥ (with respect to both ®
and *) which is simple as an object of €. Furthermore, the bifunctor * is exact in the first
argument, and whenever P is a projective object in €, then P % M is projective in .# for
all M € .# . Finally, the category ¥ is rigid, meaning that all objects have left and right
duals.

Remark 2.2.

(1) Since ¥ is rigid, the tensor product ® is biexact, by [19, Proposition 4.2.1]. More-
over, by [19, Proposition 4.2.12], the collection of projective objects forms an ideal
of &; the tensor product between a projective object and any other object is again
projective.

(2) It follows from [19, Proposition 7.1.6] that the bifunctor * is also exact in the
second argument (and hence biexact), and that whenever @ is a projective object
in ., then X x (@) is projective in .# for all X € €.

(3) Since we have assumed that the module category .# also has a finite set of isomor-
phism classes of simple objects, this category is finite, like 4. This implies that
all the objects of both € and .# admit projective covers. Namely, as explained
in [19, Section 1.8], each of the categories is equivalent to the category of finitely
generated left modules over some finite dimensional k-algebra. Using projective
covers, we can construct a minimal projective resolution for any given object, and
this resolution is unique up to isomorphism.

(4) By [19, Corollary 7.6.4], both ¢ and .# are quasi-Frobenius, that is, the projective
objects are precisely the injective objects.

(5) The category % is trivially a left module category over itself, with the tensor
product as the module product. Therefore everything we develop and prove for
objects of .# holds for objects of ¥.

(6) Since the unit object 1 is simple, the k-algebra Homg¢(1,1) is a division ring, that
is, all the nonzero elements are invertible. This ring is in fact commutative (see
the paragraphs following this remark), and therefore a finite field extension of k.
In particular, when k is algebraically closed, then Hom(1,1) = k.

(7) We refer to [9, Section 2| for an overview of some of the homological properties
and techniques for finite tensor categories that we use throughout. Almost all the
results and concepts carry over to .# as well.

There are many important examples of tensor categories in which the tensor product is
not commutative. However, in our main results, we need this property, both the standard
and a stronger version. The tensor category % is called braided if for all objects X,Y € €,
there are functorial isomorphisms

b
XY X2 yeX

that satisfy the hexagonal identities defined in [19, Definition 8.1.1]. If, in addition, these
braiding isomorphisms satisfy

by x obxy = lxgy
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for all objects X and Y, then ¥ is symmetric. An example of the latter is the category of
finitely generated left modules over a group algebra. However, in general, if H is a finite
dimensional Hopf algebra, then the category mod H of finitely generated left H-modules
is a finite tensor category that is not necessarily braided.

Given objects M,N € .#, we denote by Ext*,(M,N) the graded k-vector space
&2 g Ext", (M, N). The module product — * M induces a homomorphism

Exty(1,1) 225 Ext*, (M, M)

of graded k-algebras, making Ext*, (M, N) both a left and a right module over the coho-
mology algebra Exti(1,1), via ¢n and ¢y followed by Yoneda composition. In particu-
lar, for objects X,Y € €, the left and right scalar actions of ExtZ;(1,1) on Ext(X,Y)
are induced by the tensor products — ® Y and — ® X, respectively, followed by Yoneda
composition. However, not only is the algebra Exti(1,1) graded-commutative by [34,
Theorem 1.7], the following lemma and its corollary show that for objects M, N € .#, the
left and the right scalar actions of Ext%(1,1) on Ext*, (M, N) coincide up to a sign, when
we only consider homogeneous elements. The proof is a straightforward adaptation of the
proof of [32, Theorem 1.1], and we omit it for brevity. We use the symbol o to denote
Yoneda composition, as well as ordinary composition of maps.

Lemma 2.3. Given any objects X,Y € €, M,N € #, integers m,n > 0 and elements
n € ExtZ(X,Y) and § € Ext", (M, N), the equality

(n* N)o (X #0) = (=1)""(Y 0) o (n* M)
holds in Ext™ ™ (X « M,Y = N).

Specializing to the case when X =Y = 1, we obtain what we are after, recorded in the
following corollary. Note also that when we specialize even further, by taking .# = % and
M = N =1, we recover the graded-commutativity of Exts (1,1).

Corollary 2.4. Given any objects M, N € .# and elements n € Ext(1,1) and 6 €
Ext",(M,N), the equality

n-0=(=1)""0-n
holds.

The algebra Extg(1,1) is the cohomology ring H*(€) of €. It is at the center of the
following conjecture from [20], a conjecture which is still open:

Conjecture 2.5. The cohomology ring H* (%) is finitely generated, and Exti (X, X) is a
finitely generated H*(%")-module for all objects X € €.

If the characteristic of the ground field & is two, then graded-commutativity is the same
as ordinary commutativity. If, on the other hand, the characteristic of k is not two, then
the even part of the cohomology ring H*(%’) is commutative, and the homogenous elements
of odd degrees square to zero. When we work with support varieties, nilpotent elements
in the ambient commutative ring are redundant, and this motivates the first part of the
following definition.

Definition 2.6.
(1) We define

. [ H*(¥) if the characteristic of k is two,
H(%) = { H2(%)  if not.
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(2) We say that the finite tensor category ¢ satisfies the finiteness condition Fg if
the cohomology ring H*(%) is finitely generated, and Exti (X, X) is a finitely
generated H*(%)-module for all objects X € €.

As explained in [9, Remark 3.5], the finiteness condition Fg and the conjecture can
be stated in terms of H'(%) instead of H*(%¢’). Namely, the condition Fg holds for &
if and only if H*(%¥) is finitely generated, and ExtZ (X, X) is a finitely generated H'(%)-
module for every object X € &. Note also that when Fg holds for %, then for all objects
X,Y € &, the H*(¥)-module ExtZ(X,Y) is finitely generated, and not just the two
modules ExtZ (X, X) and ExtZ(Y,Y). This follows from the simple fact that the H*(%)-
module ExtZ (X @Y, X @ Y) is finitely generated by assumption, and it has ExtZ(X,Y)
as a direct summand.

Remark 2.7. When the finiteness condition Fg holds for &, then what about the coho-
mology of .#?7 It turns out that it is automatically finitely generated. Namely, by [26,
Proposition 3.5, if Fg holds for ¥, then Ext*,(M,M) is a finitely generated H*(%)-
module for every object M € .#. As for €, this implies that for all objects M, N € .#,
the H*(%)-module Ext*, (M, N) is finitely generated. Moreover, also here we may replace
H*(¥¢) with H*(%).

For objects M, N € .# , we now define
ILyM,N)={neH(¥)|n-0=0forall § € Ext",(M,N)},

that is, the annihilator ideal of Ext*, (M, N) in H'(¥¢). For a single object M we write
just I (M) instead of I 4 (M, M). Moreover, for any ideal I C H'(%¢), we denote by Z(I)
the set of maximal ideals m € H'(%) with I C m. Finally, we set myg = H' (%), the ideal
generated by all the homogeneous elements of positive degrees in H*(%4"). Then my is the
unique graded maximal ideal of H'(%), since H(%) is a field; see Remark 2.2 (6). Conse-
quently, the annihilator ideal that we just defined, which is graded, must be contained in
mg whenever Ext*, (M, N) is nonzero.

Definition 2.8. The support variety of an ordered pair of objects (M, N) in .4 is

def
V///(M7N) = {mO} U Z(I//Z(M¢N))
For a single object M € .#, we define its support variety as V., (M) =V 4 (M, M).

In the definition, the explicit inclusion of the unique graded maximal ideal mg has
been made in order to avoid empty support varieties; if Ext*, (M, N) is nonzero, then mg
is automatically contained in the set Z(I 4(M,N)), since I 4(M,N) is a graded proper
ideal of H*(%). The support variety V. (M, N) is called trivial if V. (M, N) = {mg}.

Remark 2.9.

(1) When we deal with objects in the category % itself, we use the notation I¢(X,Y),
Ve (X,Y) and Vg (X).

(2) We define Viy as Vig(1); this is just the set of maximal ideals of the cohomology
ring H'(¢’). Note that V. 4(M,N) C Vi for all M, N € .

(3) An important feature of support varieties — probably the most important — is
the dimension. For objects M, N € .#, the dimension of V ,(M,N), denoted
dim V.4 (M, N), is defined to be the Krull dimension of the ring H'(%¢")/1 4 (M, N).
If this dimension is zero, then the support variety is necessarily trivial. For suppose
that V 4(M,N) contains a maximal ideal m other than mg, and let m* be the
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graded ideal of H'(%) generated by all the homogeneous elements in m. By [11,
Lemma 1.5.6], this is a prime ideal, and so since the graded ideal I ,(M,N) is
contained in m, we see that I (M, N) C m* (for m* is the unique maximal graded
ideal contained in m). As m is not graded, the inclusion m* C m is strict, hence the
Krull dimension of H'(¥¢)/1 4(M, N) is at least 1. Thus when dim V4 (M,N) =0,
then V., (M, N) = {mp}. However, when the finiteness condition Fg holds for ./,
then the converse is also true, so that

dlmVW(M,N) =0 V//[(M,N) = {mo}

For in this case, if V.4 (M, N) = {mp}, then if Ext*, (M, N) is nonzero, the radical
I ,4(M,N) equals mg, by [23, Theorem 25]. Consequently, the Krull dimension
of H(¥¢)/1 4(M,N) must be zero.

In the following result, we collect some of the basic properties enjoyed by support vari-
eties for objects of .Z . For objects of €, these properties were listed in [9, Proposition 3.3].
In that paper, we made the assumption that the ground field & is algebraically closed, but
that assumption was never needed. The proofs carry over to the general setting of ex-
act module categories; some of them rely on Corollary 2.4. Only one of the properties,
number (6) below, requires an argument that is special to .Z.

Proposition 2.10. For objects M, N € .# , the following properties hold.
(1) V(M & N) = V., (M) UV 4(N).
(2) V.y(M,N) C V. 4(M)NV 4(N).
(3) Vy(M)=U_V4(M,S;) =U_,V4(S;, M), where S, ..., S are all the simple
objects of M (up to isomorphism).
(4) Given any short exact sequence

0—+Ly—~>Ly—>L3—0

in M, the inclusion V 4 (Ly,) C V. 4(Ly) UV 4(Ly) holds whenever {u,v,w} =
{1,2,3}.
(5) If there is a short exact sequence

O—-—M—P—N—=0

in A, in which P is projective, then V. (M) =V 4(N).
(6) For every object X € €, the inclusion V. (X x M) C Vig(X) holds. Moreover, if
the category € is braided, then V. (X « M) C V(X)) NV 4 (M).

Proof. As mentioned, only (6) needs an argument, since the proof of [9, Proposition 3.3]
works for the rest.

The scalar action of H' (%) on Ext*, (X *« M, X % M) is defined in terms of the ring
homomorphism

H' (%) 25 Ext*, (X « M, X * M)
which in turn is induced by the module product —* (X * M). Now, for every object Y € ¢
there is an isomorphism Y (X * M) ~ (Y ® X )« M, functorial in Y. Therefore, the ring
homomorphism factors as the composition
H' (%) 25 Exti (X, X) =2 Bxt*, (X M, X « M)

where the ring homomorphism ¢x is induced by the tensor product — ® X. This implies
Io(X) C ILy(X % M), and so the inclusion V. 4 (X * M) C Vi (X) follows by definition of
support varieties.
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Suppose now that the category % is braided, and take any homogeneous element 7 €
H'(%). By definition, for every object Y € % there is an isomorphism ¥ @ X - X ® Y,
functorial in Y, giving

oxsm(m) =n*x (X*M)=neX)*M=(X®n)*M=Xx*mn+xM)=Xx*pun)

as elements of Ext*, (X « M, X x« M). Thus I 4(M) C I 4(X % M), and the containment
Vuy(X+«M)CV,(M) follows. O

Recall from Remark 2.2 (3) that every object M € .# (and every object of ¢) admits a
minimal projective resolution (P.,d.), which is unique up to isomorphism. We define the
n*™ syzygy of M to be the image of the morphism d,,, and denote it by ", (M) (or Q% (X)
for an object X € ¥). As shown in [9, Lemma 2.4], the minimal projective resolution has
the property that

Ext",(M,S) ~ Hom 4(P,,S) ~ Hom 4 (Q",(M),S)

for every m > 1 and every simple object S € ..

Given a sequence a. = (ag, aj, ag, ...) of nonnegative real numbers, we denote by ~v(a.)
its polynomial rate of growth, that is, the infimum of integers ¢ > 0 for which there exists
a number b € R with a,, < bn®~! for all n > 0. We now define the complexity of the object
M, denoted cx_z (M), to be y(¢F.), where (P, denotes the length of the object P,. For
objects of ¥, this is not the same definition as used in [9], where we defined the complexity
to be the rate of growth of the Frobenius—Perron dimensions of the objects of the minimal
projective resolution. However, the two definitions are equivalent; there are only finitely
many indecomposable projective objects of ¢ (one for each simple object), and the two
definitions just rely on attaching different sets of positive real numbers — all at least 1 —
to these. As explained in [9, Remark 4.2], the complexity of M is the same as the rate of
growth of the sequence (dimy Ext*, (M, S1@®---@®S¢)), where Sy, ..., S; are all the simple
objects of .# . Moreover, it also equals the rate of growth of the sequence whose nth term
is the number of indecomposable summands of P,.

We end this section with a result which sums up the properties that were proved in [9]
for support varieties when Fg holds. These properties were proved for objects in a finite
tensor category, and not objects in a module category, but as for Proposition 2.10, the
proofs carry over to the more general setting, so we omit them. Moreover, as mentioned
before Proposition 2.10, the assumption we made in [9] that k be algebraically closed was
never needed.

Recall first that if ¢ is a nonzero homogeneous element of H* (%), say of degree n, then
it can be represented by an epimorphism f¢: (1) — 1 (it is necessarily an epimorphism
since the unit object is simple in €’). We denote the kernel of this morphism by L¢; this
object is known as Carlson’s L¢-object. The module version of [9, Theorem 5.2] gives an
inclusion V.4 (L¢ x M) C Z(¢) NV, 4 (M) for every object M € .#, even without assuming
that ¢ is braided, as in Proposition 2.10(6).

Theorem 2.11. If € satisfies Fg, then the following hold for every object M € . .

(1) cx.g(M) = ~ (dimy Ext*, (M, M)) = dimV 4(M) < dimH' (%), where dimH' (%)
is the Krull dimension of the cohomology ring H'(€).

(2) The object M is projective if and only if V. (M) is trivial, and if and only if
cx (M) =0.

(3) Vy(Lex M) = Z(C)NV 4 (M) for every nonzero homogeneous element ¢ € H' ().
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(4) Given any nonempty conical subvariety V- C 'V 4(M), there exists an object N € A
with V4 (N) = V.

(5) Given any nonnegative integer ¢ < cx_z(M), there exists an object N € A with
x4 (N) =c.

(6) If cx 4 (M) > 1, then there exists a short exact sequence

0-M-—-K-—=Q",(M)—=0

for some n > 0 and some object K € M with cx_4(K) = cx 4(M) — 1.

(7) Given any object N € M, the support variety V. (M, N) is trivial if and only if
Ext",(M,N) =0 for all n > 0, if and only if Ext",(M,N) =0 for alln > 1.

(8) If V.y(M) = V4 U Va for conical subvarieties Vi, Vo with Vi N Vy = {mgy}, then
M ~ My & My for some objects My, My with V4 (M;) = V;.

3. THE MODULE PRODUCT PROPERTY

Recall that we have fixed a field k — not necessarily algebraically closed — together
with a finite tensor k-category (¢,®,1) and an exact left module category (., x*) over
%. Moreover, we have assumed that .# has a finite set of isomorphism classes of simple
objects.

In this section we prove the main result (Theorem 3.5): the question of whether the
module product property holds for support varieties reduces to the question of whether
it holds if we only consider indecomposable periodic objects. By a periodic object, we
mean an object M € .# with M ~ Q", (M) for some n > 1. In other words, the minimal
projective resolution of M is periodic of period n.

We start with the following result, which, together with its corollary, characterizes the
indecomposable periodic objects in terms of their complexities.

Theorem 3.1. If ¥ satisfies Fg, then the following are equivalent for an object M € M :
(1) cx.p(M) =1;
(2) dimV.4(M) = 1;
(3) M s isomorphic to N & Q for some nonzero periodic object N and projective
object Q.

Proof. The equivalence of (1) and (2) is a special case of Theorem 2.11(1). If (3) holds,
then the sequence
(dimy Ext"y (M, M))>
is bounded and not eventually zero, and so its rate of growth is 1. By Theorem 2.11(1)
again, this rate of growth equals the complexity of M, hence (1) follows.
Finally, suppose that (1) holds. Then by Theorem 2.11(6), there exists a short exact
sequence

0O—-M—->K—=>Q"%(M)—=0

for some n > 0, with c¢x_z(K) = 0. By Theorem 2.11(2), the object K is then projective,
and so by Schanuel’s Lemma for abelian categories (see [9, Lemma 2.2]), there is an
isomorphism M ~ Qﬁ;l(M) @ @ for some projective object Q. Now take N = Q%l(M);
this is a periodic object since

N = QU (M) ~ Q! (Qf;;l(M) @ Q) — QYN @ Q) ~ Q1 (N)
This shows that (1) implies (3). O
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Corollary 3.2. If € satisfies Fg, and M is a nonzero indecomposable object of M , then
cx gz (M) =1 if and only if M is periodic.

We have defined support varieties in terms of the maximal ideal spectrum of H'(%).
However, in some of the arguments that follow, we need to consider prime ideals in general;
as usual, we denote the set of prime ideals of H* (%) by Spec H*(%). For an object M € .,
we denote the support of the H'(¢")-module Ext*, (M, M) by Supp_, (M), that is, the set
of prime ideals of H'(¥¢’) with Ext*, (M, M), # 0. When the finiteness condition Fg holds,
then

Supp_, (M) = {p € SpecH' (%) | L, (M) C p}
and hence
V.4 (M) = Supp_, (M) N MaxSpec H' ()

whenever M is a nonzero object. Note also that the finiteness condition implies that the
set of minimal primes of Supp , (M) is finite, and that these are associated primes of the
H'(%)-module Ext”*, (M, M); see [18, Theorem 3.1.a]. Furthermore, by [11, Lemma 1.5.6],
these minimal primes are in fact graded. When M is nonzero and pi, ..., p; are the
minimal primes of Supp , (M), then V(M) = Z(p1) U---U Z(p;). The Z(p;) are the
irreducible components of V. (M), hence the support variety is irreducible if and only if
Supp_, (M) contains a unique minimal prime (when i # j then Z(p;) # Z(p;); see the
paragraphs following [9, Remark 3.5]). The following result shows that the support variety
of an indecomposable periodic object is of this form.

Proposition 3.3. Suppose that € satisfies Fg, and that X € € and M € # are
nonzero indecomposable periodic objects. Then Vi (X) and V. 4(M) are irreducible (that

is, Suppy(X) contains a unique minimal prime, and so does Supp ,(M)), and either
Vg (X) = V.u (M), or Vg(X) N V.4 (M) = {mo}.

Proof. Let p1, ..., p+ be the minimal primes of Supp , (M), so V.4(M) = Z(p1) U---U
Z (p¢); recall that these primes are all graded. Note first that none of them can be maximal,
that is, equal to mg (there is only one graded maximal ideal in H*(%’), namely mg). For
suppose this were the case, with, say, p1 = mg. If t = 1, then V 4,(M) = Z(my) = {mp},
and hence dimV (M) = 0. But M is nonzero and periodic, and so by Theorem 3.1, the
dimension of V (M) must be 1. If p; = mg and ¢ > 2, then the prime p; is not minimal
in Supp , (M), since the other primes pa, ..., p; are contained in my.

Thus none of the minimal primes p; are maximal, and so the Krull dimension of H* (%) /p;
is at least 1, for each i. But since dimV 4(M) = 1, and this dimension is the maximum
among dim H (%) /p1, ..., dim H (%) /p;, it follows that dim H'(%)/p; = 1 for each i. Of
course, since p; is graded, the graded maximal ideal mg belongs to Z(p;), but this irre-
ducible component must also contain a non-graded maximal ideal. For if mg were the only
maximal ideal containing p;, then by [23, Theorem 25] the radical \/p; of p; would be mg,
a contradiction since dimH'(%¢)//p; = dim H' (%) /p; = 1.

Suppose now that ¢t > 2, and set Vi = Z(p1) and Vo = Z(p2)U---UZ(p) = Z(p2 - - - Pr)-
If the intersection Vi N V5 contains a non-graded maximal ideal m, then both p; and p;
are contained in m, for some ¢ > 2. Now consider the graded ideal m* generated by all the
homogeneous elements of m; it is a graded prime ideal by [11, Lemma 1.5.6]. Then since
p1 € m*and p; C m*, and m* is properly contained in m, we see that p; = m* = p;. Namely,
if p1, say, were properly contained in m*, then the Krull dimension of H*(%)/p1 would be
at least 2, and similarly for p;. But p; # p;, and so we conclude that ViNVa = {mg}. Then
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by Theorem 2.11(8), the object M admits a direct sum decomposition M ~ M; & Ma,
where M7 and My are objects with V 4,(M;) = V;. Moreover, since dimV; = 1, none of
these objects can be zero. This is a contradiction, since the object M is indecomposable,
and so V4 (M) must be irreducible. The same proof works for Vi (X).

For the last part of the statement, let p and g be the unique minimal primes of Suppe (X)
and Supp_, (M), respectively. Then Vi (X) = Z(p) and V. 4(M) = Z(q), giving

Ve(X)NV.y(M)=Z(p)NZ(q) = Z(p +q)

Suppose that Vg (X) # V. 4(M), so that p # q. Then both p and q must be properly
contained in p+ q; if p = p+ ¢, say, then q C p, and the containment would be strict since
p # q. But then the dimension of Z(q) would be greater than that of Z(p), a contradiction
since dim Z(q) =dimV 4 (M) =1 = V(X)) = dim Z(p) by Theorem 3.1.

Now take any maximal ideal m € V(X)) \ {mo}. Since m is not graded, the inclusion
m* C m is proper, where, as before, m* is the graded (prime) ideal of H'(%) generated by
all the homogeneous elements of m. As this is necessarily the unique maximal graded ideal
contained in m, and p is graded, we see that p must equal m*; otherwise, the dimension
of Vi (X) would have been at least 2, but we know that it is 1. This implies that m can
not belong to Vi (X) NV 4 (M), for if it did, then it would have to contain p + ¢, which is
a graded ideal that strictly contains m*. U

In general, if I is an ideal of H'(%), then there is an equality Z(I) = Z(v/I), where
VT denotes the radical of I. When the finiteness condition Fg holds, then by [23, Theo-
rem 25], the radical of a proper ideal of H*(%) equals the intersection of all the maximal
ideals containing it, a fact that we just used in the proof of Proposition 3.3, and also in
Remark 2.9(3). Consequently, in this setting, whenever I and J are two proper ideals
of H'(%), we see that Z(I) = Z(J) if and only if v/T = v/J. We shall use this fact in
the proof of the following result, which is the key ingredient in the main theorem; it al-
lows us to reduce the complexities of the objects when we want to establish the module
product property for support varieties. A general such reduction result is provided by
Theorem 2.11(6), but now we need a much stronger version.

Proposition 3.4. Suppose that € satisfies ¥g, and that M € # is an object with
cxy(M) > 2 and V. 4(M) idrreducible (so that Supp ,(M) contains a unique minimal
prime). Then for every m € V., (M) there exists a short exact sequence

0-W-=0Q"(M)&Q—M—0

in A, with the following properties:
(1) The object Q is projective, and n > 1;
(2) cx (W) = ex ¢ (M) — 1;
(8) meV ,(W).

Proof. Let pg be the unique minimal (graded) prime of Supp , (M), and denote the com-
plexity of M by d. Since H'(%) is a finitely generated k-algebra by assumption, the quotient
H' (%) /po is a finitely generated integral domain. Therefore, by [18, Corollary 13.4], all the
maximal ideals of H* (%) /pg are of the same height, namely dim H*(%)/po. The dimension
of H' (%) /po equals that of H'(¢") /I 4 (M), which by definition is the dimension of V ,(M).
Thus from Theorem 2.11(1) we see that every maximal ideal of H'(%)/po is of height d.

Now let m be a point in V. ,(M). It follows from the above that there exists a strictly
increasing chain

PoC - Cpg1Cm
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in Spec H'(%). However, by [11, Theorem 1.5.8], there actually exists such a chain in which
all the prime ideals p; are graded; if m # mg, we can take as pg_1 the graded ideal m* of
H'(¥), generated by all the homogeneous elements of m (recall that by [11, Lemma 1.5.6],
this is a graded prime ideal).

Take any nonzero homogeneous element ¢ € p; \ po; this is possible since d > 2. Note
that since p; € mg = H (%), the degree n of ¢ is positive. From this element we obtain a
short exact sequence

0—=Le—=Q(1) =10

in ¢, where the object L. is Carlson’s L¢-object discussed right before Theorem 2.11.
Since . is an exact ¥-module category, we obtain a (not necessarily minimal) projective
resolution of M when we apply — * M to the minimal projective resolution of the unit
object 1. Consequently, by Schanuel’s Lemma for abelian categories (see [9, Lemma 2.2]),
there is an isomorphism QF (1) x M ~ Q", (M) @ Q for some projective object Q € .Z. As
a result, when we apply — x M to the above short exact sequence, we obtain a short exact
sequence

0—=LexM—=Q",(M)oQ —+M—0
in .#. By Theorem 2.11(3), there is an equality V.4 (L¢* M) =V 4(M)N Z((), and so in
particular we see that m € V., (L¢ * M).
It remains to show that cx 4 (L¢ * M) = d — 1, or, what amounts to the same thing by
Theorem 2.11(1), that dim V.4 (L¢ * M) = d — 1. Now
Z Ly (M) +(Q)) = Z(La(M)) N Z(C)
= V. (M) N Z(C)
= V.y(L¢ = M)
= Z (Ly(L¢ x M))

hence there is an equality (/1 4 (L¢ * M) = /1 4(M) + (¢). The dimension of the variety

V. (L¢xM) is by definition the Krull dimension of H*(€¢")/1 4 (L¢+ M), which in turn equals
that of H'(€)/\/Lx#(L¢c* M). Therefore it suffices to show that the Krull dimension of

H(€)/\/IL#(M)+ (¢) is d — 1. For this, consider the chain
poC - CPpg-1Cm

of prime ideals from the beginning of the proof. Since I ,(M) C po and ¢ € p1, the

radical ideal v/I 4 (M) + (¢) is contained in py, giving dim H (%) /v/ Ly (M) + (¢) > d—1.

However, if the inequality were strict, then there would exist a strictly increasing chain
qo € -+ C4q

of prime ideals in H'(%), all containing the ideal \/I 4 (M) + ({). Since ¢ ¢ po, and po is
the unique minimal prime ideal lying over the ideal I , (M), we would obtain a strictly
increasing chain

PoCqgoC - Cyqq

in Supp ,(M). But then cx 4(M) = dimV 4(M) > d + 1, a contradiction. This shows
that the complexity of the object L * M is d — 1. g

We are now ready to prove the main result.
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Theorem 3.5. Let k be a field, and (¢,®,1) a finite braided tensor k-category satisfying
Fg. Furthermore, let (A ,*) be an exact left €-module category, whose set of isomorphism
classes of simple objects is finite. Then the following are equivalent:
(1) Vy( X xM)=Ve(X)NV 4(M) for all objects X € €, M € M ;
(2) Vy( X xM)=Ve(X)NV 4(M) for all objects X € €, M € M of complezity 1;
(3) V.y(X«M) = Ve (X)NV 4 (M) for all indecomposable periodic objects X € €, M €
M.

Proof. If the module product property holds for all objects, then in particular it holds
for objects of complexity 1, hence (2) trivially follows from (1). Since every nonzero
indecomposable periodic object has complexity 1 by Corollary 3.2, we see that (3) follows
from (2). Moreover, (2) follows from (3) because both module products and support
varieties respect direct sums. For suppose that X € € and M € .# are objects of
complexity 1, and decompose them both into direct sums X ~ X; & --- d X and M ~
My @ --- ®© My, with all the X; and M; indecomposable. Then each of these summands
is either projective, or periodic by Corollary 3.2. In general, if Y € € and N € .# are
objects, and one of them is projective, then so is Y« N by Remark 2.2(2) and the definition
of an exact module category, hence both V (Y * N) and Vi (Y) NV 4(N) equal {mg}.
Therefore, if (3) holds, then

Va(XxM)=Vy (@ (X * Mj))

.3

= UV (X 215)

]
= U (Ve (X3) N V.0 (Mj))

- <U ch(Xi)> N (U V//z(Mj))
=Ve(X)NV 4(M)

where we have used Proposition 2.10(1). It follows that (2) holds.

Finally, we will prove that (1) follows from (2). Suppose now that (2) holds, and let
X and M be arbitrary objects of ¥ and .#, respectively. As above, if one of them is
projective, then so is X * M, and both V 4 (X * M) and Vg (X) NV 4 (M) equal {mp}. We
may therefore suppose that both X and M are nonprojective, that is, that cx¢(X) > 1 and
cx_ 4 (M) > 1. We now argue by induction on the sum cx4(X)+cx_z(M); the assumption
being that the module product property holds when this sum is 2. By Proposition 2.10(6),
the inclusion V 4 (X « M) C Vg (X) NV 4 (M) holds, hence we must only show the reverse

inclusion.

Suppose that cx¢(X) + cx_z (M) > 2, and that cx 4 (M) > 2. Let py, ..., pr be the
minimal primes of Supp , (M), so that V 4(M) = Z(p1) U---U Z(p;); recall that these
primes are graded, by [11, Lemma 1.5.6]. We now construct objects M, ..., M, € A
with the property that V ,(M;) = Z(p;) and V 4(X « M;) C V 4(X « M) for each i. If
t = 1, we simply take My = M. If t > 2, then fix one of the p;, and let (1, ..., (s
be homogeneous elements in H'(¢) with p; = ((1, ..., s). Each (; gives a short exact
sequence

0= L, »Q7(1) =10
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in ¢, where n; is the degree of (;. Now take M; = L¢ *--- % L, * M. Then from
Theorem 2.11(3) we obtain
Vig (M) = Vg (M) N Z(G) N -0 Z(Gs)

= V(M) ((Cl, N @)

=V.y (M) N Z(pi)

= Z(pz)
Next, denote the object L¢; * ---* L¢, * M by Nj for 1 < j <'s, and put No = M. By
applying — * IN;_1 to the exact sequence above, we obtain an exact sequence

0—N; = Q" (Nj-1)®Qj — Nj—1 — 0

in .# (for some projective object @);), on which we apply X * — and obtain an exact
sequence

0—)X*N] %Q%(X*N]_l)@P] —>X*Nj_1 —0
for some projective object P;. To get the middle terms in these two sequences, we have
applied Schanuel’s Lemma for abelian categories (see [9, Lemma 2.2]), together with the

fact that the module product commutes with syzygies up to projective objects. From the
properties listed in Proposition 2.10, we now obtain the inclusions

hence the object M; has the properties that we wanted. We now claim that if we can show
that the inclusion Vi (X) NV 4(M;) C V 4(X % M;) holds for each i, then we are done.
Namely, if this is the case, then

Ve (X) NV (M) = Ve (X) N (

(G
N
~~
=3
N

N———

Il
—

)

I
<
s
D

P
C -
<
X
S

=

s
Il
—

This proves the claim.

What remains to show is that the inclusion Vi (X) NV 4(M;) C V 4(X % M;) holds for
each i. To do this, note first that cx_z(M;) < cx_z(M). Namely, the primes py, ..., py
are the minimal ones in Supp , (M), whereas p; is the only minimal prime in Supp ,(M;).
Thus dimV 4 (M) is the length of the longest chain in SpecH'(%) starting with one of
the primes pq, ..., ps, and dim V4 (M;) is the length of the longest chain in Spec H'(%)
starting with p;. Consequently, from Theorem 2.11 (1) we see that cx_z(M;) < cx_z(M).

If ex v (M;) < ex (M) — 1, then cx¢(X) + cx z(M;) < cx¢(X) + cx_p(M) — 1, and
so by induction Vig(X) NV 4(M;) € V. 4(X % M;) holds in this case. If on the other
hand cx_z(M;) = cx_ 4 (M), then since cx_z(M;) > 2 and Supp ,(M;) contains a unique
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minimal prime, we can apply Proposition 3.4; for each m € V. ,(M;) there exists a short
exact sequence
0 — W(m) — Q"™ (M) ® Q(m) — M; — 0
in which the object Q(m) is projective, the complexity of the object W(m) is ¢x 4 (M) —1,
and m € V (W (m)). Note that V. 4(W(m)) C V 4(M;) by Proposition 2.10, and conse-
quently that
U VieW(m) =V, (M)
meV 4 (M)

since m € V (W (m)).

As explained earlier in this proof, when we apply X *— to the sequence we just obtained,
the result is a short exact sequence

0— X« W(m) — Q"™ (X « M;) & P(m) — X % M; — 0

where the object P(m) is projective. Using Proposition 2.10 again, we obtain the inclusion
V(X «W(m)) C V(X * M;), and by induction we also see that Vi (X) NV 4 (W(m)) C
V(X = W(m)), since cxg(X) + cx g (W(m)) = cx¢(X) + cx y(M) — 1. Combining ev-
erything, we now obtain

Vg (X) NV (M;) = Vg (X) N ( U V%(W(m)))
me V., (M;)

= U ((X)nVe(W(m))
me V. 4 (M;)

c U Vax=wm)
me V., (M)

C V(X ® M)

This concludes the induction proof in the case when cx 4 (M) > 2.

Finally, if cx_ (M) = 1 and cx¢(X) > 2, then we use virtually the same arguments to
reach the conclusion. Namely, we reduce the complexity of X while keeping the object M
fixed. We have shown that (1) follows from (2). O

Thus in order to verify that the module product property holds for support varieties,
it is enough to check that it holds for the indecomposable periodic objects. The following
result provides an alternative way of verifying all this, by considering whether certain
module products are projective or not.

Theorem 3.6. Let k be a field, and (¢,®,1) a finite braided tensor k-category satisfying
Fg. Furthermore, let (A ,*) be an exact left €-module category, whose set of isomorphism
classes of simple objects is finite. Then the following are equivalent:
(1) Vy(X x« M) =Ve(X)NV.4(M) for all objects X € €, M € M ;
(2) For all objects X € €, M € M, if Vg(X) NV 4(M) # {mg}, then X x M is not
projective;
(8) For all objects X € €, M € M of complexity 1, if V(X)) NV 4 (M) # {mg}, then
X x M 1is not projective;
(4) For all indecomposable periodic objects X € €, M € M, if Vg(X) NV 4(M) #
{mg}, then X * M is not projective;
(5) For all nonzero indecomposable periodic objects X € €, M € # with Vig(X) =
V. (M), the object X x M is not projective.
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Proof. Suppose that (1) holds, and let X € €, M € .# be objects with Ve (X )NV 4 (M) #
{mp}. Then V 4 (X * M) # {mp}, hence X x M cannot be projective. This shows that (1)
implies (2). The implication (2) = (3) is trivial, the implication (3) = (4) follows from
Corollary 3.2, and the implication (4) = (5) follows from the fact that the support variety
of a nonzero periodic object is non-trivial by Theorem 3.1.

Finally, suppose that (5) holds. By Theorem 3.5, in order to show that (1) holds, it
is enough to show that V 4 (X * M) = Vi (X) NV 4(M) for all indecomposable periodic
objects X € €, M € .#. This is trivially true if either X or M is zero, so suppose that
they are both nonzero, indecomposable and periodic. If Vi (X) NV 4 (M) = {mp}, then
V(X M) ={mg} by Proposition 2.10(6), and we are done. If Vi, (X)NV 4 (M) # {mg},
then Vi (X) =V (M) by Proposition 3.3, and so by assumption the object X * M is not
projective. Then dim V. 4(X « M) > 1 by (1) and (2) of Theorem 2.11, that is, the Krull
dimension of H' (%) /I 4(X * M), and therefore also of H*(¢)//L4(X * M), is at least 1.
Now apply Proposition 3.3 once more; let p be the unique minimal prime of Suppy (X),
so that Vg (X) = Z(p) = V.4(M). Then

Z(La(X xM)) =V (X +M)CVg(X) = Z(p)

by Proposition 2.10(6), giving p C /I (X x M) by [23, Theorem 25]. If this inequality
is strict, then Suppy(X) contains a strictly increasing chain of length at least 2, since
dimH'(€)//Ly(X % M) > 1. This is impossible since dim Vi (X) = 1 by Theorem 3.1,

hence p = /I 4(X * M). But then
VX« 2) = 2 (\/Ly(X M) ) = Z(9) = Ve (X) 1 V. (O)

and we are done. O

4. SKEW GROUP ALGEBRAS AND SYMMETRIC TENSOR CATEGORIES

In this section, we apply the results of Section 3, specifically Theorem 3.6 (5), to cat-
egories of finite dimensional representations of certain skew group algebras. For these
tensor categories, the finiteness condition Fg holds, and we shall see that the tensor prod-
uct property holds for support varieties. Using Deligne’s classification theorem from [15],
we obtain as a special case an important class of examples, namely the finite symmet-
ric tensor categories over algebraically closed ground fields of characteristic zero, giving
a new proof of the tensor product property for these categories (cf. Drupieski and Ku-
jawa [16, Corollary 3.2.4]). In case the group has order two and the characteristic of k is
odd, our result should also be compared with Benson, Iyengar, Krause, and Pevtsova [5,
Theorems 8.10 and 9.3].

The skew group algebras in which we are interested arise from group actions on exterior
algebras, so let us fix some notation that we will use throughout this section. Let k be a
field, ¢ a positive integer, and A the exterior algebra in ¢ indeterminates z1, ..., x. over k:

A=Kz, ..., z)/ (x?axi%' - W)

Furthermore, let G be a finite group acting on A, via a homomorphism into the group of
algebra automorphisms of A. We may then form the skew group algebra A x G. As a
k-vector space, this is just A ®j kG, which is finite dimensional, and every element is of
the form }°, . wy @ g for some w, € A. Multiplication is defined by

(w1 ® g1)(w2 ® g2) = w1 (Tw2) ® g192
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for w; € A and g; € G. The skew group algebra is often also called the smash product
algebra, and then typically denoted by A#kG. If the characteristic of k does not divide the
order of G, then since exterior algebras are selfinjective, it follows from [31, Theorem 1.1
and Theorem 1.3] that A x G is also selfinjective. Finally, note that the natural inclusion
A — A x G given by w — w ® e (where e is the identity element of G) turns A x G into a
left and right A-module, in both cases free of rank |G/|.

Remark 4.1.

(1) Suppose that A x G happens to be a Hopf algebra, and that the characteristic of
k does not divide the order of G. Then the finite tensor category mod (A x G) of
finitely generated left modules satisfies Fg. To see this, denote the algebra by H.
By [7, Theorem 4.1(2)], the Hochschild cohomology ring HH*(H) is Noetherian,
and for every H-bimodule X, the right HH*(H)-module Ext}.(H, X) is finitely
generated (here H¢ denotes the enveloping algebra H @ H°P). By [7, Lemma 3.2],
this implies that Extj; (M, M) is a finitely generated HH*(H )-module, for every
finitely generated left H-module M. Finally, by [7, Lemma 4.2], this in turn implies
that the finite tensor category mod H satisfies Fg.

(2) Given any ring R together with an automorphism ¢: R — R, we may twist a left
module X and obtain a module ;,X. The underlying abelian group is the same,
but the module action becomes r - = ¢(r)z for r € R and x € X. There is
an isomorphism ;X ~ 4R ®r X, hence twisting induces an exact functor. In
particular, for A and G, every g € G acts on the cohomology ring Ext} (k, k) by
twisting of extensions. That is, given a homogeneous element 7 realized as an
extension

0 kL% x, Iy Iy x g

we obtain the element 97 realized as the extension

fn—l

Oﬁki%gXlﬂw--——»anf—”)k:HO

Here we have used the notation ;X for the A-module obtained from X by twisting
with the automorphism on A given by g; note that jk = k.

(3) Suppose, asin (1), that H = AxG is a Hopf algebra, and that the characteristic of &k
does not divide the order of G. Then the cohomology ring Ext};(k, k) is isomorphic
to the G-invariant subring Ext} (k, k) of Ext} (k, k), via the restriction map

75 4 (k,k)
Exty (k, k) —2—% Bxt} (k, k)

see, for example, [33, Theorem 2.17].

The following lemma shows that if we take any subalgebra of A x G containing the
exterior algebra A, then restriction of cohomology is injective.

Lemma 4.2. If the characteristic of k does not divide the order of G, then for any algebra
A with A C AC A XG, and any pair of A x G-modules M, N, the restriction map

* e (M)
Ext’ (M, N) 220A 77,

Ext% (M, N)
15 injective.
Proof. Let us denote A x G by H. The composition of restriction maps

i 4(M.N) 7% (M,N)

Ext’; (M, N) Ext’ (M, N) 2" Ext} (M, N)
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equals the restriction map 777 , (M, N) from H to A. It therefore suffices to show that the
latter is injective. If 0 € Ext% (M, N) for some n, then its restriction to Ext} (M, N) is
H ®p7 0, where we view H as a A-H-bimodule. Inducing back to H, we obtain the element
H®py H®p0 e Exthy(H®yH®g M,H®)y H®g N), where we view the leftmost H in
the tensor products as an H-A-bimodule. By [31, Theorem 1.1], H is a direct summand of
H® ) H as a bimodule over itself, and so we see that 6 is a direct summand of H®, H®g0.
This shows that the restriction map from Ext; (M, N) to Ext} (M, N) is injective. O

Suppose now that the characteristic of k is not 2, and let Cy be a (multiplicative) group
of order 2, say Co = {e, h} with h? = e. This group acts on A by defining "z; = —x; for
each ¢. From now on, we set

A=Ax CQ.
As a k-algebra, it is isomorphic to the algebra generated by h,x1, ..., x., with relations
h? = 1,22 = 0,z;2; + xjx; = 0 and hx; + x;h = 0. We see that it is a Hopf algebra by
defining a comultiplication A, antipode S and counit € as follows: A(h) =h® h, A(x;) =
z; ® 1+ h®xz;, S(h) =h,S(x;) = —hx;,e(h) =1 and ¢(z;) = 0.

The finite tensor category mod A of finitely generated left A-modules is symmetric. To
see this, take two modules M, N € mod A, and decompose them into subspaces

M= My® My, N=NydN;

given by eigenspaces for the action of h; this is possible since the characteristic of & is
not 2. Thus Amg = mg and hm, = —my whenever m; € M;, and similarly for N. One
now checks that the map M @ N — N ® M given by

m; @ nj = (=1)Yn; @ m;
is a functorial isomorphism, and it squares to the identity. Hence mod A is symmetric.
Moreover, by Remark 4.1(1), it also satisfies Fg. For a module M € mod A, we shall
denote the support variety Vinoq 4(M) by just V4(M); these are defined in terms of the

maximal ideal spectrum of the (commutative) even degree cohomology ring Ext%(k, k).
We denote by mg the unique graded maximal ideal of this ring.

Remark 4.3. By Remark 4.1(3), the ring Ext* (k, k) is isomorphic to Ext} (k, k)“? via
the restriction map

74 A (kK)
Ext’ (k, k) =2 Ext} (k, k)

The action of Cy on Ext} (k, k) is quite simple: the generator h € Cy acts as (—1)" on
Ext}{ (k, k). This can be seen from the action of h on the Koszul resolution of k in degree
n, induced by the action of h on each z; as multiplication by —1. Thus Ext} (k, k)2 is

nothing but the even degree subspace Ext%*(k, k) of Ext} (k, k). In particular, we see that
Ext’y (k, k) = 0 for odd n, so that Ext* (k, k) = Ext% (k, k).

Now take a c-tuple A = (A1, ..., A¢) € k¢, and denote the element A\jx1 + - -+ + Az of
A by uy. Then ui = 0, and so the subalgebra k[uy] generated by wu) is isomorphic to the
truncated polynomial ring k[y]/(y?) whenever X is nonzero. For every such c-tuple )\, the
algebra A is free as a left and as a right module over the subalgebra k[u,]; this follows, for
example, from [4, Theorem 2.6]. Combining with the above, we see that the same holds
for the algebra A.

The inclusion k[uy] — A gives a restriction map

™ (k,k
Ext* (k, k) Tan (BB, Extyy, (k)
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We denote by TZ{"A(k:, k) the restriction of this map to the even cohomology ring Ext%*(k, k).
Of course, since Ext%(k,k) = Ext%(k, k), we have not in practice restricted the map
7':27 1(k, k) to a subalgebra. The first result we prove is that when A is a nonzero c-tuple,
then the kernel of this map is a graded prime ideal of Ext%*(k, k). Moreover, two c-tuples
give rise to different prime ideals if and only if they are not on the same line.

Lemma 4.4. For every nonzero c-tuple A € k€, the ideal Ker Tf{:}\(k, k) is a graded prime

ideal of Ext% (k,k), different from mg. Moreover, if ju is another nonzero c-tuple, then
Ker Tﬁf/\(k, k) = Ker T%f#(k, k) if and only if p = aX for some (necessarily nonzero) scalar
ack.

Proof. Let X\ be a nonzero c-tuple in k. Since k[u,] is isomorphic to the truncated polyno-
mial ring k[y]/(y?), the cohomology ring Extjp,,)(k, k) is isomorphic to a polynomial ring
k[z] with z in degree one. In particular, the even cohomology ring Exti’fm] (k, k) is an inte-
gral domain. Tt follows that if n and @ are elements of Ext%*(k, k) with nf € Ker Tff:/\(k, k),
then either n € Ker T%T)\(k‘, k) or 6 € Ker Tf;’k)\(k:, k), since the restriction map is a ring
homomorphism. Thus Ker Tif/\(k, k) is a prime ideal since it is proper (it does not contain
the identity element 1 € Hom 4 (k, k), for example).

Now take another nonzero c-tuple p € k. If = a) for some o € k, then u, = auy,
and so k[u,] = k[u)] as subalgebras of A. Then trivially Ker Tflf/\(k, k) = Ker Tﬁfu(k, k).
Note that when ¢ = 1, then p must be on the same line as .

Conversely, suppose that A and p are not on the same line (so ¢ must be at least 2), and
consider the linear map ¢y : k¢ — k given by p — (A, p), where (A, p) = A\ip1 + -+ + Acpe.
This map is surjective since A is nonzero, and so Ker ¢ is of dimension ¢ — 1. Now choose
a basis for Ker ¢y, and consider the (¢ — 1) x c-matrix E whose rows are these c-tuples,
in any order. The rank of F¥ is ¢ — 1, and so its null space is of dimension one, and
contains A. Since p is not on the same line as A, it cannot belong to the nullspace, i.e.
Eu # 0. Consequently, there exists a c-tuple p € k¢ with (A, p) = 0 and (u, p) # 0 (for
example, one of the rows of E has this property). Choose one such c-tuple p.

Consider the projective cover

0—-I1I—=A—k—0

of k as a left A-module, where I is the left ideal (z1, ..., x.) € A. Furthermore, look at
the map I — k given by

Brxy + -+ Bexe +w <B,p)
for w € I? and 8 = (B, ..., Bc). This map is a A-homomorphism mapping uy to zero
and w, to something nonzero, and does not factor through A. Consequently, it represents
a nonzero element 1 € Ext}(k,k). Now for any nonzero c-tuple o € k°, the ideal I
decomposes over kuy]| as (uy) ® Qp, for some free klu,]-module Q,. Furthermore, the

restriction map

Tr U(k,k)
EXt}k\(k, k) —_ EXtZ[ua] (k, k')

maps 7 to the element of Exti[%}(k, k) represented by the map (u,) ® Q, — k given by
aug+q — afo, p) for o € k and g € Qo. Then 73 | (k, k)(n) = 0, whereas 75 ,(k, k)(n) # 0

since (u,p) # 0, and the k[u,]-homomorphism (u,) ® Q, — k above does not factor
through A. The restriction maps are ring homomorphisms, hence 7}  (k, k)(n?) = 0 and

A (ks k)(n?) # 0, the latter because Exty,,)(k, k) is an integral domain.
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For every nonzero c-tuple o € k¢, the inclusions k[u,] — A — A of k-algebras induce
the sequence

. TZ’A(k,k) . TX’U(]C,]C) .
Exct’y(k, k) —2— Exti (k, k)~ Ext}y, 1(k, k)

of restriction maps. The composition equals the restriction map le’g(k,k). Now by
Remark 4.3, the restriction map

Ext% (k, k) # Ext3*(k, k)

is an isomorphism, and so the element n? € Ext? (k, k) belongs to the image of 7% , (k, k),

where 1 € Ext} (k, k) is the element from above. Choosing an element 6 € Ext? (k, k) such
that 73 , (k. k)(0) = n%, we obtain

735 Ok, k)(0) = 7o (k, 1)(0) = 735 (k. ) (734 0k, K)(0) ) = 73 o (k, F) (0?)

for every nonzero c-tuple o € k°. We showed above that 73 ,(k, k)(n %) = 0 whereas
Ta (K k) (n 2) # 0, and so 6 is an element of Ker 75 “\(k, k), but not of Ker 73* (k. k). This

shows that Ker 73* “\(k, k) does not equal Ker 3’ M(kz k) when X and p are not on the same
line.
Finally, we prove that Ker TA )\(k k) does not equal the graded maximal ideal my of

Ext% (k, k). If ¢ = 1, then uy is just the generator x; multlphed with a nonzero scalar,
and so k[uy] = A in this case The restriction map from Ext%*(k, k) to Ext3*(k, k) is an
isomorphism, hence Ker 72 4 (k, k) =0 # mg. When ¢ > 2, we proved above that for the c-

tuple y1 the element n? € Ext? (k, k) did not belong to Ker 73 " (k, k). Thus Ker 73* "k, k) #
mg, and by switching the roles of A and p we see that also Ker TA,/\(k, k) # myg. O

We now turn our attention to a class of A-modules whose support varieties are deter-
mined by the prime ideals of Ext%*(k, k) considered in the lemma. Namely, for a nonzero
c-tuple A € k¢, denote the left A-module A(uy ® €) by just Auy. Analogues of these mod-
ules have been used earlier, in particular in connection with rank varieties; see [4, 8, 28].
In the following result, we establish the properties that we need for Auy; see also [28,
Section 2]. Recall that Hom denotes the quotient of the space of homomorphisms by the
subspace of those factoring through a projective module.

Proposition 4.5. For every nonzero c-tuple A € k€, the following hold.

(1) The A-module Auy is 1-periodic, i.e. QY4 (Auy) ~ Auy. Moreover, it is isomorphic
to the induced module A @) k-

(2) A module M € mod A is free as a k[ux]-module if and only if Hom 4 (Auy, M) = 0.

(3) Ext’y(Auy, k) # 0 for every positive integer n, and the restriction map

Auy,k
EXt:kq (A'U,)\, k’) M Eth[ } (AU/\, k)

is injective in every positive degree.
(4) Va(Auy) = (KerT \(k,k)), and this variety is irreducible.

Proof. By [4, Lemma 2.14], the sequence
s A A A S A
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of left A-modules is exact. Applying A ®, —, we obtain an exact sequence of left A-
modules, since A is free as a right A-module. The canonical isomorphism A ®, A ~ A
then gives an exact sequence

(ur®e) (ur®e)

A%,y Ao (1)

of left A-modules, hence Auy is 1-periodic. The last part of (1) follows from the isomor-
phisms

— A

A Oklus] k~A Okluy] Eluy]/(ux) ~ AJAuy = AJ/A(uy ® e)
of left A-modules, together with the isomorphism A/A(uy ® e) ~ A(uy ® e) which is
immediate from the exact sequence (t).
For (2), we use the isomorphism from (1) together with the Eckmann—Shapiro Lemma,
and obtain

Hom 4 (Auy, M) ~ Hom 4 (A Okfuy] ks M) ~ Homy,; (k, M)

Since the algebra k[u,] is isomorphic to k[y]/(y?), the k[uy]-module M is free if and only
if it does not contain k as a direct summand. Consequently, it is free if and only if
Homk[uk] (k‘, M) =0.
For (3), we use the periodicity of Auy and the fact that A is selfinjective to obtain
Exty (Auy, k) >~ Hom 4 (27 (Auy), k) >~ Hom 4 (Auy, k)

for every positive integer n. From (2) we see that Hom 4 (Auy, k) # 0, and so Ext’y (Auy, k) #
0 as well.

For the restriction map, note first that since A is free as a left k[uy]-module, the se-
quence (f) restricts to a sequence of free k[uy]-modules. Therefore QZ[UA](Au,\) is stably
isomorphic to Auy for every n > 1, giving

Extp,,) (Aux, k) = Homy, | (QZ[UA](Au)\), k) ~ Homy,,) (Auy, k)

The restriction map 7} \(Auy, k) is compatible with the isomorphisms Ext’j(Auy, k) =~
Hom 4 (Auy, k) and Exty, ;(Auy, k) = Homyp,,)(Auy, k), in the sense that the diagram

Ext’y (Auy, k)
J/T;;A(Aux,k) iT
EXtZ[uA} (Auy, k) — Homy,,,) (Auy, k)

I_IoimA (Au/\7 k)

commutes, where the horizontal maps are the isomorphism, and 7 the restriction. It
therefore suffices to show that 7 is injective.

The left A-module Auy decomposes over k[uy] as a direct sum k({uy ® e) & N, where
k(uy ® e) denotes the k-vector space generated by the element uy ® e. The latter is
isomorphic to k as a k[uy]-module. One now checks that the diagram

Hom 4 (AU)\,]{?) I_Ioin%[uﬂ (k. k)

lT

Homy,,, ) (Aun, k) — Homy,, ) (k{ux @ €) & N, k)

commutes, where the lower horizontal map is the natural isomorphism, the upper one is
the Eckmann—Shapiro isomorphism from the proof of (2) above, and the vertical map to
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the right is the inclusion into the summand corresponding to k(uy ® €). This shows that
7, and therefore also 7'174‘,)\(/1%\7 k), is injective.

To prove (4), note first that A decomposes as a direct sum A = AT @ A~, with AT =
A(l® (e+h)) and A~ = A(1 ® (e — h)), where h is the generator of Cy. Similarly, one
checks that Au) decomposes as M ;r @ M, , where

M ={wuy® (e+h) |weA}, My ={wuy®(e—h)|weA}

As left A-modules, the modules A* and A~ are isomorphic to A, hence they are indecom-
posable also as left A-modules (they represent the two isomorphism classes of indecom-
posable projective A-modules). As a consequence, the modules M ;“ and M, must also
be indecomposable. Now look at the exact sequence (). One checks that for AT, the
image of the multiplication map -(u) ®e) is M, with kernel M} (and vice versa), so that
QL (M) = M. It now follows from Proposition 2.10 that

Vi (Auy) = Va (M;) UVa (M; ) =Va (MI )

and so since M;r is indecomposable, we see from Proposition 3.3 that V4(Auy) is irre-
ducible.

Let us first consider the support variety V(Auy,k), which by definition equals
Z(Ia(Auy, k)), where I4(Auy, k) is the (graded) annihilator ideal of Ext%(Auy,k) in
Ext% (k,k). Let n be a homogeneous element of I4(Auy,k), and choose an element
0 € Ext?%(Auy, k) with Taa(Aux, k)(0) # 0 in Extz[UA](AuA,k); this is possible by (3).
Then 7 -0 = 0 in Ext (Auy, k) since n € I4(Auy, k), giving

0= 73 (Aux, k) (- 0) = 73% (k, k) (1) - 745 (Aun, k) (9)
in Extyy, (Aux, k), where Tf{:‘)\(k, k) is the restriction map from Ext%(k,k) to
E}(‘cz*[‘w](l<:7 k). We know that Exti*[‘w](k, k) is just a polynomial ring of the form k[y]
with y in degree two (see the start of the proof of Lemma 4.4), and so if Ti’:‘)\(k,k)(n)
were nonzero it would have to equal ay’ for some nonzero scalar «. It is well known that

multiplication by y induces an isomorphism

Extyp,, (X, k) = Ext}"2 (X, k)

[uA]
for every n > 1 and every k[uy]-module X (see, for example, [28, pp. 583-584]), and so
since 73 ,(Auy, k)(0) # 0, we see from the above equation that Tflf)\(k, k)(n) cannot be

nonzero in Extz’[kw](k:, k). In other words, the element 1 belongs to Ker Tﬁ*’}\(k:, k), giving
I4(Auy, k) C Ker 73%(k, k), and then in turn

Z (Ker 7313k, k) C Z (Ia(Auy, k) = Vi (Auy, k) C Va (Auy) N Vi (k) = Va (Auy)

where the last inclusion is Proposition 2.10(2).

By definition, the support variety Va(Auy) equals Z(14(Auy)), where I4(Auy) is the
annihilator ideal of Ext* (Auy, Auy) in Ext%(k,k). The inclusion Z(Ker Tﬁi}\(k,k)) -
Z(IA(Auy)) gives the inclusion

V1a(Auy) C \[Ker 73, (k. k)

by [23, Theorem 25|, and so since Ker Ti’:)\(k, k) is a prime ideal by Lemma 4.4, we see that

I4(Auy) C Ker T%T)\(k‘, k). We also know, from the same lemma, that Ker Tf{f)\(k, k) # my,
so that the chain
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Ker Tﬁ’f)\(k:, k) C mg
of prime ideals containing I4(Auy) has length one. Since the A-module Auy) is periodic,
we know from Theorem 3.1 that the dimension of V4(Auy) is one. Moreover, we saw above
that the support variety is irreducible, and so it follows that V4 (Auy) = Z(Ker Tﬁi\(k, k));
see the paragraph following Corollary 3.2. O

We now use the properties we just proved for the modules Auy to show that every
non-trivial support variety contains V4(Au)) for some nonzero .

Proposition 4.6. Let M € mod A be a non-projective module.

(1) There exists a nonzero c-tuple X\ € k¢ with the property that M is not a free module
over the subalgebra kluy|. Moreover, for every such X\, the support variety Va(M)
contains the one-dimensional irreducible variety Va(Auy) from Proposition 4.5.

(2) If M is indecomposable and periodic, then there exists a nonzero c-tuple \ € k°
with the following property: given a nonzero c-tuple p € k¢, the module M is not
free over k[u,] if and only if p = aX for some (necessarily nonzero) scalar o € k.

Moreover, Va(M) = Va(Auy).

Proof. The first part of (1) follows from [4, Section 3]. Now take such a c-tuple A.
Then Hom 4 (Auy, M) is nonzero by Proposition 4.5 (2), and combining this with Proposi-
tion 4.5 (1), we obtain

Ext’y (Auy, M) ~ Hom 4 (% (Auy), M) ~ Hom 4 (Auy, M) #0

for every n > 1. It now follows from Theorem 2.11(7) that the support variety Va(Auy, M)
is non-trivial, i.e. Va(Auy, M) # {mg}. The inclusion

Va (AUA,M) CVu (AU)\) NVy (M)

which holds by Proposition 2.10(2), now implies that the intersection V4(Auy) N Va(M)
is also non-trivial. But V4(Auy) is irreducible by Proposition 4.5(4), and so V4(Auy) C
Va(M). This proves (1).

To prove (2), suppose that M is indecomposable and periodic, and let A be any nonzero
c-tuple for which the module is not free over k[uy]; such a tuple exists by (1). Consider
the module M~ from the proof of Proposition 4.5(4). We showed that this module is
indecomposable and periodic, and that its support variety equals that of Auy. We saw
above that the intersection V4(Auy) N V4(M) is non-trivial, hence the same is trivially
true for the intersection V(M) N V4(M). It now follows from Proposition 3.3 that
Va(M) = VA(M;\L) = Va(Auy).

Finally, if p is another nonzero c-tuple for which M is not a free k[u,]-module, then
what we have just shown implies that the support varieties V4(Auy) and V4(Au,) must
be equal. Then Z(Ker 3% (k, k)) = Z(Ker 73", (k, k)) by Proposition 4.5 (4), giving in turn
Ker Tﬁf/\(k, k) = Ker Tﬁf#(k, k) since both ideals are prime ideals by Lemma 4.4. The very
same result gives p = a\ for some (nonzero) o € k. Conversely, if 4 = a\ for a nonzero
a, then u, = auy. The subalgebra kf[u,| then equals k[u,], hence M is not free over

kluy). ]

Remark 4.7. The results of Propositions 4.5 and 4.6 recall notions of rank varieties.
We will not use rank varieties here, in favor of proceeding directly to the tensor product
property. However, the framework of rank varieties would be a natural structure in which
to view our results in this section, defining the rank variety of an A-module M to be the set
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of all A € k¢ for which M is not free as a k[uy]-module. Equivalently, by Proposition 4.5(2),
this is the set of all A € k¢ such that Hom 4 (Auy, M) # 0. By Proposition 4.6 (2), if M is
indecomposable and periodic, then this set is simply the line through the c-tuple A in the
statement. Compare with [4, 8, 28|, with [16, 17, 22] in characteristic 0, and with [5] in
odd characteristic.

In the main result of this section, we consider general braided Hopf algebras of the form
A x G, for G a finite group containing Cs, and over an algebraically closed field k. We
know from Remark 4.1 (1) that when the characteristic of k£ does not divide the order of G,
then the finite tensor categories mod (A x G) and mod (A x Cy) satisfy Fg. The following
lemma allows us to pass from support varieties over A X G to support varieties over A x Cs.

Lemma 4.8. Let k be an algebraically closed field, ¢ a positive integer, and A the exterior
algebra on ¢ generators over k. Furthermore, let G be a finite group whose order is not
divisible by the characteristic of k, acting on A in such a way that the algebra H = AXG is
a Hopf algebra. Finally, suppose that G contains a central subgroup Co of order two, acting
on A by letting its generator change the sign of the generators of A, and that A = A x Cy
1s a Hopf subalgebra of H. Then

V(M) =Vu(N) = Va(M)=Va(N)
for all M, N € mod H.

Proof. We know from Remark 4.1(3) that the cohomology ring Ext;(k, k) is isomorphic
to Ext} (k, k)¢ via the restriction map

75 A (k,k)
Ext’; (k, k) —— Bxt} (k, k)

This map is the composite

75 A (k,k) 745 A\ (k,k)
Ext’; (k, k) TalhB), Ext® (k, k) ——— Ext} (k, k)

and from Remark 4.3 we also know that
A (Kk)
Ext% (k, k) TAn Ext3*(k, k)
is an isomorphism. Since Cy C G, both Exty(k, k) and Ext} (k, k) are concentrated in
even degrees.

By definition, the action of G on A is defined in terms of a group homomorphism
G — Aut(A). Now for an element a = w; ® e+ we ® h in A and g € G, we define 9a to be
w1 ®e+9ws ®h. One checks that this induces an automorphism of A, using the fact that
Cy is central in G. Moreover, in this way we obtain a homomorphism G — Aut(A), with
the action of G on A extending the action on A. Asin Remark 4.1(2), we obtain a G-action
on Ext’ (k, k), and this action commutes with the restriction map (and isomorphism)

WAL
Ext (k, k) 2270 Ext2 (k, k)
Then Ext? (k: k)Y is the image of Ext% (k, k)¢, and so Ext?f (k, k) is isomorphic to
Ext% (k, k:) via the restriction map

b} )
Ext (k, k) TiatR), Ext%f (k, k)

in light of the above.
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Let M and N be H-modules with V(M) = Vi (N). There is a commutative diagram

2%
TH,A

Ext?r (k, k)

A
Ti A (M, M)

Ext?, (M, M) Ext*, (M, M)

Ext% (k, k)

where the horizontal maps are restrictions (we have skipped the arguments in the upper
one, since we shall be using it quite a lot in what follows), and the vertical maps are induced
by tensoring with M. The module N gives rise to a similar diagram. By Lemma 4.2,
the horizontal restriction maps are injective. Denote by I4(M) the annihilator ideal of
Ext’ (M, M) in Ext% (k, k), that is, T4(M) = Kerp{,, and similarly for I4(N), Ig(M)
and Iy (N). These are the ideals defining the four support varieties we are considering.

Suppose we can show that I4(M) and I4(N) are G-invariant in Ext%(k, k), so that
IIA(M) = Io(M) and 9I4(N) = I4(N) for all ¢ € G. Let m € V4(M); thus m is
a maximal ideal of Ext% (k, k) with I4(M) C m. Since k is algebraically closed and
the algebras Ext? (k, k) and Ext%*(k, k) are finitely generated, the ideal (T%I* 1) H(m) s
maximal in Ext? (k,k); see, for example, [3, Section 5.4]. The commutativity of the
diagram gives I (M) C (T?ij)_l(m), and therefore (T?IfA)_l(m) € Vg (M). Suppose, on
the other hand, that m ¢ V4(N), so that I4(N) € m. As I4(N) is G-invariant, this gives
I4(N) € 9m for every g € G, and so by prime avoidance there exists a homogeneous
element n € I4(N) with n ¢ 9m for every g € G. Consider now the element

wzHgn

It belongs to I4(N) since 7 is one of the factors, but it cannot belong to m; if it did,
then 917 would belong to m for some g, giving n € 9 m. Furthermore, this element is
G-invariant, and therefore belongs to the image of T%I”:A(k:, k), ie. w= TI?I’fA(G) for some
0 € Ext3(k, k).

The commutativity of the diagram with M replaced by N gives

TiA(N. N) 0 o (60) = @iy o T4 (6) = iy (w) =0

since w € I4(NN), and so since 7j; 4(IN, N) is injective we obtain 6 € Iy (N). Now 0 does
not belong to (T%I* )" H(m), for if it did, then w would be an element of m. Therefore
Iy(N) ¢ (TffjA)_l(m), so that (Tif’jA)_l(m) ¢ Vg(N). But (TIQJfA)_l(m) € V(M) from
above, and Vg (M) = Vg (N) by assumption, and so we have reached a contradiction. It
must therefore be the case that m € V4(N), giving Va(M) C V4(N). The reverse inclusion
is proved similarly, hence V4(M) = V4(N).

It only remains to show that the ideals I4(M) and I4(N) are G-invariant in Ext%' (k, k).
We prove this for 14 (M); the proof for I4(N) is similar. It follows from [35, Theorem 9.3.9]
that I4(M) equals the annihilator ideal of the Ext%’(k, k)-module Ext* (k, M*® M), where
the module action is given in terms of Yoneda composition. Now let  and § be homo-
geneous elements of I4(M) and Ext’ (k, M* @ M), respectively. Given any H-module X
and an element g € G, the twisted A-module ;X is isomorphic to X, with an isomorphism
¢X — X mapping an element m to (1 ® g~ 1)m. Consequently, when we twist a homo-
geneous element of Ext¥ (k, M* ® M) by an element from G, we obtain a new element in
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Ext% (k, M*® M), since k and M*® M are H-modules. Therefore, as n belongs to I4(M),

we obtain
0o () =(""0) o ('n) =7 ((*0)on) =0

since 97" 0 belongs to Ext*(k, M* ® M). This shows that 95 € I4(M), and hence I, (M)
is G-invariant. O

We now prove the main result of this section: the tensor product property holds for
support varieties over braided Hopf algebras of the form we have been considering.

Theorem 4.9. Let k be an algebraically closed field, ¢ a positive integer, and A the exterior
algebra on c generators over k. Furthermore, let G be a finite group whose order is not
divisible by the characteristic of k, acting on A in such a way that the algebra H = A x G
1s a braided Hopf algebra. Finally, suppose that G contains a central subgroup Cy of order
two, acting on A by letting its generator change the sign of the generators of A, and that
A x Cy is a Hopf subalgebra of H. Then

Vi (M ®N) = Vg (M)N Vg (N)
for all M, N € mod H.

Proof. As before, denote by A the Hopf subalgebra A x Cs of H. Let M and N be two
nonzero periodic H-modules with Vi (M) = Vg (N), and decompose them as A-modules
into direct sums M = ®M;, N = @;N; of indecomposable modules. Since H is free as
a left A-module (see [27, Theorem 7]), both M and N are of complexity at most one
over A, because the projective resolutions over H restrict to projective resolutions over A.
Moreover, the modules cannot be projective over A; if M, say, is A-projective, then it is
also projective — and hence free — over A, since A is free over A. Then we would obtain
a free module when we induced M (as a A-module) back to H, but as in the proof of
Lemma 4.2, the original H-module M is a summand of this induced module. As M is not
projective over H, it must be the case that it is not projective over A either. Therefore
both M and N are of complexity one over A. In particular, at least one of the M;, and
one of the IV;, is not projective, and therefore periodic from Corollary 3.2.

By Lemma 4.8 there is an equality V4(M) = V4(N), and by Theorem 2.11(2) these
support varieties are non-trivial since M and N are not projective over A. Consequently,
by Proposition 2.10(1), there exist indices ¢ and j for which Va(M;) N Va(N;) # {mp},
where mq is the graded maximal ideal of Ext%'(k, k). Using Theorem 2.11(2) again, we
see that M; and N; are not projective, and therefore periodic from the above. It now
follows from Proposition 3.3 that V4 (M;) = Va(N;), and so from Proposition 4.6 we see
that there exists a nonzero c-tuple A € k¢ with V4(M;) = Va(N;) = Va(Auy), and with
M; and N; not free over the subalgebra k[uy] of A. Then M and N are not free over kfu,],
either.

Since u) is just a linear combination of the elements z1,...,z. € A, the group Cs acts
on k[uy], and we may form the four-dimensional skew group algebra Hj = k[uy] x Cs.
This is a Hopf subalgebra of A (and therefore also of H), isomorphic to the Sweedler Hopf
algebra Hy, and it contains k[uy] as a subalgebra. Since it is free over k[u,], the modules
M and N cannot be projective as Hj-modules, for if they were, then they would also be
free over k[u,].

The algebra H, Af‘ has two simple modules, namely the trivial module k£ and a module S.
The latter is one-dimensional, with uyS = 0, and h acting as —1 (we identify H; with a
k-algebra with basis 1,uy,h and huy, where h is the generator of Cs). It is well-known
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that these are the only non-projective indecomposable Hp-modules (see, for example, [14,
p. 467] or [13, Corollary 2.4 and Theorem 2.5]), and so it follows that there are elements
m € M and n € N that generate summands isomorphic to either k or S when we restrict
M and N to Hj. Let W be the one-dimensional subspace of M ® N generated by m ® n.
This is an Hi\—submodule of M ® N; the comultiplication on Hi‘ maps u) to uyRQ1+hQuy
and h to h ® h, so that uy acts as zero on W, and h as 1 or —1. Therefore, over Hy, the
module M ® N has a direct summand isomorphic to either k£ or S. In particular, M ® N
is not projective as an Hj-module. Now since Hj is a Hopf subalgebra of H, we know
from [27, Theorem 7] that H is free as an Hj-module. This implies that M ® N cannot
be projective over H, for it it were, then it would also be projective over H, i‘.

We have shown that for every pair of nonzero periodic H-modules whose support vari-
eties coincide, the tensor product is not projective. It therefore follows from Theorem 3.6
that V(M @ N) = Vg(M) N Vg (N) for all H-modules M and N. O

By Deligne’s famous classification theorem (see [15]), every symmetric finite tensor cat-
egory over an algebraically closed field of characteristic zero is equivalent to the category of
finite dimensional representations of some affine supergroup scheme. This means precisely
that such a category is equivalent to mod H, where H is a Hopf algebra of the form A x G
for some exterior algebra A and finite group G. Furthermore, there is a subgroup of G
of order two, and all the assumptions in Theorem 4.9 are satisfied (see [1] and also [26,
Section 7.1]). Thus we obtain the following corollary of Theorem 4.9, giving a different
approach to [16, Corollary 3.2.4].

Corollary 4.10. Suppose that (¢,®,1) is a symmetric finite tensor category over an
algebraically closed field of characteristic zero. Then

V(X ®Y)=Ve(X)NVy(Y)
for all objects X, Y € €.
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