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ARTICLE INFO ABSTRACT
Keywords: High-accuracy long-coverage vehicle trajectory data can benefit the investigations of various
Physics-informed Neural Network traffic phenomena. However, existing datasets frequently contain broken trajectories due to

Trajectory Reconstruction
Vehicle Trajectory Dataset
Extrapolation

sensing limitations, which impedes a thorough understanding of traffic. To address this issue, this
paper proposes a Physics-Informed Neural Network (PINN)-based method for stitching broken
trajectories. The proposed PINN-based method enhances traditional neural networks by inte-
grating physics priors, including vehicle kinematics and boundary conditions, aiming to provide
information beyond training domain and regularization, thus increasing method accuracy and
extrapolation ability for cross-dynamics scenarios (e.g., extrapolating from low-speed training
data to reconstruct high-speed trajectories). Two publicly available vehicle trajectory datasets,
NGSIM and HighSIM, were adopted to validate the proposed PINN-based method, and four biased
training scenarios were designed to assess the PINN-based method’s extrapolation ability. Results
indicate that the PINN-based method demonstrated superior performance regarding trajectory
stitching accuracy and consistency compared to benchmark models. The dataset processed using
our proposed PINN-based method has been made publicly available online to support the traffic
research community. Additionally, this PINN-based approach can be applied to a broader range of
scenarios that include physics-based priors.

1. Introduction

Vehicle trajectories, which represent the positions of a stream of vehicles over time along a guideway, offer valuable insights for
various traffic-related studies, including traffic flow theory, simulation modeling, safety measures, and traffic management. Existing
vehicle trajectory data collection methods could be categorized into two main types (Kim and Cao, 2010): vehicle-based methods
(Anuar and Cetin, 2017; Coifman et al., 2016; Victor, 2014; Zhao et al., 2017) and video-based methods (Ke et al., 2019; Kim et al.,
2019; Xu et al., 2017; Zhao and Li, 2019). The vehicle-based methods suggest collecting vehicle trajectory data by probe vehicles.
Vehicles outfitted with positional and distance measuring sensors, such as Lidar, Radar, and GPS, navigate the test road segment,
allowing for the collection of trajectories from these probe vehicles and the vehicles around them. The drawback of the vehicle-based
methods is obvious. As only the trajectories of the probe vehicles and their surrounding vehicles are gathered, the overall data
penetration rate relative to the total traffic volume tends to be quite limited.

On the other side, the swift advancement of aerial video recording technologies, such as unmanned aerial vehicles equipped with

* Corresponding authors.
E-mail addresses: tomshi@uwm.edu (X. Shi), xli2485@wisc.edu (X. Li).

https://doi.org/10.1016/j.tre.2024.103799
Received 19 May 2024; Received in revised form 23 September 2024; Accepted 25 September 2024

Available online 16 October 2024
1366-5545/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:tomshi@uwm.edu
mailto:xli2485@wisc.edu
www.sciencedirect.com/science/journal/13665545
https://www.elsevier.com/locate/tre
https://doi.org/10.1016/j.tre.2024.103799

K. Long et al. Transportation Research Part E 192 (2024) 103799

high-definition cameras, is enhancing the appeal of video-based methods. These approaches offer benefits like scalability, flexibility,
cost-effectiveness, and impartiality (Kim and Cao, 2010). Therefore, the collection of video-based trajectory data has recently garnered
significant interest from researchers in both industry and academia (Berghaus et al., 2024; Chen et al., 2021; Long et al., 2024b; Shi
et al., 2021). Despite the advantages offered by video-based data collection technologies, it is important to highlight two fundamental
issues that affect the datasets: detection errors and limited coverage, as detailed below.

Detection errors can be categorized based on their origin into two types: source errors and extraction errors. Source errors occur due
to occasional losses in video feed, often a result of recording from aerial platforms. For instance, the target sites might be obstructed by
surrounding structures such as bridges, traffic signals, billboards, or buildings, thus vehicle motions in the blocked areas are lost. As
circled in purple in Fig. 1, a bridge across the recorded road segment leads to the loss of the trajectories of all vehicles passing beneath
it.

Extraction errors stem from the methodologies used for trajectory extraction. To extract trajectory data from video sources, a
variety of methods have been developed to track vehicle movements within videos. Since videos were recorded aerial at high altitudes,
vehicles in the videos are small and usually with only a few pixels. Thus, reliable vehicle tracking is an extremely challenging problem,
which falls into the computer vision field and has attracted intensive studies in the past few years (Jazayeri et al., 2011; Wang et al.,
2008; Zhang et al., 2007). Despite the development of numerous high-performance methods aimed at resolving this issue, no technique
can consistently ensure superior detection rates. External factors such as weather conditions, lighting, wind, and camera angles can
also adversely affect the quality of the recorded video and consequently, the detection rates. Therefore, missing detections during the
trajectory extraction process are often unavoidable. Once a missing detection happens, the original continuous long trajectory gets
fragmented into shorter segments at the points of missed detection, compromising the dataset’s quality. As circled in black in Fig. 1, the
vehicle sizes in the video diminish as they approach the road segment’s end due to camera angles. This reduction in size leads to lower
detection rates, resulting in the extracted trajectories being segmented into smaller sections downstream.

To address the issue of detection errors, studies on vehicle trajectory data post-processing were conducted (Coifman et al., 2016;
Lee and Krumm, 2011; Punzo, 2009; Xin, 2008). Interested readers can refer to Lee and Krumm (Lee and Krumm, 2011) for a detailed
review of this research stream. It is noteworthy that this topic has gained attention in recent years with the advent of aerial video
recording technologies, but most existing methods rely on simple movement trends (Zhang and Jin, 2019), such as using constant
velocity (Kim et al., 2019) or interpolation (Raju et al., 2022; Tong et al., 2017; Zhang and Jin, 2019; Zheng et al., 2023). These
simplifications may yield limited quality results, failing to capture real-world driving behaviors (e.g., car-following behavior). One
research (Sazara et al., 2017) extended broken trajectories using a car-following model. However, they simply connected the extended
trajectory to another one, which inevitably creates abrupt changes in vehicle motions at the connection point. Additionally, the
adopted car-following model fails to depict driver heterogeneity in traffic (Durrani et al., 2016; Punzo and Montanino, 2020). In
summary, the accuracy of these physics model-based trajectory stitching methods is compromised by oversimplified assumptions of
vehicle motions and the neglect of driver heterogeneity.

One alternative solution to counter the physics model-based methods’ low accuracy is to use learning-based methods, which can
extract driving behaviors and heterogeneity from data. There are a few studies investigating the trajectory stitching problem using
learning-based methods. For example, (Hepburn and Montana, 2024) used reinforcement learning, and (Xiao et al., 2022) used
transfer learning methods to address issues related to broken trajectories. Despite the excellent predictability of learning-based
methods, these methods do not incorporate physics information and lack interpretability. In addition, learning-based methods
heavily rely on large datasets and lack the extrapolation ability to domain with sparse training data (Fang et al., 2023; Lin et al., 2023;
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Fig. 1. Source error and extraction error in HighSIM origin data (Shi et al., 2021).
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Liu et al., 2023; Wang et al., 2023). It typically requires substantial amounts of data across all situations to be effective, which may lead
to irrational results (e.g., abnormally large accelerations, etc.) in unseen scenarios where extensive high-quality data is not easily
accessible.

To overcome the lack of interpretability and extrapolation ability of learning-based methods, a promising solution is the physics-
informed Neural Network (PINN) method: Neural networks are encoded with physics models to enhance interpretability and pre-
dictability (Karniadakis et al., 2021; Long et al., 2024a; Raissi and Karniadakis, 2018). Experiments have demonstrated that PINN
models outperform purely data-driven models due to their enhanced interpretability and predictability. By integrating physical laws
into their structure, PINNs align model outputs with established physical expectations, making insights more comprehensible to
human experts. Additionally, these physical laws prevent overfitting on small datasets, enabling PINNs to forecast outcomes accurately
even when training data is limited. (Liu et al., 2021; Mo et al., 2021). However, trajectory stitching is a relatively overlooked problem
in literature, and this excellent method has not been noticed in the literature.

Overall, physics model-based methods have oversimplified assumptions of vehicle motions and the neglect of driver heterogeneity.
Learning-based methods account for factors overlooked by physics model-based methods, but they lack interpretability and exhibit
unstable performance in unseen domains, as illustrated in the upper subfigure of Fig. 2. PINN serves as a new method that incorporates
the advantages of the two mentioned methods but overcomes the drawbacks. As illustrated in the lower subfigure of Fig. 2, the physics
prior offers a regularization scheme during the training process, improving the extrapolation ability on unseen data. Due to this, our
study applies the PINN model to the vehicle trajectory stitching problem. To illustrate the performance of the proposed method, we
validated it on both NGSIM and HighSIM datasets. The results showed that the proposed method outperformed several benchmark
methods in both trajectory reconstruction accuracy and trajectory consistency aspects. Moreover, our method demonstrated strong
predictive ability in domains not covered by the training sample, proving that physics factors significantly enhance the model’s
extrapolation ability.

The contributions of this paper to the literature are threefold:

1. This paper proposed a PINN-based method tailored to address the trajectory stitching problem. This method incorporates the
advantages of the physics model-based and learning-based methods but overcomes the drawbacks. Note that this method is not
limited to a specific application but is a versatile framework that can be adapted across various domains.

2. The proposed PINN-based method has fairly good extrapolation ability, making it suitable for diverse traffic dynamics and ensuring
robust performance across varying scenarios.

3. The dataset processed using the proposed PINN-based method referred to as HIGH-SIM, has been published via shared link of both
the Federal Highway Administration, U.S. Department of Transportation (https://highways.dot.gov/) and Connected and
Autonomous Transportation Systems Lab, University of Wisconsin-Madison (https://github.com/CATS-Lab) for public use.

The structure of this paper is organized as follows: Section 2 outlines the trajectory stitching problem that is the focus of this
investigation. Section 3 details the proposed PINN method for vehicle trajectory stitching. Section 4 presents a series of numerical
experiments designed to evaluate the effectiveness of the proposed method. Finally, Section 5 provides conclusions, discusses the
limitations of this research and explores future improvements.
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Fig. 2. General description of the extrapolation ability of PINN.
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2. Problem statement

In this section, we first define the different kinds of broken trajectories that need to be stitched, then we introduce the trajectory
stitching problem. Table 1 includes the key notation in this research.

2.1. Broken vehicle trajectory

Let ./” denote the set of vehicle trajectories (hereafter referred to as ‘trajectory’) in the investigated dataset. Each trajectory is
labeled as n € .7". The trajectory data are captured in a spatial range [0, T] within a continuous time period. In practice, data are
typically available only at discrete time points, thus the time period is discretized into a set of time points .7 := {0,1,2, -+, T} with a
certain time interval A. For each trajectory, the beginning time point is > € 7 and the ending time point is t2 € .7, thus the trajectory
is defined as [dnt]we[c";,,zﬁ - with time point array t € [t,‘f,tE+A, ...g,ﬂ C .7 denoting the consecutive time points. Due to the
aforementioned issues, tt is expected that a number of trajectories in dataset ./ only capture a portion of the subject vehicles’
movements. These trajectories, referred as broken trajectories, can be identified if they satisfy either of the following conditions: (1) if
2 > 0and dp >0,¥n € .75 or (2) if t; < Tand dg < D,Vn € /. The trajectory that is complemented by the proposed method is called
stitched trajectory.

All incomplete trajectories from dataset ./ are collected and represented as a subset, denoted by .#® C .#". To analyze the missing
segments of each incomplete trajectory, the broken trajectory dataset ./ is classified into three subsets, .#>,.#3,.#%,. Broken tra-
jectories that only satisfy condition (1) but not condition (2) are stored in ', which means that these trajectories are broken at the
origin side (i.e., a segment before trajectory n is missed). Broken trajectories that only satisfy condition (2) but not condition (1) are
stored in ./}, which means that these trajectories are broken at the end side (i.e., a segment after trajectory n is missed). Broken
trajectories that satisfy both conditions (1) and (2) are stored in ,/1"”'1’2, which means that these trajectories are broken at both sides.
Therefore, {/2U.#5} =7, and {75 N5} = {8, }. For the specific example shown in Fig. 3,./" = {1,2,---,8},./® = {2,3,5,6,
7}, 4% ={3,6,7}, 45 = {2,5,6}, 4%, = {6}.

2.2. Trajectory stitching.

N e .#"® is the index of the target broken trajectory that needs to be stitched to be processed. The target broken trajectory is denoted
as [dnt)y,e 5] where [t} 5] is the set of consecutive time stamps separated by a customized unit time interval A, t} is the beginning
NN
time point of the target trajectory N, and tf, is the ending time point of the target trajectory N, shown in Fig. 4.

Since we do not initially know the correspondence between trajectories, the surrounding trajectory that may be connected to the
target trajectory is denoted as n’ € ./". Assuming that the trajectories N and n’ belong to the same vehicle, the real missing trajectory of

Table 1
Key notation.
Notation Description
T The researched time period
T Maximum of researched range of time point T € .7~
t Index of time t € .7
A A customized unit time interval
[ The beginning time point of historical trajectories before the broken part when predicting the broken trajectory N
[ The ending time point of historical trajectories before the broken part, also the beginning time point of stitched trajectory N
= The ending time point of the stitched trajectory
pa Set of vehicle trajectories
W Set of broken vehicle trajectories,./ b ca
Bt Subset of broken vehicle trajectories, /2,78 1%, € 1®
n Index of trajectory.n € ./°
N Index of the studied broken trajectory,N € ./"
A The set of historical trajectories used for stitching the broken trajectory N, ./7 C /"
dne Position of vehicle n at time point t

D Maximum of researched range of vehicle location

4 Parameters of neural network model in PINN

A Parameters of physics model in PINN

(€] Feasible domain of the neural network parameters 0
A Feasible domain of the physics parameters A

En Reconstruction error of trajectory N

u; latent (hidden) solution of a nonlinear ordinary differential equation (ODE)
o[-] A nonlinear differential operator

P[] A differential operator representing a physics rule

T Set of samples

i Index of samples,i € ./
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Fig. 3. Three kinds of broken trajectory.

trajectory N is [dNt]Vte[ﬁ L where > is the beginning time point of the target trajectory n'. The predicted stitched trajectory is
Ny

[EM] e’ where t}, is the ending time point of the stitched trajectory. Our approach relies on matching the predicted trajectory with
‘NN

the surrounding trajectory, ensuring that the predicted trajectory closely approximates the actual trajectory, without abrupt changes

occurring at the connection points with the end states. Therefore, we define the reconstruction error as Ey, during the reconstruction

period [tf;,, tm , which is the difference between the reconstructed and actual positions of the vehicle within the predicted time frame.

Ey = Ztg[t;m:,] (de — aNt)z# .

This paper aims to connect these broken trajectories considering physics prior knowledge and thus enhances the quality of the
dataset. Our task is to train a model to reconstruct the stitched trajectory for trajectory N: yy : =f( @ |0, 1), 6 and 1 are parameters of the
proposed model aimed at minimizing prediction errors:

o312 Bt @
stfdnd e o) = F (udne g 107 ) # ®

Extrapolation ability refers to a model’s capability to make accurate predictions on new, unseen data. This ability reflects the real-
world applicability to adapt to and predict under different conditions. In this work, we assess the model’s extrapolation ability by
training and testing it across domains with different dynamic characteristics, termed ‘cross-dynamic domains’. This approach tests the
model’s adaptability and predictive accuracy in scenarios that differ significantly from those seen during training.

3. PINN solution for ordinary differential equations

In this work, we consider a nonlinear ordinary differential equation (ODE) in a general form:
u +Ou] =0,t € T# “4)

where 1, is the latent (hidden) solution, O[ -] is a nonlinear differential operator, t is time. This setup covers a broad range of
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Fig. 4. Model input and output.
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problems in transportation, including individual vehicle behavior and traffic flow. Our goal is to find a solution for the ODE (Raissi
et al.,, 2019). Our understanding of the system frequently includes certain physics-based prior knowledge, such as conservation
principles governing the observed data or established physics models, which can aid in finding a solution to Eq. (1). In the following
discussion, we focus on how to ensure that the data-driven solution, typically provided by neural networks, is constrained and adheres
to physics priors.

The first kind of physics priors is principles governing the observed data, denoted as:

u +P(u) =0,t € T# (5)

where P is a differential operator representing a physics rule. For instance, in vehicle trajectory stitching problems, this might be
boundary constraints such as initial vehicle state; In traffic flow problems, the Lighthill-Whitham-Richards (LWR) model; In operations
research, such as truck-drone hybrid delivery system, P refers to boundary conditions that govern the total inbound and outbound
flows (She and Ouyang, 2024). These physics rules do not suffer from accuracy issues; they are essential conditions that solutions to the
ODE must satisfy.

The second kind of physics prior is physics models O(u;|4), which is an understanding and abstraction of O[u,]. However, physics
models often unavoidably entail a small error &,:

U+ O(wld) = e, t € T# (6)

where O is a differential operator representing the ODE. A € A represents the parameters of the physics model in a feasible domain
A. Examples of physics models include the car-following models in vehicle longitudinal behavior prediction (Long et al., 2024a), and
the user equilibrium assignment model in traffic flow prediction (Zhang et al., 2024). Both types of models are abstracted based on the
understanding of physics laws and inherently contain some assumptions, hence the presence of error.

Denote the Physics-Informed Learning (PINN) model we designed (typically a neural network) as f(u!|6, 1), where 6, 1 are the
parameters of the PINN model and i € .7 is the index of samples. Our objective is to make f(6, 1) approximate O[u] as closely as possible:

min E u
EECHISN te.7 jes (f( t

st.P(Ul]l) =0,te .7 ies

0,2) — O[u] )*# @

The model is learned by minimizing the loss function - with physics-informed regularization:
L=L+wiR; + wsRo# 8)

where L is the difference between the PINN model output and the real value, which is the same as the optimization goal in Eq. (4).

L= Zt€,7.i€./ (f(ui|6), /1) - O[uﬂ )2# ©

R; is a physics regularization term from the physics constraint, which is the error of the physics constraint:

Ry = Zre /ﬁig/(f(ui‘a’ /1) - P(ui') )2# (10)

Compared to traditional L' and L? regularization methods, which primarily reduce the weights in the neural network model, the
physics constraint-based regularization term R; not only constrains the weights but also the bias of each neuron (Nabian and Meidani,
2020). Therefore, this regularization term provides stronger constraints, helping the model avoid overfitting in scenarios where data is
erroneous or insufficient.

R is a physics regularization term from the physics model, which is the difference between the PINN model output and the physics
model:

Ro=3 . (F(ulo.2) ~O(h)) # an

The R, regularization term leverages the prior information contained in the physics model to enhance the interpretability of the
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Fig. 5. The structure of the PINN trajectory stitching model in the training process.
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PINN model. It also assists the model in maintaining strong performance in domains beyond the training set. This approach is anal-
ogous to data augmentation with the physics model, meaning in the absence of data for certain domains, the known physics model is
used to generate data for those domains, thus supplementing the dataset.

4. Trajectory stitching methodology

This section introduces the ability of the PINN method to solve the trajectory stitching problem. The trajectory stitching process is
shown in Fig. 5. It contains two steps; the first step is the proposed PINN method to get an initial prediction of the stitched trajectory.
The second step is terminal state connection to modify the predicted stitched trajectory. Then, we will show a detailed description of
the two sub-steps and their specific configurations.

4.1. Step 1 PINN prediction

The proposed PINN vehicle trajectory stitching method consists of two components: a neural network (NN) component and a
physics component.

Given the sequential feature of the input, a Convolutional Long Short-Term Memory (CLSTM)-based model is adopted to learn
features sequentially following a basic car-following rule that vehicles would follow their immediately preceding vehicles one by one
from downstream to upstream. The CLSTM model integrates convolutional layers for abstracting trends and handling spatial de-
pendencies within the data, enhancing the accuracy and robustness of predictions. The LSTM layers focus on temporal dependencies
and event sequences, crucial for modeling car-following behaviors where vehicles sequentially follow each other (Lim et al., 2021; Zhu
et al., 2021).

The model structure is shown in Fig. 6. It starts with an input layer that processes vehicle state data, followed by convolutional
layers for initial feature extraction. LSTM layers then analyze these features to understand time-related changes in the traffic envi-
ronment. Dropout layers interspersed within the LSTM layers prevent overfitting by omitting subsets of features, thereby improving
the model’s generalizability. The architecture concludes with dense layers that compile the learned features into predictions of vehicle
behaviors, topped with a final dropout layer to reduce overfitting. This design leverages the strengths of both convolutional and LSTM
networks, making the CLSTM model highly suitable for complex traffic scenarios. Note that other types of neural networks, like
recurrent neural networks, can also be adopted.

The input of the NN component contains both the position and speed of the trajectory N and its N —1 preceding trajectories: s\N : =

{[dnt]n6/717\1t€[[§ s> Vntlpe el -5 }, where ./ := {1,2,--,N} C./" is the set of trajectories considered when stitching the

broken trajectory for vehicle N. T® is the number of backward steps as the historical trajectory, t§ —T?5 > t&. The output of the NN

component is the predicted vehicle speed [Vy, ., g’

The training error of the NN component is the discrepancy between the observed speed and that predicted by the NN component:
~NN) 2
L= Ztg[z;r;v} (VM e ) # (12)

The physics component includes two main characteristics of vehicle trajectory: shockwave physics and kinematic constraints, as
two physics priors.

The first part of physics prior is shockwave, a critical feature of congested traffic flow, which infers the behavior of a vehicle based
on the trajectories of surrounding vehicles. We calibrated a shockwave-based car-following model as the physics model (Long et al.,
2024b; Yao et al., 2023), which is characterized by a single parameter w denoting the wave speed, and thus P = 1. The model input is

Phy SPhy

the historical trajectory information s* = [Vn, dutl e /- vee [0 W],i € .7, and the model output is the predicted future speedy > =
" N "N,

APhy:| ic 7. oi by:
[vm Vre[z;.z;,]’le' , given by:

Ve =V b V€ [, 5] # 13)

w

where Dy, represents the position distance between vehicle N and vehicle n at time t in sample i. This approach enables us to move

. Convolution LSTM | |Dropout| | LSTM | |Dropout|| Dense | | Dropout
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Fig. 6. The structure of the NN component: a CLSTM model.
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beyond the limitations of the car-following model, which only considers the vehicle directly ahead. Our predictions can be based on the
trajectories of multiple vehicles ahead, or when there is no lead vehicle, we can utilize the trajectories of the vehicles following us. The
discrepancy between the prediction results and the physics model is defined as a regularization term R;:

Ri= Y (0 -90) % (14)

The second part of physics prior is the kinematic constraint, ensuring that a vehicle’s cumulative position over time aligns with its
position at specific key moments. Therefore, during the training process of the NN, a well-predicted trajectory should avoid abrupt
changes in speed or position at the endpoint in relation to the known trajectory. In other words, the error between the predicted
endpoint and the actual endpoint position should be minimized:

Ry =dg — | de +ZIE[%_[§]9§,§-A # (15)

With observed and collocation data defined, we are ready to define the loss function associated with the NN component and the
physics-informed regularization. The loss function is a weighted sum of loss L and regularization terms as in Eq. (14) and (15). These
two physics prior terms R; and R, could be regarded as two regularization terms. Unlike traditional regularization methods (e.g., L1
(Lasso) and L2 (Ridge) regularization), which penalize large weights in neural networks to reduce the complexity of the model and
improve its generalization ability and extrapolation ability, R; and R, provide constraints on both the weights and biases of neural
networks. Therefore, physical prior terms can be understood as a more effective form of regularization.

The weights for the physics prior terms in the PINN model is optimized by iterating over a range of potential values within the same
scenario and dataset size, selecting the weights that yielded the best predictive performance of PINN.

The vehicle position predicted by the proposed PINN model is calculated based on the predicted velocities.

~PINN

B Al
dy, = dN(tfrl) t ZﬂNztﬁ,v;It{\lN “A Ve [tlfh tIS\J} # (16)

4.2. Step 2 terminal state connection

In section 4.1, we combined physics priors with the NN model, which yielded trajectories with impressive predictive results.
However, this approach still could not guarantee that the trajectories would align with their endpoints. Thus, we propose a kinematics-
based criterion for connecting two broken trajectories through the stitched trajectories.

The kinematics-based criterion for trajectory connection is defined as follows. After we get the reconstructed trajectory continuing

~PINN
from trajectory K: {dm } ) the error between the reconstructed trajectory and surrounding trajectories [dy ]
telty by

Tnn,» which can be calculated by

el 5] is denoted as

min e, ) ~PINN A .
Ty = W (A —dul) - — JUN €. 17

N Zt:max(tﬁ,,[ﬁ,) ( Nt nf) mln(r;,, tﬁ) — max(tf;,, tﬁ) # 17)

If tyw < €5 and tyy = min{zym },, N> WE consider the car-following characteristics of the two trajectories, trajectories N and n',

are consistent. Thus, these two trajectories belong to the same vehicle and can thus be connected. €’ is a given error term to evaluate

the gap between the broken trajectory and the stitched trajectory. Selecting an appropriately sized €° is essential. A large value may

cause incorrect connections, while a small value may reject correct connections. In the practice implementation, different €5 values
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shall be given regarding the quality of the raw datasets. The €5 values should be tailored based on the quality of the datasets in practical
implementations.

It should be noted that stitched trajectory might not perfectly connect to the origin/end point of other broken trajectories due to
estimation errors, as illustrated in Fig. 7. There is a gap between the stitched trajectory and the broken trajectory. To address this and
connect the trajectory N and trajectory n’, considering vehicle kinematics constraints. This method provides a structured approach to
connect the trajectories in a manner that respects both temporal and spatial vehicle dynamics.

Assuming the kinematic constraints for each vehicle are provided, including the maximum speed v;;4¢, maximum acceleration apqy,
and deceleration ay,. For each pair of trajectories ready to be connected i,i € ./, we can uniquely generate two boundary trajectories.
These trajectories begin at the end (or the origin) of the existing trajectories and are named the slowest and fastest trajectories, shown
in Fig. 7. Each pair of the proposed boundary trajectories (a slowest trajectory and a fastest trajectory), which starts at the same point
(e.g., either (tin,,¥in,) Or (t71,Yi1)), covers all feasible trajectories passing the point, forming a cone-shaped region in the time-space
graph.

The slowest trajectory is generated by moving the vehicle forward (or backward) with the maximum deceleration min{amm, 0},
which is 0 if the speed is zero) until the trajectory reaches time T (time 0) in the time-space graph. The slowest trajectory represents a
lower bound for all feasible trajectories, indicating that any trajectory starting from the endpoint (or origin) operates faster than this
trajectory. Conversely, the fastest trajectory is produced by moving the vehicle forward (or backward) with the maximum acceleration
Gmax until the vehicle reaches its maximum speed vy The fastest trajectory continues until it reaches time T (time 0) in the time—space
graph. The physics meaning behind the fastest trajectory is that it serves as an upper bound to all feasible trajectories. This implies that
any trajectory originating from the end (or the origin) of a given trajectory will operate at a speed slower than or equal to that of the
fastest trajectory.

The equations (18)-(21) generates the slowest and fastest trajectories for sample i. To avoid redundancy, we only show the
equations for sample N. The equations of trajectory n' can be derived similarly by considering the operation of the vehicle in reverse on
the time-space graph.

dye +Vnid — 0.5 ay, - A% t = £

dslow —_
e dty) + Vo8 — 0.5 -y, 8%, Ve € {ty + 8,15 + 28, -+, &y

# (18)
}

max(0, Vnr — Qmind), t =ty

vslow _ 19
N max (0,5 — @b ), Ve € {6+ 6,65 + 25, 6} # (19)

dne + VNS + 0.5 - ayd?, t =t

dfast — 20
e YRy + Ve )8+ 0.5 afy 1)8%, Ve € {t5 + 8,5 + 25, -, ty } # (20)
. . Vmax — VNt
min(Vimax, Vne + @ S,ltg{g—‘
V;?:t _ ( maxy YNt -max ) f max6 # (21)

Vinax, Otherwise

As shown in Fig. 7, these boundary trajectories define a shadowed area within which all feasible trajectories must fall. These
trajectories not only adhere to vehicle kinematics constraints but also effectively bridge the two broken trajectories. This area helps
further avoids wrong connections.

~PINN
By considering the stitched trajectory [dm } that we obtained in Step 1, the old stitched trajectory, the new stitched tra-

te[ts 6]

jectory that can connect the two broken trajectories (trajectories N and n') is obtained by the trajectory that has the minimum location

difference from the old stitched trajectory in the shadow area. The new stitched trajectory is [am] & The equation to obtain the

telts
new stitched trajectory is shown in Equations (26) and (27). The speed of the new stitched trajectory can be obtained according to
Equations (26) and (27) with a given location value.

Ay = {d}w = argyfvu?wﬂiysfrmin(ﬁi:m —x|), vte [, t] }# (22)

With this, the broken trajectories N and n’ are connected. By applying a trajectory smoothing technique (Lee and Krumm, 2011; Li
and Li, 2019) to the connected trajectory, the final trajectory is obtained, which is formed by combing the arrays of three trajectories,
such as trajectories N, new stitched trajectory, and trajectory n'. By repeating these two steps, the issues we revealed previously, i.e.,
detection errors and limited ranges, can be successfully fixed. Specifically, due to the proposed connection criterion and the time-space
cone, the misconnection situation can be overcome.
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5. Experiment
5.1. Data preparation

In the numerical experiment, we demonstrate the proposed PINN vehicle trajectory stitching method with two sets of data. The first
one is the widely-applied Next-Generation Simulation (NGSIM) dataset (NGSIM, 2007). To mitigate the influence of noises in the
NGSIM data, we utilized a reconstructed version of the NGSIM US101 dataset that filters out noises (Dong et al., 2021). The second
dataset is the HighSIM dataset (Shi et al., 2021). HighSIM dataset contains raw vehicle trajectory datasets extracted from aerial videos.
The aerial videos were collected by three 8 K cameras on a helicopter from 4:15 - 6:15 pm on Tuesday, May 14, 2019, over 2,438-
meters segment of Interstate-75 in Florida, United States. The vehicle trajectories operating from south to north are utilized in this
paper. Both NGSIM and HighSIM used in this paper are 10 Hz data.

5.2. Test scenarios

We have designed five distinct scenarios to validate the performance of our proposed method for trajectory reconstruction in both
unbiased (Scenario 0) and biased (Scenarios 1-4) sample conditions. In biased sample scenarios, the test samples feature rare con-
ditions, such as high average acceleration (Scenario 1), low average acceleration (Scenario 2), high average speed (Scenario 3), low
average speed (Scenario 4), while excluding these samples from the training set. This strategy is designed to evaluate the robustness of
the proposed method under various sample biases. Each scenario is further introduced as follows:

Scenario 0. Unbiased: training, validation, and testing datasets are randomly selected. This serves as a baseline for comparison
with other scenarios.

Scenario 1. High Acceleration Bias: the training dataset consists of samples with an average acceleration of less than 0.5, while
the testing dataset includes samples with an average acceleration greater than 0.5. This scenario tests the method’s ability to
extrapolate from lower to higher acceleration regimes, as shown in Fig. 8 (a).

Scenario 2. Low Acceleration Bias: the training dataset is comprised of samples with an average acceleration greater than —0.5,
and the testing dataset is composed of samples with an average acceleration less than —0.5. This tests the method’s effectiveness in
transitioning from mild deceleration to more pronounced deceleration, as shown in Fig. 8 (b).

Scenario 3. High-Speed Bias: the training dataset includes samples with an average speed of less than 11.5 m/s, while the testing
dataset is characterized by an average speed greater than 11.5 m/s. This scenario evaluates the method’s performance in extrapolating
from lower to higher speed conditions, as shown in Fig. 8 (c).

Scenario 4. Low-Speed Bias: the training dataset includes samples with an average speed greater than 3.2 m/s and a testing
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Fig. 8. Compare the train dataset and test dataset of four biased scenarios in NGSIM US101.
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dataset with an average speed less than 3.2 m/s. It assesses the method’s capability to adapt from relatively higher speeds to lower
speed conditions, as shown in Fig. 8 (d).

5.3. Baseline models

To demonstrate the effectiveness of the proposed method, we compared it with both a physics model and a pure NN model. The
physics model utilized the shockwave-based Newell’s car-following model, augmented with the terminal state connection process in
section 3.2. For the NN model, we chose a CLSTM model, which has the same NN component as the PINN model.

To compare the performance of two regularization methods, we also designed an ablation study, which aims to dissect the indi-
vidual contributions of two physics regularization terms: R; and R, to the overall performance of their combined application. Thus, we
test the performance of PINN-R1, which only contains the regularization term R; and PINN-R2, which only contains the regularization
term R,.

5.4. Model training settings

To ensure a fair comparison between the PINN model and baseline models (NN, PINN-R1, and PINN-R2), all these models were
initialized randomly and did not undergo any pre-training phases. Throughout the training process, the NN and PINN models
maintained identical architectural frameworks across all scenarios, and uniform training settings were applied. These measures were
taken to ensure the integrity and fairness of the results comparison.

During the training process, we implemented a decreasing learning rate to prevent underfitting and employed early stopping to
avoid overfitting. The specific parameters are outlined in Table 2: the initial learning rate was set at 0.001, it is reduced by a factor of
0.5 if there was no improvement in the model’s performance on the validation set for 20 consecutive epochs. Early stopping is set to
prevent overfitting by monitoring the model’s validation loss and ceasing training if there is no improvement beyond a threshold of
0.00001 for 20 epochs. These strategies collectively ensure that each model, whether PINN-based or a baseline, is trained under
optimal conditions to yield the best performance metrics, providing a fair and effective comparison of their capabilities.

For the hyperparameters, the weights of the physics prior terms in the PINN, PINN-R1, and PINN-R2 model, are chosen by iterating
over a range of potential values within the same scenario and dataset size, selecting the weights that yielded the best predictive
performance of PINN.

6. Experiment results
6.1. Trajectory stitching result

The proposed PINN method demonstrates superior prediction capabilities over two baseline methods (the physics method and the
NN method) across all five scenarios when t3 —t}, = 50; 5 —t& = 20, as shown in Table 2. In the unbiased scenario, the error rate of the
PINN is 20 % lower than the Physics model and 10 % lower than the NN model in the NGSIM dataset. In the four biased scenarios, the
PINN achieves much better predictions than the Physics model and NN model, and the two baseline methods show poorer predictions
on the test set compared to the unbiased scenario. This superior performance of the PINN method is attributed to the physics model
(shockwave-based Newell model) capturing the shock wave pattern across different dynamics scenarios. Therefore, it guides the model
in making stable predictions in scenarios that exceed the training domain. Simultaneously, the physics constraints (kinematics con-
straints) act as a form of regularization, effectively avoiding overfitting and enhancing the model’s extrapolation ability.

Regarding the prediction results for the HighSIM model, it is observed that HighSIM’s overall prediction is slightly inferior to the
results on the NGSIM data. A plausible explanation for this could be the degree of smoothness in vehicle speeds. Since the HighSIM data
contains a higher proportion of high-speed trajectories (with vehicle speeds higher than 25 m/s accounting for 30 %), where vehicle
trajectories tend to be smoother with fewer changes, predictions using learning-based methods are easier. In contrast, the NGSIM
US101 data has lower vehicle speeds (around 12 m/s) with a greater proportion of trajectories featuring significant speed variations,
resulting in less accurate predictions than HighSIM.

Table 3 displays the optimal weights of R1 and R2 obtained through tuning. Among the 5 test scenarios, both weights of PINN are
greater than 0, indicating that each physics term makes a positive contribution to the training process within the loss function. Notice

Table 2

Hyperparameter Settings for Model Training.
Tuning parameter Value
Batch size 256
Initial Learning rate 0.001
Learning rate decrease patience 20
Learning rate decrease factor 0.5
Early stop patient 20
Early stop delta 0.00001
Optimizer Adam
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Table 3
Prediction MSE of vehicle speed and position using NGSIM and HighSIM dataset.
Measure Model NGSIM HighSIM
Scenario Scenario
0 1 2 3 4 0 1 2 3 4
MSE of Speed (m?/s%) Physics 0.208 0.319 0.559 0.632 0.425 0.172 0.286 0.492 0.532 0.366
NN 0.156 0.24 0.419 0.474 0.319 0.137 0.212 0.359 0.424 0.262
PINN-R1 0.139 0.234 0.425 0.410 0.263 0.124 0.209 0.358 0.366 0.223
PINN-R2 0.137 0.234 0.430 0.394 0.246 0.119 0.210 0.362 0.359 0.207
PINN 0.132 0.225 0.411 0.368 0.228 0.115 0.198 0.352 0.333 0.190
MSE of Position Physics 0.157 0.212 0.223 0.396 0.284 0.144 0.186 0.194 0.336 0.248
(m?) NN 0.135 0.183 0.192 0.341 0.244 0.125 0.157 0.152 0.287 0.211
PINN-R1 0.120 0.178 0.195 0.295 0.201 0.112 0.148 0.153 0.248 0.173
PINN-R2 0.119 0.178 0.197 0.284 0.188 0.115 0.155 0.155 0.238 0.167
PINN 0.114 0.171 0.188 0.264 0.175 0.109 0.147 0.155 0.224 0.156

that these weights represent proportions; since the two physical models (R1 and R2) embody different physical rule, comparing their
magnitudes directly does not conclusively determine which physics rule is more critical.

These weights reflect the reliance of our method on different physical principles, demonstrating how physical constraints guide the
model’s learning process and help it to better understand and learn the underlying physical processes. When data is sufficient and
overfitting is not a concern, these weights could approach zero, suggesting that the model does not require physical information to aid
its training. Conversely, if we place higher trust in one type of physical information, its corresponding weight is increased to enhance
the model’s reliance on that specific physics insight. This approach balances data-driven insights with physical knowledge, optimizing
model performance across various scenarios.

Fig. 9 shows the original velocity and position of a sample in the NGSIM data after steps 1 and 2, as well as the predicted values of
the PINN model and the baseline model. From the speed prediction results, we can see that the physics model has the highest error, and
the PINN model has the best prediction effect. All models capture the property of progressively larger velocities. The error in speed
prediction is accumulated in the position, so the error is more obvious. In step 2, we process the prediction results in step one to ensure
that the vehicle position coincides with the end position. This also inevitably sacrifices part of the continuity of the velocity. Among
them, the physics model has a large error, causing the velocity to be modified a lot to match the final position. The more accurate the
prediction effect, the smaller the magnitude of the modification. See (Table 4).

These results sufficiently prove that PINN can provide more accurate predictions for both speed and position, and it exhibits
excellent predictive performance across a variety of situations that exceed the training domain. The results also highlight the ability of
PINN to handle boundary conditions, complex-valued solutions, and various types of nonlinearities in governing ODE.
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Fig. 9. Comparison of PINN results, baseline model results, and real-world data under Scenario 0.
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Table 4
Tuned weights of the PINN model under different scenarios.
Scenario
0 1 2 3 4
PINN-R1 wy 0.04 0.005 0.015 0.01 0.025
wo 0 0 0 0 0
PINN-R2 w1 0 0 0 0 0
wo 0.9 0.015 0.25 0.2 0.15
PINN wy 0.05 0.005 0.01 0.01 0.03
wo 0.3 0.05 0.15 0.2 0.1

6.2. Sensitivity analysis

6.2.1. Influence of training data size

This section evaluates the impact of training sample size on prediction performance, comparing five different training data sizes
(600, 1200, 6000, 10000, 15000) using NGSIM data. The results are shown in Fig. 10. The results demonstrate that the prediction error
decreases as the amount of data increases. The proposed PINN method consistently outperforms both the NN and the physics models.
The performance of the physics model shows only a marginal increase in predictability with larger data sizes, stabilizing at a training
data size of 5000. This is because the physics model used in this study is based on a single parameter (shockwave) and has a predefined
reasonable range for this parameter, leading to effective training. In contrast, both the NN and PINN models show significant im-
provements in prediction performance as the training data size increases, with their performance stabilizing at a training data size of
5000.

6.2.2. Influence of broken time length

As the broken time length increases, the predictive performance of the PINN method decreases gradually, as shown in Fig. 11.
However, even in different broken duration scenarios, PINN continues to outperform both the physics model and the NN model. With
the increase in broken duration, the error of the physics model significantly grows, especially evident over a 5-second timespan, where
the error accumulates. Meanwhile, both the NN and PINN models, leveraging their superior predictive capabilities, outperform the
physics model when the broken time length is 50. Additionally, the incorporation of physics constraints in the PINN model enhances its
stability, ensuring stable prediction results across various test scenarios.

6.2.3. Influence of the accuracy of the physics model
When incorporating physics models into neural networks, it is typically predicated on the assumption that the physics model
possesses a certain level of accuracy to effectively aid the neural network. This underscores the critical importance of the accuracy of
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Fig. 10. The influence of training data size on prediction MSE of speed and position.
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Fig. 11. The influence of broken time lengths on prediction MSE of speed and position.

the physics model. In our study, we tested the impact of varying accuracies of the same physics model (due to differences in pa-
rameters) on the performance of PINNs.

Results displayed in Table 5 indicate that the effectiveness of the PINN model is closely linked to the precision of the physics model.
As the accuracy of the physics model improves, particularly when the shockwave speed parameter is adjusted from 4 m/s to 5 m/s, the
speed Mean Squared Error (MSE) of the PINN model decreases to 0.124, demonstrating superior performance compared to the con-
ventional Neural Network (NN) model. Conversely, when the error in the physics model is substantial, such as when the shockwave
speed is 3.8 m/s, the contribution of the physics model becomes minimal and may even mislead the neural network model. Therefore,
under such conditions, we reduce the weight of the physics component to zero. This adjustment effectively causes the PINN model to
degenerate into a NN model. Thus, while the accuracy of the physics model is a critical factor, the PINN method safeguards the overall
performance, ensuring that PINNs remain competitive with NN models even under less ideal conditions.

6.3. Processed trajectory data

Since we have access to the original video data from HighSIM, we further demonstrate the application of our proposed method in
real-world scenarios using HighSIM. For details on the trajectory extraction process based on video, please refer to previous work (Shi
et al., 2021).

Prior to the trajectory connection process, the raw dataset comprised 283,501 broken vehicle trajectories. These disruptions were
primarily caused by issues such as missing detections and erroneous detections, as previously discussed. The speed and acceleration
ranges of the trajectories in the raw datasets are [0, 150] ft/s ([0, 45.72] m/s) and [-20, 20] ft/s? ([-6.10, 6.10] m/s?).

Using the proposed PINN trajectory connection method to process the extracted raw datasets, we processed the raw datasets,
ultimately consolidating them into 2,184 complete vehicle trajectories. To illustrate the effectiveness of the proposed method, we
included a visualization of the process vehicle trajectories in Fig. 12, compared to the unprocessed trajectories in Fig. 1.

In Fig. 1, the raw vehicle trajectories are fragmented into numerous small segments towards the end of the road section, a
consequence of the camera angle issue described earlier in Fig. 1. Specifically, as vehicles move away from the camera, their apparent
sizes on the video diminish, leading to decreased detection rates.

In contrast, Fig. 12 shows that after applying the proposed method, most vehicle trajectories are successfully connected,
demonstrating the robustness and efficiency of our approach. A statistical analysis conducted by Shi et al. (Shi et al., 2021) further
validates the quality of the HIGH-SIM dataset, indicating that it features more reasonable speed and acceleration distributions
compared to the well-known NGSIM US-101 dataset. For additional details on this comparative analysis, interested readers are
encouraged to consult the study by Shi et al., (2021).

7. Conclusion and future work

This paper proposed a PINN vehicle trajectory stitching method that can stitch broken vehicle trajectories using reconstructed
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Table 5
Comparison of vehicle speed prediction of PINN, NN, and physics model with different shockwave speed w.
Shockwave speed w (m/s) Physics NN PINN w; in PINN wo in PINN
3.8 0.228 0.156 0.156 0 0
4 0.214 0.156 0.141 0.05 0
4.2 0.211 0.156 0.135 0.05 0.05
4.4 0.208 0.156 0.124 0.05 0.05
4.6 0.207 0.156 0.132 0.05 0.2
4.8 0.208 0.156 0.129 0.05 0.2
5 0.207 0.156 0.128 0.05 0.1
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Fig. 12. Processed vehicle trajectory datasets.

trajectories. The PINN method enhances traditional neural networks by integrating physics priors, such as vehicle kinematics and
boundary conditions. This approach aims to improve accuracy and extrapolation ability in cross-dynamics scenarios, such as
extrapolating from low-speed training data to reconstruct high-speed trajectories. By incorporating these physics priors, the method
extends beyond the training domain and provides effective regularization. To demonstrate the effectiveness of the proposed PINN
method, it was applied to process a series of vehicle trajectory datasets derived from aerial videos captured over several successive
spaces of Interstate-75, United States. When compared with various benchmark methods, the results indicated that the proposed PINN
method excels in terms of both trajectory connection accuracy and consistency. The dataset processed using this method, the HIGH-
SIM dataset, is recognized as the most extensive vehicle trajectory dataset to date, according to the authors’ knowledge. It uniquely
captures the full lifecycle of a traffic bottleneck. The dataset has been published online.

The broader application of PINN in other fields is influenced by the nature of the physical priors and data characteristics in the
target field. For scenarios where physical priors are boundary conditions, we highly recommend employing PINN. Boundary condi-
tions, as consistent rules, can provide a stable and reasonable regularization for the NN model, thereby enhancing the model’s training
effectiveness and stability. Furthermore, boundary conditions can also aid in data processing. When the physical priors are physical
models, users might consider experimenting with PINN to see if the regularization provided by the physical model improves the NN
model. When physical priors include both boundary conditions and physical models, detailed ablation studies, as done in this paper,
are recommended to verify whether both types of physical prior are contributing to the model performance and generalization.

Future research can be conducted in several directions. Firstly, the physics-informed trajectory stitching model proposed in this
paper is currently based on a single data source (video). Future work could consider applying the model to different data inputs and
conducting data fusion. This is feasible as the NN component of the PINN model in this paper is capable of flexibly handling various
types of data inputs. Secondly, while we have currently focused on predicting the micro-level characteristics of vehicle trajectory and
already include both disaggregated and aggregated physics features, future research could extend to predicting or correcting macro-
level traffic flow indicators. Thirdly, there are multiple ways to integrate physics priors into machine learning models, and the custom-
designed loss functions and physics-based regularizations presented in this paper are among the most accessible and adaptable
methods for various problems. Numerous other methods to incorporate physics into machine learning have been proposed in trans-
portation and other fields (Kashinath et al., 2021). These include custom-designed neural network architectures (Wang et al., 2017)
and the consideration of multi-scale properties. In the realm of traffic prediction, it is worthwhile to draw inspiration from sota ap-
proaches. By examining specific cases, we can explore the modeling performance and applicability of different Physics-Informed
Machine Learning methodologies.
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