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Real-time vehicle prediction is crucial in autonomous driving technology, as it allows adjustments to be made in
advance to the driver or the vehicle, enabling them to take smoother driving actions to avoid potential collisions.
This study proposes a physics-enhanced residual learning (PERL)-based predictive control method to mitigate
traffic oscillation in the mixed traffic environment of connected and automated vehicles (CAVs) and human-
driven vehicles (HDVs). The introduced model includes a prediction model and a CAV controller. The predic-
tion model is responsible for forecasting the future behavior of the preceding vehicle on the basis of the behavior
of preceding vehicles. This PERL model combines physical information (i.e., traffic wave properties) with data-
driven features extracted from deep learning techniques, thereby precisely predicting the behavior of the pre-
ceding vehicle, especially speed fluctuations, to allow sufficient time for the vehicle/driver to respond to these
speed fluctuations. For the CAV controller, we employ a model predictive control (MPC) model that considers the
dynamics of the CAV and its following vehicles, improving safety and comfort for the entire platoon. The proposed
model is applied to an autonomous driving vehicle through vehicle-in-the-loop (ViL) and compared with real
driving data and three benchmark models. The experimental results validate the proposed method in terms of
damping traffic oscillation and enhancing the safety and fuel efficiency of the CAV and the following vehicles in
mixed traffic in the presence of uncertain human-driven vehicle dynamics and actuator lag.

1. Introduction vehicles, anticipating the traffic oscillations ahead (Zhou et al., 2017). In

a connected scenario, lead vehicles harness vehicle-to-everything (V2X)

Traffic oscillations, commonly referred to as ‘stop-and-go’ traffic,
epitomize the fluctuation between slow-moving and fast-moving states in
congested traffic, deviating from a steady flow (Li et al., 2010, 2014).
This widespread phenomenon in human driving scenarios presents
several critical issues. First, it exacerbates the risk of accidents by
complicating the maintenance of safe vehicle distances, thus increasing
collision probabilities (Li et al., 2012; Yao et al., 2020). Second, it di-
minishes traffic efficiency, inducing congestion and a ripple effect that
disrupts numerous vehicles. Moreover, the frequent acceleration and
deceleration cycles escalate fuel consumption and emissions (Stern et al.,
2019), detrimentally impacting the environment.

The evolution of connected and automated vehicle (CAV) technolo-
gies offers a promising solution to mitigate traffic oscillations (Ghiasi
etal., 2019; He et al., 2024; Larsson et al., 2021; Wang et al., 2023). CAVs
leverage advanced perception systems and trajectory planning. In the
perception part, CAVs can perceive information about preceding
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technology to collect and analyze traffic data. Conversely, in non-
connected settings, roadside units and monitoring systems can gather
traffic information for real-time predictions and advisories and send the
information to the target vehicle through dynamic message signs. This
gathered data enables the identification of traffic oscillation patterns,
facilitating accurate predictions and allowing the vehicle to determine
when it might be impacted (Yao et al., 2023). Downstream oscillation
patterns not only facilitate accurate predictions but also inform the
strategic planning and control phases of CAV operation (Fang et al.,
2024). Researchers have captured the formation and ensuing propaga-
tion of stop-and-go waves and predicted traffic oscillation via the
behavioral car-following model (Chen et al, 2012) and neural
network-based models (Zhou et al., 2017). By understanding the likely
traffic conditions in advance, CAVs can optimize their trajectory planning
to either avoid or mitigate potential impacts from identified oscillations.
This proactive integration of prediction and planning enables a more
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coherent approach to traffic management, ensuring that CAVs dynami-
cally adjust their behavior to maintain optimal flow and enhance overall
traffic safety.

For perception, most existing CAV controllers mitigate traffic oscil-
lation on the basis of the predicted behavior of the preceding vehicle (Hu
et al., 2021; Wang et al., 2023) or aggregated information, e.g., average
vehicle speed (Stern et al., 2019). Relying solely on the predicted
behavior of the preceding vehicle is insufficient for predictive safety
measures. This may raise two main issues. First, traffic oscillation origi-
nates downstream (Zheng et al., 2022). The wave fluctuations upstream
are difficult to perceive if only one preceding vehicle is considered.
Second, when fluctuations in the preceding vehicle are detected, it is
usually too late for the following CAV to respond appropriately, with
consideration of the communication delay and actuator lag. Therefore, to
predict the state of preceding vehicles effectively, information from
multiple vehicles in front is required as input.

In the realm of predicting downstream multivehicle trajectories, most
studies have adopted physics-based models to model and predict vehicle
trajectories. In this research, the “physics model” or “physics rules” refer
to theoretical or empirical formulations that describe the behavior of
physical systems. These models are often based on fundamental princi-
ples such as conservation laws, equations of motion, or thermodynamics,
which are structured to explain and predict the dynamics of systems
under various conditions. In the context of shockwave modeling. The
physics of shockwaves is a fundamental traffic flow characteristic that
was first studied by the Lighthill-WhithamRichards (LWR) model
(Lighthill and Whitham, 1997). Shockwaves in congested traffic usually
follow “stop-and-go” patterns that could cause adverse consequences.
These models typically utilize the historical data of the subject vehicle
and its immediate predecessor to predict future trajectories for a limited
number of time steps, which may not suffice for the CAV controller.
Moreover, physics models may struggle to capture the complex in-
teractions and nonlinear behaviors prevalent in dense traffic conditions
(Durrani et al., 2016; Punzo and Montanino, 2020). Recently, researchers
have turned to data-driven methods because of their ability to detect
intricate patterns and adapt to diverse datasets (Yao et al., 2022).
However, these learning-based methods often require substantial
training data (Karniadakis et al., 2021; Li et al., 2022) and lack inter-
pretability. In response to these challenges, the physics-informed neural
network (PINN) method has been utilized to increase the applicability of
Neural Network (NN) models in scenarios with limited data samples (Mo
et al., 2021; She and Ouyang, 2024). This is achieved by incorporating
physical models to augment data and regularizing the models to prevent
overfitting, although this method is contingent on the accuracy of the
physical models and can lead to unstable training processes (Yao et al.,
2023).

Recognizing the complementary strengths and weaknesses of these
methodologies, the physics-enhanced residual learning (PERL) frame-
work was proposed to combine the robust interpretability of physics
models with the adaptive precision of learning-based models (Long et al.,
2024a). By focusing on the physics model residuals—the differences
between the predictions of the physics model and observed data—PERL
leverages a neural network to refine these predictions. This method en-
hances the accuracy of trajectory forecasts, maintains the model's inter-
pretability, and reduces its dependency on extensive datasets.
Consequently, PERL stands out for its ability to deliver high-precision and
stable predictions of future vehicle behaviors, offering a balanced syn-
thesis of the theoretical and empirical realms. When applied to down-
stream multivehicle scenarios, the PERL method effectively extracts the
characteristics of downstream oscillation propagation, significantly
improving the long-term predictive performance for preceding vehicles.
This methodology offers a balanced synthesis of theoretical and empirical
insights, ensuring high-precision and stable predictions of future vehicle
behaviors.

On the basis of the predictions of preceding vehicles with traffic
oscillation, the CAV controller can mitigate oscillation amplification and
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backward propagation, thus enhancing overall traffic stability. Moreover,
it is crucial to account for the behavior of the following vehicles (Gao
et al., 2022). Considering the actions of these following vehicles,
particularly in mixed traffic scenarios, designing safer and more efficient
trajectories is essential (Mohammadian et al., 2023). This anticipation
helps minimize the occurrence of sudden driving maneuvers, thereby
enhancing the overall safety and fluidity of traffic. Given that traffic will
likely comprise a mix of autonomous and human-driven vehicles for
foreseeable means, this presents distinct challenges and opportunities for
trajectory optimization. Compared with CAVs, human-driven vehicles
(HVs) tend to display less predictable behavior. This unpredictability
increases the complexity of trajectory planning for CAVs, requiring more
sophisticated prediction algorithms and adaptive control strategies,
particularly when a CAV is followed by an HV.

Reflecting on the identified research gaps, this study aims to intro-
duce a physics-enhanced CAV controller. Our approach involves devel-
oping control strategies specifically tailored for mixed platoons
comprising both CAVs and HVs on the basis of predicted information of
the downstream traffic from the PERL model. In particular, we focus on
scenarios where a CAV is followed by an HV, effectively addressing the
dynamics of mixed traffic flows. This strategy incorporates the formu-
lation of a model predictive control (MPC) system that considers the
formation of both CAVs and HVs within the control objectives (Chen
etal., 2018). While direct control is exerted only over the CAVs, the states
of the HVs are also integrated into the optimization objectives, ensuring
that the overall strategy accounts for the behavioral patterns of both
autonomous and human drivers. By employing the advanced predictive
PERL model and adaptive control strategy, our MPC framework opti-
mizes traffic behavior across different vehicle types, considering the
interactive dynamics inherent in mixed vehicle streams.

The primary contributions of this work are threefold. First, a PERL-
based trajectory prediction method is designed to extract the character-
istics of downstream oscillation propagation from the historical trajec-
tories of multiple preceding vehicles. This method enables interpretable
and highly accurate long-term trajectory predictions for preceding ve-
hicles. Second, during the planning phase, this method considers the
impact of oscillations from preceding vehicles, whereas the mixed pla-
toon MPC controller also accounts for the influence of following vehicles.
This comprehensive consideration enhances the management and per-
formance of mixed platoons comprising both CAVs and HVs. Third, the
performance of the proposed method is validated through real-vehicle
experiments. Existing studies predominantly involve simulations (Bai
et al., 2022; Li et al., 2017, 2021; Qu et al., 2020) or miniature experi-
ments (Wang et al.,, 2024), which cannot fully address the complex
challenges of real-world implementations, such as feedback delay,
actuator lag, measurement inaccuracy, and the heterogeneity of traffic
flows. These limitations highlight the essential need for experiments with
actual vehicles. However, evaluating the effectiveness of the proposed
control algorithms through real-vehicle experiments introduces signifi-
cant technical challenges. The interaction of a controlled CAV with other
vehicles in live traffic conditions poses safety risks. Moreover, equipping
a fleet of test vehicles for such experiments is resource intensive. Thus, a
vehicle-in-the-loop (ViL) methodology is employed to address these
challenges (Xu et al., 2017). The experimental simulation involves a
mixed traffic scenario involving six vehicles, with four preceding vehicles
derived from the NGSIM I80 dataset. Using the proposed PERL-based
predictive control, vehicle speed commands are generated and relayed
to the test vehicle operating on the test track. Concurrently, the ViL
system simulates the behavior of the following HV, providing a
comprehensive test environment that bridges simulation and real-world
conditions.

The rest of this paper is organized as follows. Section 2 presents the
investigated problem. Section 3 proposes the PERL-based predictive
control model. Section 4 conducts a Vil experiment to compare the
proposed model with the existing traffic dataset benchmark. Section 5
concludes this study and discusses future research.
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Predicted trajectory of preceding vehicle
Historical trajectory of target CAV
Planned trajectory of target CAV

— Historical trajectory of following HV

------- Future trajectory of following HV

Fig. 1. CAV trajectory planning based on multiple preceding vehicle predictions.
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Fig. 2. PERL-based predictive control (PERL-MPC) model.

2. Problem statement

This study investigates a CAV controller using multistep real-time
downstream vehicle trajectory data to assist roadway safety and
dampen traffic oscillation in mixed traffic. As shown in Fig. 1, a stream of
vehicles operates in a single-lane roadway segment. The subject CAV is
indexed by N. The preceding vehicles (indexed by 1 to N— 1 from
downstream to upstream). At time t, the future longitudinal behavior of
the preceding vehicles is predicted from t, to to + T*, on the basis of the
historical trajectory from ty — T® to ty, where T® is the backward obser-
vation period and T" is the forward prediction period. Time is discretized
with a small interval § in this study because vehicle trajectory data are
discretized in time.

The model first predicts the future behavior of vehicle N — 1, and
then the planning model output is the future planned trajectory of vehicle
N. The main objective here is to leverage the predictive capabilities of
PERL to better anticipate the situational behavior of vehicles in its vi-
cinity and plan the AV trajectory accordingly.

Note that this research is applicable to mixed traffic. The types of
preceding vehicles and the following vehicles are not assumed since the
heterogeneity of the vehicles is considered. We assume that the target
vehicle could have the information of its preceding N — 1 vehicles and
the following vehicle. The heterogeneity is captured by their trajectory
during the observation period.

The objective is to construct a control model for the target CAV to
yield a trajectory on the basis of the prediction of the preceding vehicle.
The detailed methodology is presented in Section 3.

3. Methodology

On the basis of the problem statement, this section presents the
proposed PERL-based predictive control model that aims to mitigate
traffic oscillation. As shown in Fig. 2, this model contains two main
components: the PERL-based prediction model and the mixed platoon
MPC controller. A mixed platoon of N’ vehicles is controlled by the MPC
controller based on the information provided by preceding N* vehicles.

3.1. PERL-based prediction model

This component is designed to forecast the future states of the pre-
ceding vehicle, incorporating physical laws and residual learning
mechanisms to enhance prediction accuracy and stability. By integrating
physical models with deep learning techniques, the PERL model effec-
tively anticipates traffic oscillations, providing a robust foundation for
downstream control decisions (Long et al., 2024a).

As shown in Fig. 2, an input state stems from a set of K consecutive
vehicles upstream of the subject CAV, indexed by
ke % :={-1,-2,...,—K} from the upstream lead vehicle indexed by
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—1 through the upstream vehicle by — K, at T historical observation
points, where 7% := {t) — (T® — 1)6, ..., ty — &, ty}. The input state is
defined as s = [an, Vi, Adnelype s e 70> Where ai, Vie, and Ady are the
acceleration, speed, and spacing (from the preceding vehicle) of
vehicle k at time t in sample i, respectively. The prediction output is the
trajectory of preceding vehicle —1 at future time points .7 := {ty + 6,
to +26,....tg + T8}, i.e., yﬁ";‘“ = [d_1¢);c 7, Where @_y, is the predicted
acceleration of vehicle —1 at a future time point t.

In the physics component, S () projects s to a much lower-

dimensional space, i.e., S?%(s) = [kt > Vit Akt Jiee el or its

to—Tk,....to]
subset where 7 is a short reaction time depending on the specific physics

model t, — 7 € .7°. With this, ®Phy\ is on the order of |SPWY(s)
O(|$™(s)|), and thus much smaller than |.|. %™ is the predicted ac-

celeration of vehicle K: [ﬁ;}:y(ﬁphy)]we 1= fphy (Sphy(s)|(-)Phy). Therefore,
we obtain the residual acceleration predicted by the physics model
rice (0P = g(s) — A (6°™), vt € T

In the residual learning component, |®RL‘ is generally polynomial in
©RL| is likely much
greater than |©™|. 77" is the predicted residual of vehicle K: rg, i.e.,
PR Cas) W= fRL(s|0RL). Therefore, the output of the PERL model is
SRR (S[0PPR) = (g (67) 4 T (0" e -

For the physics component, we employ a shockwave-based car-
following model. This model uses shockwave dynamics to predict vehicle
behavior on the basis of the movement of surrounding vehicles. The
predicted future speeds are calculated on the basis of the relative posi-
tions and the defined wave speed. This model notably expands the scope
of traditional car-following models by incorporating the effects of mul-
tiple vehicles in proximity, not just those directly ahead, providing a
more comprehensive analysis of traffic dynamics.

For the residual learning component, we utilized a convolution long
short-term memory (CLSTM) model to capture the dynamic and
sequential nature of vehicle driving behaviors effectively. Integrating
convolutional layers in the CLSTM model aims to abstract and under-
stand the overall trends and variations within the input data (Yao et al.,
2023). These convolutional layers are adept at handling spatial de-
pendencies and mitigating the impact of minor inaccuracies in the data,
which can be crucial for maintaining robustness in predictions. The LSTM
component of the model aims to capture temporal dependencies and the
sequence of events in the vehicle states over time, aligning with the
fundamental car-following rule where vehicles follow each other in
sequence from downstream to upstream. This sequence-sensitive pro-
cessing allows the model to anticipate future vehicle behaviors on the
basis of past and current observations, providing predictive insight that is
more closely aligned with actual driving behaviors than traditional
models are.

The proposed CLSTM model structure begins with an input layer that
takes in the state of vehicles. These data pass through a convolutional
layer where initial feature extraction occurs. The subsequent LSTM layers
delve deeper into these features, analyzing the time-related dependencies
and evolving conditions in the traffic environment. Dropout layers
interspersed among the LSTM layers help prevent overfitting by
randomly omitting subsets of features during training, which enhances
the model's generalizability. This sequence concludes with dense layers
that consolidate the learned features into outputs that predict vehicle
behaviors, followed by a final dropout layer to further refine the output
by minimizing overfitting. Therefore, the CLSTM architecture combines
the strengths of convolutional neural networks in feature extraction and
LSTM networks in sequence modeling, making it particularly suitable for
complex, dynamic traffic scenarios.

, i.e.,

relation to |s| and the architecture of the model; thus,
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3.2. Mix-platoon MPC model

Building on the predictions generated by the PERL model, the MPC
component optimizes the trajectory of the controlled vehicle in real time.
It considers the dynamic constraints of the traffic environment and the
vehicle's operational limitations, aiming to minimize the impact of traffic
oscillations on the controlled vehicle and, by extension, the surrounding
traffic flow. The primary objective of the MPC model is to improve traffic
efficiency and safety by adjusting the vehicle's speed and position in a
predictive manner.

3.2.1. Single CAV dynamic model
We first introduce a longitudinal dynamics model for a single CAV. Its
nonlinear longitudinal dynamic model can be described as

A @

where s, v, and a are the position, velocity, and acceleration of the
vehicle, respectively, and 7 is the engine input. Functions f and g are
given by
2K, 1 K dn
fv,a) = —""va—— {a + =42 4 —} 2
m m

A
m T,

g(v)=— 3

where K, represents the aerodynamic drag coefficient, m represents the
vehicle mass, 7 represents the engine time lag, and d,, represents the
mechanical drag. In this study, we focus on the longitudinal kinematics of
vehicles. Assuming that the parameters in Egs. (4) and (5) are known a
priori, we adopt the following control law structure to implement feed-
back linearization:

n=mu+ Ko +d, + ZTQKdva 4

where u is the desired acceleration, which is determined by the upper
controller.

By substituting Egs. (2)-(4) into Eq. (1), the differential equation of
acceleration can be rewritten as

Up — dy

d" = Tf} (5)

The objectives of CAV planning are to follow the preceding vehicle
with the desired spacing distance and ensure safety. Therefore, a constant
time headway (CTH) spacing strategy was applied. The desired spacing
distance of vehicle n is sg = hv,+ d, where h and d are the desired
constant headway and space at a standstill, respectively. On the basis of
the CTH rule, the position error As with respect to a desired distance from
the preceding vehicle As =s, 1 —s, — l,-1 — sﬂ and [,_; is the length of
the preceding vehicle.

Given the system state x = [As, Av,a]”, Av is the velocity error be-
tween the ego and the preceding vehicle: Av = v,_; — v,. The control
variable u = u,, where u, is the desired acceleration, the outside
disturbance is the acceleration of the preceding vehicled = a,_1, and the
longitudinal dynamics state-space model of the CAV is as Eq. (6):
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As Sp1 — Sy — L, — sf,’ Vil =V — by — Sﬁ
d d
ax:& Av :a Vo1 — Vy = ay—1 — ay
a a (uy — an)/T/:
where
01 —h 0 0
A=1[00 —1 B— ‘1) C= |1 %)
00 7% E 0

3.2.2. Car-following behavior of HVs

In this study, we use the IDM as the CF model. The IDM is widely used
and studied in the literature because it can successfully produce stop-and-
go oscillations in congested traffic. The IDM model provides a model
acceleration function as a continuous function of the velocity, gap, and
velocity difference and is expressed as Egs. (8) and (9):

ds -
dr
g_ﬁ 17 ﬁ 4 - SV&(V;Z,AVIKI) 2 (8)
dt W Ax!
N LAY
ST (V' AVY) = Sy + bt — Lt ©)
2Vab

where @ is the maximum acceleration of the vehicle, b is the comfortable
deceleration, and Sy and t, are parameters representing the minimum
desired distance to the car in front and the time headway, respectively. v
is the desired speed.

3.2.3. Heterogeneous platoon dynamics model

Consider one CAV with several HVs driving following it; here, we
consider the simplest situation, with only one HV following it, as shown
in Fig. 3. For this platoon, the state and control variables can be defined
as x™ = (Asq, Avo, a0, Asy, As;)” and u™ = (u)”, and the exogeneous
disturbance is w! = (a_1,a;).

The longitudinal dynamics model for the platoon formed by a leading
CAYV and the following HV is as Eq. (10):

d d
ExH = (80, Avo, a0, Asy, Avy)" =AM 4 BT 4 ! (10)
where
0
Ay 072 0 c o 00 1
AP — ~BH: 7CH: D¥3 — ;
02><2 D2><3 ’ 1 02><l E 1 0 0
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=Ax + Bu + Cd 6)

3.2.4. Model predictive control (MPC) algorithm
Consider a linear discrete-time state-space model given in Egs. (12)
and (13):

X1 = Ax, + Biu, + Bow, 12)

Yir1 = Cx, (13)

where x.;1 € R" is the system state; y,;; € R™ is the measured output;
u; € RP is the control input; and w; is the disturbance input. We assume
that the state and disturbance vectors can be measured in every sampling
period. The designed controller regulates platoon desired accelerations
over a time horizon [ty, t) +N| to minimize a cost function J representing
driving safety, efficiency, and ride comfort. Considering that the strict
constraints of MPC may make the optimization problem infeasible, a
slack variable is introduced here to soften the constraints. We add the
slack variable into the optimization problem:

N-1 Ne—1
min T = [[Asilg + D [|Auclf, +€"pe a4
=0 =0

Aultg,to+Ne)

where N is the predictive horizon length and where N, is the control
horizon length. Q and R are the weight matrices of the error and input,
respectively. ¢ is the slack vector, and p is its weight. The optimization
objective is subjected to the following constraints, where ¢°,, . and o%,,
are specific scaling factors applied to the constraints:

ASmin + €00 < Seijie < ASmax + €00, (15)
Vinin + Eg;m S Vit jle S Vmax + 80';7“3)( (16)
Umin + EU‘unin < Upgjle < Unmax + ggru“ax a7)

4. Experiments
4.1. Experiment settings

We conducted a series of experiments to validate the above-proposed
methodology. For the experiment, this section introduces the setting of
the ViL experiment, including the data preparation, the researched CAV,
the ViL testing environment, and the baseline controllers.

—T}
an
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a, 5 a_q

f 5 AS,, AV, ASy, AVy D
[ U YLV s,

HV CAV Preceding vehicle

Fig. 3. Heterogeneous platooning of a CAV followed by an HV.

4.1.1. Data preparation

In the field experiment, the proposed PERL-based controller is vali-
dated via the widely applied next-generation simulation (NGSIM) dataset
(NGSIM, 2007). The trajectory of 6 consecutive vehicles is extracted as
the result of Baseline 1. For other baseline situations and the proposed
situation, the preceding 4 vehicles of the 6 vehicles are used as the tra-
jectory of Vehicle —1 to Vehicle — K, K = 4.

Six sample trips were chosen for the experiments, which included two
sets from acceleration trips, two from deceleration trips, and two from
cruising trips. These trips are labeled Trip 1 through Trip 5, each with a
duration of 20 s. Considering the heterogeneity of the traffic flow, the
headway h¢ for each vehicle was calibrated on the basis of its trajectory
(Long et al., 2024b).

4.1.2. Vil environment

This study employs a Vil approach with the experimental setup
illustrated in Fig. 4 and the experimental parameters presented in
Table 1. In this setting, our algorithm sets a maximum speed limit of 15
m/s to ensure safety, considering the constraints of the test track envi-
ronment. The experimental environment comprises two parts: a simula-
tion and a field experiment. Six vehicles are simulated in the simulation,
where the trajectories of the first four vehicles are extracted from the
total NGSIM dataset. The fifth vehicle is a controlled CAV, and the sixth
vehicle is an HV. During the experiment, the trajectories of the preceding
vehicles are transmitted to the physical CAV as inputs to the control
model. The onboard computer subsequently applies PERL-based predic-
tive control to derive the longitudinal target speed, which is relayed to
the vehicle's lower-level actuation system. The vehicle's actual position
on the test track is fed back into the simulation environment for updates.

In the field experiment segment, the physical CAV is the Lincoln MKZs
2016. The vehicle's lower-level control contains longitudinal and lateral
dynamics, where the longitudinal behavior is governed by piecewise PID
control, and an MPC controller manages the lateral behavior.

Field experiment

CAV state

Veh 1 Veh 0 Veh -1 Veh -2

=

Environment Information )

Veh -

3
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The field experiments are conducted at the test track in Madison, W1,
USA. Fig. 4 shows a satellite image of the test track. We conduct exper-
iments on an approximately 300 m straight road segment. There are two
lanes on the road; each lane is 3.5 m in width, with shoulders on the
boundary of the road segment. Moreover, the road segment is level
without superelevation or grades. Fig. 5 shows the interior view of the
experimental vehicle during the experiment. A safety operator is
responsible for driving the vehicle to the starting point of the test track
and then initiating a program that allows the vehicle's computer to
control the vehicle. The safety operator does not operate the accelerator
pedal or the steering wheel. In the case of emergency situations (e.g.,
unexpected obstacles), the safety operator will take over vehicle control
to ensure safety. Another individual, the data collector, is responsible for
operations related to data collection.

4.1.3. Baseline methods

To validate the effectiveness of the two components in our proposed
method in mitigating traffic oscillation, we compared it with different
model components. We set up three baseline methods compared with the
proposed control method (Fig. 6):

Baseline 1: No prediction or control. All the vehicles are HVs
without control. This baseline is extracted from the original NGSIM
dataset.

Baseline 2: MPC applied to CAV with PERL-based prediction. The
following HV is not considered in the MPC control model.

Baseline 3: MPC is applied to CAVs with CLSTM-based prediction
by preceding vehicle information. The following HV is not considered in
the MPC control model.

Proposed controller: MPC is applied to a mixed platoon of CAVs and
HVs with PERL-based prediction. The first four vehicles are called pre-
ceding vehicles with a designed trajectory from the dataset; the fifth
vehicle is a CAV, and the sixth vehicle is an HV. The physics model uti-
lized the shockwave-based Newell car-following model, augmented with
the terminal state connection process in Section 3.2. For the NN model,
we choose a CLSTM model, which is the same as the NN component in
the PINN model.

4.1.4. Measurements

To comprehensively evaluate the proposed method, our measure-
ments encompass three aspects: safety, oscillation propagation, and fuel

- Vehicle operation

Upper-level planning

PERL-Based Predictive
Control

v

Longitudinal target
speed

L

Lower-level control

Piecewise-PID
\‘ 7
\ Brake & Throttle

)

& & o o0 o

Simulated scenario

Fig. 4. Vehicle-in-the-loop (ViL) environment.
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Table 1
Experimental parameters.
Parameter Value
Number of vehicles 6
Time interval 0.1s
Vehicle length, L 4.5m
Safety distance, Sy 1.5m
Actuation time lag, 7 0.1
Communication time lag, ¢ 0.2
Acceleration boundary [—4m/s?,4m /%]

Speed boundary [0m/s,15m/s]

Fig. 5. Interior view of the experimental vehicle.

consumption. Safety is the foundational premise of the proposed
approach, whereas oscillation mitigation and fuel efficiency are the pri-
mary objectives of our optimization efforts.

Safety metric: This study chooses a widely employed safety evalua-
tion metric in traffic, the time-to-collision (TTC), to evaluate safety
(Kiefer et al., 2005).

A
TTC, = _Ad, 18)

Vn = Vn—1

where v, and v,_; denote the instantaneous velocities of the following
and leading vehicles, respectively, and Ad, represents the spacing be-
tween them. A decreased TTC value signifies a greater risk of collision,
which is correlated with scenarios where the following vehicle is
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approaching the leading vehicle at a faster rate relative to their spacing.

Traffic oscillation metric: Oscillation is evaluated at the platoon
level via the damping ratio, denoted as d;, which is used to evaluate the
oscillation-dampening performance of a controller over a finite horizon,
adapting the concept of acceleration L2 norm string stability typically
assessed over an infinite horizon. This ratio is calculated as the square
root of the sum of the squared accelerations for vehicle n over T time
steps, normalized by the square root of the sum of the squared acceler-
ations for the lead vehicle at time zero; a smaller damping ratio indicates
a greater reduction in oscillation magnitude, signifying enhanced
controller performance (Ploeg et al., 2014):

ai= /Sl / VL laul a

Fuel consumption metric: The extensively applied VT-Micro model
(Ahn et al., 2002) is chosen for fuel consumption evaluation. This
methodology allows for modifications to the running cost function to
accommodate alternative methods of estimating instantaneous fuel
consumption.

3
3 o GmP
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>, (Epi ey
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where MOE, (vf{’{‘, a;{'{‘) is the instantaneous fuel consumption or emis-
sion rate (mg/s). Ly, and My, , represent the model regression co-

efficients. m and p are power degrees. €™ represents the fuel
consumption (L/100 km).

4.2. Control performance and data processing

After the experiments concluded, we processed the data collected
from the vehicles, primarily focusing on speed and positional information
for the analysis phase. The vehicle's speed and position data are sourced
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Fig. 6. Researched scenarios. (a) Baseline 1: No prediction and control. (b) Baseline 2: MPC applied to CAV with PERL-based prediction. (c) Baseline 3: MPC applied to
CAV with NN-based prediction. (d) Proposed: MPC applied to the mixed platoon of CAV and HV with PERL-based prediction.
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Fig. 7. Expected trajectories with the raw trajectories recorded by OBD and LiDAR across three experiments.

from two systems: vehicle-mounted LiDAR positioning data, which are
recorded via the Controller Area Network (CAN) bus. These data are
derived from the vehicle's location and tend to be unstable with signifi-
cant fluctuations, affected by the vehicle's lateral movements. The other
source is the on-board diagnostics (OBD), which measures the fuel in-
jector's operation frequency and throttle position. From this, the engine
control unit (ECU) can estimate the vehicle's speed. This recorded speed
is relatively stable but results in larger errors at lower speeds.

Fig. 7 compares the expected trajectories with the raw trajectories
recorded by the OBD and LiDAR across three experiments. Trajectories 1
and 3 represent vehicle movements from south to north, whereas tra-
jectory 2 depicts movement from north to south. The results demonstrate
that the speed measurements from both the OBD and LiDAR sources are
very similar, with discrepancies primarily due to data noise and the
precision limitations of the vehicles.

When the actual vehicle trajectories are compared with the expected
trajectories, during the acceleration and cruising phases, the vehicles
closely follow the desired speeds. However, performance is slightly less
effective during the deceleration phase, resulting in considerable delays.
Vehicles tend to decelerate abruptly to match the reduced target speeds
only after a delay. To effectively integrate the speed data from both
sources, we employ a Kalman filter for smoothing, followed by taking a
weighted average of the filtered results.

4.3. Field experiment results

This section first verifies the predictive ability of the proposed PERL-
based prediction model for the leading vehicles of CAVs across five
selected trips. It then compares the performance of the actual vehicle
trajectories following the implementation of the proposed mixed platoon
controller with other control strategies over the same five trips.

4.3.1. Prediction results

In Section 4.3, four scenarios are discussed: Baselinel represents a
purely HV environment without predictive capabilities for the preceding
vehicle. Both Baseline2 and the proposed method use the same predic-
tion strategy, leveraging information from the four preceding vehicles
fed into the PERL model for prediction. Conversely, Baseline3 utilizes
data from only the leading vehicle input into a CLSTM model for pre-
diction. Table 2 shows that the PERL-based prediction model has a
significantly lower average error than the CLSTM model does, demon-
strating the necessity of the PERL model considering multiple preceding
vehicles to capture the downstream oscillation characteristics.

Table 2
Preceding vehicle speed prediction RMSE (m/s) of the CLSTM-based and PERL-
based prediction models.

Trip CLSTM-based prediction model PERL-based prediction model (applied
(applied in Baseline3) in Baseline2, proposed)
1 0.157 0.096
2 0.423 0.277
3 0.653 0.408
4 0.461 0.311
5 0.921 0.459
Avg. 0.523 0.310

4.3.2. Safety results

Table 3 compares the minimum TTC during a trip under the proposed
method and baseline methods. The TTC remains within a safe range (TTC
> 3 s) (Das and Maurya, 2020) under Baseline2, Baseline3, and the
proposed method, indicating that all three methods can guarantee safety.
Importantly, the goal of this research is not to increase or decrease the
TTC but rather to reduce oscillation while ensuring safety. Figs. 8-10
show representative trajectories of acceleration, speed, and position for
three scenarios: acceleration, cruising, and deceleration. In all these
scenarios, the CAV maintains a stable trajectory and ensures a safe dis-
tance from the preceding vehicle.

Notably, in Trip 5, an unsafe scenario occurred: The TTC decreased to
2.29 s because of the leading vehicle's sudden deceleration and the
following vehicle's delayed response, as shown in Fig. 10. Under Base-
line2, Baseline3, and the proposed method, such unsafe situations are
effectively avoided, ensuring that the TTC remains above 2.5 s.

4.3.3. Oscillation results

Table 4 compares the damping ratios of Vehicle 0 and Vehicle 1
relative to Vehicle —1 under both the proposed and baseline methods. In
Baselinel, the average damping ratio for Vehicle 0 across five trajectories
is 1.062, indicating that in a 100% HV scenario, the speed fluctuations of
Vehicle 0 and Vehicle 1 are greater than those of Vehicle —1, leading to
the amplification and backward propagation of oscillations. In contrast,
the average damping ratios are reduced with the control strategies
applied in Baseline2, Baseline3, and the proposed method. Compared
with the baseline controllers, the proposed method achieves the lowest
average damping ratios for Vehicles 0 and 1 for two main reasons. First,
the use of downstream multivehicle information enables the PERL-based
prediction model to make more accurate predictions of the preceding
vehicle, particularly in capturing oscillation characteristics. This en-
hances the prediction of oscillation behaviors, facilitating the trajectory
planning process of the target CAV. Second, incorporating the behavior
of the following vehicle into trajectory planning optimization contributes
to stable driving under mixed traffic conditions and helps prevent the
propagation of oscillations.

4.3.4. Fuel consumption results

Table 5 compares the fuel consumption throughout the entire trip via
the proposed method and baseline methods. In four out of the five sce-
narios, the proposed method resulted in lower fuel consumption. The
improved efficiency can be attributed primarily to the reduced damping
ratios achieved under the proposed method, which result in less oscil-
lation and, thus, smoother vehicle dynamics. In Trip 5, an increase in fuel
consumption was observed. This anomaly was due to the vehicle needing
to decelerate earlier than usual to preemptively address potential safety
concerns. The early deceleration led to increased speed variations,
resulting in greater fuel usage. This scenario highlights a crucial aspect of
vehicle dynamics where safety measures, although necessary, might lead
to less efficient fuel usage owing to the required changes in driving
patterns.

4.4. Sensitivity analysis

In addition to the field test, this study uses simulation analysis to
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Table 3
Minimum TTC(s) results of the three baseline methods and the proposed method.
Trip Vehicle 0 Vehicle 1
Baselinel Baseline2 Baseline3 Proposed Baselinel Baseline2 Baseline3 Proposed
1 13.98 8.96 9.69 9.12 7.96 9.21 8.28 8.65
2 6.75 9.74 8.42 9.76 8.54 11.37 16.23 16.34
3 9.05 72.98 141.71 87.09 11.57 71.58 147.68 88.64
4 17.54 56.31 21.32 31.26 23.43 62.01 21.81 35.33
5 2.29 5.39 4.37 5.42 6.20 7.73 10.83 7.95
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Fig. 8. Vehicle trajectory of Trip 1 (acceleration scenario) under three baseline methods and the proposed method.
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Fig. 9. Vehicle trajectory of Trip 2 (cruising scenario) under three baseline methods and the proposed method.
apply the proposed framework to a larger-scale platoon. We consider a and fuel consumption characteristics. The simulation results indicate that
mixed platoon consisting of 30 vehicles, with the lead vehicle's trajectory with an increase in the penetration rate of the proposed method-
derived from the NGSIM dataset. This simulation investigates the impact equipped CAVs, the lead vehicle's speed fluctuations dissipate more
of penetration rates on the framework's effectiveness. The trajectories readily. Fig. 11 compares vehicle trajectories under different CAV
obtained from the simulation were analyzed, with a focus on oscillation penetration rates and reveals that at a 0% penetration rate, shockwaves
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Fig. 10. Vehicle trajectory of Trip 5 (deceleration scenario) under three baseline methods and the proposed method.
Table 4
Damping ratio results of the three baseline methods and the proposed method.
Trip Vehicle 0 Vehicle 1
Baselinel Baseline2 Baseline3 Proposed Baselinel Baseline2 Baseline3 Proposed
1 0.96 0.83 0.83 0.81 1.01 1.02 0.88 0.86
2 1.16 0.81 0.77 0.77 1.27 1.04 0.77 0.79
3 1.23 0.70 0.74 0.71 1.33 0.90 0.73 0.78
4 0.95 0.79 0.69 0.72 1.03 0.88 0.73 0.79
5 1.01 0.87 0.98 0.89 1.09 0.91 1.23 1.04
Avg. 1.062 0.8 0.80 0.78 1.14 0.95 0.87 0.85
Table 5
Fuel consumption (L/100 km) results of the three baseline methods and the proposed method.
Trip Vehicle 0 Vehicle 1
Baselinel Baseline2 Baseline3 Proposed Baselinel Baseline2 Baseline3 Proposed
1 6.779 6.174 6.005 6.025 7.097 7.572 6.310 6.366
2 5.398 5.140 5.130 5.086 5.827 6.557 5.404 4.929
3 7.280 7.127 7.017 7.129 7.860 9.125 6.963 7.927
4 6.664 6.789 6.75 6.387 7.194 7.472 7.083 6.780
5 8.781 8.791 8.926 8.993 9.389 9.172 11.130 10.224
Avg. 6.980 6.804 6.766 6.724 7.473 7.980 7.378 7.285

continuously propagate backward without mitigation. However, as CAV
penetration increases, upstream vehicles no longer experience a com-
plete stop, and the magnitude of speed oscillation is reduced. Table 6
contrasts the average damping ratio and fuel consumption across 30
vehicles under varying CAV penetration rates, showing that higher CAV
penetration leads to lower average damping ratios—indicating smoother
traffic flow and improved fuel efficiency.

5. Conclusions and future research

This study proposes a PERL-based predictive control model for CAVs
to mitigate traffic oscillation. The introduced model includes two parts: a
PERL-based prediction model and an MPC-based mixed-platoon
controller. The prediction model forecasts the future behavior of the
preceding vehicle by combining physical shockwave information with
neural network techniques. This approach enables precise predictions of
speed fluctuations, providing sufficient time for the vehicle or driver to
respond effectively. For the PERL-based predictive control model, the
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dynamics of a CAV and its following vehicles are platooned, resulting in
improvements in safety and comfort for the entire platoon. In this study,
the proposed mixed-platoon MPC controller is applied to a mixed platoon
of CAVs and HVs through ViL and compared with real trajectory data and
three benchmark models. The experimental results validate the proposed
method in damping traffic oscillation and enhancing the safety and fuel
efficiency of the CAV and the following HV in mixed traffic.

For future work, several areas require further investigation. First, the
vehicle's lower-level control needs further optimization or integration
into the planning process to enhance responsiveness and precision. Sec-
ond, while the PERL prediction model demonstrated precise predictions
via the NGSIM dataset in this research, its predictability in unseen do-
mains or under irrational driving scenarios remains unexplored. Since
the model is currently trained on NGSIM data, which primarily include
normal driving scenarios, testing its stability and accuracy under other
driving conditions (such as weather changes and road friction) is crucial.
Moreover, if the behavior of a preceding vehicle exceeds the predictive
capabilities of the PERL model, it could indicate irrational driving
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Fig. 11. Trajectories of 30 vehicles via the proposed method under different CAV penetration rates.
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Table 6

Average damping ratio and fuel consumption of the platoon of 30 vehicles.

CAV penetration rate (%) Average damping ratio Average fuel consumption

(L/100 km)
0 0.581 7.882
30 0.498 6.534
60 0.455 5.890
90 0.415 5.414

behavior that might lead to hazardous situations, necessitating proactive
maneuvers by following vehicles. Moreover, limited by the experimental
conditions of the test track, this study used a ViL setup to examine a
specific trajectory. Future research should involve long-duration and
long-distance driving in real mixed-flow scenarios to thoroughly test the
control effectiveness of the model under actual communication and
mechanical delays.
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