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A B S T R A C T

Real-time vehicle prediction is crucial in autonomous driving technology, as it allows adjustments to be made in

advance to the driver or the vehicle, enabling them to take smoother driving actions to avoid potential collisions.

This study proposes a physics-enhanced residual learning (PERL)-based predictive control method to mitigate

traffic oscillation in the mixed traffic environment of connected and automated vehicles (CAVs) and human-

driven vehicles (HDVs). The introduced model includes a prediction model and a CAV controller. The predic-

tion model is responsible for forecasting the future behavior of the preceding vehicle on the basis of the behavior

of preceding vehicles. This PERL model combines physical information (i.e., traffic wave properties) with data-

driven features extracted from deep learning techniques, thereby precisely predicting the behavior of the pre-

ceding vehicle, especially speed fluctuations, to allow sufficient time for the vehicle/driver to respond to these

speed fluctuations. For the CAV controller, we employ a model predictive control (MPC) model that considers the

dynamics of the CAV and its following vehicles, improving safety and comfort for the entire platoon. The proposed

model is applied to an autonomous driving vehicle through vehicle-in-the-loop (ViL) and compared with real

driving data and three benchmark models. The experimental results validate the proposed method in terms of

damping traffic oscillation and enhancing the safety and fuel efficiency of the CAV and the following vehicles in

mixed traffic in the presence of uncertain human-driven vehicle dynamics and actuator lag.

1. Introduction

Traffic oscillations, commonly referred to as ‘stop-and-go’ traffic,

epitomize the fluctuation between slow-moving and fast-moving states in

congested traffic, deviating from a steady flow (Li et al., 2010, 2014).

This widespread phenomenon in human driving scenarios presents

several critical issues. First, it exacerbates the risk of accidents by

complicating the maintenance of safe vehicle distances, thus increasing

collision probabilities (Li et al., 2012; Yao et al., 2020). Second, it di-

minishes traffic efficiency, inducing congestion and a ripple effect that

disrupts numerous vehicles. Moreover, the frequent acceleration and

deceleration cycles escalate fuel consumption and emissions (Stern et al.,

2019), detrimentally impacting the environment.

The evolution of connected and automated vehicle (CAV) technolo-

gies offers a promising solution to mitigate traffic oscillations (Ghiasi

et al., 2019; He et al., 2024; Larsson et al., 2021; Wang et al., 2023). CAVs

leverage advanced perception systems and trajectory planning. In the

perception part, CAVs can perceive information about preceding

vehicles, anticipating the traffic oscillations ahead (Zhou et al., 2017). In

a connected scenario, lead vehicles harness vehicle-to-everything (V2X)

technology to collect and analyze traffic data. Conversely, in non-

connected settings, roadside units and monitoring systems can gather

traffic information for real-time predictions and advisories and send the

information to the target vehicle through dynamic message signs. This

gathered data enables the identification of traffic oscillation patterns,

facilitating accurate predictions and allowing the vehicle to determine

when it might be impacted (Yao et al., 2023). Downstream oscillation

patterns not only facilitate accurate predictions but also inform the

strategic planning and control phases of CAV operation (Fang et al.,

2024). Researchers have captured the formation and ensuing propaga-

tion of stop-and-go waves and predicted traffic oscillation via the

behavioral car-following model (Chen et al., 2012) and neural

network-based models (Zhou et al., 2017). By understanding the likely

traffic conditions in advance, CAVs can optimize their trajectory planning

to either avoid or mitigate potential impacts from identified oscillations.

This proactive integration of prediction and planning enables a more
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coherent approach to traffic management, ensuring that CAVs dynami-

cally adjust their behavior to maintain optimal flow and enhance overall

traffic safety.

For perception, most existing CAV controllers mitigate traffic oscil-

lation on the basis of the predicted behavior of the preceding vehicle (Hu

et al., 2021; Wang et al., 2023) or aggregated information, e.g., average

vehicle speed (Stern et al., 2019). Relying solely on the predicted

behavior of the preceding vehicle is insufficient for predictive safety

measures. This may raise two main issues. First, traffic oscillation origi-

nates downstream (Zheng et al., 2022). The wave fluctuations upstream

are difficult to perceive if only one preceding vehicle is considered.

Second, when fluctuations in the preceding vehicle are detected, it is

usually too late for the following CAV to respond appropriately, with

consideration of the communication delay and actuator lag. Therefore, to

predict the state of preceding vehicles effectively, information from

multiple vehicles in front is required as input.

In the realm of predicting downstreammultivehicle trajectories, most

studies have adopted physics-based models to model and predict vehicle

trajectories. In this research, the “physics model” or “physics rules” refer

to theoretical or empirical formulations that describe the behavior of

physical systems. These models are often based on fundamental princi-

ples such as conservation laws, equations of motion, or thermodynamics,

which are structured to explain and predict the dynamics of systems

under various conditions. In the context of shockwave modeling. The

physics of shockwaves is a fundamental traffic flow characteristic that

was first studied by the Lighthill–WhithamRichards (LWR) model

(Lighthill and Whitham, 1997). Shockwaves in congested traffic usually

follow “stop-and-go” patterns that could cause adverse consequences.

These models typically utilize the historical data of the subject vehicle

and its immediate predecessor to predict future trajectories for a limited

number of time steps, which may not suffice for the CAV controller.

Moreover, physics models may struggle to capture the complex in-

teractions and nonlinear behaviors prevalent in dense traffic conditions

(Durrani et al., 2016; Punzo andMontanino, 2020). Recently, researchers

have turned to data-driven methods because of their ability to detect

intricate patterns and adapt to diverse datasets (Yao et al., 2022).

However, these learning-based methods often require substantial

training data (Karniadakis et al., 2021; Li et al., 2022) and lack inter-

pretability. In response to these challenges, the physics-informed neural

network (PINN) method has been utilized to increase the applicability of

Neural Network (NN) models in scenarios with limited data samples (Mo

et al., 2021; She and Ouyang, 2024). This is achieved by incorporating

physical models to augment data and regularizing the models to prevent

overfitting, although this method is contingent on the accuracy of the

physical models and can lead to unstable training processes (Yao et al.,

2023).

Recognizing the complementary strengths and weaknesses of these

methodologies, the physics-enhanced residual learning (PERL) frame-

work was proposed to combine the robust interpretability of physics

models with the adaptive precision of learning-based models (Long et al.,

2024a). By focusing on the physics model residuals—the differences

between the predictions of the physics model and observed data—PERL

leverages a neural network to refine these predictions. This method en-

hances the accuracy of trajectory forecasts, maintains the model's inter-

pretability, and reduces its dependency on extensive datasets.

Consequently, PERL stands out for its ability to deliver high-precision and

stable predictions of future vehicle behaviors, offering a balanced syn-

thesis of the theoretical and empirical realms. When applied to down-

stream multivehicle scenarios, the PERL method effectively extracts the

characteristics of downstream oscillation propagation, significantly

improving the long-term predictive performance for preceding vehicles.

This methodology offers a balanced synthesis of theoretical and empirical

insights, ensuring high-precision and stable predictions of future vehicle

behaviors.

On the basis of the predictions of preceding vehicles with traffic

oscillation, the CAV controller can mitigate oscillation amplification and

backward propagation, thus enhancing overall traffic stability. Moreover,

it is crucial to account for the behavior of the following vehicles (Gao

et al., 2022). Considering the actions of these following vehicles,

particularly in mixed traffic scenarios, designing safer and more efficient

trajectories is essential (Mohammadian et al., 2023). This anticipation

helps minimize the occurrence of sudden driving maneuvers, thereby

enhancing the overall safety and fluidity of traffic. Given that traffic will

likely comprise a mix of autonomous and human-driven vehicles for

foreseeable means, this presents distinct challenges and opportunities for

trajectory optimization. Compared with CAVs, human-driven vehicles

(HVs) tend to display less predictable behavior. This unpredictability

increases the complexity of trajectory planning for CAVs, requiring more

sophisticated prediction algorithms and adaptive control strategies,

particularly when a CAV is followed by an HV.

Reflecting on the identified research gaps, this study aims to intro-

duce a physics-enhanced CAV controller. Our approach involves devel-

oping control strategies specifically tailored for mixed platoons

comprising both CAVs and HVs on the basis of predicted information of

the downstream traffic from the PERL model. In particular, we focus on

scenarios where a CAV is followed by an HV, effectively addressing the

dynamics of mixed traffic flows. This strategy incorporates the formu-

lation of a model predictive control (MPC) system that considers the

formation of both CAVs and HVs within the control objectives (Chen

et al., 2018). While direct control is exerted only over the CAVs, the states

of the HVs are also integrated into the optimization objectives, ensuring

that the overall strategy accounts for the behavioral patterns of both

autonomous and human drivers. By employing the advanced predictive

PERL model and adaptive control strategy, our MPC framework opti-

mizes traffic behavior across different vehicle types, considering the

interactive dynamics inherent in mixed vehicle streams.

The primary contributions of this work are threefold. First, a PERL-

based trajectory prediction method is designed to extract the character-

istics of downstream oscillation propagation from the historical trajec-

tories of multiple preceding vehicles. This method enables interpretable

and highly accurate long-term trajectory predictions for preceding ve-

hicles. Second, during the planning phase, this method considers the

impact of oscillations from preceding vehicles, whereas the mixed pla-

toon MPC controller also accounts for the influence of following vehicles.

This comprehensive consideration enhances the management and per-

formance of mixed platoons comprising both CAVs and HVs. Third, the

performance of the proposed method is validated through real-vehicle

experiments. Existing studies predominantly involve simulations (Bai

et al., 2022; Li et al., 2017, 2021; Qu et al., 2020) or miniature experi-

ments (Wang et al., 2024), which cannot fully address the complex

challenges of real-world implementations, such as feedback delay,

actuator lag, measurement inaccuracy, and the heterogeneity of traffic

flows. These limitations highlight the essential need for experiments with

actual vehicles. However, evaluating the effectiveness of the proposed

control algorithms through real-vehicle experiments introduces signifi-

cant technical challenges. The interaction of a controlled CAV with other

vehicles in live traffic conditions poses safety risks. Moreover, equipping

a fleet of test vehicles for such experiments is resource intensive. Thus, a

vehicle-in-the-loop (ViL) methodology is employed to address these

challenges (Xu et al., 2017). The experimental simulation involves a

mixed traffic scenario involving six vehicles, with four preceding vehicles

derived from the NGSIM I80 dataset. Using the proposed PERL-based

predictive control, vehicle speed commands are generated and relayed

to the test vehicle operating on the test track. Concurrently, the ViL

system simulates the behavior of the following HV, providing a

comprehensive test environment that bridges simulation and real-world

conditions.

The rest of this paper is organized as follows. Section 2 presents the

investigated problem. Section 3 proposes the PERL-based predictive

control model. Section 4 conducts a ViL experiment to compare the

proposed model with the existing traffic dataset benchmark. Section 5

concludes this study and discusses future research.
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2. Problem statement

This study investigates a CAV controller using multistep real-time

downstream vehicle trajectory data to assist roadway safety and

dampen traffic oscillation in mixed traffic. As shown in Fig. 1, a stream of

vehicles operates in a single-lane roadway segment. The subject CAV is

indexed by N. The preceding vehicles (indexed by 1 to N� 1 from

downstream to upstream). At time t, the future longitudinal behavior of

the preceding vehicles is predicted from t0 to t0 þ Tf , on the basis of the

historical trajectory from t0 � Tb to t0, where Tb is the backward obser-

vation period and Tb is the forward prediction period. Time is discretized

with a small interval δ in this study because vehicle trajectory data are

discretized in time.

The model first predicts the future behavior of vehicle N � 1, and

then the planning model output is the future planned trajectory of vehicle

N. The main objective here is to leverage the predictive capabilities of

PERL to better anticipate the situational behavior of vehicles in its vi-

cinity and plan the AV trajectory accordingly.

Note that this research is applicable to mixed traffic. The types of

preceding vehicles and the following vehicles are not assumed since the

heterogeneity of the vehicles is considered. We assume that the target

vehicle could have the information of its preceding N� 1 vehicles and

the following vehicle. The heterogeneity is captured by their trajectory

during the observation period.

The objective is to construct a control model for the target CAV to

yield a trajectory on the basis of the prediction of the preceding vehicle.

The detailed methodology is presented in Section 3.

3. Methodology

On the basis of the problem statement, this section presents the

proposed PERL-based predictive control model that aims to mitigate

traffic oscillation. As shown in Fig. 2, this model contains two main

components: the PERL-based prediction model and the mixed platoon

MPC controller. A mixed platoon of Nb vehicles is controlled by the MPC

controller based on the information provided by preceding Na vehicles.

3.1. PERL-based prediction model

This component is designed to forecast the future states of the pre-

ceding vehicle, incorporating physical laws and residual learning

mechanisms to enhance prediction accuracy and stability. By integrating

physical models with deep learning techniques, the PERL model effec-

tively anticipates traffic oscillations, providing a robust foundation for

downstream control decisions (Long et al., 2024a).

As shown in Fig. 2, an input state stems from a set of K consecutive

vehicles upstream of the subject CAV, indexed by

k 2 K :¼ f � 1;�2;…;�Kg from the upstream lead vehicle indexed by

Fig. 1. CAV trajectory planning based on multiple preceding vehicle predictions.

Fig. 2. PERL-based predictive control (PERL-MPC) model.
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�1 through the upstream vehicle by � K, at Tb historical observation

points, where T b
:¼ ft0 � ðTb � 1Þδ;…; t0 � δ; t0g. The input state is

defined as s ¼ ½ant ; vnt ;Δdnt �8n2N ;t2T b , where akt , vkt , and Δdkt are the

acceleration, speed, and spacing (from the preceding vehicle) of

vehicle k at time t in sample i, respectively. The prediction output is the

trajectory of preceding vehicle �1 at future time points T f
:¼ ft0 þ δ;

t0 þ 2δ;…;t0 þ T fδg, i.e., byPERL
�1 ¼ ½ba�1t �t2T f , where ba�1t is the predicted

acceleration of vehicle �1 at a future time point t.

In the physics component, SPhyð �Þ projects s to a much lower-

dimensional space, i.e., SPhyðsÞ ¼ ½aktk ; vktk ;Δdktk �k2K ;tk2½t0�τk ;…;t0 � or its

subset where τk is a short reaction time depending on the specific physics

model t0 � τk 2 T b. With this,
��ΘPhy

�� is on the order of
��SPhyðsÞ

��, i.e.,
Oð

��SPhyðsÞ
��Þ, and thus much smaller than jS j. Y Phy is the predicted ac-

celeration of vehicle K: ½baPhy
Kt ðθPhyÞ�8t2T f ¼ f

Phy
ðSPhyðsÞ

��θPhyÞ. Therefore,
we obtain the residual acceleration predicted by the physics model

rKtðθPhyÞ :¼ gðsÞ� baPhy
Kt ðθPhyÞ;8t 2 T f .

In the residual learning component,
��ΘRL

�� is generally polynomial in

relation to jsj and the architecture of the model; thus,
��ΘRL

�� is likely much

greater than
��ΘPhy

��. Y RL is the predicted residual of vehicle K: rKt , i.e.,

½brRLKt ðθRLÞ�8t2T f ¼ f
RLðs

��θRLÞ. Therefore, the output of the PERL model is

f PERLðs
��θPERLÞ ¼ ½baPhy

Kt ðθPhyÞ þ brRLKt ðθRLÞ�8t2T f .

For the physics component, we employ a shockwave-based car-

following model. This model uses shockwave dynamics to predict vehicle

behavior on the basis of the movement of surrounding vehicles. The

predicted future speeds are calculated on the basis of the relative posi-

tions and the defined wave speed. This model notably expands the scope

of traditional car-following models by incorporating the effects of mul-

tiple vehicles in proximity, not just those directly ahead, providing a

more comprehensive analysis of traffic dynamics.

For the residual learning component, we utilized a convolution long

short-term memory (CLSTM) model to capture the dynamic and

sequential nature of vehicle driving behaviors effectively. Integrating

convolutional layers in the CLSTM model aims to abstract and under-

stand the overall trends and variations within the input data (Yao et al.,

2023). These convolutional layers are adept at handling spatial de-

pendencies and mitigating the impact of minor inaccuracies in the data,

which can be crucial for maintaining robustness in predictions. The LSTM

component of the model aims to capture temporal dependencies and the

sequence of events in the vehicle states over time, aligning with the

fundamental car-following rule where vehicles follow each other in

sequence from downstream to upstream. This sequence-sensitive pro-

cessing allows the model to anticipate future vehicle behaviors on the

basis of past and current observations, providing predictive insight that is

more closely aligned with actual driving behaviors than traditional

models are.

The proposed CLSTM model structure begins with an input layer that

takes in the state of vehicles. These data pass through a convolutional

layer where initial feature extraction occurs. The subsequent LSTM layers

delve deeper into these features, analyzing the time-related dependencies

and evolving conditions in the traffic environment. Dropout layers

interspersed among the LSTM layers help prevent overfitting by

randomly omitting subsets of features during training, which enhances

the model's generalizability. This sequence concludes with dense layers

that consolidate the learned features into outputs that predict vehicle

behaviors, followed by a final dropout layer to further refine the output

by minimizing overfitting. Therefore, the CLSTM architecture combines

the strengths of convolutional neural networks in feature extraction and

LSTM networks in sequence modeling, making it particularly suitable for

complex, dynamic traffic scenarios.

3.2. Mix-platoon MPC model

Building on the predictions generated by the PERL model, the MPC

component optimizes the trajectory of the controlled vehicle in real time.

It considers the dynamic constraints of the traffic environment and the

vehicle's operational limitations, aiming to minimize the impact of traffic

oscillations on the controlled vehicle and, by extension, the surrounding

traffic flow. The primary objective of the MPC model is to improve traffic

efficiency and safety by adjusting the vehicle's speed and position in a

predictive manner.

3.2.1. Single CAV dynamic model

We first introduce a longitudinal dynamics model for a single CAV. Its

nonlinear longitudinal dynamic model can be described as

8
>>>>>>>>><

>>>>>>>>>:

ds

dt
¼ v

dv

dt
¼ a

da

dt
¼ f ðv; aÞ þ gðvÞη

(1)

where s, v, and a are the position, velocity, and acceleration of the

vehicle, respectively, and η is the engine input. Functions f and g are

given by

f ðv; aÞ ¼ �2Kd

m
va� 1

τAn

�
aþ Kd

m
v2 þ dm

m

�
(2)

gðvÞ ¼ 1

mτAn
(3)

where Kd represents the aerodynamic drag coefficient, m represents the

vehicle mass, τAn represents the engine time lag, and dm represents the

mechanical drag. In this study, we focus on the longitudinal kinematics of

vehicles. Assuming that the parameters in Eqs. (4) and (5) are known a

priori, we adopt the following control law structure to implement feed-

back linearization:

η ¼ muþ Kdv
2 þ dm þ 2τAnKdva (4)

where u is the desired acceleration, which is determined by the upper

controller.

By substituting Eqs. (2)–(4) into Eq. (1), the differential equation of

acceleration can be rewritten as

_an ¼
un � an

τAn
(5)

The objectives of CAV planning are to follow the preceding vehicle

with the desired spacing distance and ensure safety. Therefore, a constant

time headway (CTH) spacing strategy was applied. The desired spacing

distance of vehicle n is sdn ¼ hvn þ d, where h and d are the desired

constant headway and space at a standstill, respectively. On the basis of

the CTH rule, the position errorΔswith respect to a desired distance from

the preceding vehicle Δs ¼ sn�1 � sn � ln�1 � sdn and ln�1 is the length of

the preceding vehicle.

Given the system state x ¼ ½Δs;Δv; a�T, Δv is the velocity error be-

tween the ego and the preceding vehicle: Δv ¼ vn�1 � vn. The control

variable u ¼ un, where un is the desired acceleration, the outside

disturbance is the acceleration of the preceding vehicle d ¼ an�1, and the

longitudinal dynamics state-space model of the CAV is as Eq. (6):
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where

A ¼

2

6666664

0 1 �h

0 0 �1

0 0 � 1

τAn

3

7777775
;B ¼

2

6666664

0

0

1

τAn

3

7777775
;C ¼

2

664

0

1

0

3

775 (7)

3.2.2. Car-following behavior of HVs

In this study, we use the IDM as the CF model. The IDM is widely used

and studied in the literature because it can successfully produce stop-and-

go oscillations in congested traffic. The IDM model provides a model

acceleration function as a continuous function of the velocity, gap, and

velocity difference and is expressed as Eqs. (8) and (9):

8
>>>><

>>>>:

ds

dt
¼ v

dv

dt
¼ a

"
1�

�
vnt
vf

�4

�
�
S*
�
vnt ;Δv

n
t

�

Δxnt

�2
# (8)

S*
�
vnt ;Δv

n
t

�
¼ S0 þ t0v

n
t �

vnt ⋅ Δvnt

2

ffiffiffiffiffi
ab

p (9)

where a is the maximum acceleration of the vehicle, b is the comfortable

deceleration, and S0 and t0 are parameters representing the minimum

desired distance to the car in front and the time headway, respectively. vf

is the desired speed.

3.2.3. Heterogeneous platoon dynamics model

Consider one CAV with several HVs driving following it; here, we

consider the simplest situation, with only one HV following it, as shown

in Fig. 3. For this platoon, the state and control variables can be defined

as x
H ¼ ðΔs0;Δv0; a0;Δs1;Δs1ÞT and u

H ¼ ðu0ÞT, and the exogeneous

disturbance is wH ¼ ða�1;a1Þ.
The longitudinal dynamics model for the platoon formed by a leading

CAV and the following HV is as Eq. (10):

d

dt
x
H ¼ d

dt
ðΔs0;Δv0; a0;Δs1;Δv1ÞT ¼ A

H
x
H þ BH

u
H þ C

H
w

H (10)

where

3.2.4. Model predictive control (MPC) algorithm

Consider a linear discrete-time state-space model given in Eqs. (12)

and (13):

xtþ1 ¼ Axt þ B1ut þ B2wt (12)

ytþ1 ¼ Cxt (13)

where xtþ1 2 Rn is the system state; ytþ1 2 Rm is the measured output;

ut 2 Rp is the control input; and wt is the disturbance input. We assume

that the state and disturbance vectors can be measured in every sampling

period. The designed controller regulates platoon desired accelerations

over a time horizon ½t0; t0 þNc� to minimize a cost function J representing

driving safety, efficiency, and ride comfort. Considering that the strict

constraints of MPC may make the optimization problem infeasible, a

slack variable is introduced here to soften the constraints. We add the

slack variable into the optimization problem:

min
Δu½t0 ;t0þNc �

J ¼
XN�1

j¼0



Δstþjjt


2

Q
þ

XNc�1

j¼0



Δukþjjk


2

R
þ ε

Tρε (14)

where N is the predictive horizon length and where Nc is the control

horizon length. Q and R are the weight matrices of the error and input,

respectively. ε is the slack vector, and ρ is its weight. The optimization

objective is subjected to the following constraints, where σ
y
min

and σy
max

are specific scaling factors applied to the constraints:

Δsmin þ εσy
min

� stþjjt � Δsmax þ εσy
max

(15)

vmin þ εσv
min

� vtþjjt � vmax þ εσv
max

(16)

umin þ εσu
min

� utþjjt � umax þ εσu
max

(17)

4. Experiments

4.1. Experiment settings

We conducted a series of experiments to validate the above-proposed

methodology. For the experiment, this section introduces the setting of

the ViL experiment, including the data preparation, the researched CAV,

the ViL testing environment, and the baseline controllers.

d

dt
x ¼ d

dt

0

BB@

Δs

Δv

a

1

CCA ¼ d

dt

0

BBBB@

sn�1 � sn � ln � sdn

vn�1 � vn

an

1

CCCCA
¼

0

BBBB@

vn�1 � vn � ln � sdn

an�1 � an

ðun � anÞ
�
τAn

1

CCCCA
¼ Axþ Buþ Cd (6)

A
H ¼

"
An¼1 0

3�2

0
2�2

D
2�3

#

;BH ¼

2

6666664

0

0

1

τAn

3

7777775
;CH ¼

"
C 0

3�1

0
2�1

E

#

;D2�3 ¼
"
0 0 1

1 0 0

#

;E ¼
"
�T

�1

#

(11)
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4.1.1. Data preparation

In the field experiment, the proposed PERL-based controller is vali-

dated via the widely applied next-generation simulation (NGSIM) dataset

(NGSIM, 2007). The trajectory of 6 consecutive vehicles is extracted as

the result of Baseline 1. For other baseline situations and the proposed

situation, the preceding 4 vehicles of the 6 vehicles are used as the tra-

jectory of Vehicle �1 to Vehicle � K, K ¼ 4.

Six sample trips were chosen for the experiments, which included two

sets from acceleration trips, two from deceleration trips, and two from

cruising trips. These trips are labeled Trip 1 through Trip 5, each with a

duration of 20 s. Considering the heterogeneity of the traffic flow, the

headway hd for each vehicle was calibrated on the basis of its trajectory

(Long et al., 2024b).

4.1.2. ViL environment

This study employs a ViL approach with the experimental setup

illustrated in Fig. 4 and the experimental parameters presented in

Table 1. In this setting, our algorithm sets a maximum speed limit of 15

m/s to ensure safety, considering the constraints of the test track envi-

ronment. The experimental environment comprises two parts: a simula-

tion and a field experiment. Six vehicles are simulated in the simulation,

where the trajectories of the first four vehicles are extracted from the

total NGSIM dataset. The fifth vehicle is a controlled CAV, and the sixth

vehicle is an HV. During the experiment, the trajectories of the preceding

vehicles are transmitted to the physical CAV as inputs to the control

model. The onboard computer subsequently applies PERL-based predic-

tive control to derive the longitudinal target speed, which is relayed to

the vehicle's lower-level actuation system. The vehicle's actual position

on the test track is fed back into the simulation environment for updates.

In the field experiment segment, the physical CAV is the LincolnMKZs

2016. The vehicle's lower-level control contains longitudinal and lateral

dynamics, where the longitudinal behavior is governed by piecewise PID

control, and an MPC controller manages the lateral behavior.

The field experiments are conducted at the test track in Madison, WI,

USA. Fig. 4 shows a satellite image of the test track. We conduct exper-

iments on an approximately 300 m straight road segment. There are two

lanes on the road; each lane is 3.5 m in width, with shoulders on the

boundary of the road segment. Moreover, the road segment is level

without superelevation or grades. Fig. 5 shows the interior view of the

experimental vehicle during the experiment. A safety operator is

responsible for driving the vehicle to the starting point of the test track

and then initiating a program that allows the vehicle's computer to

control the vehicle. The safety operator does not operate the accelerator

pedal or the steering wheel. In the case of emergency situations (e.g.,

unexpected obstacles), the safety operator will take over vehicle control

to ensure safety. Another individual, the data collector, is responsible for

operations related to data collection.

4.1.3. Baseline methods

To validate the effectiveness of the two components in our proposed

method in mitigating traffic oscillation, we compared it with different

model components. We set up three baseline methods compared with the

proposed control method (Fig. 6):

Baseline 1: No prediction or control. All the vehicles are HVs

without control. This baseline is extracted from the original NGSIM

dataset.

Baseline 2: MPC applied to CAV with PERL-based prediction. The

following HV is not considered in the MPC control model.

Baseline 3: MPC is applied to CAVs with CLSTM-based prediction

by preceding vehicle information. The following HV is not considered in

the MPC control model.

Proposed controller:MPC is applied to a mixed platoon of CAVs and

HVs with PERL-based prediction. The first four vehicles are called pre-

ceding vehicles with a designed trajectory from the dataset; the fifth

vehicle is a CAV, and the sixth vehicle is an HV. The physics model uti-

lized the shockwave-based Newell car-following model, augmented with

the terminal state connection process in Section 3.2. For the NN model,

we choose a CLSTM model, which is the same as the NN component in

the PINN model.

4.1.4. Measurements

To comprehensively evaluate the proposed method, our measure-

ments encompass three aspects: safety, oscillation propagation, and fuel

Fig. 3. Heterogeneous platooning of a CAV followed by an HV.

Fig. 4. Vehicle-in-the-loop (ViL) environment.
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consumption. Safety is the foundational premise of the proposed

approach, whereas oscillation mitigation and fuel efficiency are the pri-

mary objectives of our optimization efforts.

Safety metric: This study chooses a widely employed safety evalua-

tion metric in traffic, the time-to-collision (TTC), to evaluate safety

(Kiefer et al., 2005).

TTCt ¼
Δdn

vn � vn�1

(18)

where vn and vn�1 denote the instantaneous velocities of the following

and leading vehicles, respectively, and Δdn represents the spacing be-

tween them. A decreased TTC value signifies a greater risk of collision,

which is correlated with scenarios where the following vehicle is

approaching the leading vehicle at a faster rate relative to their spacing.

Traffic oscillation metric: Oscillation is evaluated at the platoon

level via the damping ratio, denoted as di, which is used to evaluate the

oscillation-dampening performance of a controller over a finite horizon,

adapting the concept of acceleration L2 norm string stability typically

assessed over an infinite horizon. This ratio is calculated as the square

root of the sum of the squared accelerations for vehicle n over T time

steps, normalized by the square root of the sum of the squared acceler-

ations for the lead vehicle at time zero; a smaller damping ratio indicates

a greater reduction in oscillation magnitude, signifying enhanced

controller performance (Ploeg et al., 2014):

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼0
kantk2

q , ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼0
ka0tk2

q
(19)

Fuel consumption metric: The extensively applied VT-Micro model

(Ahn et al., 2002) is chosen for fuel consumption evaluation. This

methodology allows for modifications to the running cost function to

accommodate alternative methods of estimating instantaneous fuel

consumption.

MOEe

�
vsimn;t ; a

sim

n;t



¼

8
>>>>><

>>>>>:

e

P3
m¼0

P
3

p¼0
ðLem;p ⋅vsimn;t

m
⋅asimn;t

pÞ
; asimn;t � 0

e

P3
m¼3

P3
p¼0

ðMe
m;p ⋅vsimn;t

m
⋅asimn;t

pÞ
; asimn;t < 0

(20)

esimn ¼

0

B@

P
t2T

MOEe

�
vsimn;t ; a

sim

n;t



� 3600

P
t2T

vsimn;t � 1000

1

CA� 0:75 (21)

where MOEe

�
vsimn;t ; a

sim
n;t



is the instantaneous fuel consumption or emis-

sion rate (mg/s). Lem;p and Me
m;p represent the model regression co-

efficients. m and p are power degrees. esimn represents the fuel

consumption (L/100 km).

4.2. Control performance and data processing

After the experiments concluded, we processed the data collected

from the vehicles, primarily focusing on speed and positional information

for the analysis phase. The vehicle's speed and position data are sourced

Table 1

Experimental parameters.

Parameter Value

Number of vehicles 6

Time interval 0.1 s

Vehicle length, L 4.5 m

Safety distance, S0 1.5 m

Actuation time lag, τ 0.1

Communication time lag, τc 0.2

Acceleration boundary ½ � 4 m =s2;4 m =s2 �
Speed boundary ½0 m =s;15 m =s�

Fig. 5. Interior view of the experimental vehicle.

Fig. 6. Researched scenarios. (a) Baseline 1: No prediction and control. (b) Baseline 2: MPC applied to CAV with PERL-based prediction. (c) Baseline 3: MPC applied to

CAV with NN-based prediction. (d) Proposed: MPC applied to the mixed platoon of CAV and HV with PERL-based prediction.
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from two systems: vehicle-mounted LiDAR positioning data, which are

recorded via the Controller Area Network (CAN) bus. These data are

derived from the vehicle's location and tend to be unstable with signifi-

cant fluctuations, affected by the vehicle's lateral movements. The other

source is the on-board diagnostics (OBD), which measures the fuel in-

jector's operation frequency and throttle position. From this, the engine

control unit (ECU) can estimate the vehicle's speed. This recorded speed

is relatively stable but results in larger errors at lower speeds.

Fig. 7 compares the expected trajectories with the raw trajectories

recorded by the OBD and LiDAR across three experiments. Trajectories 1

and 3 represent vehicle movements from south to north, whereas tra-

jectory 2 depicts movement from north to south. The results demonstrate

that the speed measurements from both the OBD and LiDAR sources are

very similar, with discrepancies primarily due to data noise and the

precision limitations of the vehicles.

When the actual vehicle trajectories are compared with the expected

trajectories, during the acceleration and cruising phases, the vehicles

closely follow the desired speeds. However, performance is slightly less

effective during the deceleration phase, resulting in considerable delays.

Vehicles tend to decelerate abruptly to match the reduced target speeds

only after a delay. To effectively integrate the speed data from both

sources, we employ a Kalman filter for smoothing, followed by taking a

weighted average of the filtered results.

4.3. Field experiment results

This section first verifies the predictive ability of the proposed PERL-

based prediction model for the leading vehicles of CAVs across five

selected trips. It then compares the performance of the actual vehicle

trajectories following the implementation of the proposed mixed platoon

controller with other control strategies over the same five trips.

4.3.1. Prediction results

In Section 4.3, four scenarios are discussed: Baseline1 represents a

purely HV environment without predictive capabilities for the preceding

vehicle. Both Baseline2 and the proposed method use the same predic-

tion strategy, leveraging information from the four preceding vehicles

fed into the PERL model for prediction. Conversely, Baseline3 utilizes

data from only the leading vehicle input into a CLSTM model for pre-

diction. Table 2 shows that the PERL-based prediction model has a

significantly lower average error than the CLSTM model does, demon-

strating the necessity of the PERL model considering multiple preceding

vehicles to capture the downstream oscillation characteristics.

4.3.2. Safety results

Table 3 compares the minimum TTC during a trip under the proposed

method and baseline methods. The TTC remains within a safe range (TTC

> 3 s) (Das and Maurya, 2020) under Baseline2, Baseline3, and the

proposed method, indicating that all three methods can guarantee safety.

Importantly, the goal of this research is not to increase or decrease the

TTC but rather to reduce oscillation while ensuring safety. Figs. 8–10

show representative trajectories of acceleration, speed, and position for

three scenarios: acceleration, cruising, and deceleration. In all these

scenarios, the CAV maintains a stable trajectory and ensures a safe dis-

tance from the preceding vehicle.

Notably, in Trip 5, an unsafe scenario occurred: The TTC decreased to

2.29 s because of the leading vehicle's sudden deceleration and the

following vehicle's delayed response, as shown in Fig. 10. Under Base-

line2, Baseline3, and the proposed method, such unsafe situations are

effectively avoided, ensuring that the TTC remains above 2.5 s.

4.3.3. Oscillation results

Table 4 compares the damping ratios of Vehicle 0 and Vehicle 1

relative to Vehicle �1 under both the proposed and baseline methods. In

Baseline1, the average damping ratio for Vehicle 0 across five trajectories

is 1.062, indicating that in a 100% HV scenario, the speed fluctuations of

Vehicle 0 and Vehicle 1 are greater than those of Vehicle �1, leading to

the amplification and backward propagation of oscillations. In contrast,

the average damping ratios are reduced with the control strategies

applied in Baseline2, Baseline3, and the proposed method. Compared

with the baseline controllers, the proposed method achieves the lowest

average damping ratios for Vehicles 0 and 1 for two main reasons. First,

the use of downstream multivehicle information enables the PERL-based

prediction model to make more accurate predictions of the preceding

vehicle, particularly in capturing oscillation characteristics. This en-

hances the prediction of oscillation behaviors, facilitating the trajectory

planning process of the target CAV. Second, incorporating the behavior

of the following vehicle into trajectory planning optimization contributes

to stable driving under mixed traffic conditions and helps prevent the

propagation of oscillations.

4.3.4. Fuel consumption results

Table 5 compares the fuel consumption throughout the entire trip via

the proposed method and baseline methods. In four out of the five sce-

narios, the proposed method resulted in lower fuel consumption. The

improved efficiency can be attributed primarily to the reduced damping

ratios achieved under the proposed method, which result in less oscil-

lation and, thus, smoother vehicle dynamics. In Trip 5, an increase in fuel

consumption was observed. This anomaly was due to the vehicle needing

to decelerate earlier than usual to preemptively address potential safety

concerns. The early deceleration led to increased speed variations,

resulting in greater fuel usage. This scenario highlights a crucial aspect of

vehicle dynamics where safety measures, although necessary, might lead

to less efficient fuel usage owing to the required changes in driving

patterns.

4.4. Sensitivity analysis

In addition to the field test, this study uses simulation analysis to

Fig. 7. Expected trajectories with the raw trajectories recorded by OBD and LiDAR across three experiments.

Table 2

Preceding vehicle speed prediction RMSE (m/s) of the CLSTM-based and PERL-

based prediction models.

Trip CLSTM-based prediction model

(applied in Baseline3)

PERL-based prediction model (applied

in Baseline2, proposed)

1 0.157 0.096

2 0.423 0.277

3 0.653 0.408

4 0.461 0.311

5 0.921 0.459

Avg. 0.523 0.310
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apply the proposed framework to a larger-scale platoon. We consider a

mixed platoon consisting of 30 vehicles, with the lead vehicle's trajectory

derived from the NGSIM dataset. This simulation investigates the impact

of penetration rates on the framework's effectiveness. The trajectories

obtained from the simulation were analyzed, with a focus on oscillation

and fuel consumption characteristics. The simulation results indicate that

with an increase in the penetration rate of the proposed method-

equipped CAVs, the lead vehicle's speed fluctuations dissipate more

readily. Fig. 11 compares vehicle trajectories under different CAV

penetration rates and reveals that at a 0% penetration rate, shockwaves

Table 3

Minimum TTC(s) results of the three baseline methods and the proposed method.

Trip Vehicle 0 Vehicle 1

Baseline1 Baseline2 Baseline3 Proposed Baseline1 Baseline2 Baseline3 Proposed

1 13.98 8.96 9.69 9.12 7.96 9.21 8.28 8.65

2 6.75 9.74 8.42 9.76 8.54 11.37 16.23 16.34

3 9.05 72.98 141.71 87.09 11.57 71.58 147.68 88.64

4 17.54 56.31 21.32 31.26 23.43 62.01 21.81 35.33

5 2.29 5.39 4.37 5.42 6.20 7.73 10.83 7.95

Fig. 8. Vehicle trajectory of Trip 1 (acceleration scenario) under three baseline methods and the proposed method.

Fig. 9. Vehicle trajectory of Trip 2 (cruising scenario) under three baseline methods and the proposed method.

K. Long et al. Communications in Transportation Research 4 (2024) 100154

9



continuously propagate backward without mitigation. However, as CAV

penetration increases, upstream vehicles no longer experience a com-

plete stop, and the magnitude of speed oscillation is reduced. Table 6

contrasts the average damping ratio and fuel consumption across 30

vehicles under varying CAV penetration rates, showing that higher CAV

penetration leads to lower average damping ratios—indicating smoother

traffic flow and improved fuel efficiency.

5. Conclusions and future research

This study proposes a PERL-based predictive control model for CAVs

to mitigate traffic oscillation. The introduced model includes two parts: a

PERL-based prediction model and an MPC-based mixed-platoon

controller. The prediction model forecasts the future behavior of the

preceding vehicle by combining physical shockwave information with

neural network techniques. This approach enables precise predictions of

speed fluctuations, providing sufficient time for the vehicle or driver to

respond effectively. For the PERL-based predictive control model, the

dynamics of a CAV and its following vehicles are platooned, resulting in

improvements in safety and comfort for the entire platoon. In this study,

the proposed mixed-platoonMPC controller is applied to a mixed platoon

of CAVs and HVs through ViL and compared with real trajectory data and

three benchmark models. The experimental results validate the proposed

method in damping traffic oscillation and enhancing the safety and fuel

efficiency of the CAV and the following HV in mixed traffic.

For future work, several areas require further investigation. First, the

vehicle's lower-level control needs further optimization or integration

into the planning process to enhance responsiveness and precision. Sec-

ond, while the PERL prediction model demonstrated precise predictions

via the NGSIM dataset in this research, its predictability in unseen do-

mains or under irrational driving scenarios remains unexplored. Since

the model is currently trained on NGSIM data, which primarily include

normal driving scenarios, testing its stability and accuracy under other

driving conditions (such as weather changes and road friction) is crucial.

Moreover, if the behavior of a preceding vehicle exceeds the predictive

capabilities of the PERL model, it could indicate irrational driving

Fig. 10. Vehicle trajectory of Trip 5 (deceleration scenario) under three baseline methods and the proposed method.

Table 4

Damping ratio results of the three baseline methods and the proposed method.

Trip Vehicle 0 Vehicle 1

Baseline1 Baseline2 Baseline3 Proposed Baseline1 Baseline2 Baseline3 Proposed

1 0.96 0.83 0.83 0.81 1.01 1.02 0.88 0.86

2 1.16 0.81 0.77 0.77 1.27 1.04 0.77 0.79

3 1.23 0.70 0.74 0.71 1.33 0.90 0.73 0.78

4 0.95 0.79 0.69 0.72 1.03 0.88 0.73 0.79

5 1.01 0.87 0.98 0.89 1.09 0.91 1.23 1.04

Avg. 1.062 0.8 0.80 0.78 1.14 0.95 0.87 0.85

Table 5

Fuel consumption (L/100 km) results of the three baseline methods and the proposed method.

Trip Vehicle 0 Vehicle 1

Baseline1 Baseline2 Baseline3 Proposed Baseline1 Baseline2 Baseline3 Proposed

1 6.779 6.174 6.005 6.025 7.097 7.572 6.310 6.366

2 5.398 5.140 5.130 5.086 5.827 6.557 5.404 4.929

3 7.280 7.127 7.017 7.129 7.860 9.125 6.963 7.927

4 6.664 6.789 6.75 6.387 7.194 7.472 7.083 6.780

5 8.781 8.791 8.926 8.993 9.389 9.172 11.130 10.224

Avg. 6.980 6.804 6.766 6.724 7.473 7.980 7.378 7.285
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behavior that might lead to hazardous situations, necessitating proactive

maneuvers by following vehicles. Moreover, limited by the experimental

conditions of the test track, this study used a ViL setup to examine a

specific trajectory. Future research should involve long-duration and

long-distance driving in real mixed-flow scenarios to thoroughly test the

control effectiveness of the model under actual communication and

mechanical delays.
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