IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

A Platform-Agnostic Framework for Automatically
Identifying Performance Issue Reports with
Heuristic Linguistic Patterns

Yutong Zhao*, Lu Xiaof, Sunny Wong?!
*yutongzhao@ucmo.edu, flxiao6@stevens.edu, fsunny@computer.org
*University of Central Missouri, Warrensburg, MO, USA
fStevens Institute of Technology, Hoboken, NJ, USA
{Envestnet Inc., Berwyn, PA, USA

Abstract—Software performance is critical for system efficiency, with performance issues potentially resulting in budget overruns, project
delays, and market losses. Such problems are reported to developers through issue tracking systems, which are often under-tagged, as
the manual tagging process is voluntary and time-consuming. Existing automated performance issue tagging techniques, such as
keyword matching and machine/deep learning models, struggle due to imbalanced datasets and a high degree of variance. This paper
presents a novel hybrid classification approach, combining Heuristic Linguistic Patterns (HLPs) with machine/deep learning models to
enable practitioners to automatically identify performance-related issues. The proposed approach works across three progressive levels:
HLP tagging, sentence tagging, and issue tagging, with a focus on linguistic analysis of issue descriptions. The authors evaluate the
approach on three different datasets collected from different projects and issue-tracking platforms to prove that the proposed framework is
accurate, project- and platform-agnostic, and robust to imbalanced datasets. Furthermore, this study also examined how the two unique
techniques of the framework, including the fuzzy HLP matching and the Issue HLP Matrix, contribute to the accuracy. Finally, the study
explored the effectiveness and impact of two off-the-shelf feature selection techniques, Boruta and RFE, with the proposed framework.
The results showed that the proposed framework has great potential for practitioners to accurately (with up to 100% precision, 66% recall,
and 79% F1-score) identify performance issues, with robustness to imbalanced data and good transferability to new projects and issue

tracking platforms.

Index Terms—software performance; software repository mining; automatic text classification; linguistic pattern

1 INTRODUCTION

Software performance is a critical quality attribute measured
by the timeliness, responsiveness, and resource consumption
of a system at run-time [1], [2], [3], [4], [5]. Performance
issues can lead to severe consequences, including budget
overrun, project delay, and market loss [1], [4].

Like other types of software bugs, performance problems
are reported to developers via issue-tracking systems.
Modern issue tracking systems support tagging a specific
issue report as being performance-related (e.g., via a “label”
in Apache’s Jira issue-tracking system). This label allows
practitioners to quickly retrieve and prioritize related
problems. Literature in bug triage also emphasizes the crucial
role of effectively tagging and assigning issue reports to
appropriate experts [6], [7], particularly in large projects.
However, performance issues are largely under-tagged
because the manual tagging process is voluntary and
laborious. In practice, for all four issue-tracking systems in
this study (i.e., Apache’s Jira, Bugzilla, Redmine, and Mantis
Bug Tracker), the performance issues tagging rates are below
1% — when empirical studies [8] find that performance issues
should be around 4% to 16%. This discrepancy suggests a gap
in accurately identifying and tagging performance issues.

Automatic tagging of performance issue reports is ideal.
However existing techniques are limited to achieving this

goal. Simple techniques, such as keyword matching, tend
to be inaccurate; while machine/deep learning methods
struggle due to the imbalance of issue types for training. For
example, our manual investigation, of around 2000 randomly
selected issues from the aforementioned four issue tracking
platforms, finds only 7% performance issues. With such a
significantly unbalanced dataset, machine/deep learning
models tend to miss the few positive cases — leading to high
precision and low recall.

The motivation behind automatic tagging performance
issue reports unfolds in two aspects. First, it could
benefit researchers who focus on real-world performance
issues. There have been increasing efforts to support
reproducible research with shared benchmark datasets.
For instance, the security community has established
a CVE database of real-world vulnerabilities, which
profoundly supports security research. However, such a
database is currently missing for software performance
research, which is particularly challenging to reproduce
due to the complications from the combination of
internal factors and environmental factors of systems. An
automatic tagging approach facilitates the establishment
of such a benchmark database. Second, it could also
benefit performance engineering in practice, especially
for projects emphasizing performance. According to an
expert performance engineer with more than 20 years

2

of related experience [9], performance is often treated
in a “firefighting mode”, but big companies have been
establishing dedicated teams to “shift-left” in performance
engineering — i.e. treating performance upfront and in
different phases of the development process. However,
performance experts incur much higher operational costs
than general software engineers. Therefore, an automatic
tagging approach can pre-screen massive issue reports,
narrowing down the search scope for performance experts.
Also for open source communities, such as Apache, an
automatic tagging approach could save manual effort if the
projects were to identify the untagged performance issues,
given the gap between the actual tag rate (below 1%) and
the anticipated rate (4% to 16%) of performance issues.

This paper presents a novel, hybrid classification
framework, to automatically tag performance-related
issue reports, based on linguistic analysis of issue
description. This approach stems from the observation that
performance-related issues often contain similar linguistic
characteristics at the sentence level. By manually learning
from 980 real-life performance issue reports tagged by
developers in Apache’s JIRA issue tracking system, we
derived a set of 80 HLPs that recur in these issue reports
and capture common linguistic features of how performance
issues are described. Admittedly, this was a labor-intensive
process of approximately 762 human hours, cross-validated
among four taggers to ensure reliability [10]. However,
this manual effort is an up-front, one-time investment.
Once derived, the HLPs serve as the “secret sauce” for
automatically identifying more, new performance issues
from different projects and across different platforms. As
we will show in the evaluation, the effort for deriving
the HLPs cannot be substituted by existing large language
models (LLMs), as our framework significantly outperforms
cutting-edge LLMs, including ChatGPT-3.5 and ChatGPT-4.0.

Empowered by the HLPs, the proposed framework is
designed with a three-level classification structure to achieve
high accuracy. Namely, the first level classification is for
Fuzzy HLP Matching, which is newly added with this
journal extension, to automatically and fuzzily match more
HLP variations. In other words, this layer builds upon
the 80 manually derived HLPs as the training dataset to
identify new HLP variations that are not observed and tagged
manually using machine learning methods. Next, the second
level classification is for Sentence Tagging, where we classify
if a given sentence is related to performance or not. In this
level, the classification relies on an 80-dimensional vector,
called Sentence HLP Vector, which is constructed from the
output of the previous level and captures which HLPs are
matched in the sentence. The third level classification is for
Issue Tagging, which determines if a given issue report is
related to performance or not. At this level, we concatenate
an N x 80 matrix from the Sentence HLP Vector from the
previous level. N equals the number of sentences in the
report. This matrix, namely Issue HLP Matrix, captures all
the HLP features and the order in which they appear in the
report. It serves as the learning feature for the final issue
classification.

We evaluate our approach with six research questions.
The first three RQs evaluate the effectiveness of our approach
focusing on the accuracy (RQ1), robustness to imbalanced

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

datasets (RQ2), and transferrability to new issue-tracking
platforms (RQ3) of our framework, and compare it with
the state-of-the-art baseline methods in the three aspects.
Following this, RQ4 and RQ5 delve into our framework’s
unique techniques. Specifically, RQ4 evaluates the impact
of fuzzy HLP tagger layer; while RQ5 evaluates the impact
of Issue Matrix on the accuracy of the proposed framework.
Lastly, RQ6 highlights the essentiality of all 80 HLPs and
examines the impact of feature selection on our approach’s
accuracy and execution performance.

Our experiments with a total of 2,170 issue reports,
containing a total of 13,197 sentences, collected over
four different popular issue tracking platforms, including
Apache JIRA, Bugzilla, Redmine, and MantisBT, have shown
great potential of our framework in helping practitioners
automatically identify performance issue reports. The results
show that:

e Our framework achieves high issue classification
accuracy with a precision up to 100%, recall up to
66%, and Fl-score up to 79%, which outperforms
cutting edge baseline approaches by up to 2.2 times in
precision, 3.5 times in recall, and 2.8 times in F1-score.

e Our approach is robust to imbalanced data since the
nature of data imbalancing has no significant impact
on the accuracy (i.e. precision, recall, and FI1-score)
of our framework. In comparison, the recall of the
baseline methods is compromised by up to 16% due
to the imbalanced dataset with statistical significance.

e Our approach demonstrates its robustness when
transferring to datasets gathered from different
issue-tracking platforms, covering various application
domains, without requiring additional pre-training.
In comparison, the baseline methods are significantly
compromised, especially in their precision (by up to
44% decrease) with statistical significance.

e In our approach, four models — NB, DT, CNN,
and RNN — consistently showed substantial
improvement in recall while ensuring a stable overall
Fl-score across various datasets when employing
fuzzy HLP matching. Among these, the CNN model
stands out as the top performer, making it our
recommended choice for practitioners opting to use
fuzzy HLP matching.

e Our approach benefits from the utility of the HLP
Matrix. Specifically, it increases the upper bound
F1-score by 9%, 5%, and 4% across the three datasets.
Due to variations observed in our experiments, we
recommend that practitioners take an exploratory
approach with this feature. This could involve testing
different dataset and model combinations to fine-tune
and optimize accuracy effectively.

e Inour approach, most HLPs are essential and retained
during feature selection. Reducing the few HLPs
only leads to marginal execution time improvements.
Therefore, we recommend practitioners keep all 80
HLPs to maintain the comprehensive effectiveness of
our method.

Finally, this work is a substantial extension to our prior
work [10] in the following five aspects:

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS3

1)

Fuzzy HLP Matching: This technique represents
a significant advancement from the original
two-layer classification structure to a more flexible
three-layer framework. Unlike the strict regular
expression-based matching of HLPs in prior work,
fuzzy HLP matching uses machine learning models
to identify potential matches of HLPs. This approach
allows for greater flexibility in capturing a wider
range of HLP variations, thus offering a valuable
trade-off in four models — namely NB, DT, CNN,
and RNN — as they consistently achieve the
objective of substantially enhancing recall and
ensuring a stable overall F1-score.

Issue HLP Matrix: Replacing the original Issue HLP
Vector, the Issue HLP Matrix introduces the capability
to recognize the sentence order in issue reports. This
feature is crucial in capturing the contextual flow of
information, which was not possible with the earlier
vector-based approach. The impact of the HLP Matrix
is sensitive to different models on different datasets,
but the impact is generally positive. Despite the
variation with datasets and models, the HLP Matrix
feature increases the upper bound of the overall
accuracy across the three datasets.

Feature Selection Techniques: In our experiment,
most HLPs are essential and should be retained
during feature selection, as reducing them leads to
marginal execution time improvements. Therefore,
we recommend practitioners keep all 80 HLPs to
maintain the comprehensive effectiveness of our
approach.

Extended Evaluation for Platform and Domain
Agnosticism: We have expanded our evaluation to
cover a wider range of issue-tracking platforms,
including Bugzilla, Redmine, and MantisBT, in
addition to Apache’s JIRA. This extension, coupled
with a 30% increase in the evaluation dataset
size, demonstrates the adaptability and practical
applicability of our framework across various
platforms and projects. In addition, we conducted
an evaluation of our approach’s accuracy across
various software domains, categorizing issues
from the datasets into six broad domains. Our
findings reveal consistent accuracy across these
domains, with average precision, recall, and FI-score
remaining uniform. This consistency underscores
our approach’s versatility, affirming its effectiveness
and suitability across a diverse range of software
development environments, regardless of the specific
domain involved.

Comprehensive Evaluation: Our thorough
evaluation encompasses aspects like robustness to
imbalanced data, transferability across projects and
platforms, and the effectiveness of feature selection
techniques. These evaluations were not part of
our previous work and significantly contribute to
demonstrating the practicality and effectiveness of
the new techniques (fuzzy HLP matching, Issue
HLP Matrix, and feature selection) in real-world
applications.

The rest of the paper is organized as follows. Section 2
introduces background information. Section 3 details
the proposed framework and the approach we take.
Section 4 elaborates the evaluation design of this study.
Section 5 presents the experiment results. Section 6 discusses
the qualitative analysis of the RQs to complement the
quantitative analysis, and the future directions. Section 7
discusses limitations and threats to the validity. Section 8
talks about related work. Section 9 concludes the paper.
Section 10 provides data accessibility.

2 BACKGROUND

This paper tackles a text classification problem. We introduce
the background information for this problem in this section.

2.1

Linguistic patterns are grammatical rules that enable
their users to express themselves properly in a shared
language [11]. Heuristic linguistic patterns have been used in
previous research to classify text [12], [13]. For example, the
pattern ”As a [role], I want to [action], so that [benefit]” is a
heuristic linguistic pattern used to describe user stories [14],
which can be utilized to automatically match texts that
describe user stories in a large corpus. In some cases, the
classification is not definitive due to the fuzzy nature of
the problem, and in such situations, researchers combine
heuristic linguistic patterns with fuzzy logic [15], [16], [17].
Shi et al. [18], for example, combined linguistic patterns
with fuzzy logic to classify issue report texts into various
information types, including Intent, Benefit, Drawback,
Example, Explanation, and Trivia. In their work, an input
text could correspond to multiple information types without
a definite answer. They assign a confidence value to each
linguistic pattern to represent the degree of association
between that pattern and an information type. The linguistic
fuzzy model offers interpretability of the classification
process [19], [20].

Linguistic Patterns

2.2 Machine/Deep Learning

Machine learning and deep learning models are commonly
used for text classification [21]. The effectiveness of a classifier
is dependent on the relevant features extracted from the
data for training. A common approach is to transform input
texts into a numerical representation in the form of vectors
and matrices [22]. For example, the Count Vector is a matrix
notation of a corpus where every row represents a document,
every column represents a term, and every cell represents
the frequency count of a particular term in a particular
document [23]. However, calculating the frequency of terms
can be problematic since all terms are considered equally
important when assessing relevancy on a query. Hence,
the TF-IDF (Term Frequency - Inverse Document Frequency)
scales down the weights of terms with high collection
frequency [24].

There are different levels of input tokens that can be used
to generate TF-IDF scores, including Word-Level TF-IDF [25],
N-gram Level TF-IDF [26], and Character Level TF-IDF [27].
Word Embedding is another form of representing words and
documents using a dense vector representation [28]. It can be

4

generated using pre-trained embeddings such as Glove [29],
FastText [30], and Word2Vec [31].

In addition to the feature extraction approach, the
choice of machine learning models used can also impact
the accuracy of classification. Naive Bayes [32], [33], [34],
Logistic Regression [35], Support Vector Machine [36], [37],
Decision Tree [38], Random Forest [39], and Extreme Gradient
Boosting [40] are common machine learning models used for
text classification.

In recent years, deep learning models, inspired by how
the human brain works, have gained popularity in text
classification. Two popular models are the Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN).
The Bidirectional Encoder Representations from Transformers
(BERT) model, which benefits from transfer learning, has
been shown to outperform previous methods for a wide
variety of natural language processing tasks [41], [42], [43].
In transfer learning, the model is first trained on a large text
set to solve some general-purpose by training the model like
language modeling and auto-encoding. This step, referred to
as pre-training, prepares the deep learning model to rapidly
learn new downstream tasks. In this work, we use token
embedding as features for the BERT model.

2.3 Hybrid Approaches

Hybrid approaches combine a base classifier (i.e., the
machine/deep learning model) with a rule-based system, to
improve the classification [44]. These hybrid systems can be
easily fine-tuned by adding specific rules for conflicting tags
that have not been correctly modeled by the base classifier.

The proposed performance issue detection framework
resides in this category: we train classic machine/ deep
learning models with the HLPs derived learning features.
To prove the advantage of our approach, we compare our
approach with a comprehensive set of baseline methods,
by combining different NLP features and machine/deep
learning models discussed in the previous section. In our
approach, the HLPs extracted from known performance
issues provide more accurate learning features than the
classic NLP features.

3 STuDY APPROACH

Our approach is inspired by the observation that
performance-related issues often include sentences that share
similar linguistic characteristics. We capture the common
linguistic characteristics with HLPs, which we empirically
derive from analyzing existing issue reports. Leveraging
these linguistic patterns and machine learning techniques,
we can classify new issue reports as performance-related or
not. Therefore, our approach consists of two main phases: a
preparation/learning phase to build the HLP Set and an issue
classification phase. We first elaborate on linguistic patterns
before detailing these two phases below.

3.1

Heuristic linguistic patterns allow us to approximate
whether some text relates to the topic of performance. An
issue report that describes the system as “running slow”
or “inefficient”, for example, would indicate that it likely

Heuristic Linguistic Patterns

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

concerns the system performance. These patterns offer a
project-agnostic method for us to identify issue-report texts
that describe the symptoms, root causes, solutions, and
run-time measurements of performance issues. Our patterns
operate at the sentence-level by analyzing the words and
grammatical structure of a sentence. Following the approach
of Shi et al. [18], we define four types of linguistic patterns:
lexical, profiling, structural, and semantic.

Lexical linguistic patterns extend the basic keyword match
concept by additionally considering synonyms, negated
antonyms, and lemmatizations of that keyword/phrase. For
example, an efficiency lexical pattern would include the such
terms as efficient, efficiency, inefficient, and inefficiency. Another
example, which we call the infinite_loop pattern, looks for
infinite, forever, or endless; followed by loop or iteration.

When a performance issue is identified, developers often
use a profiler to record performance characteristics of the
system. We define profiling linguistic patterns to capture this
information, as embedded in an issue report. Usually, the
matching issue text contains a time or memory usage unit
(e.g., milliseconds, megabytes), or the extent of performance
change—measured in percentage terms, comparing the
run-time parameters of before and after a code revision.

Structural linguistic patterns operate on a higher
grammatical level of the sentence structure. These patterns
can identify phrase structures that imply a performance issue.
For example, we observe that “when ... run/execute/perform ...
for INUMBER] seconds/minutes” is a common way in different
projects to describe performance issues that happen under a
special input.

Semantic linguistic patterns extend lexical patterns by also
incorporating sentiment analysis [45], to capture linguistic
expressions that imply performance issues. For example, our
negative_necessary pattern searches for a common way of
describing the root cause or solution to performance issues
that happen under unnecessary conditions. It searches for
the word necessary, required, or essential in a sentence that has
a negative sentiment.

In the following subsection, we detail how we derive our
linguistic patterns for classifying performance-related issues.

3.2 Preparation/Learning Phase

The goal is to extract a comprehensive HLP set from
known performance issue reports, which can be used to
automatically tag performance issues in a new dataset.
Figure 1 illustrates the key process of manually reviewing
and deriving HLPs. The raw input is the developer-tagged
performance issue reports on Apache’s Jira issue-tracking
system. The output is a comprehensive HLP set (highlighted
in the yellow background in Figure 1). This phase contains
five iterative steps, which are described in detail below. We
chose Apache’s projects for composing the datasets and
building HLP Set due to their rich and accessible data
on performance issues. Apache’s vast, active open-source
community offers well-documented, diverse projects with
numerous developer-tagged performance issues. This variety
provides a broad range of real-life software development
challenges. Additionally, Apache’s JIRA issue tracking
system yields detailed performance issue records, including
metadata crucial for our deep analysis of real-world
performance issue management practices.

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS5

_—— e e e e e e e e ———

3.2.1 Rank & Retrieve

We rank all #reoy e prg}e@ts on the-Apache-Software-
Foundatiopn inlsskscending StieT2pelied on_thg number
of develop¥

1
1
: Rank & Pre-Process & Extract Merge & Yes
ssue | Retrieve Manual Tag HLP Consolidate d @
Tracking |, . _ & & / :
pg i ! ! !
Issues Sentences Evaluate Sentences
1
! in Pi in Pi il e & Reflect in P1 to Pi

_— e e e —————— = ———

in Bugzillg
Redmine an

Jira system, developers
“performange ag i

1), we retri =

reports from jéct, namely P,;. In"éach 1terat10n
issues from P, P SQeage tor ug fesjeaip how
performange 1%llagl'are desc il dsikipra . i
projects with argest\mumbe? of tagge

issues to accelerate the building process:

ITdl

/ méfﬁﬁesf

rormance-1ss

sues. ' n§é‘ﬁlibéa tier
plerf

3.2.2 Pre-Process & Manual Tag

First, we pre-process the issue reports from project P;. We
use the Stanford Core-NLP! to break each issue report into
sentences. For each sentence, we applied lemmatization,
Part-Of-Speech (POS) tagging, Named-Entity-Recognition
(NER) tagging, dependency parsing, and sentimental
analysis using the annotators of Stanford Core-NLP. We apply
standard data cleaning to remove stop words, such as 4, an,
and the.

Next, we manually tag each sentence in each issue as
either performance-related or not. The reason is that a
performance issue usually also contains many sentences
that do not carry performance-related information. For
example, developers may describe the general background
information of an issue or include social notes. Thus, a
sentence must contain a description relevant to performance
problems, such as the symptoms, the causes, the optimization
solutions, and performance profiling data, to be considered
performance-related. The goal is to identify sentences that
contain reusable information that can help identify similar
issues in a different context.

A team of five, including a senior researcher, two senior
Ph.D. candidates, a junior Ph.D. student, and a master’s
student with software development experience, collaborated
on manual tagging. To minimize bias, the team was divided:
one senior Ph.D. candidate and the junior Ph.D. student
formed one group, while another senior Ph.D. candidate and
the master’s student formed the second group. The senior
researcher mediated conflicts.

For Dataset 1 and Dataset 2, we re-used the tagging from
our prior study [10], wherein the tagging processed has
been detailed. For Dataset 3, the first group handled tagging

1. https:/ /stanfordnlp.github.io/CoreNLP/

73rormance 1ssue's “On Apache%nt@ﬁ@%@n@eparaf

Sentence . Sentence
HLB ¥edto iskic . tars xt.ractlon
- - - -Based. .on-the fagged -pe-rforman e-related sentences, we
manuall S HLPé that can recur in

- sentence- that._ is. _manually tagged as
performance-related in P;, we identify the linguistic
properties using the Stanford Core-NLP. First, we use the
Part-Of-Speech Tagger (POS Tagger) to assign parts of speech
tags to each word, such as noun, verb, adjective, etc. This
helps us to extract lexical, structural and semantic patterns.

For example, “load_nn" is a lexical heuristic linguistic
pattern, indicating that a sentence must contain keyword
“load” or “loads” in the form of a noun, used in describing
computation load(s). Similarly, “nn_by nn” (structural
heuristic linguistic pattern) captures issues like “pixel by
pixel”, “byte by byte”, which is often used to describe a
tedious computation process.

Meanwhile, we use Named Entity Recogonizer Tagger
(NER Tagger) to capture specific terms for describing
time or memory consumption of an issue. This helps to
extract profiling HLPs such as “Percentage” (NER Tagger
contains “PERCENT”) and “Duration” (NER Tagger contains
“DURATION”) that describe the profiling measurements.

Furthermore, Stanford Core-NLP provides the dependency
analysis of a sentence, and categorizes it in sentiment such
as positive, neutral, and negative. This helps to extract
semantic HLPs. Figure 2 shows the dependency analysis
of a sentence in issue report KAFKA-5512. It also matches
“negative_necessary” (a semantic HLP), since it has keyword
“unnecessary” and its sentiment is categorized as negative.

comp- an od.
A-mark VB com ound

avoid unnecessary |te|at0rs mstantlatlons

dﬂw %
A= amod nsum\NE
FAfL

The quick fix is to

Fig. 2: An Example of Dependencies Analysis

By the end of this step, the output is a set of heuristic
linguistic patterns from the project P;.

https://stanfordnlp.github.io/CoreNLP/

6

3.2.4 Merge & Consolidate

We merge the HLP set from project P; with the set built from
previous iterations. The HLPs from P; may overlap/duplicate
with the existing HLP set. Thus, we merge overlapping,
duplicating, or similar patterns together. For example,
“infinite_loop” and “loop_forever” can be merged to one HLP,
i.e. “loop_infinite/forever, which means that an infinite loop
occurs. While merging, we also consolidate the merged
heuristic linguistic pattern through divergent thinking. That
is, we add possible variations of identified rules to be
inclusive and predictive. For example, the example rule,
“loop_infinite/forever”, above, can be extended to a more
predictable rule, “loop/iteration_infinite/forever”.

3.2.5 Evaluate & Reflect

The last step of each iteration is to evaluate and reflect
the updated HLP Set. First, we check whether the HLP
Set has grown compared to previous iterations. If there
are no (or only a few) new patterns added in the current
iteration, it indicates that the HLP Set is (or close to being)
saturated. Next, we evaluate the precision/recall of the HLP
Set using the data from the processed projects. We use a naive
matching approach: as long as a sentence matches one of
the HLPs from the set, we consider it as performance-related.
We calculate the precision/recall of this naive tagging by
comparing it with our manual tagging. If the precision is
low, it means that the HLPs can also frequently appear in
non-performance-related sentences, implying that the HLP
Set is irrelevant. If the recall is low, it means that the HLP Set
is not comprehensive to capture all the different ways that
performance issues are presented. As the HLP Set grows with
iterations, the recall should increase gradually and stabilize
when no more new rules can be found. We call this status
as HLP set saturation, which means the HLP building is
complete and no more iterations are needed.

3.2.6 Heuristic Linguistic Pattern Saturation

As reported in our previous study [10], it took 13 iterations
(i.e. the process of iterative HLP set derivation illustrated in
Figure 1) for us to reach HLP set saturation. We observed
that the set grew rapidly in the first five iterations, but
its growth slowed down after the sixth iteration. The set
became stable at the 11th iteration. In total, we extracted 80
HLPs in the types of lexical (44%), structural (38%), semantic
(10%), and profiling (8%). We evaluated the HLP set on
the HLP building dataset and found that it could match
performance-related sentences with a precision of 94% and
a recall of 87%. These results indicate that the HLP set is
saturated and can comprehensively and accurately capture
the features of how performance issues are described based
on the dataset for the HLP construction. We will build our
issue tagging approach based on this HLP set.

Admittedly, even with HLP saturation based on the
manual learning process, there is no guarantee that we have
comprehensively captured all possible linguistic patterns
of how developers may describe performance issues, due
to the diverse nature of performance issues. As such, we
are motivated to upgrade our approach from a two-level
classification [10] to a three-level classification framework
in this study. We added a first-level classification of HLP

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

to automatically recognize potential variations of linguistic
patterns based on machine learning models. We will explain
this upgrade in the next subsection in detail.

3.3

Based on the constructed HLP set, we build our framework
to automatically classify if an issue report is related to
performance or not. Thus, the input to our framework is the
text from an issue report; while the output is either “Yes” or
“No”, indicating whether this issue is related to performance
problems. As shown in Figure 3, our framework works at
three progressive levels for: 1) HLP tagging, 2) sentence
tagging, and 3) issue tagging. Next, we explain the details of
each level:

Fuzzy HLP Matching: In our previous version [10],
our approach matches each of the extracted HLPs using strict
regular-expression-based pattern matching to determine if
a given sentence matches a certain HLP or not. However, as
discussed earlier, although we reached saturation and cannot
find additional new patterns using our learning dataset, we
cannot guarantee that all possible variations of patterns,
especially those that are unique to issue reports from a
different platform, are also captured. As such, strict HLP
matching is likely to ensure precision but may sacrifice recall.
The newly proposed Fuzzy HLP Matching layer is motivated
to increase recall without compromising the overall accuracy,
as variations of HLP beyond the manually derived could also
be identified through machine learning models.

We acknowledge that it is often more intuitive to aim for
a higher precision, as it reduces manual effort to exclude false
positives. However, the challenge of attaining high recall in
scenarios characterized by data imbalance is well-known.
Given the imbalanced nature of performance issues among
all issue reports, it is intrinsically more challenging to
achieve the recall, making the fuzzy matching technique
a valuable asset. In addition, numerous literature have
also underscored the importance of increasing recall in the
context of bug report detection [4], [46], [47], [48]. More
specifically, [46] underlines that performance bugs often
remain undetected, making increased recall vital for early
identification and resolution. [47] advocates the importance
of high recall in statistical debugging for identifying potential
faulty control paths. [48] advocates for improved recall in the
early stages of performance debugging. Moreover, [4] reports
that practitioners generally favor higher recall to prevent
costly oversights in detecting performance bugs. The fuzzy
HLP matching offers the option for practitioners to achieve a
higher recall if that is what they prefer; while the strict HLP
matching should be employed by those who prefer a higher
precision. As we will elaborate in Section 4.1, RQ4 focuses
on evaluating the impact of this fuzzy HLP matching on the
precision, recall, and F1-score of our approach, compared to
the strict matching mode.

In this level, we include 80 binary classifiers, each of
which stands for “fuzzily” matching one of the 80 HLPs.
For each classifier for pattern, L P;, the input is a sentence
from an issue report. The output is "Yes” or "No” indicating
whether this sentence matches H L P; based on the machine
learning model. We use the classic NLP features of the
input sentence. More specifically, we pre-process the input

Issue Report Classification Phase

Study Overflow

HLP Set II

——— - \
[e Sentence Tagging T AN \
: I] HLP Tagging \ 1 ',
1 : I : ' I '
lssue 1 | (Foreach) | Pre- Sentence 'l 80HLP Binary YHL/E : 1
q r I
Reports || Sentence | 1"l processing (CVIWLING|CH) ! Classifier esiNo I '
1 1 N o e e e e e e e e e . — — — — — —— : 1
1 1 ! :

I I
] ™] Sentence Sentence Sentence ']
| o W Classifier [+ | D@ Balancer <= go. P Vector . :

1
: M R |
1 y !
! Issue !
. Eeatire Most Relevant Issue Issue 1
\ | NxBOHLP Selection || HLPs Matrix || Data Balancer Classifier YesiNo | |
\ Matrix !
AY

Fig. 3: Performance Issue Report Classification .
For each RQ, the average precision, recall, and F1-score was calculated based on 100 times

execution of the related experiments.
sentence using Stanford Core-NLP to obtain the classic NLP

features, including Count Vectors (CV), Word-Level TF-IDF
(TAZL) AL Qe TC_IDLE (NC). and Pan‘tn{-nv Tml TLC DL /f‘H\

Issue HLP Matrix, which is used as the learning feature of
machine/deep learning models to automatically identify
peifotmancestelated-issue vapnvl—c

By providing manually matched HLP as the training data,
this level of classification can identify variations of HLPs that
may have not been captured in the construction process. We
envision that this level of classification serves to increase the
recall of tagging performance issues.

Sentence Tagging: Next, we use the second-level
classifier to determine if an input sentence is related to
performance or not. The direct input to this level is a
Sentence HLP Vector, resulting from the previous level of
classification described above—the 80 binary classifiers for
fuzzily matching the HLPs. The Sentence HLP Vector is a
binary vector with n dimensions, where n is the total number
of HLPs. More specifically, n is 80 in our study since we
constructed 80 HLPs from our manual derivation phase. The
i-th value in the vector is either 0 or 1, indicating whether
the HLP tagging result from the previous level of the i-th
HLP is “Yes” or “No”. We use the Sentence HLP Vector as the
learning feature to train machine/deep learning models. As
such, given any sentence, we can use the trained model to
determine if a sentence is related to performance problems.

Note that this level remains the same as our previous
version [10], except that the input is from HLP classifiers in
the first level instead of strict regular expression matching.

Issue Tagging: Finally, we perform the third level
of classification, by taking the feature extracted from an
entire issue report as the input, and output “Yes” or No,”
indicating whether this issue report is related to performance
problems. In the previous version [10], we directly summed
up the Sentence HLP Vectors of all sentences in an issue to
form an Issue HLP Vector. However, the potential drawback
of this treatment is that it will not capture the order
of sentences, as such the context information behind the
order of the sentences of the report will be missing. To
overcome this limitation, in this study, we concatenate the
Sentence HLP Vectors to construct an s x n matrix, where s
equals the number of performance-related sentences and
n equals the number of HLPs. This matrix is called the

I
STEVENS INSTITUTE of TECHNOLOGY

As we will elaborate in Section 4.1, RQ5 focuses on
evaluating the impact of introducing the Issue HLP Matrix on
the overall performance of our approach, compared to using
the Issue HLP Vector in our previous version [10].

Approach Variations: Our framework, illustrated in
Figure 3, can be combined with different machine/deep
learning models to provide variations of our approach. In
this study, we experiment with six classic machine learning
models and two advanced deep learning models, yielding
eight distinctive variations of our framework, as listed in
Table 1.

Note that our framework contains three levels of
classifications, which requires three classifiers to work
progressively together. That is, if we allow any combination
of models to work at the three levels, we will yield 83 =512
variations of our approach. We keep the choice of model
in the three classifiers to be consistent to eliminate the
complexity. The motivation for this choice is to provide
straightforward options for practitioners to operate with our
approach.

At the HLP Tagging level, we incorporate four established
NLP features, including: Count Vectors (CV), Word-Level
TF-IDF (WL), N-gram TF-IDF (NG), and Character-Level
TF-IDF (CH). These are used in conjunction with the
six machine-learning models. Specifically, each of the six
machine learning models is evaluated using each of the four
NLP features. The feature yielding the highest F1-score value
is selected as the input, which allows for optimal model
accuracy. Word Embedding is employed as the input feature
for the two deep learning models. At the Sentence Tagging
level, the Sentence HLP Vector is utilized as input. Similarly,
for the Issue Tagging level, the IssueHLP Matrix is employed
as the input for each of the eight variations.

TABLE 1: Sentence/Issue Tagging Approach Variations

[Type [Abbrev. | Model Name I Feature |
HLP+NB Naive Bayes
HLP+LR Logistic Regression
HLP+ML HLP+SVM Support Vector Machine Sentence HLP Vector
HLP+DT Decision Tree
HLP+RF Random Forest Issue HLP Matrix
HLP+XGB Extreme Gradient Boosting
HLP+DL HLP+CNN | Convolutional Neural Network
HLP+RNN [Long Short Term Memory RNN

4 EVALUATION DESIGN

4.1 Research Questions

We evaluate our approach in six research questions. The first
three RQs evaluate the effectiveness of our approach focusing
on the accuracy (RQ1), robustness to imbalanced datasets
(RQ2), and transferrability (RQ3). RQ4 and RQ5 investigate
how the new techniques of fuzzy HLP matching (RQ4) and
Issue Matrix for capturing sentence order (RQ5) contribute to
our new framework, compared to the strict HLP matching
and Issue Vector, respectively, in our original framework [10].
Lastly, RQ6 explores the essentiality of all 80 HLPs and
examines the impact of feature selection on improving
our approach’s accuracy and execution performance. We
elaborate the rationale behind each RQ in more detail below:

RQ1: What is the overall accuracy of our approach?
How does it compare to the baseline methods? This RQ
evaluates the tagging accuracy of our approach in identifying
performance issue reports, in terms of its precision, recall,
and FI-score, and how it compares to the baseline methods.

RQ2: How robust is our approach to imbalanced
data? How does it compare to the baseline methods? As
mentioned earlier, there is only 4% to 16% of performance
issues in the issue tracking systems [4], [8]. It has been
reported previously that data balancing could improve the
accuracy of machine learning models [49], [50], [51]. This RQ
investigates how robust is our approach to imbalanced data,
especially how this compares to the baseline approach. That
is, if we provide balanced data to train our approach, will
its accuracy increase significantly? If so, it indicates that our
approach is not robust to imbalanced data. In particular, we
are interested to compare our approach with the baseline
methods in terms of its robustness to imbalanced data.

RQ3: How well does our approach transfer to a
new dataset from different issue-tracking platforms?
How does it compare to the baseline methods? This
RQ aims to evaluate whether our approach is project- and
platform-agnostic. Given that the HLPs are built based on 980
JIRA issue reports from 13 Apache projects. We would like to
evaluate whether our approach transfers well to issue reports
of new projects, in particular, those from other platforms,
such as Bugzilla, Redmine, and Mantis without requiring
pre-training using new datasets.

RQ4: How does the fuzzy HLP matching impact our
approach? We derived a total of 80 HLPs from 980 issue
reports to reach a saturation status. However, there could be
more patterns and variations of HLPs that are not captured
comprehensively in this process. Thus, if we introduce a first
layer of classification to “fuzzily” identify potential variations
of HLPs, instead of using expression patterns to “strict-match”
HLPs within sentences (as what we did in our original
study [10]), how much will the accuracy of our approach

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

change? The motivation behind the fuzzy HLP matching
is to enhance the capability of our approach to identify
potential matches of HLPs using machine learning models,
thereby allowing for the detection of variation that might not
strictly adhere to the 80 manually extracted of HLPs in our
original study [10]. In other words, the overall accuracy of our
approach should not be significantly compromised to allow
the trade-off between precision and recall for practitioners
when adopting the new fuzzy matching technique in our
framework.

RQ5: How does the Issue Matrix feature, which captures
the sentence order within an issue report, impact the
accuracy of our approach? In our original framework [10],
we use Issue Vector as the learning feature for issue level
classification. However, the vector does not capture the
context information among the sentences in an issue, i.e.
their order. In this RQ, we evaluate whether and to what
extent considering the sentence order through Issue Matrix
as the learning feature in the issue-level classification will
impact the accuracy of our approach.

RQ6: How do feature selection techniques impact the
accuracy of and the required HLPs in our approach? In this
RQ, we adopt two off-the-shelf feature selection techniques,
namely Boruta and Recursive Feature Elimination (RFE). The
objective is twofold. First, we also aim to reveal whether
and to what extent the 80 HLPs are truly necessary to our
approach. Second, we aim to investigate whether and to
what extent feature selection helps us to further improve the
accuracy and execution performance of our approach.

4.2 Experiment Setup

This section talks about the evaluation datasets used in this
study, our experimental design for answering the RQs, and
the baseline methods that we compare our approach with.

4.2.1 Evaluation Dataset

We collected three different datasets as listed in Table 2, in
preparation for evaluating our approach using datasets from
different projects and from different issue-tracking platforms.

TABLE 2: Evaluation Datasets

D Name Source Platform(s) # Issues (P%) | # Sentences (P%)
1 Apache Homo. Apache Jira 980 (8%) 4,790 (11%)
2 Apache Hetero. Apache Jira 980 (6%) 5,371 (6%)
3 Other Platforms | Bugzilla, Redmine, MantisBT 210 (5%) 3,036 (4%)

Total 2,170 (6%) 13,197 (7%)

o Dataset 1: Apache Homologous Data. Collected to
evaluate the efficacy of the HLP Set in identifying
additional non-tagged performance issues, this
dataset comprises 980 non-tagged issues and 4790
sentences. These issues were randomly selected in
equal number to those used for building the HLP
Set and are from the same projects used in the HLP
Set construction. As a result, this dataset offers a
nuanced view into the effectiveness of the HLP Set
within a consistent project environment, revealing
that only 8% of the issues and 11% of the sentences
are performance-related.

o Dataset 2 is for evaluating whether the HLPs
are general for tagging issues from heterologous

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS9

projects, independent from the HLP building. To
ensure a comprehensive evaluation, these issues
were randomly selected from seven projects that
are distinct from those used in Dataset 1. This
approach was adopted to test the adaptability and
applicability of the HLPs across different project
environments. The dataset consists of 980 issues
and 5371 sentences from these seven projects, not
involved in the HLP building. Here, 6% of both issues
and sentences are performance-related, providing a
valuable perspective on the generalizability of our
approach across diverse project contexts.

o Dataset 3: Other Platforms Data. It contains 210
issue reports with 3,036 sentences from Bugzilla,
Redmine, and Mantis Bug Tracker. For Redmine
and MantisBT, the issues were randomly selected to
match the number of developer-tagged performance
issues in these platforms. Of particular note, issue
reports on Bugzilla only contain a single-sentence
summary. Thus, the 210 issue reports (i.e 67 from
Redmine and 143 from Mantis) do not count
those from Bugzilla. Bugzilla data were included
to augment the sentence-level tagging scope and
were randomly sampled from its extensive issue
database. But Bugzilla contributes 1,980 sentences
that are only used for sentence-level tagging. This
dataset is for evaluating whether our approach is
platform-agnostic.

We followed the process in Section 3.2 to manually tag
each sentence in the three datasets. For each dataset, we
also manually tag each issue report, following a similar
practice. Based on our manual tagging results, in Dataset 1,
8% of issues and 11% of sentences are performance-related;
in Dataset 2, 6% of issues and 6% of sentences are
performance-related; in Dateset 3, 5% of the 210 issues
are performance-related, and 4% of the 3,036 sentences
are performance-related. This underscores the challenge
of automatically tagging these highly imbalanced datasets.
Although only RQ3 specifically focuses on the transferability
of our approach to different projects and to different
platforms, we conduct the experiments of all other RQs
on all three datasets to be comprehensive as well.

4.2.2 Comparison Baseline Methods

RQ1, RQ2, and RQ3 focus on evaluating the overall
performance (RQ1), robustness to imbalanced dataset (RQ2),
and transferability (RQ3) of our approach, respectively. In
these RQs, we show the advantages of our approach in these
three aspects by comparing it with a set of baseline methods.
The baseline methods rely on the classic NLP features, such
as Count Vectors and Word Level TF-IDF.

Table 3 shows 31 distinct variations of the baseline
methods that are classified into three groups: 1) machine
learning model-based methods (in the top part of the table);
2) deep learning model-based methods (in the middle part
of the table); and 3) large language models (LLMs, in the
bottom part of the table). Within the group of machine
learning methods, a combination of six basic models and
four distinct NLP features offers a total of 24 (i.e., 6 x 4)
variations of the baseline methods. The deep learning model

group offers five variations, specifically, the BERT model
operating with the Token Embedding feature, and four other
models leveraging the word embedding feature. The LLM
group offers two variations, GPT-3.5 and GPT-4.0, operating
with advanced transformer-based language models and
utilizing dynamic word embeddings. GPT-3.5 utilizes a
transformer-based language model architecture, and GPT-4
employs a more advanced version of this architecture,
reflecting improvements in scale, efficiency, and language
understanding capabilities. To rigorously assess GPT-3.5
and GPT-4.0 in identifying software performance issues, we
adopted a straightforward experimental process. For each
issue report in the three evaluation datasets, we engaged
both ChatGPT versions with the prompt: “Is the following
description of an issue ticket related to software performance?
If so, please tell me why.” It reflects how end-users might
interact with LLMs to classify and understand issue reports,
without specialized prompt-engineering or fine-tuning. This
process respects the user-friendly nature of LLMs and avoids
potential bias introduced by intricate prompt engineering or
parameter adjustments. To facilitate the experiment on the
three datasets, we created a Python script to automate the
interaction process with ChatGPTs.

TABLE 3: Comparison Baseline Methods

Baseline 1: ML Models + NLP Features
Abbreviation ML Model
NB+CV|WL|NG|CH Naive Bayes
LR+CV]WLING|CH Logistic Regression
SVM+CV[WLING|CH Support Vector Machine
DT+CV[WLING|CH Decision Tree
RF+CV[WLING|CH Random Forest
XGB+CV[WLING|CH Extreme Gradient Boosting
Baseline 2: DL Models + NLP Features
Abbreviation DL Model
BERT BERT Classifier

NLP Feature

Count Vectors (CV)
Word Level TE-IDF (WL)
N-gram Level TF-IDF (NG)
Character Level TF-IDF (CH)

NLP Feature
Token Embedding

CNN Convolutional Neural Network Word Embedding
RNN-LSTM Long Short Term Memory RNN Word Embedding
RNN-GRU Gated Recurrent Units RNN Word Embedding
Bi-RNN Bidirectional RNN Word Embedding

Baseline 3: Large Language Models (LLMs)
Abbreviation Transformer Architecture
ChatGPT-3.5 GPT-3.5

ChatGPT-4 GPT-4

NLP Feature
Word Embedding
Word Embedding

4.2.3 Experiment Setting

All the RQs rely on the three classic information retrieval
metrics, including precision, recall, and F1-score [52]:

e Precision, which measures the proportion of all
positive classifications that are true positives.

e Recall, which measures the proportion of all the
actual positive cases that are classified as positive.

e F1-Score, which is the harmonic mean of precision
and recall. It measures the balance between precision
and recall, which provides a single score that takes
both precision and recall into account

For each RQ, whose setup will be elaborated in the
next subsection, we ran each variation of our HLP-based
approach and each variation of the baseline method 100
times repeatedly. Of particular note, RQ4, RQ5, and RQ6
focus on evaluating the impacts of specific features with our
approach and thus comparison with the baseline methods
do not apply to them. The precision, recall, and FI1-score
of each experiment were calculated as the average of the
100 repetitions. We use the three datasets introduced in
Section 4.2.1 in our experiments. For each dataset, we

10

randomly divide the dataset into 70% for training and the
remaining 30% for testing.

All the evaluation experiments are conducted on a
machine equipped with a 12th Gen Intel Core i7-12800H
CPU, 32 GB of RAM, an SSD, and an NVIDIA RTX A1000
Laptop GPU, providing insight into the practical application
of our approach.

42.3.1 RQ1: Overall Accuracy: We compare the
distribution of the accuracy of the two groups of approaches:
1) Our Approach (HLP): encompassing the eight variations
of our HLP-based approach detailed in Section 3.3; and 2)
Machine and Deep Learning Models, which include 29
distinct variations of methods based on machine learning and
deep learning, leveraging traditional NLP learning features
such as TF-IDF; and 3) Large Language Models, comprising
2 variations, GPT-3.5 and GPT-4, that utilize dynamic word
embeddings.

Firstly, we examine and compare the distribution of
three metrics (i.e. precision, recall, and FI-score) of the
our approach and the baseline methods. Next, to quantify
the statistical significance of the different distributions, we
employ Cliff’s Delta value for measuring the effect size of
the comparison. Cliff’s Delta effect size is a non-parametric
measure, which evaluates the probability that a randomly
selected value from one group will be larger than a randomly
selected value from another group, minus the reverse
probability [53]. The mathematical formula for Cliff’s Delta
is listed below:

N> — Nc

Cliff’s Delta =
iff's Delta P

1)
where:

e N, is the number of pairs where a value from the
first group is greater than a value from the second
group;

e N_ is the number of pairs where a value from the
second group is greater than a value from the first
group;

e np and ny are the sample sizes of the first and second
groups, respectively.

Cliff’s Delta value ranges from -1 to 1, indicating the
magnitude of difference between two groups, with 0
signifying no difference. Effect size thresholds for Cliff’s Delta
are classified as follows: a value less than 0.147 indicates a
negligible effect size; between 0.147 and 0.33, a small effect
size; between 0.33 and 0.474, a medium effect size; and
greater than 0.474, a substantially large effect size [54]. In our
study, we adopt 0.474 as the threshold for a substantial large
effect size, following the guidelines from existing research,
where an absolute Cliff’s Delta (|Cliff's A|) value greater than
0.474 denotes significant differences between two groups.

4.2.3.2 RQ2: Robustness to Imbalanced Data: To
investigate the robustness of our proposed HLP approach
in handling imbalanced data, and compare such against the
baseline methods, we undertake a dual set of experiments:
1) Balanced Training Dataset (BT), which is controlled and
composed of 50% performance-related sentences or issues
and the remaining half are not performance-related. We tried
composing such BT through random sampling from our
evaluation dataset, as well as using the Synthetic Minority

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Over-sampling Technique (SMOTE) to generate synthetic
samples of the minority class. The experiments show that
both synthetic methods lead to the same conclusion in
terms of our approach’s robustness. And 2) Imbalanced
Training Dataset (IBT), which has an equal quantity of
sentences and issues sampled from the untouched, original
dataset. For the testing dataset, we maintain the percentage
of performance-related data commensurate with that in the
original dataset, since the imbalanced nature tends not to
change in practice.

Similar to RQ1, we plot the accuracy distribution of our
approach with BT and IBT as the training data, as well as that
of the baseline approach. As our objective is to evaluate the
robustness of our HLP approach and the baseline methods
in handling imbalanced data, the comparison focuses on
whether and to what extent the accuracy changes when
transiting from IBT to BT with our HLP approach vs. with
the baseline approach.

For statistically rigorous evaluation, we employ three
metrics, 1) the average change — denoted as ch, 2) absolute
Cliff’s Delta effect size — denoted as |Cliff's A|, and 3) P-Value
— denoted as p, to evaluate the impact of data imbalance
on the precision, recall, and F1-score on our approach. The
ch measures the difference between the average accuracy
of using IBT vs. that of using BT as the training dataset on
an approach. A positive value indicates increased accuracy
using balanced data—meaning the approach is potentially
not robust to data imbalance, which will be statistically
confirmed by the two additional metrics, d and p.

The Cliff's Delta effect size (used in RQ1 as well) quantifies
whether transiting from IBT to BT impacts an approach
substantially. In the context of this RQ, transiting an approach
from IBT to BT with absolute Cliff’s Delta values (|Cliff’s Al)
<= 0.474 indicates robustness to data imbalance with no
substantial change to accuracy.

The p from the Mann-Whitney U Test tests whether
transiting from BT to IBT has a statistically significant
impact. It is a non-parametric test to compare differences
between two independent groups, particularly when the
dependent variable is either ordinal or continuous and not
normally distributed. Despite the availability of other similar
tests, it is most appropriate based on the nature of our
data. A p threshold of less than 0.05 indicates statistical
significance [55]. In the context of this RQ, transiting
an approach from IBT to BT with p >= 0.05 indicates
robustness to data imbalance, as it means that from IBT to
BT do not yield to statistically significantly different accuracy
with an approach.

Note that based on the construction, the Cliff’s Delta
threshold poses a more strict condition than that of
the Mann-Whitney U Test P-Value (p). In other words if
[Cliff's A] > 0.474, p is always < 0.05 — meaning if the
change is substantial, it must be statistically significant.
However, a statistically significant change is not necessarily
substantial.

42.3.3 RQ3: Transferability: To investigate the
transferability of our approach to new datasets and new
issue-tracking platforms, we conduct and compare two
sets of experiments: 1) D1/D1: Both the training dataset
and the testing dataset are from Dataset 1 (introduced in
Section 4.2.1). This experiment represents the accuracy of our

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS11

approach before the transfer. And 2) D1/D3: The training
dataset still comes from Dataset 1; while the testing dataset
comes from Dataset 3 (introduced in Section 4.2.1 as well),
which contains performance issue reports from different issue
tracking platforms. This experiment represents the accuracy
of our approach after transferring it to a completely different
dataset and platforms without performing any pre-training
using new datasets.

The evaluation of RQ3 follows the same structure as that
of RQ2 —i.e. RQ2 evaluates the impact of transiting from
IBT to BT; while, analogously, RQ3 evaluates the impact
of transferring from D1/D1 to D1/D3. Therefore, likewise,
we plot the accuracy distribution of our approach with the
transfer, as well as that of the baseline approach. Next, we use
the three metrics, ch, Cliff's A, and p to reason whether the
impact of transfer is significant and substantial. The objective
of RQ3 is to demonstrate that our approach would not be
significantly impacted by the transfer (i.e. p >= 0.05); while
the baseline would be significantly (i.e. p < 0.05) or even
largely (|Cliff’s A| > 0.474) impacted by the transfer due to
the lack of essential domain knowledge — i.e., the HLPs.

4234 RQ4: Impact of fuzzy HLP-matching: This
RQ investigates how fuzzily matching HLPs (introduced
in Section 3.3) — which replaces the original strict HLP
matching — impacts the accuracy of our approach. Firstly,
similar to the above RQs, we first plot the accuracy
distribution of our approach when using fuzzing matching
vs. using its strict matching counterpart. The objective is to
gain an overall and intuitive understanding of the impact
of fuzzy matching — particularly, as discussed earlier, the
objective of fuzzy matching is to increase recall without
compromising the overall F1-score.

More importantly, we conjecture that different models
may be impacted differently by the fuzzy matching technique.
We aim to gain a clear understanding of which models
benefit most from this fuzzy matching technique for the
objective of boosting recall and holding up FI1-score. As
such, practitioners can pick the most suitable models when
adopting the fuzzy matching technique. Thus, we further
provide statistically rigorous and fine-grained analysis of
the impact of the fuzzy matching technique on each of
the machine/deep learning models integrated with our
framework (as listed in Table 1).

For each model, we use the same metrics as previous RQs,
i.e. the average change — ch, absolute Cliff’s Delta — |Cliff’s
A|, and P-Value — p, to evaluate the impact of fuzzy matching
on the precision, recall, and F1-score on our approach. Again,
the ¢ determines what is the impact (i.e. negative or positive);
the |Cliff's A| measures if the impact is substantial (i.e. |Cliff’s
A|> 0.474); p evaluates if the impact is statistically significant
(i.e. p < 0.05). Our ultimate objective is to recommend
models that meet two conditions: C1: substantially increase
recall and C2: no significant compromise to FI-score. We
formally define C1 and C2 in the following;:

o C1: For the recall, (ch > 0) A (|Cliff's A| > 0.474).
e C2: For the Fl-score, ~(ch < 0 A p < 0.05).

Of a particular note, we test each model against the
three evaluation datasets (see Table 2). As such, we aim to
identify models that consistently meet both C1 and C2 on
all three datasets. Such models are reliably compatible with

fuzzy matching to offer higher recall and thus should be
recommended to practitioners.

4235 RQ5: Impact of Issue HLP Matrix: This RQ
focuses on evaluating how the incorporation of the sentence
order in a matrix (Section 3.3) influences the accuracy of our
approach. Similar to previous RQs, we first plot the accuracy
distribution of our approach using the Issue HLP Matrix
feature, as well as that of using the Issue HLP Vector [10]. This
provides an overall comparison between the two features.

Furthermore, similar to RQ4, we aim to gain a
fine-grained understanding of how the HLP Matrix feature
is compatible with different learning models on different
datasets. A key hypothesis here is that the impact of adopting
HLP Matrix may vary depending on the characteristics
of the dataset, regarding which we will elaborate on a
qualitative discussion in Section 6. Here, for each of the three
accuracy measures, namely precision, recall, and F1-score,
we distinguish three levels of impact using two metrics from
RQ4, namely 1) the average change (ch), and 2) the absolute
Cliff's Delta (|Cliff's Al) value:

o Loia = (|Cliff's A| <= 0.474), which means there
is no substantial impact on the checked accuracy
measure.

o Iy = (ch > 0)&(|Cliff's A| > 0.474), which means
there is a substantial increase in the checked accuracy
measure.

o I_ = (ch < 0)&(|Cliff's A| > 0.474), which means
there is a substantial decrease in the checked accuracy
measure.

Note that we did not check the P-Value (p) here because
of two considerations: 1) if |Cliff’'s A| > 0.474, p is always <
0.05; and 2) we aim to highlight models that are substantially
impacted by the HLP Matrix for practitioners, as if the impact
is trivial, it does not justify adopting it. Similar to RQ4, we
evaluate the impact of HLP Matrix on the three different
evaluation datasets listed in Table 2 and distinguish the
impact into the above three levels.

42.3.6 RQ6: Impact of Feature Selection: In this
RQ, we investigate whether it is possible to employ feature
selection techniques to trim unnecessary HLPs and thus
increase the execution performance of our framework. To this
end, we utilized two established feature selection methods:
Boruta and Recursive Feature Elimination (RFE). Boruta uses
a random forest model to evaluate the importance of each
feature against randomized shadow features. In contrast,
RFE iteratively removes the least significant features from
the dataset until reaching the desired feature count.

We assess the statistical difference between before and
after adopting a feature selection technique using the same
metrics as prior RQs, namely Average Change (ch), the
absolute Cliff’'s Delta (|Cliff's Al|) value, and P-Value (p).
Additionally, we also report S-HLP, which is the number of
HLPs retained by the feature selection methods. This metric
reflects the reduction in feature size. Furthermore, we also
report the actual change in the execution time (denoted as ¢5)
running our approach before and after the feature selection.
It measures the actual improved performance efficiency after
feature selection.

12

5 EVALUATION RESULTS

This section answers the six research questions.

5.1

Figure 4 shows the results of our experiments on the three
different evaluation datasets in the three sub-figures. For
example, Figure 4a shows the distribution of precision,
recall, and FI-score of our approach based on Dataset
1 (Apache Homo), and how it compares to that of the
machine and deep learning model-based baseline methods,
in the left-lane, mid-lane, and right-lane, respectively. As
we can see here, the precision of our approach ranges from
73% to 100% when using different machine/deep learning
models; while the precision of the baseline methods ranges
from 17% to 70% with different learning models. Similarly,
the recall and F1-score of our approach both significantly
outperform the baseline methods. We can make consistent
observations based on all three datasets that our approach
significantly outperforms the baseline methods with an
average improvement of 54% in precision, 35% in the recall,
and 41% in F1-score, across the three datasets. Furthermore,
the calculated Cliff’s Delta values for F1-score between our
approach and all baseline methods, across these datasets,
stand at 0.972, 0.875, and 1.0 respectively, which indicate a
significant effect size (> 0.474), underscoring the substantial
advantage of our approach over the baseline methods.

Particularly, Table 4 highlights the accuracy of the
state-of-the-art Large Language Models (LLMs), including
ChatGPT-3.5 and ChatGPT-4. The precision and recall metrics
for both LLMs fall notably short of our approach, revealing
their limitations in capturing technical details pertinent to
software performance.

RQ1: Approach Accuracy

TABLE 4: Issue Tagging Accuracy of ChatGPT-3.5 and
ChatGPT-4

Dataset _ ChatGPT-3.5 _ ChatGPT-4

Precision | Recall | F1-Score | Precision | Recall | FI-Score
Dataset-1 25.13% 63.64% 36.03% 26.07% 79.22% 39.23%
Dataset-2 26.39% 34.55% 29.92% 33.57% 87.27% 48.49%
Dataset-3 12.50% 50.00% 20.00% 21.33% 60.00% 31.47%

RQ1 Takeaway Message: Our framework achieves
a precision up to 100%, recall up to 66%, and
Fl-score up to 79% in automatically identifying
performance issue reports. Our observations across
all three datasets consistently demonstrate that our
approach substantially outperforms baseline methods,
with an average improvement of 54% in precision, 35%
in recall, and 41% in F1-score.

5.2 RQ2: Impact of Data Imbalance

Figure 5 depicts the distribution of the precision, recall, and
Fl-score for our approach with BT and with IBT (the two
blue bars in each lane) as the training data. We also show the
same information for the baseline methods (the two yellow
bars in each lane). We show the results across three datasets:
Apache Homo (Figure 5a), Apache Hetero (Figure 5b), and
Other Platforms (Figure 5c).

Figure 5 visually presents an intuitive impression of
whether and to what extent transiting from IBT to BT impacts

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

our HLP approach and the baseline approach, respectively.
We can observe from all three sub-figures that the recall of
the baseline approach is obviously improved when trained
using BT compared to trained with IBT, indicating the lack of
robustness to data imbalance with the baseline approach. On
the contrary, our HLP approach overall shows quite stable
accuracy in all metrics with the transition, indicating its
overall robustness to data imbalance.

TABLE 5: Impact of Data Balancing (RQ2)

Dataset 1: Apache Homo.
Metric HLP: IBT—BT BLM: IBT—BT
Avg. Ch. (T]) | [Cliff’s A] | P-Value | Avg. Ch. (T]) [[Cliff’'s A] | P-Value
Precision +2.4% 0.297 0.3428 -5.89 0.198 0.5076
Recall +6.1% 0.250 0.4299 +16% 0.753 0.0079
F1-Score +5.8% 0.266 0.4001 +10.8% 0.481 0.0926
Dataset 2: Apache Hetero.
Avg. Ch. (1] [[CIiff’s A] | P-Value | Avg. Ch. (1) [[Cliff’s A[[P-Value
Precision +4.2% 0.25 0.4250 -12.7% 0.481 0.0929
Recall +6.6% 0.281 0.3685 +11.2% 0.593 0.0377
F1-Score +7.8% 0.281 0.3823 +2.7% 0.198 0.5071
Dataset 3: Other Platforms.
Avg. Ch. (1)) | [Cliff’'s A] | P-Value | Avg. Ch. (1) [[Cliff's A] | P-Value
Precision +10.9% 0.406 0.1172 -4.1% 0.243 0.4268
Recall +1.9% 0.235 0.1800 +9.4% 0.716 0.0117
F1-Score +5.4% 0.344 0.2659 +7% 0.419 0.1432

a) “Avg. Ch. ()" represents the change between using Imbalance Data for training (IBT) to using
Balance Data for training (BT) on our approach (column 2) and the baseline methods (column 5),
respectively.

b) “Cliff's A” effect size quantifies the standardized difference in performance between models
trained on IBT and BT as observed in our approach (column 3) and baseline methods (column 6).
This metric assesses the magnitude of difference, disregarding the direction of the effect. In the
context of RQ2, A value of |Cliff's A| > 0.474 signifies a large effect size, as represented in red font,
indicating a substantial difference.

¢) “P-Value” indicates the statistical significance of the change between using IBT and BT for
training on our approach (column 4) and baseline methods (column 7). A P-Value < 0.05 indicates
a statistically significant difference. In the context of RQ2, a P-Value >= 0.05 indicates robustness
to data imbalance, and is in black font. The red font highlights the lack of robustness to data
imbalance.

Additionally, Table 5 shows the Average Change, Cliff’s
Delta effect size, and Mann-Whitney U Test P-Value when
comparing the accuracy with using IBT vs. using BT as the
training data. The values for the HLP approach are in column
3 and column 5; the values for the baseline approach are in
column 4 and column 7. Based on the rationale introduced
in Section 4, we can draw the following observations:

Our approach demonstrates robustness to data imbalance.
More specifically, all the absolute Cliff’s Delta values are <=
0.474, indicating no substantially large difference between
using IBT and using BT as the training data on our HLP
approach. Also, all the P-Values are > 0.05, indicating no
statistically significant difference between using IBT and BT
for training HLP approach.

In comparison, the baseline method lacks robustness
to data imbalance, with the recall being significantly
compromised. This aligns with the visual observations made
with Figure 5. More specifically, the Cliff’s Delta values
associated with the recall are all above 0.474, indicating a
large difference of baseline methods between the IBT and BT
experiments. Specifically, the recall has an average increase
between 9.4% to 16% when trained using BT than IBT.

RQ2 Takeaway Message: Our approach is robust in
dealing with data imbalance. In comparison, the baseline
approach is vulnerable to data imbalance — as the
recall witness an average decrease between 9.4% to 16%
without data balancing.

5.3 RQa3: Transferability

Figure 6 depicts the distribution of the accuracy (i.e. precision,
recall, and F1-score) of our approach when transferring from

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS13

1005 Max: 100.0% = HLP 1005 Max: 100.0% = HLP 100% = HLP
Avg: 83.0% BLm Avg: 85.8% BLm Max: 83.0% BLm
vg: 83.4 vg: 85.8% ax: 83,
Max: 79.0%
80% 80% 80%
Maxi 70.0% Max: 70.0% Max: 68.0% Max: 67.0%
3 Min: 73.0% lax: 66.0% 3z Min: 72.0% Max: 61.0% | Max: 62.0% z Avg: 71.2% Max: 60.0% —
£ 60% hvar 57.0% £ 60% £ 60% -
= g: 57.4 = = Fo— Avg: 56.9%
]]] : 47.
" " Avg: 51.1% - 50.0% .
2 0% Avg: 38.8% | Avg: 46.1% Max: 37.0% 2 4% Vo Max: 38.0% 3 400 | Min: 50.0% [Avg: 40.1% = Max: 37.0%
b Avg: 33.1% | Avg: 39.6% d Mim: 20.0% Min: 44.0% Max:37
E waxizrom| 3 Max: 29.0% s in: 400% o KX
in: 33.4 : 25 2
Min: 17.0% | Min: 20.0% - R Min:21.0% XN Min: 20.0% g X3
;17 KX Min: 13.0% | Min: 12.0% s in: 10.0%
o Min: 6.0% Min: 9.0% o Min: 7.0% Min: 9.0% o Min: 7.0% Min: 10.0%
Precision Recall Fl-Score Precision Recall Fl-Score Precision Recall Fl-Score

(a) Dataset 1: Apache Homo. (b) Dataset 2: Apache Hetero. (c) Dataset 3: Other Platforms.

Fig. 4: Overall Accuracy Distribution of Our Approach and Machine/Deep Learning Model-based Baseline Methods (RQ1)

[== HPIBT
1009 M 100.0%1ax: 100.0% iy
X BLM_IBT
Mg: uz_w(nvg 85.4% Max: 83.0% BLM_BT
80% Max: 79.0%
Mln 76.0% Max: 70.0% Max: 70.0%; Max: 71.0%
Mm 73.0% Sesed Max: 66.0% .
= e Avg: 62.6%
£ 60% S
® 60% Ko) Avg: 57.0% |
2 Baaasl (Avg: 52.2%) 3 Max: 47.0%
H gy ==
S a0% (avg: 38 “hv 3,09 AV9: 46.1% | Min: 45.0% yas 37.0%
oo]
s) Avg: 30.3% | = (7
e i 30.00 Max: 27:0% B ot i 33.0% C
20% K] R B (Av: 20.1%)
WS 200w (Avg: 10.3%) ke
e 5] i 15.0% et
Min: 6.0% o
0
Precision Recall Fl-Score
== HPBT
1009 M 100.0%1ax: 100.0% iy
&) BLM_IBT
Avg: 90.0% e
(v o5, m ”””) N €7 BLM BT
80%|
Min: 79.0% Max: 70.0% ‘Max: 70.0%
Min: 72.0%
= Max: 61.0% Max: 62.0%
& 60% (avg: 58.9%)
H (] T e
H Avg: 46.2% Eesh | Avg: .
8 40% —X - Rgees ¥ Mux ;s«m""" 0.0%
> ((avg: 33.2% M Avg: 39.6% | &%a& 5 o1
Min: 33.0% o8
. (v \Av 20.3 ,' 0%)
20% Min: 20,00 Ave: 15.4% %i:e%" Min: 21.0%
< B
Min: 13.0% " : Min: 14.0%;
Min: 11.0% Min: 12.0% e o, Min: 12.0%
0
Precision Recall Fl-Score
== HpBT
100% (T HLP_BT
£ BLM_IBT
BLM_BT
Max: 83.0%'
80% G
Max: 68.0% Max: 71.0%
Avg: 71.2%) 7573 Max: 65.0% X Max: 67.0% [TT]T]
~) 3008 e 60.0%MaX: 62.0% (v 62.2%)
3 60% SRR Max: 60,
8 | (Avg: a7.59 Ave: 49:4% n: 56 s 45.0%
8 lmsoon (i s ;
3 s0% (A : Min: 44.0% . o
S 0% { i 20,005 Min: 43.0% ""-f}o%xf-'j" Max: 37.0% E{é_’{{
555 Avg: 28.3% |
Max: 25. anea [
oo ‘ Q;""Invg 23.0%) (vo: 21.3%] E%‘E:Ej
o Min: 20.0% (woaa] Ez"s’e%"i
Min: 17.0% Wy Min: 16.0%
Min: 10.0%
Min: 7.0%
0
Precision Recall Fl-Score

(c) Dataset 3: Other Platforms.

Fig. 5: Accuracy Distribution of Our Approach and Baseline
Methods under Imbalanced vs. Balanced Training Data (RQ2)

D1/D1 to D1/D3 (i.e. the two blue bars in each lane), as well
as the distribution of the same information for the baseline
approach (i.e. the two yellow bars in each lane). The two
sub-figures presents the information for the sentence-level
tagging (Figure 6a) and the issue-level tagging (Figure 6b)
respectively. We can make the following visual and intuitive
observations: The HLP approach seems to be quite stable with
the transfer at both the sentence- and issue-tagging levels
— with the recall and F1-score being particularly stable. In
comparison, the baseline approach is negatively impacted by
the transfer at both tagging levels.

Table 6 provides statistical analysis of whether and to
what extent the transfer impacts the HLP approach (column

. = P (O1DY)
100% Max 1900% [0 HLP (D1/D3)
Max: 93.0% €321 BLM (D1/D1)
m:m Max: 87.0% =239 BLM (D1/D3)
0% Max: 79.0% Avg: 83.4%)] o 76.0%
E M] Max: 73.0% " 11111
| imax: 69.0%
Avg: 74.9% Min: 70.0% ! Max: 65.0% ... 63 0% Max;: 64.0%
o B | B s e
P s 54.0% - S vases]
El ((ave Avg: 47. .-/J ‘Vs 48.8%) e Max; 43.0%
S 40% o Min: 42.0% G
(Avg: 13.0%L fosss | (Avg: 20.2% | Eeces
) 3 2% Avg: 10.3% Min: 32.0% choce
0% ! n: zs ‘,:.g o (avg: 9.6%
210w ol s
Mins 14.0% | St B8
[o% % [555 QL
° Min: 1.0% Min: 2.0% Min: 2.0% Min: 3.0%
Precision Recall Fl-Score
(a) Sentence-level Tagging
e = e ooy
1009 1E22%:0% [0 HLP (D1/D3)
£ BLM (D1/DY)
Avg: 83.0% "7 2T =29 BLM (D1/D3)
80% E Craz) M 79:0% Max: 76.0%
i 73.0% ax: 70.0% o 66,006 M2 69:0%
F eo% Min: 66.0%
o
H Avg: ST.0% g 55,
E 0.5 Avo: 45.2%)
3 (vg: as.1od v)
8 40% (avg: 26. 9%},,“ 3. 0% Max: 37.0%
i Max: 27.0% Min: 33.0% vy 37 0%
20% %, Max: 17.0 [Avg: 13: 9%\
ins20.0% Min: 20.0% g, 0.5 L ©
% Tavo: 6.6%
MinB0% 5t e > ¢
o Min: 4. Min: 2.0% Min: 2.0% Min: 4.0% Min: 3.0%
Precision Recall Fl-Score

(b) Issue-level Tagging

Fig. 6: Accuracy Distribution of Our Approach and Baseline
Methods with vs. without Dataset Transfer (RQ3)

TABLE 6: Impact of Dataset Transfer (RQ3)

Metri HLP: D1/D1—D1/D3 ‘ BLM: D1/D1—D1/D3
etric
Sentence tagging level

Avg. Ch. (1) | [Cliff's A] | P-Value | Avg. Ch. (T]) [[Cliff's A] | P-Value
Precision +8.5% 0.563 0.0649 -44.2% 0.763 0.0001
Recall +1% 0.047 0.9163 -2.8% 0.253 0.0984
F1-Score +4.5% 0.188 0.5632 -10.6% 0.556 0.0003
Metric Issue tagging level

Avg. Ch. (T]) [[Cliff’s A] | P-Value | Avg. Ch. (T]) [[Cliff’s A] | P-Value
Precision 9% 0.431 0.0824 -13.2% 0.618 0.0018
Recall -0.9% 0.047 0.9162 -2.9% 0.298 0.0508
F1-Score -3.8% 0.172 0.5990 -4.9% 0.481 0.0059

Note*: a) “Avg. Change (1])” represents the change between the two experiments, i.e. D1/D1 and
D1/D3, which indicates the impact of transferring from the Apache Homo. Dataset (D1) to Other
Platform Dataset (D3), on our approach (column 2) and the baseline methods (column 5).

b) “Cliff's A" effect size measures the standardized difference between the experiments with
D1/D1 and D1/D3 for our approach (column 3) and for the baseline methods (column 6). A value
of [Cliff's A| > 0.474 signifies a large effect size.

c) “P-Value” indicates the statistical significance of the change between the experiments with
D1/D1 and D1/D3 for our approach (column 4) and for the baseline methods (column 7). A
P-Value < 0.05 indicates a statistically significant difference.

2 to column 4) and the baseline approach (column 5 to
column 7) at both the sentence- (the upper half of the table)
and issue-tagging (the lower half of the table) levels. We can
draw conclusions that assert the observations from Figure 6.
More specifically, all the P-Values of the HLP approach are
> 0.05, asserting no statistical significant difference between
the accuracy of D1/D1 and D1/D3 experiments with the HLP
approach. Contrarily, the Cliff’s Delta values and the P-Values
of the baseline methods indicate that its precision and

14

F1-score are substantially impacted with data transferring, as
the Cliff’s Delta values are > 0.474 and the P-Values < 0.05.
Additionally, the “Avg. Ch.” (column 5) indicates that impact
of the transfer on the baseline approach is negative. For
example, the precision witness a decrease of 44.2% at the
sentence and a decrease of 13.2% at the issue-level.

RQ3 Takeaway Message: Our approach is project and
platform-agnostic, as it is robust without pre-training on
new testing datasets. Contrarily, baseline methods suffer
a substantial compromise in precision (up to 44.2%)
when applied to new datasets without pre-training.

5.4 RQ4: Impact of Fuzzy HLP Matching

TABLE 7: Impact of Fuzzy HLP Matching for Each Variation
in Our HLP-based Approach (RQ4)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Apache Homo. (i.e. c = —4% and p < 0.05, thus failed C2), but
a significant increase on Dataset 2: Apache Hetero. (i.e. ¢ = 2%
and p < 0.05 and thus passed C2). Therefore, we do not
recommend SVM to adopt fuzzy matching due to the lack
of reliability across different datasets. Lastly, by comparing
the overall accuracy of all the models (as shown in column
8 and column 9), we particularly recommend CNN to use
fuzzy matching, as it is also a constant winner among all the
models.

RQ4 Takeaway Message: We recommend four models
to use the fuzzy HLP matching technique, namely NB,
DT, CNN, and RNN, as they consistently achieve the
objective of substantially enhancing recall and ensuring
a stable overall F1-score. In particular, we recommend
the CNN model as the top performer.

5.5 RQ5: Impact of Issue Matrix for Sentence Order

— Datasel T Apache Homo. — Figure 8 illustrates the accuracy distribution of our approach
Model D \Cliﬁ"s‘A [CTiff’s A] [Tmpact | Sirict EAE)] Tmpact T . .
ATPNE e o A e AR when utilizing the Issue HLP Matrix (i.e., the blue bars)
HLP+LR + 0.246 0.53 -6% 9.11e-10 .
HLP¥SYM |2 0524 [14932 | 1% 0059 - v [215007 compared to the Issue HLP Vector (1.e., the yellow bars).
HLP+DT 0 0.20 8.61&0% + H‘)‘ 0 0.483 C1 4 /UL»\E [¥) . . .
T L e O L e This comparison spans across three datasets, specifically
HLP+CNN +5% 0.385 6.91e-07 +9% 0.527 C1 7.98e-14 Cc2 R
L N 5 0 Vo 1 =1 showcased in Figure 8a, Figure 8b, and Figure 8c. An intuitive
Dataset 2: Apache Hetero.
Model e A gt | it s | ACST | mg 1r.151ght emerges from this ana.1y51s. This methocliologlcal sh%ft
LIgN LR SR S 2 11 el o yields notable enhancements in our framework’s — an uplift
HLP+SVM 0.533 0.201 41% 43% 2.45e-02 Cc2 . . .
HIPIDT 0.485 0462 0% | _72% Toer | in the average precision by up to 8.4:0/0, recall by up to 3.80/0,
HLP+RF 0. KJZZ 0.397 60% 61% 7.19e-02 Cc2 0/
HLP+XGB 0.515 0.397 55% 56% 1.07e-01 C2 -
HLP:CNN f) 583 0855 CI 56% | 69% 2.05¢-26 [and F1 score by up to 48 0.
HLP+RNN 0.493 12% 0.581 C1 68% 69% 8.86e-01 [¥)
Dataset 3: Other Platforms.
Nodel Precision — Reanl - TABLE 8: Impact of Issue Matrix for Each Variation in Our
HIPNG a3 e
HLPAIR HLP-based Approach (RQ5)
HLP+SVM 0.648 5.02e-33 0.261
HLP+DT 0.148 1.87e-01 o 0.516 C1 c2
HLP+RF 0.160 1.57e-01 +11% 0.516 C1 C2 Dataset 1: Apache Homo.
HLP+XGB 0.462 3.01e-12 +3% 0.184 Model Prgcisiun F1-Score
HLP+CNN 0.290 351e11 | _+5% 0476 [¢i] [+ [CTifF’s <k (710 [TCTiff’s &T | Tmpact Matrix Tmpact
HLP+RNN | - 0495 26le-11 | +13% 0557 C1 59% 1% | 1.37e-06 2 HLP+NB 0.083 % U.Of»j Tooid 331(% Tooid
Nole") “Avg. Change (1) represent the aveage accuracy change of aur approach beween usin srict HLP malching and fuzzy HLP LR L2 e ! o Tyord
‘matchin, 0. - a
b) “CFS Dl efectsize measures he diference betvse using the stict HLP matching vs.using the fuzzy HLP mtching. A value o LSz e o ! o !
(Cliffs A| > 0.474 signifies a large effect size.))) . HIPIXGE 0558 048 T G T
<) P-_Valm indicates the sgausncal s:gmf_‘ca_ncm of the comparison between using the strict HLP matching vs. using the fuzzy HLP HLP+CNN 0083 0053 T 587 T
matching. A P-Value < 0.05 indicates a statistically significant difference. HIPIRNN 008 0005 T i:; o IL:Z
Dataset 2: Apache Hetero.
. gl Model |y e e | e T TN T T T | Vet [M pac
Figure 7 shows the accuracy distribution of our approach | s g - S e e e o
. . . . HLP+LR 3% 0.233 Tyoid 0.202 Toid 40% 38% Tyoid
using the fuzzy matching technique (i.e. the blue bars) vs. v w7 7 0 . 7
using its strict matching counterpart (i.e. the yellow bars) in = [7 T 072 1 Lo 7 I I L
. HLP+CNN | 4% 0.298 Tooia 0.609 1% 56% Tyoia
our framework. Our experiment spans all three datasets, as [~ s s 72 o 1 o
Dataset 3: Other Platforms.
ShOWl’l m Flgure 73, Flgure 7b/ and Flgure 7C/ respectlvely. Model R (D \Iv,:rﬁ;ss“l“ Tmpact | ch (1) C%;:IIA\ Tmpact | Vector | Matrix cﬁl(-sc)m\cw'sa Tmpact
3] . . : : % . o % 0.603 % o).659
We can make an intuitive observation, which aligns with our x| —ose om0 |7 S0% e | 15|07
. HLP+SVM 26% 1.0 T 10% 0.506 T 47% 63% 167 0.783 T
motivation: The fuzzy matching technique increases the recall of — [Hrsdr |0t | 000 | s | 0% |00 | s | 4% | 400 |00 |00 | s
our approach without sacrificing the overall F1-score compared to ettt ot 2 e
HLP+RNN 4% 0.273 Tyoid 10% 0.484 T 50% 59% 9% 0.729 I

the strict matching. More specifically, with the fuzzy matching,
the recall of our HLP approach witnesses an average of 4.6%,
9.5%, and 7.9% increase; while the F1-score increases slightly
by 1.3%, 4.4%, and 1.5%, across the three datasets.

As described in Section 4, we conduct a fine-grained
analysis of fuzzy matching’s impact on each model, as
shown in Table 7. For each model, we carefully match
the two conditions across three datasets: C1: recall has
substantial increase; and C2: F1-score no significant compromise.
Consequently, four models stand out, namely the NB, DT,
CNN, and RNN, which consistently achieve the objective of
boosting recall without compromising F1-score. For example,
the NB model witnessed a 13% increase in recall (C1), as well
as a 13% increase in F1-score (C2), which are both substantial
(|Cliff's A| > 0.474). In contrast, other models are not as
reliable when used with fuzzing matching. For instance, the
F1-score of the SVM has a significant decrease on Dateset 1:

Note®: a) “Avg. Change (11)" represents the average accuracy change of our approach using issue vector (without considering the sentence
order in an issue) vs. using issue matrix (which captures the sentence order in an issue) as the learning feature.

b) “Cliff’s Delta” effect size measures the difference between using the issue vector and issue matrix. A value of Cliff's A| > 0.474 signifies a
large effect size.

©) “P-Value” indicates the statistical significance of the comparison between using the the issue vector and issue matrix. A P-Value < 0.05
indicates a statistically significant difference.ison between using the strict HLP matching vs. using the fuzzy HLP matching. A P-Value < 0.05
indicates a statistically significant difference.

Table 8 shows the details of the three levels of impact
(i-e. Iyoig, I+, and I_ defined in Section 4) on each model,
across the three datasets. We can observe that, the impact
of the HLP Matrix feature is sensitive to different models
on different datasets, but the impact is generally positive.
Specifically, on Dataset 2, it does not have a substantial
impact except for SVM, which has a 16% increase in
F1-score; on Dataset 1, SVM, RF, and XGB have substantial
improvement with up to 16% increase in FI-score; and
on Dataset 3, NB, LR, SVM, and RNN have substantial
improvement in FI-score by up to 16%. In rare cases, the
HLP Matrix may have a negative impact, such as the DT on
Dataset 1 and RF on Dataset 3.

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS15

Max: 100.0%| Max: 100.0%]

100% == Fuzzy 100% == Fuzzy 100% == Fuzzy
XA Strict Max: 90.0% XA Strict XA Strict
Max: 80.0% f' Avg: 85.8% Max: 83.0%
80%| == Max: 71.0% Max: 75.0% Max: 76.0% 80% (avgi 72.5%) [{Max: 74.0% Max: 72.0% max: 70.0% 80% | max: 72.0%
Avg: 73.5% Max: 66.0% lax: 70. Max: 65.0% Max: 68.0% Max: 67.0%
z v z B mim72.0% Max: 62.0% 9 a oy oLov | Ave: TL2% | MOS0 e 60.0%
£ 60%1 min: 63.0% AVY: 74-6% < 60%] £ 60%{ A9 O1.9%) Avg: 55.4% |
" - 63. " Min: 61.0% " = (avg: a7.5%
o Avg: 50.4% o Avg: 49.1% o in: %% o/ A
5 o g Avg: 46.1% I . 3 Min: 52.0% pMin: 50.0% | Min: 51.0%
& & d Avg: 39.6% & d - Min: 44.0%
= Min: 37.0% > > Min: 40.0%
Min: 33.0%
20% Min: 20.0% Min: 25.0% Min: 20.0% 20% Min: 21.0% Min: 21.0% 20%
Min: 12.0%
0 0 0
Precision Recall Fl-Score Precision Recall Fl-Score Precision Recall Fl-Score

(a) Dataset 1: Apache Homo.

(b) Dataset 2: Apache Hetero.

(c) Dataset 3: Other Platforms.

Fig. 7: Accuracy Distribution of Our Approach with Strict vs. Fuzzy HLP Matching (RQ4)

== Matrix [Max: 100.0% Max: 100.0%|

100% % 100% =1 Matrix 100% =1 Matrix
23 Vector 23 Vector 23 Vector
Avg: 83.0% | Avg: 82.1% Max: 76.0% e Max: 83.0%
80% El KX R 80% 80% Max: 75.0%
Max: 66.0% Max: 70.0% Max:i70.0% | N Max: 67.0%
- Min: 73.0% Min: 74.0% 2 66. . o, - in: o - o lax: 65. - Avg: 71.2% = 250% Max: 63.0%
g conl Max: 61.0% 8 go%| "M T2O% min: 69.0% {MUCE20% oy 55.0% g conly ‘Avg: 62.9% | Max: 60.0% Max: 60.0% ax:
= ° Avg: 57.0% = ° = ° Avg: 56.9% | Auass 10,
H Avg: 53.2% H H Avg: 47.5% vg: 52
3 40% Avg: 46-1% (g .20 2 40% Avg: 51.1% 300, | Min: 50.0% Min: 50.0% Avg: 46.2%
o : 42. o : o in: 44.0% Min: 43.0%
s Avg: 42.4% s Avg: 39.6% | pug: 35.6% s win: a0.0% RS | M" Min: 43.0%
Min: 33.0% :
Min: 30.0%
20% Min: 25.0% 20% . 20%
Min: 20.0% Min: 21.0% Min; 19.0%
Min: 14.0% Min: 12.0% Min: 11.0%
0 0 0
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

(a) Dataset 1: Apache Homo.

(b) Dataset 2: Apache Hetero.

(c) Dataset 3: Other Platforms.

Fig. 8: Accuracy Distribution of Our Approach between Using Issue Vector vs. Issue Matrix (RQ5)

Despite the variations with datasets and models, the
HLP Matrix increases the upper bound of the overall
accuracy (F1-score) across the three datasets (shown in
column 8 and column 9) which justifies its adoption. For
instance, the upper bound on Dataset 1 increases from 67%
with HLP Vector to 76% with HLP Matrix (both using XGB
model); on Dataset 2, the upper bound FI-score increases
from 65% to 70% both using the DT model; on Dataset 3,
the upper bound F1-score increases from 63% (using the RF
model) to 67% (using the CNN model).

RQ5 Takeaway Message: The HLP Matrix generally
enhances the performance of our approach. Particularly,
it increases the upper bound FI-score by 9%, 5%,
and 4% on the three datasets, which justifies its
adoption. However, due to the variations observed
in our experiment, we advise practitioners to adopt
a more exploratory approach when using this feature,
e.g. testing their datasets and model combinations to
fine-tune and optimize the accuracy. We will provide
qualitative discussion regarding this in Section 6.

5.6 RQ6: Impact of Feature Selection

First, Table 9 shows that the adoption of feature selection
technique, regardless of Boruta or RFE, does not impact
the accuracy of the HLP approach, as all the Cliff’s Delta
values are <= 0.474 and all the P-Values are >= 0.05. While
maintaining the accuracy during the feature selection, 67
to 76 HLPs are retained by Boruta; while 59 to 60 HLPs are
retained by RFE. Thus, we conclude that most of the 80 HLPs
are essential and practitioners cannot significantly trim the
number of HLPs. Finally, the slight reduction in HLPs leads
to a minor execution time reduction, between 2.1 to 16.8
seconds.

TABLE 9: Impact of Feature Selection Algorithms (RQ6)

Dataset 1: Apache Homo.
Motric Tmpact of Boruta Tmpact of RFE
ch(T) T ICTiff’s A P S-HLPs | t5 () || ch(TD [[Cliff’s A P S-HLPs | 15 (5)
Precision +5% 0.04 0.6285 +3% 0.03 0.7117
Recall 0 0.01 0.9655 67 -7.5 + 0.022 0.8594 59 -10.0
F1-Score +1% 0.05 0.9648 +2% 0.02 0.8037
Dataset 2: Apache Hetero.
Metric Tmpact of Boruta Tmpact of RFE
[CHffs A P S-HLPs [#, &) || chCD) | [Cliff’s A » S-HLPs [#; 5
Precision 0.089 0.6854 +3% 0.090 0.7007
Recall 0.095 0.6644 68 22 +1% 0.048 0.9520 59 2.1
F1-Score 0.1 0.6168 +2% 0.148 0.7906
Dataset 3: Other Platforms.
Metric Impact of Boruta Impact of RFE
[Cliff’s A P S-HLPs | t5 () || ch(i]) | [Cliff's A] P S-HLPs | 15 (s)
Precision 0.109 0.2087 ¥ 0.097 0.4110
Recall 0.035 0.7906 76 52 0.025 0.8350 60 16.8
F1-Score 0.094 0.3296 0.038 0.7649

Note*: a) “Avg. Ch. ()" represents the average change of our approach after using Boruta (column 2) or RFE (column 7).
b) “Cliff’s Delta” effect size measures the difference between using the issue vector and issue matrix. A value of [Cliff's A| > 0.474 signifies
a large effect size.

©) “P-Value” indicates the statistical significance of with and without using a feature selection algorithm. A P-Value < 0.05 indicates a
statistically significant difference.

d) “S-HLPs" shows the number of selected HLPs by the applied feature selection algorithm.

e) “Exec Time Change (%)” represents the average change of the execution time of our approach after using Boruta (column 6) and RFE
(column 11) in percentile.

RQ6 Takeaway Message: The majority of the HLPs are
deemed essential and retained during feature selection.
The reduction in execution time is consequently
marginal. Therefore, we recommend keeping all the
80 HLPs.

6 DiscUSSIONS AND FUTURE DIRECTIONS

In this section, we first provide qualitative discussion of
the RQs to complement the quantitative analysis. Next, we
discuss several future directions.

6.1 Qualitative Analysis
6.1.1 RQ1: Approach Accuracy

For the qualitative analysis of RQ1, we manually reviewed
all the issue reports identified by our approach but missed
by the best-performing baseline machine/deep learning
model — which includes a total of 52 issue reports across the
three datasets. Reviewing the majority (90%) of these issue
reports points to a consistent strength of our approach in its
capability to capture the highly domain-specific information

16

related to software performance, compared to the classic
deep/machine learning models. Meanwhile, examination
of the remaining 10% issue reports does not provide an
intuitive understanding of our approach’s strength. However,
we would like to point out that Al techniques are notorious
for not being explainable in some cases [56], [57].

Following we provide two representative examples to
show case the advantage of our approach. First, the issue
report “IGNITE-5859”, which describes an out-of-memory
(OOM) error occurring for “integer values greater than 23°,”
aligning with concerns about arithmetic overflow. This
phenomenon occurs when a calculation surpasses the
maximum storage capacity of a data type — here, an integer
in Java — resulting in incorrect outcomes and potential
program crashes. This issue could be detected by our HLP
“STR: memory” due to the mention of the OOM error.
However, fully capturing the issue’s intricacies requires an
understanding of Java’s integer limits and the effects of
exceeding these limits during arithmetic operations, a depth
of understanding often lacking in traditional methods due
to their general training. Another example, the issue report
“IMPALA-733" describes a situation where the underlying
problem (low disk space) indirectly affects performance, and
it suggests a solution of cleaning up unsuccessful operations
for saving time. This case can be identified by our HLP, “STR:
save_time” and “LEX: disk_spill”. Yet, traditional methods,
which rely on direct and explicit context, may overlook the
nuanced performance implications embedded within the
report.

On top of this, we also manually reviewed all the issue
reports identified by our approach but missed by the LLMs
(i.e. ChatGPTs) — a total of 25 reports. The reason for this
separate qualitative analysis of LLMs is that it does not
require pre-training like the ML/DL models. The analysis
provides consistent insights regarding the advantage of our
approach over the LLMs. Our approach serves as a “domain
expert” while the LLMs are based on general knowledge. For
instance, the report “SOLR-6453" highlights a performance
degradation caused by inefficient loop execution. Our HLP
“STR: loop” captured this report. However, LLMs failed to
link “loop” to efficiency and thus missed this report.

Moreover, it is essential to consider the trade-offs between
our HLP-based approach and LLM-based solutions when
applied to a new domain, such as security. LLMs, while
more challenging to debug and associated with higher
training and inference costs, offer broader applicability
with minimal manual intervention required for extracting
HLPs. This generality makes LLMs more versatile in new
application domains beyond the scope of this study —
identifying software performance issues. In contrast, the
HLP-based approach, offering higher accuracy, requires more
initial manual effort and domain knowledge to establish the
domain-specific HLP set. Acknowledging these trade-offs
is critical for practitioners when considering the practical
application of the HLP approach versus LLMs. It highlights
a key decision point: the choice between LLMs’" more general
applicability and less manual intervention vs. the higher
accuracy offered by the HLP-based approach but higher
upfront manual effort to establish the initial HLP set.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

6.1.2 RQ2: Impact of Data Imbalance

For RQ2, we reviewed 51 issue reports identified by our
HLP-based approach but missed by the baseline methods
— specifically from the synthesized imbalance dataset (i.e.,
IBT) in our experiment. Again, the majority (78%) of these
issue reports reinforce our understanding of the HLP’s
strength under an imbalanced data environment in capturing
highly domain-specific information in software performance.
However, the other 22% issues cannot be reasoned clearly
for the strength of our approach.

We provide two representative examples from the
IBT experiment. For example, consider the issue report
“AMQ-299" describes a “memory leak” in the JMSStatslmpl
class and a subsequent “out of memory error”. Traditional
methods merely identify the recurring usage of the term
“memory” as performance related, thus it fails to recognize
its critical role in the context of performance discussion. Our
HLPs, in comparison, adeptly detect vital information related
to “memory”, such as “memory leak” or “memory consumption”
which are highly performance-related. In addition, our HLPs
have a distinct capability to recognize technical specifics
crucial in performance discussions, a task at which traditional
NLP features often fall short. For instance, in the issue report
“CASSANDRA-7220”, the discussion revolves around specific
performance issues that relate to time synchronization and
CPU load increase. Traditional methods miss the nuanced
significance of these technical terms, as they may not appear
highly frequently. In contrast, our profiling and structural
HLPs accurately identify such technical details. For instance,
the HLP, “time_units”, captures the ms (millisecond) as in
the synchronization time, while “CPU” HLP picks up terms
that may indicate CPU load increment, ensuring a thorough
and accurate assessment of the report.

6.1.3 RQ3: Transferability

Likewise, we reviewed 36 issue reports that are exclusively
identified by our approach but missed by the baseline
methods in the scenario of skipping pre-training, i.e., using
Apache’s JIRA issues (Dataset 1) as the training dataset
and using Redmine and MantisBT (Dataset 3) as the testing
dataset. We particularly focus on delineating the differences
observed in the issues sourced from the Apache’s data versus
those from Redmine and MantisBT data.

For example, “OAK-8067" from Apache, characterized by
a large block of extensive code snippets for implementing
the performance optimization solution by using lazy disk
I/0 loading. In contrast, MantisBT exemplary issue reports,
“#30127” and “#27960”, focus more on broader impacts on
users and workflows, often in a less technical language
and lacking the intricate technical details. Our HLPs
adeptly capture these diverse environments by effectively
parsing the technical intricacies of Apache JIRA reports
and simultaneously grasping the broader, less technical
implications in MantisBT reports. This adaptability contrasts
with traditional NLP methods that focus mainly on
term frequency, which can lead to misinterpretation and
inaccuracies in diverse datasets. For instance, traditional
methods might overemphasize common programming
keywords like “Class”, “Exception”, or “ERROR” in
technical reports, but misapply this emphasis in less technical
datasets without the necessary pre-training adjustments.

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS17

All the issue reports further reinforce the observations
from the above examples. We acknowledge that not every
case presents a clear-cut scenario, highlighting the necessity
for methodologies that enhance transparency in the machine
and deep learning [56], [57].

6.1.4 RQ4: Impact of Fuzzy HLP Matching

For RQ4, we reviewed issue reports that were identified
with the fuzzy HLP matching, yet overlooked by strict
HLP matching. Given that the accuracy improvement from
integrating fuzzy HLP matching is modest, we examine
only 11 issue reports. The examination confirms our initial
motivation to capture more variations of HLPs through fuzzy
matching. For instance, the issue reports “IMPALA-7474"
from Dataset 1, “AMQ-3031" and “HBASE-14489” from
Dataset 2 highlighted performance degradation due to heavy
CPU usage. As an exemplary case, “AMQ-3031" contains
the phrase “The CPU load increased to 170% over a long
period”, which exemplifies the successful implementation
of fuzzy matching. Our designated semantic HLP, named
“CPU”, encompasses terms like “cpu” and descriptors such
as “a lot of 7, “higher”, “lower”, “limit”, “limitation”, “usage”,
“utilization”, “waiting”, “low level”. These are formulated to
encompass a broad spectrum of expressions related to CPU
performance issues. Although the exact keywords were not
presented in “AMQ-3031", the context clearly suggests a
scenario of increased CPU usage, identifiable through fuzzy
matching. Hence, we suggest that practitioners consider
adopting fuzzy matching to achieve a higher level of recall.

6.1.5 RQ5: Impact of Issue HLP Matrix for Sentence
Order

Similar to the analysis of RQ4, we examined 10 reports
that were uniquely identified by using the Issue HLP Matrix
as input feature. This confirms our motivation to apply
the matrix feature to capture contextual information in
longer issue reports. For example, “HBASE-6747" presents
a compelling case “Enable server-side limit default on the size
of results returned (to prevent OOMs)......”, followed by an
in-depth discussion of the problem and a proposed solution.
Only 3 out of the total 14 sentences in this report align with
our defined HLPs. But notably, these three sentences are
strategically positioned at crucial points in the narrative:
the first, second, and last sentences. This distribution is not
random but rather indicative of the report’s primary focus
on addressing Out-of-Memory (OOM) issues. Traditional
Issue HLP Vector methods, which rely primarily on HLP
weighting, might overlook the significance of locations of the
matched HLPs due to their sparse and scattered presence.
In contrast, the HLP Matrix, which incorporates sentence
order into the analysis, effectively identifies this report
as pertinent to performance concerns, demonstrating the
value of considering sentence sequencing in issue report
classification. This example is representative of the majority
of the reviewed cases (80%), while the minority (20%) cannot
be reasoned as intuitively.

To enhance the application of the matrix feature, we
recommend practitioners focus on several key characteristics
within issue reports. These include complex issue narratives,
where problems and their solutions are articulated in a
multi-layered, narrative form. Additionally, reports where

key information is strategically positioned at specific
points rather than clustered, are ideal candidates for
adopting the matrix feature. Reports that contain subtle
performance-related information, which may not be overtly
stated but are implied in the overall context, also benefit from
this feature. Lastly, lengthy reports with detailed descriptions,
where the sequence of sentences plays a crucial role in
understanding the issue, are particularly suited for the
matrix feature approach. This methodological focus ensures
a comprehensive grasp of the report’s content and context,
enhancing the accuracy of classification.

6.1.6 RQ6: Impact of Feature Selection

For RQ6, we reviewed 7 issue reports impacted by the
feature selection techniques. We documented the reduced
HLPs in the experiment and then analyzed the presence
of these HLPs within the reviewed issue reports. Our
analysis reveals that the feature selection techniques tend
to diminish HLPs that seldom align with issue reports. For
example, HLPs such as like ‘roundtrip’, ‘per_NN_per_NN’,
‘cardinality_improvement’, and ‘short_lived_sessions’, etc.,
were consistently omitted across all three datasets by both
Boruta and RFE. This is primarily due to their sparse
occurrence in the analyzed reports, typically showing only
1 or 2 matches. Conversely, HLPs exhibit more frequent
matches were preserved.

As a result, the overall count of HLP matches did not
reduce significantly, leading to only modest improvements
in the execution performance of our approach. This insight
underscores the importance of maintaining a comprehensive
set of HLPs, as each one, regardless of its match frequency,
plays a critical role in enhancing the precision and reliability
of issue report classification.

6.2 Future Directions
6.2.1 Domain-Specific HLPs

We carried out an evaluation of our approach’s accuracy
across diverse software subject domains, following a
structured experimental procedure: For the Apache
JIRA issue-tracking system utilized in Dataset 1 and
Dataset 2, we based the domain categorization on the
specific project categories listed on the Apache website
(https:/ /projects.apache.org/projects.html?category). Each
project evaluated in our study is associated with a “Category”
classification on this website, allowing us to inherit the
domain classification for our software projects in these
datasets. For Dataset 3, the domain categorization was
sourced from the “Category” tags in the MantisBT and
Redmine databases. Adopting these original category
classifications as references ensures our analysis aligns with
the pre-established domain classifications of the chosen
software projects.

Consequently, we classified all issues across the three
datasets into six broad domains: 1) Database-related, 2) Web
Frameworks, 3) Libraries and Tools, 4) Query and Analytic
Engines, 5) Network Server/Clients, and 6) Others. This
classification facilitates a comprehensive understanding of
our approach’s performance across varied software domains.

The data presented in Table 10 indicates a uniformity in
the accuracy of our approach across various subject domains.

https://projects.apache.org/projects.html?category

18

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

TABLE 10: Impact of Subject Domain on Results

Domain Projects # Issues | # Perf-Issues | Avg Precision | Avg Recall | Avg F1-Score
Database-related IGNITE, HIVE, CASSANDRA, TEZ, HBASE 677 50 79% 46% 0.582
Web Framework SLING, TAP5, FLEX, SOLR 495 25 73% 51% 0.596
Libraries and Tools SVN, MESOS, PDFBOX, KAFKA, LUCENE, CB, LOG4J2 369 13 68% 55% 0.605
Query and Analytic Engines | IMPALA, SPARK 317 34 72% 51% 0.6
Network Server/Client AMQ 91 9 68% 52% 0.585
Others OAK, MantisBT, etc. 221 9 64% 61% 0.624

The average precision, recall, and FI-score remain consistent
across different domains, highlighting the domain-agnostic
quality of our methodology. This finding reinforces the
versatility of our approach, confirming its suitability and
effectiveness in a wide range of software development
environments, irrespective of the specific domain.

Acknowledging the diversity in software project domains,
our future work includes tailoring our approach with
domain-specific HLPs. Users will have the option to
select the domain that best fits their project, ensuring
that the analysis of issues is more accurately aligned
with the specific challenges and characteristics of their
domain. This customization will significantly enhance the
relevance and effectiveness of the approach for various
software development contexts. We will conduct further
research to identify and integrate these domain-specific
HLPs, collaborating with domain experts and analyzing
domain-specific datasets to ensure the accuracy and
applicability of our approach.

6.2.2 Deployment of the Framework

A key future objective is to make our proposed approach
widely accessible by deploying it online and integrating it as
a plugin in popular issue tracking systems such as Apache’s
JIRA, Bugzilla, Redmine, and MantisBT. This plugin will
automatically tag issues as performance-related, leveraging
the insights and methods developed in our study. The
deployment aims to enhance the efficiency of issue tracking
systems and aid practitioners in quickly identifying and
addressing performance issues. The plugin will feature a
user-friendly interface and configurable settings to adapt to
different project environments and organizational policies.

Inspired by the findings from RQ4 and RQ5, we plan
to introduce user-flexible modes in our approach. More
specifically, the users can choose to toggle on and off
the two new techniques evaluated in RQ4 and RQ5. If
users favor a higher precision, they can turn off the fuzzy
matching technique; to the opposite, they can turn it on
if they prefer a higher recall. Similarly, depending on the
complexity and availability of the contextual information of
the issue reports, users can also choose to switch between
the HLP Matrix vs. HLP Vector feature, based on their
fine-tuning experiments. As discussed earlier, choosing the
most appropriate domain subject should be made available
to ensure the best accuracy based on the nature of the
project. These options will provide flexibility and enhanced
effectiveness in issue tagging, catering to different needs and
scenarios in software development.

6.2.3 Practitioner Feedback and Usability Study

Our framework holds significant potential for a diverse range
of users, including software developers, researchers, and
students. We plan to engage with different user groups to

collect their feedback and conduct usability testing of our
framework when it is deployed.

We plan to engage with software developers to
collect feedback on our framework’s integration into their
workflows, especially in identifying performance issues. This
will involve structured interviews and surveys, focusing
on their experience to improve the framework’s practicality
and usability. Additionally, developers will participate in
usability tests where we’ll measure the effectiveness of
interaction with our framework, assessing task completion
time and error rates in identifying performance issues. These
insights will be crucial for refining our framework to suit
real-world software development needs.

We aim to offer an open database of software performance
issue reports, based upon our framework. Researchers who
are interested in software performance research can draw
and submit performance issue report data to construct
common benchmark datasets. Furthermore, researchers
whose interests are in issue report classification and triage
can build upon our framework using HLPs that focus on
other areas, such as security, to solve similar challenges.

In educational settings, we plan to integrate our
framework in coursework like “SSW-533 Software
Measurement and Estimation” offered in the Software
Engineering Program at Stevens Institute of Technology.
Students can employ our framework to identify
performance-related issues from real-world projects.
This application in coursework will give students practical
experience in bug classification, testing, and resolution,
as well as an understanding of performance’s impact on
software quality. This integration of our framework into the
curriculum serves as an effective bridge between theoretical
knowledge and real-world application, enhancing students’
software engineering skills.

7 LIMITATIONS AND THREATS TO VALIDITY
71

First, our framework only focused on issue descriptions
as the source of information, without considering other
sources such as source code changes, system commit logs,
and issue discussions. While issue descriptions are often
used as the primary source of information for issue tracking,
using additional data sources could potentially improve the
accuracy of our approach. Future work could investigate the
effectiveness of integrating multiple data sources to improve
the performance of our approach.

Second, the heuristic linguistic patterns (HLPs) capture
how practitioners describe performance problems in general
terms. If issues are described only in project-specific terms
and understood only by project experts, our approach will
be compromised.

Limitations

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS19

In addition, while we recognize the manual extraction
of HLPs can be labor-intensive and susceptible to human
error, current advances in language modeling are yet
to overcome the difficulties in accurately generating
performance-information-related linguistic = patterns
automatically. Future work is aimed at harnessing more
advanced large language models that can facilitate the
automatic extraction and refinement of HLPs, reducing the
need for intensive manual intervention.

Lastly, we have not separately evaluated the accuracy

of our approach on datasets of different software domains.

We believe that HLPs may result in varying accuracy for
different software domains. A possible solution to the last
two limitations is to tune the heuristic linguistic patterns
with project/domain-specific concepts.

7.2 Threats to Validity

A potential threat to the validity of our study is that the
accuracy of our approach may depend on the quality of the
training data. While we made efforts to ensure the quality
of the ground truth, there may still be errors or biases in
the data tagging process that could affect the accuracy of
our approach. We acknowledge that the manual tagging
of performance-related sentences and issues could pose an
internal threat to validity. Any manual effort is subjective to

bias derived from individual expertise and understanding.

The taggers are not intimately familiar with the reviewed
projects, but this should not compromise their ability to
recognize general performance problems. It is our intention
not to rely on project experts, as our goal is to derive general
and transferable linguistic patterns. In addition, we tried to
mitigate the risk posed by the manual tagging of the ground
truth dataset by allowing multiple taggers to cross-validate
results, and by asking for tagging comments to increase
transparency.

Another potential threat to the validity of our approach is
that the 80 HLPs we used may not cover all possible patterns
in real-life performance issues accurately. As a result, some
issues may not be detected or may be misclassified, leading
to lowering accuracy. However, we attempted to address this
issue by deriving the HLPs based on our analysis of a large
number of real-life performance issues through an interactive
process.

8 RELATED WORK
8.1 Issue Categorization

Software issue categorization is a crucial process that helps
developers and testers prioritize their tasks. To tackle the
large volume of issue reports, previous research has proposed
various methods for automatic issue categorization. Antoniol
et al. [58] demonstrated the effectiveness of automatic
classifiers such as Decision Trees, Naive Bayes, and Logistic
Regression in distinguishing bugs from other issues, while
Pandey ef al. [59] compared more classifiers and found
that Random Forest is the most effective in text mining of
bugs. Some studies aim to categorize issue reports into more
diverse categories, such as Ohira et al. [60], [61] who classified
issues into security, performance, and breakage bugs, and
Limsettho [62] who developed an unsupervised framework

to group bug reports based on textual similarity. However,
previous studies did not consider performance as a specific
issue type.

Other studies focused on the internal content of issue
reports. Shi et al. [18] leveraged linguistic fuzzy rules
to classify sentences in feature requests issue reports
into different categories, while Aggarwal et al. [63] used
machine learning models to detect duplicate issue reports.
Furthermore, some studies focused on classifying the severity,
priority, and complexity of issue reports, such as Lamkanfi
et al. [64] who proposed a technique to identify bug severity,
Tian et al. who used machine learning classifiers to predict
bug priorities [65], and Zhang et al. [66] who proposed
a Markov-based method to estimate bug-fixing time. In
this study, we focus on performance-related issues and
propose a novel approach based on linguistic analysis of
issue descriptions to automatically detect such issues. Our
approach outperforms baseline methods and demonstrates
promising results in handling imbalanced training data,
dataset transfer, and feature selection.

8.2 Performance Issue Analysis

A rich body of prior studies has focused on performance
issue analysis from different perspectives [4], [6], [7], [8],
[46], [67], [68], [69], [70], [71]. Recent studies that rely on
real-life performance issues use keyword matching and
manual verification to extract a dataset. The most common
keywords include “fast, slow, perform, latency, throughput,
optimize, speed, heuristic, waste, efficient, unnecessary, redundant,
too many times, lot of time, too much time” [46], [72], [73].
However, keyword matching compromises the accuracy of
the retrieved data. Moreover, there could be many different
ways to describe performance issues beyond what is captured
in known keywords. Thus, due to the lack of rigor in the
keyword-matching approach, researchers have to invest a
large amount of time in manual verification.

In addition, prior studies usually focused on specific
types of performance bugs based on a limited number of
issue reports. Nistor et al. [74] studied 150 performance
bugs caused by inefficient loops. Yu et al. [75] studied 106
performance bugs caused by synchronization bottlenecks.
Selakovic et al. [69] presented an empirical study of 98
performance bugs written in JavaScript language. Our study
provides an adequate and diversified dataset of more than
1000 real-life performance issues, which can serve as a
ground truth dataset for future studies on performance bugs.

To address the limitations of the keyword-matching
approach, researchers have attempted to utilize natural
language processing techniques for performance issue
analysis. Liu et al. [76] used topic modeling to identify
performance-related issues in a Hadoop issue tracking
system. Zaman et al. [4] proposed a statistical text-mining
approach that identifies performance-related issues based on
specific patterns and keywords. To the best of our knowledge,
our study is the first to propose a linguistic-based approach
for performance issue analysis that leverages the rich features
of issue descriptions in natural language.

9 CONCLUSION

In conclusion, our study proposed a hybrid, novel
framework for automatically detecting performance-related

20

issues in software projects, based on linguistic analysis
of issue descriptions. The key strength of the proposed
framework lies in two aspects: 1) the 80 unique HLPs
that were derived in a manual inspection of 980
developer-tagged performance issues; and 2) the unique
three-layer classification architecture that works on the HLP
tagging, sentence tagging, and issue tagging progressively.

We conducted a thorough and comprehensive evaluation
of our framework on a total of 2,170 issue reports, which
contain 13,197 sentences, across four popular issue tracking
platforms. We have demonstrated that our approach 1)
provides high accuracy, which significantly outperforms
the baseline methods; 2) is robust to imbalanced datasets
particularly compared to the baseline methods; 3) has
good transferability to new projects and new issue tracking
platforms without requiring the effort of pre-training. We also
demonstrated that the new fuzzy HLP matching technique
offers a favorable trade-off of precision for higher recall
across four models: NB, DT, CNN, and RNN. Specifically, the
CNN model is recommended for its superior performance
in applying fuzzy HLP matching. Additionally, the unique
Issue HLP Matrix generally enhances accuracy by capturing
sentence order in issue reports, though its impact varies
across models. Practitioners are encouraged to adopt an
exploratory approach when utilizing this feature. Lastly,
our findings reveal minimal impact of feature selection
techniques on the accuracy and execution performance of
our framework, suggesting the use of the complete set of 80
HLPs for optimal results.

Overall, our approach can benefit practitioners and
researchers who are interested in identifying and diagnosing
performance issues in software projects. We believe that
our approach shows great potential to help software
developers and researchers to better understand and manage
performance issues in software projects.

10 DATA ACCESSIBILITY

The data supporting the findings of this study are available
on our dedicated Google Site, accessible at “https://sites.
google.com/view /hlp-data-package”. It can also be accessed
at Zenodo — “https:/ /zenodo.org/records/10944186”. This
resource includes both raw and processed datasets used in
the study, consisting of three parts:

e Saturated Heuristic Linguistic Pattern Set: This
contains the 80 HLPs derived from the 980
developer-tagged issue tickets from the Apache’s JIRA
system.

o Manual Tagging Results: This contains the sentence-
and issue-tagging results for the three datasets.

o Experiment Results: This includes the detailed data
(e.g., for different DL/ML models in the baseline)
from RQ1 to RQ6.

e Qualitative Analysis: This contains the issue tickets
selected for the qualitative analysis to understand
why our approach outperforms baselines in different
RQs.

e LLM Experiment Data: This presents the detailed
results from the experiment with ChatGPT-3.5 and
ChatGPT-4.0; as well as the Python script we created
to run the experiment with ChatGPTs.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

For specific details about the contents of each part, please
refer to the provided Google Spreadsheet. Kindly cite this
paper appropriately when using the data for subsequent
research.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. National
Science Foundation (NSF) under grants CCF-2044888 and
DUE-2142531.

We would also like to express our sincere gratitude to
the individuals, Zhihao Deng, Zihan Song, Dhanalakshmi
Nangunuri, Gengwu Zhao, Chenhao Wei, and Habib
ur Rehman, who helped us with manually tagging the
performance-related issues and sentences in the datasets
used in this study. We extend our thanks to Andre B. Bondi
for his invaluable guidance on real-practice performance
issue assignment and handling processes, offering insights
that significantly enriched our understanding and approach.
We would also like to thank the anonymous reviewers for
their valuable feedback, which helped us to improve this
work.

REFERENCES

[1] Connie U Smith and Lloyd G Williams. Performance solutions:
a practical guide to creating responsive, scalable software, volume 1.
Addison-Wesley Reading, 2002.

[2] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and
Marta Simeoni. Model-based performance prediction in software
development: A survey. IEEE Transactions on Software Engineering,
30(5):295-310, 2004.

[3] Guoging (Harry) Xu and Atanas Rountev. Precise memory leak
detection for java software using container profiling. In 30th
International Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008 [3], pages 151-160.

[4] Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative
study on performance bugs. In 2012 9th IEEE working conference on
mining software repositories (MSR), pages 199-208. IEEE, 2012.

[5] Guoging Xu, Dacong Yan, and Atanas Rountev. Static detection
of loop-invariant data structures. In European Conference on
Object-Oriented Programming, pages 738-763. Springer, 2012.

[6] Dong-Gun Lee and Yeong-Seok Seo. Improving bug report
triage performance using artificial intelligence based document
generation model. Human-centric Computing and Information Sciences,
10(1):26—47, 2020.

[7] Dong-Gun Lee and Yeong-Seok Seo. Systematic review of bug
report processing techniques to improve software management
performance. |. Inf. Process. Syst., 15(4):967-985, 2019.

[8] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting,
and fixing performance bugs. In Proceedings of the 10th Working
Conference on Mining Software Repositories, pages 237-246. IEEE
Press, 2013.

[9] André B Bondi. Foundations of software and system performance

engineering: process, performance modeling, requirements, testing,

scalability, and practice. Pearson Education, Upper Saddle River,

New Jersey, USA, 2015.

Yutong Zhao, Lu Xiao, Pouria Babvey, Lei Sun, Sunny Wong,

Angel A Martinez, and Xiao Wang. Automatically identifying

performance issue reports with heuristic linguistic patterns. In

Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 964-975, 2020.

Alberto Rodrigues da Silva. Linguistic patterns and linguistic

styles for requirements specification (i) an application case with

the rigorous rsl/business-level language. In Proceedings of the 22nd

European Conference on Pattern Languages of Programs, pages 1-27,

2017.

Hisao Ishibuchi, Tomoharu Nakashima, and Tadahiko Murata.

Three-objective genetics-based machine learning for linguistic rule

extraction. Information Sciences, 136(1-4):109-133, 2001.

[10]

(1]

[12]

https://sites.google.com/view/hlp-data-package
https://sites.google.com/view/hlp-data-package
https://zenodo.org/records/10944186

ZHAO et al.: A PLATFORM-AGNOSTIC FRAMEWORK FOR AUTOMATICALLY IDENTIFYING PERFORMANCE ISSUE REPORTS WITH HEURISTIC LINGUISTIC PATTERNS21

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

Prerna Chikersal, Soujanya Poria, Erik Cambria, Alexander
Gelbukh, and Chng Eng Siong. Modelling public sentiment
in twitter: using linguistic patterns to enhance supervised
learning. In International Conference on Intelligent Text Processing and
Computational Linguistics, pages 49-65. Springer, 2015.

Laurens Miiter, Tejaswini Deoskar, Max Mathijssen, Sjaak
Brinkkemper, and Fabiano Dalpiaz. Refinement of user stories into
backlog items: Linguistic structure and action verbs. In International
Working Conference on Requirements Engineering: Foundation for
Software Quality, pages 109-116. Springer, 2019.

Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338-353,
1965.

Lotfi A Zadeh. The concept of a linguistic variable and its
application to approximate reasoning—ii. Information sciences,
8(4):301-357, 1975.

Maria Jose Gacto, Rafael Alcald, and Francisco Herrera.
Interpretability of linguistic fuzzy rule-based systems: An overview
of interpretability measures. Information Sciences, 181(20):4340-4360,
2011

Lin Shi, Celia Chen, Qing Wang, Shoubin Li, and Barry Boehm.
Understanding feature requests by leveraging fuzzy method and
linguistic analysis. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages 440-450. IEEE
Press, 2017.

Ebrahim H Mamdani. Application of fuzzy algorithms for control
of simple dynamic plant. In Proceedings of the institution of electrical
engineers, volume 121, pages 1585-1588. IET, 1974.

EH Mamdani and S Assilian. An experiment in linguistic synthesis
with a fuzzy logic controller. International journal of human-computer
studies, 51(2):135-147, 1999.

Fabrizio Sebastiani. = Machine learning in automated text
categorization. ACM computing surveys (CSUR), 34(1):1-47, 2002.
Justin Martineau, Tim Finin, Anupam Joshi, and Shamit Patel.
Improving binary classification on text problems using differential
word features. In Proceedings of the 18th ACM conference on
Information and knowledge management, pages 2019-2024, 2009.

C Jashubhai Rameshbhai and Joy Paulose. Opinion mining on
newspaper headlines using svm and nlp. International Journal of
Electrical and Computer Engineering (IJECE), 9(3):2152-2163, 2019.
Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and
Kui Lam Kwok. Interpreting tf-idf term weights as making
relevance decisions. ACM Transactions on Information Systems (TOIS),
26(3):1-37, 2008.

Donghwa Kim, Deokseong Seo, Suhyoun Cho, and Pilsung
Kang. Multi-co-training for document classification using various
document representations: Tf—idf, Ida, and doc2vec. Information
Sciences, 477:15-29, March 2019.

Man Li, Cheng Ling, and Jingyang Gao. An efficient cnn-based
classification on g-protein coupled receptors using tf-idf and
n-gram. In 2017 IEEE Symposium on Computers and Communications
(ISCC), pages 924-931. IEEE, 2017.

Judit Acs, Laszl6 Grad-Gyenge, and Thiago Bruno Rodrigues
de Rezende Oliveira. A two-level classifier for discriminating
similar languages. In Proceedings of the Joint Workshop on Language
Technology for Closely Related Languages, Varieties and Dialects, pages
73-77,2015.

Omer Levy and Yoav Goldberg. Dependency-based word
embeddings. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers),
pages 302-308, 2014.

Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural language processing
(EMNLP), pages 1532-1543, 2014.

Ben Athiwaratkun, Andrew Gordon Wilson, and Anima
Anandkumar. Probabilistic fasttext for multi-sense word
embeddings. arXiv preprint arXiv:1806.02901, 2018.

Yoav Goldberg and Omer Levy. word2vec explained: deriving
mikolov et al.’s negative-sampling word-embedding method. arXiv
preprint arXiv:1402.3722, 2014.

Jingnian Chen, Houkuan Huang, Shengfeng Tian, and Youli Qu.
Feature selection for text classification with naive bayes. Expert
Systems with Applications, 36(3):5432-5435, 2009.

Andrew McCallum, Kamal Nigam, et al. A comparison of event
models for naive bayes text classification. In AAAI-98 workshop on
learning for text categorization, volume 752, pages 41-48. Citeseer,
1998.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

(45]

[46]

[47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

Fuchun Peng and Dale Schuurmans. Combining naive bayes
and n-gram language models for text classification. In European
Conference on Information Retrieval, pages 335-350. Springer, 2003.
David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant.
Applied logistic regression, volume 398. John Wiley & Sons, 2013.
Aixin Sun, Ee-Peng Lim, and Ying Liu. On strategies for imbalanced
text classification using svm: A comparative study. Decision Support
Systems, 48(1):191-201, 2009.

Fabrice Colas and Pavel Brazdil. Comparison of svm and some
older classification algorithms in text classification tasks. In IFIP
International Conference on Artificial Intelligence in Theory and Practice,
pages 169-178. Springer, 2006.

S Rasoul Safavian and David Landgrebe. A survey of decision
tree classifier methodology. IEEE transactions on systems, man, and
cybernetics, 21(3):660-674, 1991.

Mahesh Pal. Random forest classifier for remote sensing
classification. International Journal of Remote Sensing, 26(1):217-222,
2005.

Tianqgi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and
Yuan Tang. Xgboost: extreme gradient boosting. R package version
0.4-2, pages 14, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In Advances in neural information processing
systems, pages 5998-6008, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.
Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and
Thomas Wolf. Transfer learning in natural language processing. In
Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Tutorials, pages 15-18, 2019.
Julio Villena-Romaén, Sonia Collada-Pérez, Sara Lana-Serrano, and
José Carlos Gonzélez-Cristébal. Hybrid approach combining
machine learning and a rule-based expert system for text
categorization. In Twenty-Fourth International FLAIRS Conference,
2011.

Richard Tong. An operational system for detecting and tracking
opinions in on-line discussions. In Working Notes of the SIGIR
Workshop on Operational Text Classification, pages 1-6, 2001.
Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs.
ACM SIGPLAN Notices, 47(6):77-88, 2012.

Lingxiao Jiang and Zhendong Su. Context-aware statistical
debugging: from bug predictors to faulty control flow paths.
In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering, pages 184-193, 2007.

Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie.
Performance debugging in the large via mining millions of stack
traces. In 2012 34th International Conference on Software Engineering
(ICSE), pages 145-155. IEEE, 2012.

Fabiano Pecorelli, Dario Di Nucci, Coen De Roover, and Andrea
De Lucia. A large empirical assessment of the role of data balancing
in machine-learning-based code smell detection. Journal of Systems
and Software, 169:110693, 2020.

Fabiano Pecorelli, Dario Di Nucci, Coen De Roover, and Andrea
De Lucia. On the role of data balancing for machine learning-based
code smell detection. In Proceedings of the 3rd ACM SIGSOFT
international workshop on machine learning techniques for software
quality evaluation, pages 19-24, 2019.

Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina
Monard. A study of the behavior of several methods for balancing
machine learning training data. ACM SIGKDD explorations
newsletter, 6(1):20-29, 2004.

David MW Powers. Evaluation: from precision, recall and
f-measure to roc, informedness, markedness and correlation. arXiv
preprint arXiv:2010.16061, 2020.

Melinda R Hess and Jeffrey D Kromrey. Robust confidence intervals
for effect sizes: A comparative study of cohen’sd and cliff’s delta
under non-normality and heterogeneous variances. In annual
meeting of the American Educational Research Association, volume 1.
Citeseer, 2004.

Joel S Burma, Rebecca M Wassmuth, Courtney M Kennedy,
Lauren N Miutz, Kailey T Newel, Joseph Carere, and Jonathan D
Smirl. Does task complexity impact the neurovascular coupling
response similarly between males and females? Physiological Reports,
9(17):1-18, 2021.

22

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Ronald Aylmer Fisher. Statistical methods for research workers. In
Breakthroughs in statistics: Methodology and distribution, pages 66-70.
Springer, 1970.

Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia,
Sergio Gil-Lépez, Daniel Molina, Richard Benjamins, et al.
Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information
fusion, 58:82-115, June 2020.

Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin,
Christopher] Anders, and Klaus-Robert Miiller. Explaining
deep neural networks and beyond: A review of methods and
applications. Proceedings of the IEEE, 109(3):247-278, 2021.
Giuliano Antoniol, Kamel Ayari, Massimiliano Di Penta, Foutse
Khomh, and Yann-Gaél Guéhéneuc. Is it a bug or an enhancement?
a text-based approach to classify change requests. In Proceedings
of the 2008 conference of the center for advanced studies on collaborative
research: meeting of minds, pages 304-318, 2008.

Nitish Pandey, Debarshi Kumar Sanyal, Abir Hudait, and Amitava
Sen. Automated classification of software issue reports using
machine learning techniques: an empirical study. Innovations in
Systems and Software Engineering, 13(4):279-297, 2017.

Yutaro Kashiwa, Hayato Yoshiyuki, Yusuke Kukita, and Masao
Ohira. A pilot study of diversity in high impact bugs. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages
536-540. IEEE, 2014.

Masao Ohira, Yutaro Kashiwa, Yosuke Yamatani, Hayato Yoshiyuki,
Yoshiya Maeda, Nachai Limsettho, Keisuke Fujino, Hideaki Hata,
Akinori Ihara, and Kenichi Matsumoto. A dataset of high impact
bugs: Manually-classified issue reports. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pages 518-521.
IEEE, 2015.

Nachai Limsettho, Hideaki Hata, Akito Monden, and Kenichi
Matsumoto. Automatic unsupervised bug report categorization. In
2014 6th International Workshop on Empirical Software Engineering in
Practice, pages 7-12. IEEE, 2014.

Karan Aggarwal, Finbarr Timbers, Tanner Rutgers, Abram Hindle,
Eleni Stroulia, and Russell Greiner. Detecting duplicate bug reports
with software engineering domain knowledge. Journal of Software:
Evolution and Process, 29(3):1821-1842, October 2017.

Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, and Bart
Goethals. Predicting the severity of a reported bug. In 2010 7th
IEEE Working Conference on Mining Software Repositories (MSR 2010),
pages 1-10. IEEE, 2010.

Yuan Tian, David Lo, Xin Xia, and Chengnian Sun. Automated
prediction of bug report priority using multi-factor analysis.
Empirical Software Engineering, 20(5):1354-1383, 2015.

Hongyu Zhang, Liang Gong, and Steve Versteeg. Predicting
bug-fixing time: an empirical study of commercial software projects.
In 2013 35th International Conference on Software Engineering (ICSE),
pages 1042-1051. IEEE, 2013.

Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan
Diehl. Navigate, understand, communicate: How developers
locate performance bugs. In Empirical Software Engineering and
Measurement (ESEM), 2015 ACM/IEEE International Symposium on,
pages 1-10. IEEE, 2015.

Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing
and detecting performance bugs for smartphone applications. In
Proceedings of the 36th International Conference on Software Engineering,
pages 1013-1024. ACM, 2014.

Marija Selakovic and Michael Pradel. Performance issues and
optimizations in javascript: an empirical study. In Proceedings of the
38th International Conference on Software Engineering, pages 61-72.
ACM, 2016.

Linhai Song and Shan Lu. Statistical debugging for real-world
performance problems. In ACM SIGPLAN Notices, volume 49,
pages 561-578. ACM, 2014.

Yutong Zhao, Lu Xiao, Wang Xiao, Bihuan Chen, and Yang Liu.
Localized or architectural: an empirical study of performance
issues dichotomy. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 316-317. IEEE, 2019.

Michael Pradel, Markus Huggler, and Thomas R Gross.
Performance regression testing of concurrent classes. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
pages 13-25. ACM, 2014.

[73]

[74]

[75]

[76]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Zhifei Chen, Bihuan Chen, Lu Xiao, Xiao Wang, Lin Chen, Yang Liu,
and Baowen Xu. Speedoo: prioritizing performance optimization
opportunities. In Proceedings of the 40th International Conference on
Software Engineering, pages 811-821. ACM, 2018.

Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu.
Caramel: Detecting and fixing performance problems that have
non-intrusive fixes. In Software Engineering (ICSE), 2015 IEEE/ACM
37th IEEE International Conference on, volume 1, pages 902-912. IEEE,
2015.

Tingting Yu, Junmei Ding, Qingxia Zheng, Nanyu Han, Jialin
Yu, Yunjuan Yang, Junjun Li, Yuelin Mu, Qian Wu, and Zunxi
Huang. Identification and characterization of a new alkaline sgnh
hydrolase from a thermophilic bacterium bacillus sp. k91. Journal
of Microbiology and Biotechnology, 26(4):730-738, 2016.

Yang Liu, Yukun Zeng, and Xuefeng Piao. High-responsive
scheduling with mapreduce performance prediction on hadoop
yarn. In 2016 IEEE 22nd International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), pages
238-247. IEEE, 2016.

Yutong Zhao is an Assistant Professor in
the Department of Computer Science and
Cybersecurity at University of Central Missouri.
His research focuses on software architecture
and performance analysis. He earned his Ph.D.
in Software Engineering at Stevens Institute of
Technology in 2023, advised by Dr. Lu Xiao.

Lu Xiao is an Assistant Professor in the School
of Systems and Enterprises at Stevens Institute
of Technology. Her research focuses on software
architecture, software evolution and maintenance.
In particular, she is interested in modeling
and analyzing software architecture and its
evolution for addressing quality problems, such
as maintenance quality and performance. She
earned her PhD in Computer Science at Drexel
University in 2016, advised by Dr. Yuanfang Cai.

Sunny Wong is a Senior Software Architect at
Envestnet, with over a decade of experience in
the aerospace/defense, healthcare, and finance
industries. He was named Young Engineer of
the Year in 2019 by the IEEE Philadelphia
Section. Sunny received his Ph.D. in computer
science from Drexel University. His research
interests include software architecture and design
modeling, tools support for improving developer
productivity, and applications of Al techniques to
software development.

	Introduction
	background
	Linguistic Patterns
	Machine/Deep Learning
	Hybrid Approaches

	Study Approach
	Heuristic Linguistic Patterns
	Preparation/Learning Phase
	Rank & Retrieve
	Pre-Process & Manual Tag
	Heuristic Linguistic Pattern Extraction
	Merge & Consolidate
	Evaluate & Reflect
	Heuristic Linguistic Pattern Saturation

	Issue Report Classification Phase

	Evaluation Design
	Research Questions
	Experiment Setup
	Evaluation Dataset
	Comparison Baseline Methods
	Experiment Setting

	Evaluation Results
	RQ1: Approach Accuracy
	RQ2: Impact of Data Imbalance
	RQ3: Transferability
	RQ4: Impact of Fuzzy HLP Matching
	RQ5: Impact of Issue Matrix for Sentence Order
	RQ6: Impact of Feature Selection

	Discussions and Future Directions
	Qualitative Analysis
	RQ1: Approach Accuracy
	RQ2: Impact of Data Imbalance
	RQ3: Transferability
	RQ4: Impact of Fuzzy HLP Matching
	RQ5: Impact of Issue HLP Matrix for Sentence Order
	RQ6: Impact of Feature Selection

	Future Directions
	Domain-Specific HLPs
	Deployment of the Framework
	Practitioner Feedback and Usability Study

	Limitations and Threats to Validity
	Limitations
	Threats to Validity

	Related Work
	Issue Categorization
	Performance Issue Analysis

	conclusion
	Data Accessibility
	References
	Biographies
	Yutong Zhao
	Lu Xiao
	Sunny Wong

