eFish’nSea: Unity Game Set for Learning Software Performance
Issues Root Causes and Resolutions

Andrew Quinlan
Stevens Institute of Technology
Hoboken, New Jersey, USA
andrewquinlan22@gmail.com

Jonathan Morrone
Stevens Institute of Technology
Hoboken, New Jersey, USA
jdmorrone@comcast.net

ABSTRACT

Prior research has revealed eight recurring types of software per-
formance issues, their root causes, and resolutions. People who
do not have a strong programming background may benefit from
learning about these concepts to form “performance-aware” think-
ing in general problem-solving and also prepare them for future
studies in related fields. This paper intends to share a set of eight
Unity games, named eFish’nSea, with the community to generate
broader impacts. Each game maps to one of the eight performance
issue types, conveying the technical concepts through fun and easy-
to-capture game mechanisms, and providing feedback to players
regarding how “efficient” they played the games. The authors have
conducted stress testing and delivered several practical sessions of
the games, showing great promise in the indicated intention.

1 INTRODUCTION

Software performance is one of the most critical quality attributes
that determine the success of a software system [1-4], concerning
the timeliness and resource consumption during system execution.
Users are more likely to switch to competitors’ products due to
performance bugs compared to other general bugs [4].

Zhao et. al [5, 6] investigated a total of 570 real-world perfor-
mance issue reports, revealing eight recurring root causes, and
the respective resolutions, to performance issues in software sys-
tems. Practitioners who have rich experience in programming could
benefit from this knowledge to facilitate performance engineering.
Meanwhile, people who do not have a strong programming back-
ground may also benefit from learning about these concepts to form
“performance-aware” thinking in general problem-solving and also
prepare them for future studies in related fields. However, they may
find it difficult to understand the related technical concepts due to
having a lack of programming background, such as API and loop.

Research has proved the effectiveness of using computer games
in learning [7-12]. This paper is motivated to help people who do
not have a strong programming background gain an understanding
of software performance issues from Zhao et. el’s research [5, 6].
We introduce a set of eight Unity games, named eFish’nSea. Each
game maps to one of the eight performance issue types, conveying
the technical concepts through fun and easy-to-capture game mech-
anisms, and providing feedback to players regarding how “efficient”
they played the games. The authors conducted stress testing to en-
sure that the games could provide a seamless user experience under

Ryan Mercadante
Stevens Institute of Technology
Hoboken, New Jersey, USA
rmercada@stevens.edu

Vincent Tufo
Stevens Institute of Technology
Hoboken, New Jersey, USA
vtufo@sbcglobal.net

Lu Xiao
Stevens Institute of Technology
Hoboken, New Jersey, USA
Ixiao6@stevens.edu

expected levels of user traffic [13, 14]. The authors also delivered
the games in various learning sessions, with approximately 350
students of various levels. We would like to share our games as a
resource to the community to generate broader impacts. Educators

who are interested in using our games can gain access here !.

2 BACKGROUND

This section introduces the eight recurring performance issues and
their respective resolutions revealed in Zhao et. al [5, 6]’s work.
1. Inefficient Iteration: “The status of loop iterations remains
the same and the iterations become useless.” These issues are usu-
ally easily resolved by checking the loop condition, and break or
return from the loop when a certain condition is satisfied [15].
2. Inefficient Synchronization: These problems “are caused by
synchronization issues among multiple threads”. More specifically,
these issues can occur “because different threads have to access
the same resource, and thus they have to wait for each other”. The
resolution is to employ an appropriate synchronization mechanism,
such as ensuring that resources are accessed in a certain order by
different threads. 3. Inefficiency under Special Cases: A program
runs well under normal circumstances, but it becomes extremely
slow, or even crashes, in special cases. Special cases are usually trig-
gered by inputs that are either null or exceed commonly expected
values [16-18]. A typical resolution is to look out for special cases
and design a special algorithm for treating such cases. 4. Ineffi-
cient API Usage: In programming for the same function, different
APIs are available, but some are more efficient than others in a
certain context [19]. The sub-optimal choice of an API could sig-
nificantly compromise the performance of a program. The typical
resolution is to replace an inefficient API with a more efficient
one for the usage scenario [20-22]. 5. Inefficient Data Structure:
Similarly, the choice of the appropriate data structure could also
significantly impact the performance of a program [23], regard-
less of the programming language. So the typical resolution is to
replace an inefficient data structure with a more efficient one for
the computation scenario. 6. Repeated Computation: A program
repeatedly conducts the same process of computation and thus
produces the same output, which does not change the status of the
program. The resources for the computation go to waste and com-
promise the performance of the program. To resolve such issues,
developers should 1) store the results of a complicated computation

Uhttps://efish-n-sea.github.io/


https://efish-n-sea.github.io/

ICSE-SEET °24, April 14-20, 2024, Lisbon, Portugal

that tends to recur, and 2) add checking conditions before repeating
the computation and retrieve the saved results when conditions are
consistent[24]. As such, repeated computation can be eliminated,
and time and resources can be saved. 7. Redundant Data Pro-
cessing: Redundant or tedious data processing, such as processing
a large chunk of data in small units (bit by bit or pixel by pixel),
leads to excessive and tedious data processing overhead. The typical
resolution is to design a more efficient data processing strategy to
avoid heavy overhead and process large chunks of data at once.
8. General Inefficient Computation: These issues are caused
by any other algorithmic inefficiency that cannot be captured by
the above categories. The resolution to such problems is usually
case-by-case, depending on the problem and program design. For
example, the order of checking two conditions in an and clause
could yield to significant difference in processing time, if one of the
conditions is mostly true while the other the mostly false. As such,
checking the true condition first can avoid checking the second
condition to save time.

3 EFISH N’ SEA GAME DESIGN

The games are named, eFish n’ Sea, created as a pseudo-homophone
to “efficiency”. Each of the individual games follows this theme of
fish and sea with their selection of characters and environments,
deemed to be appropriate and appealing for the project’s targeted
younger audience. The artwork used in each of the games was ac-
quired from various internet sources. Some artwork was generated
using the OpenAl project DALL-E 2, and a few pieces of artwork
were purchased from the Unity Asset Store >.

3.1 Loopy Fish: Inefficient Iteration

Ve B iR

AL @ €% \@

i & @ weg S N R
= — - (b) Cleaned
(a) Game Initialization Shell

Figure 1: Loopy Fish: Inefficient Iteration

The game Loopy Fish was designed to facilitate education about
Inefficient Iteration. Figure 1a illustrates the initialization of this
game. That is, the user is presented with a set of twenty seashells,
each of which has a different level of “dirtiness". The more green
a seashell is, the higher the level of “dirtiness”, requiring more ef-
fort/time to clean it. As the game starts, a catfish enters the window
and begins looping through the set of shells. Each time a shell is
passed by the catfish, it gets cleaner by amount §. Once a shell is
completely cleaned, it is visually indicated by a sparkling effect, as
shown in Figure 1b. Note that, due to the random distribution of
dirtiness to each shell, some shells will be fully cleaned with fewer
iterations than others. Additionally, it is critical to note that while
the catfish is traveling along its set path, it moves substantially

2https://openai.com/dall-e-2
3https://assetstore.unity.com/

Andrew Quinlan, Ryan Mercadante, Vincent Tufo, Jonathan Morrone, and Lu Xiao

faster when there is no shell in its path and it does not attempt to
clean a shell any further.

The objective for a player is to minimize the time used to
clean all the seashells. Analogous to the Inefficient Iteraction root
cause and resolution, there are two general strategies to play this
game, which will yield a “zero-star” and “three-star” rating, respec-
tively, reflecting the overall effectiveness of the player’s ability to
minimize needless iterations: 1) The “zero-star” (inefficient) strategy
is to let the catfish repeatedly loop through every single seashell
again and again, even after it has been completely cleaned—leading
to useless loops; and 2) the “three-star” (optimal) strategy is to click
on a completely cleaned shell to remove it from the loop cycle,
similar to adding a checking condition to the loop to break from
it. The first strategy takes approximately 45 seconds longer than
the optimal strategy with Inefficient Iteration being eliminated in
this game. The rating, which is linked directly to the total time
spent cleaning all the shells, serves as performance feedback for
the player.

3.2 Macaroni Munchies: Inefficient Synch.

Figure 2: Macaroni Munchies: Inefficient Synchronization

This game was developed to convey the concept of Inefficient
Synchronization, which was chosen to be represented by coopera-
tion between two players. As shown in Figure 2, the game contains
three key elements: two pufferfish—i.e. the two players; two bowls
of macaroni—i.e. tasks to be accomplished by the two players; and a
single fork—i.e. the shared resource that needs to be synchronized
for the tasks. The two players can use the Q and P keys on the
keyboard to move the fork to either the left or right pufferfish to
feed it a bite of macaroni. Each bowl has a total of five bites before
it is emptied. Critical elements of the game to convey this concept
of synchronization are that 1) it takes a pufferfish ten seconds to
finish chewing a bite, 2) a pufferfish cannot take another bite before
finishing chewing, and 3) the fork will be “locked” by a pufferfish
and forced to wait for it to finish its current chewing cycle if it
is brought to an actively chewing pufferfish, thereby making it
impossible for the other pufferfish to utilize it during this time.

The two pufferfish need to effectively synchronize their com-
bined utilization of the fork, so as to finish their entire bowls
of macaroni in the minimum amount of time. The strategies to
play this game that reflect the root cause and resolution to Inefficient
Synchronization correspond to both the “zero-star” and “three-star”
ratings, respectively, given at the end of the game to provide feed-
back to the players. More specifically, 1) the “zero-star” strategy is
for one pufferfish (i.e. player) to constantly maintain the fork until
it finishes its bowl, after which time the fork is finally released to
the other pufferfish. There is no synchronization between the two
players in this strategy. 2) The “three-star” strategy is that the two


https://openai.com/dall-e-2
https://assetstore.unity.com/

eFish’nSea: Unity Game Set for Learning Software Performance Issues Root Causes and Resolutions

pufferfish rotate the fork (shared resource) with the best possible
synchronization—i.e. one pufferfish grabs the fork and feeds itself a
bite while the other is chewing. The time needed to finish the game
is reduced to half when using the optimal strategy, reflecting the
resolution of Inefficient Synchronization compared to the “zero-star”
solution.

3.3 Fishing Frenzy: Inefficiency in Special Cases

(a) Stage 1

(b) Stage 2
Figure 3: Fishing Frenzy: Inefficiency under Special Cases

The Fishing Frenzy game was developed to convey the concept of
Inefficiency under Special Cases. As shown in Figure 3, the game has
two main stages. In the first stage, shown in Figure 3a, the player
is tasked with selecting up to five buckets for an upcoming fishing
trip in a bait and tackle shop. There are four types of buckets: fish,
shark, turtle, and trash, which can hold five fish, one shark, one
turtle, and ten pieces of trash, respectively, and this information
is conveyed to the user through the clerk’s dialogue. The user
can select between 0 and 5 total buckets and is not limited by the
number of each type of bucket. The player can subsequently press
the “Checkout” button to move on to the next stage of the game,
shown in Figure 3b, which takes place on an underwater fishing
dock. The buckets from the first stage are shown on the dock, just
behind the fisherman. In the second stage, the fisherman rapidly
catches a variety of objects from the water and flings each toward
the buckets on the dock behind him. If there is an open bucket
of the matching type, the caught object will fly directly into that
bucket, and award the user respective points—fish, sharks, turtles,
and trash award the user 100, 250, 250, and 50 points, respectively.
However, if there is no available matching bucket (i.e. not selected
at all, or the appropriate buckets are full), the caught object will
land on the dock, fall back into the water, and award the user 0
points. The game is designed such that the fisherman will always
catch exactly ten fish, ten pieces of trash, and either one shark or
one turtle. Notably, the game actually makes the decision of giving
a turtle or a shark only semi-randomly; particularly, if the player
chooses a shark bucket but not a turtle bucket, only a turtle will
ever be caught, and vice versa. As a result, being prepared for one
scenario but not the other will still result in a loss of points.

The objective for the player is to earn the maximal possi-
ble points, which requires them to prepare for every possible
scenario—including special cases, such as the case of catch-
ing a shark or of catching a turtle. Thus, the player needs to
observe the “profile” of the caught objects and prepare an optimal
combination of buckets—i.e. two fish buckets, and one of each other
type of bucket—in order to receive the highest score (1,750) and a
three-star rating. This reflects the resolution to Inefficiency under
Special Cases. In comparison, the sub-optimal strategy would be to

ICSE-SEET °24, April 14-20, 2024, Lisbon, Portugal

only prepare certain types of buckets, thereby losing points when
special objects, such as a turtle or a shark, are caught, leading to a
lower score and zero-, one-, or two-star rating.

3.4 Fintastic Toast: Inefficient API Usage

(a) Indoor

(b) Outdoor
Figure 4: Fintastic Toast: Inefficient API Usage

The Fintastic Toast game was designed to convey the concept
of Inefficient API Usage, as shown in Figure 4. First, the player is
presented with a kitchen with clickable cooking implements to use
in the task of making toast, shown in Figure 4a. The options in
the kitchen include a oven, a box of matches, a waffle iron, and a
toaster. Additionally, the user has the option to go outdoors, and
explore other options such as a grill, a campfire, a flamethrower,
and even the sun. It is quite straightforward for the player to figure
out the optimal tool to use—clearly, the toaster would be optimal,
with the oven being a potential secondary choice—leading to a
three- and two-star rating respectively. In particular, although the
oven can toast the bread, it could potentially take more energy and
a longer time to produce the same result, compared to a toaster.
Meanwhile, there are no stars awarded for choosing a “tool" that
is clearly unrealistic, such as the sun or flamethrower. The key
takeaway from this game is that one must always consider
what is the most effective tool for the task at hand, much like
how a software developer should consider which API is most
practical for the project. If one were cooking a steak, the optimal
“API” would be the grill. Just like how changing the item being
cooked changes the optimal tool for the job, different scenarios
within the context of software development require different APIs
for the most efficient results.

3.5 Moving Day: Inefficient Data Structures

Figure 5: Moving Day: Inefficient Data Structures

The game Moving Day was designed to facilitate the teaching
of Inefficient Data Structures. As shown in Figure 5, the player is
presented with the scenario of moving out of a house and packing
up 20 different items of varying sizes. The player is responsible for
identifying the appropriately sized box to package each respective
item. In the game setting, 1) if an item is put in the appropriate
sized box, the player gets full points for this item; 2) if the box is



ICSE-SEET °24, April 14-20, 2024, Lisbon, Portugal

too big for the item, the user gets half the amount of points; and 3)
if the user selects a box that is too small for the item, the box will
be crushed and the player receives no points.

In this setting, the boxes represent the “data structures’,
the choice of which impacts the efficiency of the move. Having
boxes that are too big will cause the move to take longer due to
the extra number of trips needed. Conversely, having boxes that
are too small will leave items not properly protected during transit.
Therefore, the best strategy for the player is to carefully select
the most appropriate box for each given item to receive a three-
star rating. Meanwhile, choosing boxes which are too big or too
small will compromise the scores, accordingly leading to two-, one-
, or zero-star ratings at the end. This is analogous to improper
data structure choice potentially resulting in inefficiency of storage
and/or data processing, or potentially even data loss.

3.6 Crabsworth’s Cave: Repeated Computation

I
=

(c) Notepad

.

TTTTTTT T
T

(a) Initialization

(b) Lock

Figure 6: Crabsworth’s Cave: Repeated Computation

Crabsworth’s Cave was designed to convey the concept of Re-
peated Computation. The game revolves around the player navi-
gating a maze-like space shown in Figure 6, in which the doors
that lead from one room to the next are locked until the player
enters the correct code for the simple puzzle, shown in Figure 6b.
Many of the puzzles in the rooms ask the player to recall the so-
lutions to earlier puzzles and repeat and/or modify the solutions
to move on to the next. As such, the player may have to return
(i.e. analogous to recomputation) to a previous room to retrieve
the solution. Alternatively, the game also offers the player use of a
notepad (see Figure 6c¢) for the player to record previously found
solutions so that, whenever needed again, they can be looked up
in the notebook, as opposed to retracting back to previous rooms
(thereby eliminating the repeated “computation”).

The objective for the player is to navigate the entire maze
while making as few repeated visits to rooms as possible. The
principle is that by “caching” the previous solutions in the notebook,
the player can refer to and reuse the previous answers without
needing to “recompute” them by returning to the previous rooms.
This allows the player to be more efficient and thereby get a better
rating. Particularly, to get a three-star rating, the player must clear
the maze in 14 room transitions or less, which is possible even in the
first exposure to the game assuming the player can properly track
all of the information needed. Larger numbers of room transitions
will accordingly receive lower ratings, with 18 being the cutoff for
two stars and 25 being the cutoff for one star.

3.7 Load ’Em Up: Redundant Data Processing

The Load Em Up scenario, as showcased in Figure 7, commences by
presenting players with an array of cardboard boxes, symbolizing

Andrew Quinlan, Ryan Mercadante, Vincent Tufo, Jonathan Morrone, and Lu Xiao

Figure 7: Load ’Em Up: Redundant Data Processing

a data set of arbitrary pieces of information, that need to be loaded
into a moving truck for transportation. There are thirty boxes in
total, with the shapes ranging from basic shapes such as circles,
squares, and stars to complex shapes such as a bike or toilet. The ob-
Jjective is to optimize the transportation process by minimizing
the number of trucks used. The act of loading boxes into trucks
mirrors data processing operations. Players are granted the free-
dom to select boxes, determine their placement within the trucks,
and decide when to dispatch the trucks. The most efficient strategy
hinges on meticulously planning how to maximize the utilization
of each truck’s capacity before initiating the transportation. When
executed adeptly, this approach leads to a three-star rating achieved
through a maximum of three truck deployments. It is imperative
to underscore that the quantity and dimensions of the boxes are
deliberately crafted to foster the belief that accomplishing the task
within three attempts is feasible. However, a lack of strategic plan-
ning frequently results in a surplus box requiring a fourth truck
for transport, yielding a two-star rating. If the number of trucks
exceeds four, the outcome is a one-star rating.

3.8 Shrimplock Holmes: GIC.

Fan Caugh:

& s
; “o%w . %
T

W

w@" % B @
W ?c-
—te

S5 Came)colr os
<% ) e =

(a) Start: Random Order (b) Sorted: Color Order
Figure 8: Shrimplock Holmes: General Inefficient Comp.

The objective of is to locate and select as many correct crim-
inal fish in the given amount of time by optimizing your
searching process. The game begins by prompting the player with
a message telling them that they must assist Shrimplock Holmes
in finding the criminal fish amongst a large set of fish of varying
species, colors, and names. The player then has 2 minutes to locate
as many fish criminals as they can. At the top of the screen is a
box that contains an image of the criminal fish to show its color
and species, as well as a text box that contains its name. On the
bottom of the screen are four buttons, three of which are sorting
methods for color, species, and name, and the other is to go to the
next set of fish, since only so many can fit on the screen. In the
beginning, all the fish are sorted randomly and are swimming on
and off the screen, as shown in 8a. During this, the player can still
hover over the fish to view its name and click on a fish to choose it
as the criminal. Once a sorting button is selected the fish will swim
off-screen and then swim back on screen in a sorted order, as shown



eFish’nSea: Unity Game Set for Learning Software Performance Issues Root Causes and Resolutions

in 8b. The game is designed to represent how various methods of
sorting can be optimal in different cases to find an object in a list
of objects. This is ideally made more apparent by the added time
constraint needed to find the name of a fish as it is the only unique
identifier, however, it takes extra time to access. To achieve a 3-star
rating, the player must find at least 10 fish, the other ratings are at
other arbitrary values between 0 and 10, with only 0 achieving no
stars.

4 STRESS TESTING

We conducted stress testing to ensure that under expected levels of
user traffic our servers would have no impact on user experience.
We used LoadTester ¢, which is a commercial tool for web-based
stress testing with bots [25, 26]. We vary the number of bots from
ten to one hundred, with continuous tests being performed at each
increment of ten bots. An increment of ten bots would provide
insights into the effects that increasing levels of stress could have
on various key metrics. Each test session lasts for three minutes
with three phases. First, the test ramped up aggressively for one
minute with bots rapidly increasing from zero to the target number
(i.e. 10, 20, ..., and up to 100). Then, the test remained at peak load
for one minute. Finally, the test ramped down reluctantly for one
minute. During a test, a bot would first navigate to the home page,
then click on the thumbnail for a game; wait for the game to load,
and then return to the home page. Each bot repeats this process for
each of the eight games.

Average Load Time (per page) vs. Number of Bots Number of Errors vs. Number of Bots

-Home - Total Errors

Index - Functional
Errors
Load-Related
Errors

Average Load Time (seconds)
=}
@
Number of Errors

~Average Number of Bots

Number of Bots

(a) Load Time (b) Errors

Figure 9: Stress Testing Results

We collected two metrics, including the load time and the number
of errors. The former measures the average time to load a page,
including the page for each game, as well as the overall average.
The latter counts the number of issues encountered during each
test. Errors are further distinguished as load-related errors, which
are caused by high user traffic, and functional errors, which are
other errors. For example, a game still loading after 15 seconds
is reported as a load-related error; while “could not find the Home
button..." is a function error likely caused by incompatibility with
different screen sizes. Figure 9 shows how the two metrics trend
in the stress testing. Figure 9a shows that the average load time of
the games remains within 1 second, with up to 100 bots. Though
the GIC game and the home page are the two outliers, they still
load within 4 seconds with up to 80 bots. Figure 9b shows that the
number of errors is kept within 5 with up to 80 users but increases
to a total of 20 with above 80 users. Thus, we recommend a session
of 80 students as the maximum capacity.

4https://loadster.app/

ICSE-SEET °24, April 14-20, 2024, Lisbon, Portugal

5 PRACTICAL SESSIONS

We have offered the games in learning sessions to different audi-
ences. In each session, two authors opened up with a quick, interac-
tive lesson on the general concept of efficiency. The students then
played the games, followed by a group discussion to share their
learning outcomes. The first two sessions were held at a local ele-
mentary school for a total of 40 4th-grade students, who were very
engaged and enthusiastic. The next six sessions were conducted at
a pre-college summer program with a total of around 300 students.
The final batch of sessions took the form of focus groups consisting
of six college students. The games were generally received well
by the two later groups but with higher variations in the level of
interest and engagement compared to the first group.

6 LIMITATIONS AND FUTURE WORK

We acknowledge that we have not conducted a thorough and sci-
entific evaluation of the games. The practical sessions described
above only serve as anecdotal evidence of the feasibility of the
games. The learning effectiveness of the games, in particular how
the game concepts transfer to software development tasks, has not
been systematically measured. The objective of this paper is to
share the games with the community to explore their potential.

In our future work, we plan to conduct a more rigorous and
systematic evaluation of the games. In particular, we aim to evaluate
and measure whether and how to best use these games to truly help
students of different levels grasp relevant concepts in programming
tasks. Also, we aim to understand how the learning effectiveness of
the eight games differ, as such we can further improve the games.
Lastly, we also aim to investigate who are the most appropriate
audiences of the games—as we observed a much higher level of
engagement with the 4th-grade students.

7 CONCLUSION

This paper shared a set of eight Unity games, named eFish’nSea,
intended to help young audiences form “performance-aware” think-
ing and prepare them for future studies in related fields. Each game
maps to one of the eight performance issue types, conveying the
technical concepts through fun and easy-to-capture game mecha-
nisms, and providing feedback to players regarding how “efficient”
they played the games. The authors have conducted stress testing
and delivered several practical sessions of the games, showing great
promise in the indicated motivation. Educators who are interested
in using the games are welcome to use them.

ACKNOWLEDGEMENT

This work was supported in part by the U.S. National Science Foun-
dation (NSF) under grants CCF-2044888.

REFERENCES

[1] Connie U Smith and Lloyd G Williams. Performance solutions: a practical guide to
creating responsive, scalable software, volume 1. Addison-Wesley Reading, 2002.

[2] Connie U Smith and Lloyd G Williams. Software performance engineering.
Springer, 2003.

[3] Murray Woodside, Greg Franks, and Dorina C Petriu. The future of software
performance engineering. In Future of Software Engineering (FOSE’07), pages
171-187. IEEE, 2007.


https://loadster.app/

ICSE-SEET °24, April 14-20, 2024, Lisbon, Portugal

(4]

(5]

G

=

[10]
[11]

[12]
[13]

[14]

[15

[16]

Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative study on
performance bugs. In 2012 9th IEEE working conference on mining software
repositories (MSR), pages 199-208. IEEE, 2012.

Yutong Zhao, Lu Xiao, Andre B Bondi, Bihuan Chen, and Yang Liu. A large-scale
empirical study of real-life performance issues in open source projects. IEEE
Transactions on Software Engineering, 49(2):924-946, 2022.

Yutong Zhao, Lu Xiao, Xiao Wang, Lei Sun, Bihuan Chen, Yang Liu, and Andre B
Bondi. How are performance issues caused and resolved?-an empirical study from
a design perspective. In Proceedings of the ACM/SPEC International Conference on
Performance Engineering, pages 181-192, 2020.

Gunilla Svingby and Elisabet M Nilsson. Research review: Empirical studies on
computer game play in science education. Handbook of research on improving
learning and motivation through educational games: Multidisciplinary approaches,
pages 1-28, 2011.

Nergiz Ercil Cagiltay. Teaching software engineering by means of computer-
game development: Challenges and opportunities. British Journal of Educational
Technology, 38(3):405-415, 2007.

Wong Yoke Seng and Maizatul Hayati Mohamad Yatim. Computer game as
learning and teaching tool for object oriented programming in higher education
institution. Procedia-Social and Behavioral Sciences, 123:215-224, 2014.

Nicola Jane Whitton. An investigation into the potential of collaborative computer
game-based learning in higher education. PhD thesis, 2007.

Nicola Whitton. Motivation and computer game based learning. Proceedings of
the Australian Society for Computers in Learning in Tertiary Education, Singapore,
pages 1063-1067, 2007.

Michael Begg, David Dewhurst, and Hamish Macleod. Game-informed learning:
Applying computer game processes to higher education. Innovate: Journal of
Online Education, 1(6), 2005.

Martin Cihak. Introduction to applied stress testing. 2007.

Myrvin H Ellestad. Stress testing: principles and practice. Oxford University Press,
2003.

Linhai Song and Shan Lu. Performance diagnosis for inefficient loops. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages
370-380. IEEE, 2017.

Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating perfor-
mance bottleneck detection using search-based application profiling. In Proceed-
ings of the 2015 International Symposium on Software Testing and Analysis, pages

Andrew Quinlan, Ryan Mercadante, Vincent Tufo, Jonathan Morrone, and Lu Xiao

[17

(18]

(19]

[21]

[22]

[23

S
=)

[25

[26

270-281. ACM, 2015.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: Auto-
matically generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 254-265. ACM,
2018.

Marc Brinink and David S Rosenblum. Mining performance specifications.
In Proceedings of the 24th International Symposium on Foundations of Software
Engineering, pages 39-49. ACM, 2016.

David Kawrykow and Martin P Robillard. Detecting inefficient api usage. In
Proceedings of the 31st International Conference on Software Engineering, pages
183-186. IEEE, 2009.

Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. Api method
recommendation without worrying about the task-api knowledge gap. In Pro-
ceedings of the 33rd International Conference on Automated Software Engineering,
pages 293-304. ACM, 2018.

Zhenmin Li and Yuanyuan Zhou. Pr-miner: automatically extracting implicit
programming rules and detecting violations in large software code. In Proceedings
of the ACM SIGSOFT Software Engineering Notes, pages 306-315. ACM, 2005.
David Kawrykow and Martin P Robillard. Improving api usage through automatic
detection of redundant code. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, pages 111-122. IEEE Computer
Society, 2009.

Milind Chabbi and John Mellor-Crummey. Deadspy: a tool to pinpoint program
inefficiencies. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, pages 124-134, 2012.

Luca Della Toffola, Michael Pradel, and Thomas R Gross. Performance problems
you can fix: A dynamic analysis of memoization opportunities. In Proceedings of
the ACM SIGPLAN Notices, pages 607-622. ACM, 2015.

Linda Erlenhov, Francisco Gomes de Oliveira Neto, Riccardo Scandariato, and
Philipp Leitner. Current and future bots in software development. In 2019
IEEE/ACM 1st International Workshop on Bots in Software Engineering (BotSE),
pages 7-11. IEEE, 2019.

Nataliya Yatskiv, Solomiya Yatskiv, and Anatoliy Vasylyk. Method of robotic
process automation in software testing using artificial intelligence. In 2020 10th
International Conference on Advanced Computer Information Technologies (ACIT),
pages 501-504. IEEE, 2020.



	Abstract
	1 Introduction
	2 Background
	3 eFish n' Sea Game Design
	3.1 Loopy Fish: Inefficient Iteration
	3.2 Macaroni Munchies: Inefficient Synch.
	3.3 Fishing Frenzy: Inefficiency in Special Cases
	3.4 Fintastic Toast: Inefficient API Usage
	3.5 Moving Day: Inefficient Data Structures
	3.6 Crabsworth's Cave: Repeated Computation
	3.7 Load 'Em Up: Redundant Data Processing
	3.8 Shrimplock Holmes: GIC.

	4 Stress Testing
	5 Practical Sessions
	6 Limitations and Future Work
	7 Conclusion
	References

