

1      **Title:** Perturbation-based estimation of within-stride cycle metabolic cost

3      **Authors:**

4      Alex C. Dziewaltowski<sup>1\*</sup>, Prokopios Antonellis<sup>1,2</sup>, Arash Mohammadzadeh Gonabadi<sup>1,3</sup>  
5      Seungmoon Song<sup>4</sup>, Philippe Malcolm<sup>1\*</sup>

7      **Affiliations:**

8      <sup>1</sup>Department of Biomechanics and Center for Research in Human Movement Variability,  
9      University of Nebraska at Omaha, Omaha, NE, USA

10     <sup>2</sup>Department of Neurology, Oregon Health & Science University, Portland, OR, USA

11     <sup>3</sup>Rehabilitation Engineering Center, Institute for Rehabilitation Science and Engineering,  
12     Madonna Rehabilitation Hospital, Lincoln, NE, USA

13     <sup>4</sup>Department of Mechanical and Industrial Engineering, Northeastern University, Boston,  
14     MA, USA

16     \*Corresponding author. Emails: adziewaltowski@unomaha.edu (A.C.D.),  
17     pmalcolm@unomaha.edu (P.M.)

18      **Abstract:**

20      Metabolic cost greatly impacts trade-offs within a variety of human movements. Standard  
21      respiratory measurements only obtain the mean cost of a movement cycle, preventing  
22      understanding of the contributions of different phases in, for example, walking. We present a  
23      method that estimates the within-stride cost of walking by leveraging measurements under  
24      different force perturbations. The method reproduces time series with greater consistency ( $r =$   
25      0.55 and 0.80 in two datasets) than previous model-based estimations ( $r = 0.28$ ). This  
26      perturbation-based method reveals how the cost of push-off (10%) is much smaller than would  
27      be expected from positive mechanical work ( $\sim 70\%$ ). This work elucidates the costliest phases  
28      during walking, offering new targets for assistive devices and rehabilitation strategies.

33      **Keywords:**

45 **Introduction:**

46 Metabolic cost is a critical measure used to characterize movement behavior [1–3]. Healthy  
47 walkers naturally adopt an energetically optimal stride cycle, for example, by walking with a step  
48 length [4] and knee flexion angle [5] that minimizes metabolic cost. Pathologies like stroke and  
49 cerebral palsy alter patients' walking stride resulting in increases to metabolic cost by 60 to 2–  
50 300% [6,7]. Such increases in metabolic cost correlate to drastic reductions in people's mobility  
51 and overall quality of life [8,9]. If we understand how stride cycle phases contribute to metabolic  
52 cost, therapies and devices may be better optimized to improve mobility (Fig. 1A).

53

54 Measurements of metabolic cost are too slow to detect the contributions of different stride phases.  
55 Current methods to calculate energy from oxidative reactions include measuring respiratory CO<sub>2</sub>  
56 production by ingesting water with a radioisotope ('doubly labelled water method'), measuring  
57 oxidative heat production using a chamber ('direct calorimetry'), and measuring O<sub>2</sub> consumption  
58 from respiration ('indirect calorimetry') [10]. Indirect calorimetry is the fastest and most  
59 commonly used method for measuring metabolic cost during locomotion; however, it still requires  
60 averaging several minutes of breaths to be reliable [11–13]. A typical walking stride lasts about  
61 one second meaning current methods can only measure the mean metabolic cost following a bout  
62 of steady-state walking. Experiments that approximated the cost of the swing phase by recording  
63 cyclical leg swinging [14] and by measuring blood flow from injected microspheres in animals  
64 that are then sacrificed [15] suggest that the stride-mean metabolic cost does not necessarily  
65 represent the contributions of individual phases ('within-stride metabolic cost').

66

67 Several model-based methods of estimating within-stride metabolic cost have been proposed but  
68 remain inconclusive. Umberger developed a set of equations to estimate metabolic cost from

69 muscle parameters and used this to produce the first estimation of within-stride metabolic cost  
70 from a forward simulation of walking [16]. Other groups used EMG-driven simulations [17] or  
71 equations based on joint kinetics instead of muscle parameters [18]. However, when comparing  
72 those methods to each other, their estimations of within-stride metabolic cost are relatively  
73 inconsistent (Pearson correlation:  $r = 0.29$ ,  $n = 6$  estimations, Fig. 1B) [19]. Currently, there is no  
74 way to validate these model-based estimations for within-stride metabolic cost since measurements  
75 from indirect calorimetry only obtain a stride mean. This motivates the development of an  
76 alternative method to estimate within-stride metabolic cost that is supported by indirect validation  
77 approaches.

78

79 We hypothesized that applying a set of perturbations creates a set of instances of the behavior  
80 where the differences in the time series between each perturbed instance can be attributed to the  
81 different magnitudes and timings of the applied perturbation. By applying perturbations repeatedly  
82 to a specific part of the gait cycle for several minutes, we can induce changes in the stride-mean  
83 metabolic cost as well as in the biomechanical time series (e.g., kinematics, kinetics, and muscle  
84 activations) [19–21]. We postulated the variation across the set of perturbed walking strides would  
85 be representative of the fluctuations in metabolic cost within the stride cycle so long as the set  
86 contained a large number of different perturbations. If true, this would enable a method to extract  
87 key features of within-stride metabolic cost. Our approach is inspired by prior studies that utilized  
88 ankle perturbations to assess time series of joint impedance during the stance phase [22,23] as well  
89 as studies that used elastic bands and added mass to estimate the cost of stance and swing phases  
90 [24,25]. To our knowledge, using of a perturbation-based approach for estimating within-stride  
91 metabolic cost time series is novel.

92

93 Using this concept, extraction of within-stride behaviour from a collection of perturbed instances,  
94 we developed an alternative method to estimate within-stride metabolic cost that we refer to as our  
95 ‘perturbation-based method’. Our method estimates within-stride metabolic cost using  
96 measurements from a set of perturbed walking strides. We then evaluated our method’s ability to  
97 consistently reproduce model-based estimates of within-stride metabolic cost.

98

99 **Materials and Methods:**

100 Overview

101 The perturbation-based method was initially developed and tuned using a dataset from a  
102 neuromechanical simulation [26,27]. The tuned method was then validated against distinct signals  
103 from the neuromechanical simulation as well as a separate dataset from human experiments. In  
104 both datasets, biomechanical time series were recorded during 35 different perturbed walking  
105 conditions and one unperturbed, normal walking condition [20]. In each perturbation condition,  
106 we applied a force profile onto the COM with specific timings, durations, and magnitudes. The  
107 same perturbation force profiles were used in the neuromechanical simulations and human  
108 experiments. In the neuromechanical simulation, we applied the perturbations by simulating a  
109 forward force applied to the hip. In the human experiments, we applied forward forces using a  
110 robotic waist tether connected to the hip. In both datasets, we generated model-based estimations  
111 of within-stride metabolic cost as test cases to evaluate our perturbation-based method’s  
112 performance. Re-evaluating our method in two distinct datasets avoids dataset bias [28]. We  
113 indirectly validated our perturbation-based method by reproducing the within-stride metabolic cost  
114 from those model-based estimations.

115

116 Simulation dataset

117 We adapted a neuromechanical simulation from Song and Geyer to walk under force perturbations  
118 from a waist tether [26,27]. Specifically, we used a two-dimensional variant that restricts motion  
119 to the sagittal plane [26]. We simulated perturbations with forward forces applied at the hip of a  
120 model with seven rigid segments in Simscape First Generation Multibody (MathWorks, Natick,  
121 MA). In this framework, we simulated 32 sinusoidal force profiles with peak timings covering the  
122 entire gait cycle and peak forces ranging from 0 to 24% percent of body weight, three constant  
123 force profiles, and an unperturbed walking condition.

124

125 The neuromechanical model's walking control strategy was optimized for each perturbed walking  
126 condition (cf. Supplementary: Neuromechanical simulation dataset for tuning and in silico  
127 evaluation). Time series data were extracted for each of the optimized control strategies to  
128 constitute the neuromechanical dataset. We then constructed 100 time series to serve as test data  
129 for tuning our perturbation-based method. These test time series were random linear combinations  
130 of the different biomechanical time series, so they were distinct from the model-based estimates  
131 that would be used later for evaluation.

132

133 Experimental dataset

134 We used biomechanical and indirect calorimetry data from previous human experiments [20] with  
135 a robotic waist tether [21] for the in vivo evaluation and application of our perturbation-based  
136 method (Supplementary Data 1). Ten healthy participants (age:  $28.0 \pm 4.7$  years, body mass:  $83.2 \pm 12.2$  kg, height:  $1.80 \pm 0.05$  m; mean  $\pm$  SD) walked under the same perturbations as in the  
137 neuromechanical simulation dataset. In this case, the perturbations were generated by a robotic  
138 waist tether controlled by a temporal algorithm that enables pulling during a specific portion of  
139 the gait cycle with high consistency.

140

141

142 Perturbation-based method input signals

143 Our perturbation-based estimation method uses the stride-mean metabolic cost as well as within-  
144 stride biomechanical time series to estimate within-stride metabolic cost (Fig. 2 C and F. Methods:  
145 Perturbation-based method). The biomechanical time series as well as additional mathematically  
146 derived combinations of those time series are considered potential estimates of within-stride  
147 metabolic cost. Our perturbation-based method first calculates the mean cycle from 0 to 100% of  
148 the stride for each biomechanical time series for each perturbation condition. Then each stride-  
149 normalized biomechanical time series is reduced to one scalar for each perturbation condition  
150 using a custom standardization method based on the deviation from unperturbed walking (cf.  
151 Methods: Custom standardization method). A collection of these standardized scalar values of  
152 biomechanical data across all perturbations form a perturbed biomechanical set. Finally, we select  
153 the biomechanical set that matches the perturbed set of the stride-mean metabolic cost (cf.  
154 Methods: Time series estimation procedure). The original biomechanical time series that most  
155 closely matched the standardized set for the stride-mean metabolic cost is used as the estimate of  
156 within-stride metabolic cost.

157

158 We chose to estimate the metabolic cost of one side of the body rather than the whole body's  
159 metabolic cost. The within-stride metabolic cost of one side of the body provides more descriptive  
160 and potentially useful information for interventions, such as assistive devices, than whole-body  
161 cost, which cannot be attributed to a specific leg. **Using model-based methods, we generated a set**  
162 **of five estimates of the within-stride metabolic cost to indirectly validate our perturbation-based**  
163 **method's performance which were distinct from the five evaluations that were used in the**

164 neuromechanical dataset (cf. Supplementary: Model-based metabolic costs used in the human  
165 experiment dataset).

166

167 All kinematic, kinetic, and muscle activation time series as well as the derived signals (cf.  
168 Methods: Additional derived input time series and algorithm tuning) are stride-normalized and  
169 organized in matrices with one row for each percent of the stride cycle and one column for each  
170 of the 36 perturbation conditions.

$$171 \quad X_{bts} = [100 \times 36] \quad (1)$$

172 Each perturbation's force profile was repeated over multiple stride cycles for a sufficient duration  
173 to obtain steady-state metabolic cost (40 s to obtain ten sufficiently stable strides in the  
174 neuromechanical simulations and 2 min to estimate the steady-state metabolic cost in the human  
175 experiments) [11].

176

177 The stride mean metabolic cost for every condition is also used as an input in our perturbation-  
178 based method.

$$179 \quad \bar{Y} = [1 \times 36] \quad (2)$$

180

181 This stride mean can be estimated from model-based metabolic costs as well as from respiratory  
182  $\dot{V}O_2$  and  $\dot{V}CO_2$  measurements; hence this input is available when estimating the within-stride  
183 metabolic cost in human experiments.

184

#### 185 Custom standardization method

186 Each time series is standardized using a custom method (Supplementary Data 1). First, we take  
187 the stride mean of each biomechanical time series for every perturbation condition.

$$\bar{X}_{bts} = [1 \times 36] \quad (3)$$

189

190 Next, we calculate the deviation of each perturbed walking condition from the unperturbed  
191 walking condition.

$$192 \quad \Delta \bar{X}_{bts} = \bar{X}_{bts} - \bar{X}_{bts,0} \quad = [1 \times 36] \quad (4)$$

193

194 where  $\Delta\bar{X}_{bts}$  is the set of deviations from the unperturbed condition and  $\bar{X}_{bts,0}$  is the stride mean  
 195 of the unperturbed condition.

196

197 Each set of deviations is then normalized by its range of deviations from unperturbed walking

$$198 \quad \bar{X}_{stand} = round\left(\frac{\Delta \bar{X}_{bts} n_{bins}}{\max(\Delta \bar{X}_{bts}) - \min(\Delta \bar{X}_{bts})}\right) = [1 \times 36] \quad (5)$$

199

200 where  $\bar{X}_{stand}$  is the standardized set of deviations from unperturbed walking for each  
 201 biomechanical time series and  $n_{bins}$  is the number of bins. The standardized set is enumerated to  
 202 reduce the effects of floating-point differences between biomechanical measurements. The number  
 203 of bins was set to 80 based on tuning (cf. Methods: Tuning of available data for metabolic cost  
 204 estimation, Supplementary Data 2). This process is similar to Slade et al., (2022) [29].

205

206 In summary, this procedure converted the stride means of biomechanical time series to a range of  
207 standardized values ranging from 1 to 80. We also applied the same standardization procedure  
208 (eqs. 4, 5) to the stride means of derived biomechanical time series as well as to the stride mean  
209 metabolic cost ( $\bar{Y}$ ).

210

211 Time series estimation procedure

212 We ran a minimization procedure that evaluates which standardized biomechanical time series best  
213 matches the standardized metabolic cost. First, we evaluate how well the standardized set of each  
214 biomechanical time series and each derived time series matches the standardized set of metabolic  
215 cost using a sum of square comparison

216 
$$SS_{initial} = \sum_{c=1}^{cond36} (\bar{X}_{stand,c} - \bar{Y}_{stand,c})^2 \quad (6)$$

217

218 where  $SS$  is the sum of squares and  $c$  represents each perturbation condition.

219

220 Then, we conduct a stepwise optimization procedure whereby we evaluate if adding another  
221 standardized biomechanical time series or derived signals to the previous standardized set  
222 improves the  $SS$

223 
$$SS_{new} = \sum_{c=1}^{cond35} ((\bar{X}_{stand,c,j} + \bar{X}_{stand,c,prev\ opt\ SS}) - \bar{Y}_{stand,c})^2 \quad (7)$$

224

225 where  $\bar{X}_{stand,c,prev\ opt\ SS}$  is the standardized set that produced the best  $SS$  in the previous iteration  
226 and  $j$  represents a new biomechanical measurement or derived signal that is evaluated.

227

228 Finally, the time series of the biomechanical measurement, derived signal, or combination of  
229 signals with the lowest  $SS$  is then used to estimate within-stride metabolic cost (Fig. 3). If the  
230 lowest  $SS$  results from one single biomechanical measurement or derived signal, the corresponding  
231 unperturbed time series is used to estimate within-stride metabolic cost

232 
$$Y_{estimated} = X_{SS\ opt} = [100 \times 1] \quad (8)$$

233

234 where  $Y_{estimated}$  is the estimated within-stride metabolic cost,  $X_{SS\ opt}$  is the time series of the  
235 biomechanical measurement or derived signal that resulted in the lowest  $SS$ . In the event the lowest  
236  $SS$  is from a combination of biomechanical measurements and derived signals, we normalize each  
237 signal by its range and sum to serve as the estimate of within-stride metabolic cost

238 
$$Y_{estimated} = \sum_{i=1}^{number\ of\ bts} \frac{X_{bts\ SS\ opt,i}}{\max(X_{bts\ SS\ opt,i}) - \min(X_{bts\ SS\ opt,i})} \quad (9)$$

239  
240 where  $i$  is the index of the biomechanical signals used to achieve the lowest sum of squares.  
241  
242 The approach of leveraging perturbations constitutes a paradigm shift compared to previous  
243 iterative improvements of model-based methods. Our procedure of using data from the perturbed  
244 conditions to estimate the unperturbed condition intrinsically involves estimating (just) outside of  
245 test data, and it is known that overfitting can be an issue in such a procedure. Some features of the  
246 perturbation-based method likely helped avoid this overfitting. We limited the number of inputs  
247 by using a standardization that converted each time series to a scalar (eqs. 3-5). We also generated  
248 a very large number of derived signals.

249  
250 Additional derived input signals and algorithm tuning  
251 We tuned two features of our perturbation-based method: the selection of which mathematical  
252 derived time series would be available for creating the estimation of within-stride metabolic cost  
253 and the number of bins in the custom standardization procedure (cf. Methods: Additional derived  
254 input signals and algorithm tuning). During the tuning, we evaluated which settings improved the  
255 lower-bound, 95% confidence interval of Pearson's correlations between the estimated and the test  
256 time series. After tuning, the mean Pearson's correlation between our perturbation-based method's

257 estimate and time series within the test set was 0.41 (95% CI = 0.33-0.50). We evaluated the impact  
258 of the following options:

- 259 • Options 1-2: The separation of positive and negative regions of the original biomechanical  
260 time series.
- 261 • Options 3-5: The square, cube, or inverse of the original biomechanical time series.
- 262 • Options 6-8: The subtraction, addition, or multiplication of all pairs of the biomechanical  
263 time series.
- 264 • Option 9: An additional set of additions and multiplication of pairs of the mathematically  
265 derived time series (generated from options 1-8).

266 We restricted option 9 to stop after generating 4000 combinations because considering all the  
267 combination permutations was not feasible. We also tuned the number of bins for standardizing  
268 biomechanical time series (eq. 5). This tuning is similar to the sensor selection and bin optimization  
269 in Slade et al. [29].

270  
271 The tuning criterion was correlation performance against 100 test time series. The test time series  
272 used were distinct from the model-based metabolic costs to avoid biasing the evaluation of our  
273 method [28]. As test time series for tuning, we generated 100 time series based on random  
274 combinations of the biomechanical time series from the neuromechanical simulation dataset

$$275 Y_{tuning,k} = c_1|X_{bts,1}| + c_2|X_{bts,2}| \dots c_n|X_{bts,n}| = [100 \times 36] \quad (10)$$

276 where  $Y_{tuning,k}$  represents one of the 100 test time series,  $c_1$  to  $n$  are random coefficients between  
277 0 and 1,  $X_{bts,1}$  to  $X_{bts,n}$  are the positive or negative portions of a randomly chosen number of  
278 biomechanical measurement time series.

279

280 The perturbation-based method's correlation with the 100 test time series was evaluated for each  
281 of 512 ( $2^9$ ) combinations of mathematically derived time series for bin numbers ranging from 10  
282 to 100 (Supplementary Data 2).

283

284 **Statistical Analysis**

285 As a measure of the uncertainty in the literature, we generated a cross-table with pairwise Pearson  
286 correlations between all six literature sources, and we calculated the mean and 95% confidence  
287 interval of the correlations (Fig. 1b). Due to the limits of a Pearson correlation at  $-1$  and  $1$ , we  
288 converted each  $r$ -value to a Z-score using Fisher's Z-transformation. Average Z-scores and z-score  
289 confidence intervals across the correlations in literature, between perturbation-based and  
290 neuromechanical model-based, and between perturbation-based human experimental model-based  
291 were converted back to Pearson  $r$ -values for easier interpretation [30]. All analyses were conducted  
292 in MATLAB 2021b.

293

294 **Results:**

295 Once tuning was completed, and our perturbation-based method was finalized, we evaluated its  
296 performance **at reproducing a variety** of model-based estimates of within-stride metabolic cost (cf.  
297 Supplementary: Model-based metabolic costs used in neuromuscular simulation dataset). We  
298 calculated five within-stride metabolic costs using model-based methods [26]. The mean Pearson's  
299 correlation between the five different model-based within-stride metabolic costs and **our**  
300 **estimations of those using the perturbation-based method** was  $0.55$  (95% CI =  $0.22 - 0.77$ ). **This**  
301 **evaluation performance constitutes** an improvement of at least 50% compared to the mutual  
302 consistency between model-based estimations in the literature for four out of five estimations (Fig.  
303 4 A-E, Table 1).

304 We also indirectly validated our perturbation-based method in data from human experiments. In  
305 vivo, human walking experiments were conducted with a perturbation from a robotic waist tether  
306 applied to the COM (cf. Supplementary: Human experimental dataset for in-vivo evaluation and  
307 application) [20]. In each condition, the tether applied pulling forces with a specific profile  
308 repeatedly to stride cycles for a sufficient duration to induce a different steady-state gait. **We**  
309 **applied the same perturbation-based method to our human experimental dataset without any**  
310 **additional tuning or changes. Our estimation reproduced five independent model-based**  
311 **estimations of metabolic cost with a mean Pearson's correlation of 0.80 between the model-based**  
312 **metabolic costs and their estimations using the perturbation-based method (95% CI = 0.57 – 0.91,**  
313 **Table 2).** This result is also greater than the correlation between model-based estimations currently  
314 in literature with an improvement of at least 75% (Fig. 4F-J) [19,31].

315

316 After successfully completing the indirect validations, we applied our perturbation-based method  
317 to estimate within-stride metabolic cost based on  $\dot{V}O_2$  and  $\dot{V}CO_2$  data from the human experiment  
318 (Fig. 5). When we divide the stride into the first double stance (1-15% of the stride), single stance  
319 (16-50%), push-off (51-65%), and swing (66-100%), their metabolic cost respectively accounted  
320 for 20, 49, 10 and 21% of the total. The estimated cost of push-off is considerably lower than that  
321 of single stance. This is markedly different from the evolution of positive mechanical work  
322 performed by the leg onto the COM, which is about three times as much during push-off compared  
323 to single stance. As such, our perturbation-based estimation confirms that metabolic cost can be  
324 related to sources other than mechanical work [32,33].

325

326 Our estimation that push-off accounts for about one-tenth of the total metabolic cost is similar to  
327 the first estimation using a forward-dynamics musculoskeletal model-based approach (8% [16])

328 but is low compared to estimations from model-based methods that use only joint-based equations  
329 (39% [18] and 49% [19]). Our estimation of the cost of the swing phase (21%) is close to the mean  
330 from previous model-based studies (24%, 95% CI = 19-28% [16,17,19,31,34,35]). This also  
331 supports previous estimations from experimental studies with perturbations to the swing or stance  
332 phase that suggest that the swing phase substantially contributes to the metabolic cost of walking  
333 (swing phase contribution to metabolic cost reported as 10, 12.5 and 17% [14,36,37]).

334

335 While our approach of using perturbations is innovative and yields results consistent with existing  
336 literature, we acknowledge some limitations in our methods, results, and the application. One  
337 methodological limitation is that our method solely relied on lower limb signals for estimating  
338 metabolic costs. Our evaluation replicated model-based costs using lower-limb data and a  
339 simplified neuromuscular model. Notably, we did not directly account for metabolic contributions  
340 from trunk and arm muscles [38]. Another methodological constraint is the tuning of the derived  
341 time series and the number of perturbations required to create the datasets. Adapting this method  
342 for other datasets might require expanding the types of derived time series. In terms of the results,  
343 we recognized that our perturbation-based for estimating within-stride metabolic cost is empirical.  
344 While this offers the advantage of being less biased than model-based methods, this is not  
345 favorable for understanding causal relationships, such as the impact of altering a specific gait  
346 impairment [27,39,40]. Application-wise, a drawback of our method is its reliance on datasets of  
347 walking under various perturbations which can be time-consuming and physically demanding for  
348 participants.

349

350 To advance perturbation-based within-stride metabolic cost estimation's practicality, future  
351 research needs to tackle challenges concerning tuning, time efficiency, and validation. Developing

352 algorithms with greater generality, such as neural networks, could mitigate reliance on specific  
353 tuned options. Investigating perturbation types yielding the most valuable data will streamline data  
354 collection efforts. Finally, exploring innovative indirect validation methods could bolster  
355 confidence in the methodology.

356

357 **Conclusion:**

358 The present work describes a perturbation-based method that can reproduce a wide variety of  
359 model-based, within-stride metabolic costs in two different datasets using a collection of perturbed  
360 conditions. The result suggests that the metabolic cost of push-off is lower than the preceding  
361 single stance phase and that the swing phase has a non-negligible metabolic cost. These findings  
362 may have important applications for designing rehabilitation strategies and assistive devices. For  
363 example, the finding of a large cost of single stance may help explain how an unpowered ankle  
364 exoskeleton that primarily provides torque during single stance could reduce metabolic cost  
365 despite increasing plantar flexor activation during push-off [41]. The trajectory of community  
366 research has incrementally reduced the time to estimate steady-state metabolic cost from several  
367 minutes using Douglas bag, mixing chamber, to 1-2 minutes with breath-by-breath systems [42]  
368 and fitted approximation methods [11,43,44], and finally, to a matter of seconds via a combination  
369 of sensors and fitting methods [45,46]. This work grants greater understanding of metabolic cost  
370 beyond what was previously possible by presenting within movement cycle interpretability instead  
371 of more rapid interpretation of steady-state metabolic cost.

372

373

374

375

376

377

378 **List of abbreviations**

379 EMG: Electromyography

380 COM: Center of Mass

381  
382 **Declarations**

383  
384 **Ethics approval and consent to participate:** The study protocol was approved by the University  
385 of Nebraska Medical Center's Institutional Review Board in accordance with the Declaration of  
386 Helsinki. Informed consent was obtained from all participants prior to their participation in the  
387 study.

388  
389 **Acknowledgments:** We would like to thank Eric Perault, Daniel P. Ferris, Kota Takahashi,  
390 Rodger Kram, and Steven H. Collins for helpful suggestions on this project. We would like to  
391 thank Ben Senderling, and HuMoTech for support with the experimental data collection. We  
392 would also like to thank Keegan Moore, Nathaniel Hunt, and Mukul Mukherjee for feedback on  
393 the initial draft.

394  
395 **Funding:** This work was supported by National Science Foundation Grant No. 2203143, NU  
396 Collaboration Grant No. 27102, National Institutes of Health Grant No. P20GM109090, and the  
397 Centre for Research in Human Movement Variability of the University of Nebraska at Omaha.

398  
399 **Author contributions:** Each author's contribution(s) to the paper were as follows:

400     Conceptualization: ACD, PM

401     Methodology: ACD, SS, PM

402     Investigation: ACD, PA, AMG

403     Visualization: ACD, PM

404     Funding acquisition: PM

405     Project administration: PM

406     Supervision: PM

407     Writing – original draft: ACD, SS, PM

408     Writing – review & editing: ACD, PA, AMG, SS, PM

409  
410 **Competing interests:** PA, AMG, and PM submitted a provisional patent application (serial  
411 number: 63/320,303; docket number 22057P) on the waist tether used for the human experimental  
412 dataset.

413  
414  
415 **Data and materials availability:** All data are available in the main text or the supplementary  
416 materials.

417

418

419

420

421

422

423

424

425

426

427 **References:**

- 428 1. Muller-Schwarze D, Stagge B, Muller-Schwarze C. Play Behavior: Persistence, Decrease, and  
429 Energetic Compensation During Food Shortage in Deer Fawns. *Science*. 1982;215:85–7.
- 430 2. Grobler JMB, Wood CM. The physiology of rainbow trout in social hierarchies: two ways of  
431 looking at the same data. *J Comp Physiol B*. 2013;183:787–99.
- 432 3. Brown GL, Seethapathi N, Srinivasan M. A unified energy-optimality criterion predicts  
433 human navigation paths and speeds. *Proc Natl Acad Sci*. 2021;118:e2020327118–e2020327118.
- 434 4. Zarrugh MY, Todd FN, Ralston HJ. Optimization of energy expenditure during level walking.  
435 *Eur J Appl Physiol*. 1974;33:293–306.
- 436 5. Gordon KE, Ferris DP, Kuo AD. Metabolic and Mechanical Energy Costs of Reducing  
437 Vertical Center of Mass Movement During Gait. *Arch Phys Med Rehabil*. 2009;90:136–44.
- 438 6. Platts MM, Rafferty D, Paul L. Metabolic Cost of Overground Gait in Younger Stroke  
439 Patients and Healthy Controls. *Med Sci Sports Exerc*. 2006;38:1041–6.
- 440 7. Rose J, Gamble JG, Burgos A, Medeiros J, Haskell WL. Energy expenditure index of walking  
441 for normal children and for children with cerebral palsy. *Dev Med Child Neurol*. 2010;32:333–  
442 40.
- 443 8. Knaggs JD, Larkin KA, Manini TM. Metabolic Cost of Daily Activities and Effect of Mobility  
444 Impairment in Older Adults. *J Am Geriatr Soc*. 2011;59:2118–23.
- 445 9. Stanaway FF, Gnjidic D, Blyth FM, Couteur DGL, Naganathan V, Waite L, et al. How fast  
446 does the Grim Reaper walk? Receiver operating characteristics curve analysis in healthy men  
447 aged 70 and over. *BMJ*. 2011;343:d7679–d7679.
- 448 10. Ndahimana D, Kim E-K. Measurement Methods for Physical Activity and Energy  
449 Expenditure: a Review. *Clin Nutr Res*. 2017;6:68–68.
- 450 11. Selinger JC, Donelan JM. Estimating instantaneous energetic cost during non-steady-state  
451 gait. *J Appl Physiol*. 2014;117:1406–15.
- 452 12. Whipp BJ. Rate constant for the kinetics of oxygen uptake during light exercise. *J Appl  
453 Physiol*. 1971;30:261–3.
- 454 13. Ferrannini E. The theoretical bases of indirect calorimetry: A review. *Metabolism*.  
455 1988;37:287–301.
- 456 14. Doke J, Donelan JM, Kuo AD. Mechanics and energetics of swinging the human leg. *J Exp  
457 Biol*. 2005;208:439–45.
- 458 15. Marsh RL, Ellerby DJ, Carr JA, Henry HT, Buchanan CI. Partitioning the Energetics of  
459 Walking and Running: Swinging the Limbs Is Expensive. *Science*. 2004;303:80–3.

460 16. Umberger BR. Stance and swing phase costs in human walking. *J R Soc Interface*.  
461 2010;7:1329–40.

462 17. Markowitz J, Herr H. Human Leg Model Predicts Muscle Forces, States, and Energetics  
463 during Walking. *PLoS Comput Biol*. 2016;12:e1004912–e1004912.

464 18. Kim JH, Roberts D. A joint-space numerical model of metabolic energy expenditure for  
465 human multibody dynamic system. *Int J Numer Methods Biomed Eng*. 2015;31:e02721–e02721.

466 19. Mohammadzadeh Gonabadi A, Antonellis P, Malcolm P. Differences between joint-space  
467 and musculoskeletal estimations of metabolic rate time profiles. *PLoS Comput Biol*.  
468 2020;16:e1008280–e1008280.

469 20. Antonellis P, Mohammadzadeh Gonabadi A, Myers SA, Pipinos II, Malcolm P.  
470 Metabolically efficient walking assistance using optimized timed forces at the waist. *Sci Robot*.  
471 2022;7.

472 21. Gonabadi AM, Antonellis P, Malcolm P. A System for Simple Robotic Walking Assistance  
473 With Linear Impulses at the Center of Mass. *IEEE Trans Neural Syst Rehabil Eng*.  
474 2020;28:1353–62.

475 22. Rouse EJ, Hargrove LJ, Perreault EJ, Kuiken TA. Estimation of human ankle impedance  
476 during the stance phase of walking. *IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med*  
477 *Biol Soc*. 2014;22:870–8.

478 23. Kirsch RF, Kearney RE. Identification of time-varying stiffness dynamics of the human  
479 ankle joint during an imposed movement: *Exp Brain Res*. 1997;114:71–85.

480 24. Gottschall JS, Kram R. Energy cost and muscular activity required for leg swing during  
481 walking. *J Appl Physiol*. 2005;99:23–30.

482 25. Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human  
483 walking: insights from load-carrying and speed experiments. *J Appl Physiol Bethesda Md* 1985.  
484 2003;95:172–83.

485 26. Song S, Geyer H. A neural circuitry that emphasizes spinal feedback generates diverse  
486 behaviours of human locomotion. *J Physiol*. 2015;593:3493–511.

487 27. Song S, Geyer H. Predictive neuromechanical simulations indicate why walking performance  
488 declines with ageing. *J Physiol*. 2018;596:1199–210.

489 28. Halilaj E, Rajagopal A, Fiterau M, Hicks JL, Hastie TJ, Delp SL. Machine learning in human  
490 movement biomechanics: Best practices, common pitfalls, and new opportunities. *J Biomech*.  
491 2018;81:1–11.

492 29. Slade P, Kochenderfer MJ, Delp SL, Collins SH. Personalizing exoskeleton assistance while  
493 walking in the real world. *Nature*. 2022;610:277–82.

494 30. Silver NC, Dunlap WP. Averaging correlation coefficients: Should Fisher's z transformation  
495 be used? *J Appl Psychol.* 1987;72:146–8.

496 31. Pimentel RE, Pieper NL, Clark WH, Franz JR. Muscle metabolic energy costs while  
497 modifying propulsive force generation during walking. *Comput Methods Biomed Engin.* 2021;24:1552–65.

499 32. Umberger BR, Rubenson J. Understanding Muscle Energetics in Locomotion. *Exerc Sport  
500 Sci Rev.* 2011;39:59–67.

501 33. Sawicki GS, Lewis CL, Ferris DP. It Pays to Have a Spring in Your Step. *Exerc Sport Sci Rev.* 2009;37:130–8.

503 34. Jackson RW, Dembia CL, Delp SL, Collins SH. Muscle-tendon mechanics explain  
504 unexpected effects of exoskeleton assistance on metabolic rate during walking. *J Exp Biol.* 2017;

505 35. Roberts D, Hillstrom H, Kim JH. Instantaneous Metabolic Cost of Walking: Joint-Space  
506 Dynamic Model with Subject-Specific Heat Rate. *PLOS ONE.* 2016;11:e0168070–e0168070.

507 36. Gottschall JS, Kram R. Energy cost and muscular activity required for leg swing during  
508 walking. *J Appl Physiol.* 2005;99:23–30.

509 37. Griffin TM, Roberts TJ, Kram R. Metabolic cost of generating muscular force in human  
510 walking: insights from load-carrying and speed experiments. *J Appl Physiol Bethesda Md* 1985.  
511 2003;95:172–83.

512 38. Collins SH, Adamczyk PG, Kuo AD. Dynamic arm swinging in human walking. *Proc R Soc  
513 B Biol Sci.* 2009;276:3679–88.

514 39. Ong CF, Geijtenbeek T, Hicks JL, Delp SL. Predicting gait adaptations due to ankle  
515 plantarflexor muscle weakness and contracture using physics-based musculoskeletal simulations.  
516 Srinivasan M, editor. *PLOS Comput Biol.* 2019;15:e1006993.

517 40. Johnson RT, Bianco NA, Finley JM. Patterns of asymmetry and energy cost generated from  
518 predictive simulations of hemiparetic gait. Faisal AA, editor. *PLOS Comput Biol.*  
519 2022;18:e1010466.

520 41. Collins SH, Bruce Wiggin M, Sawicki GS. Reducing the energy cost of human walking  
521 using an unpowered exoskeleton. *Nature.* 2015;

522 42. Beaver WL, Wasserman K, Whipp BJ. On-line computer analysis and breath-by-breath  
523 graphical display of exercise function tests. *J Appl Physiol.* 1973;34:128–32.

524 43. Adeyeri B, Thomas SA, Arellano CJ. A simple method reveals minimum time required to  
525 quantify steady-rate metabolism and net cost of transport for human walking. *J Exp Biol.*  
526 2022;225.

527 44. Zhang J, Fiers P, Witte KA, Jackson RW, Poggensee KL, Atkeson CG, et al. Human-in-the-  
528 loop optimization of exoskeleton assistance during walking. *Science.* 2017;356:1280–4.

529 45. Ingraham KA, Ferris DP, Remy CD. Evaluating physiological signal salience for estimating  
530 metabolic energy cost from wearable sensors. *J Appl Physiol.* 2019;126:717–29.

531 46. Slade P, Kochenderfer MJ, Delp SL, Collins SH. Sensing leg movement enhances wearable  
532 monitoring of energy expenditure. *Nat Commun.* 2021;12:4312–4312.

533 47. Umberger BR, Gerritsen KGM, Martin PE. A Model of Human Muscle Energy Expenditure.  
534 *Comput Methods Biomech Biomed Engin.* 2003;6:99–111.

535 48. Houdijk H, Bobbert MF, de Haan A. Evaluation of a Hill based muscle model for the energy  
536 cost and efficiency of muscular contraction. *J Biomech.* 2006;39:536–43.

537 49. Bhargava LJ, Pandy MG, Anderson FC. A phenomenological model for estimating metabolic  
538 energy consumption in muscle contraction. *J Biomech.* 2004;37:81–8.

539 50. Lichtwark GA, Wilson AM. Effects of series elasticity and activation conditions on muscle  
540 power output and efficiency. *J Exp Biol.* 2005;208:2845–53.

541 51. Koelewijn AD, Heinrich D, van den Bogert AJ. Metabolic cost calculations of gait using  
542 musculoskeletal energy models, a comparison study. *PLOS ONE.* 2019;14:e0222037–e0222037.

543 52. Margaria R. Positive and negative work performances and their efficiencies in human  
544 locomotion. *Int Z Angew Physiol Einschlieulich Arbeitsphysiologie.* 1968;25:339–51.

545 53. Beck ON, Punith LK, Nuckols RW, Sawicki GS. Exoskeletons Improve Locomotion  
546 Economy by Reducing Active Muscle Volume. *Exerc Sport Sci Rev.* 2019;47:237–45.

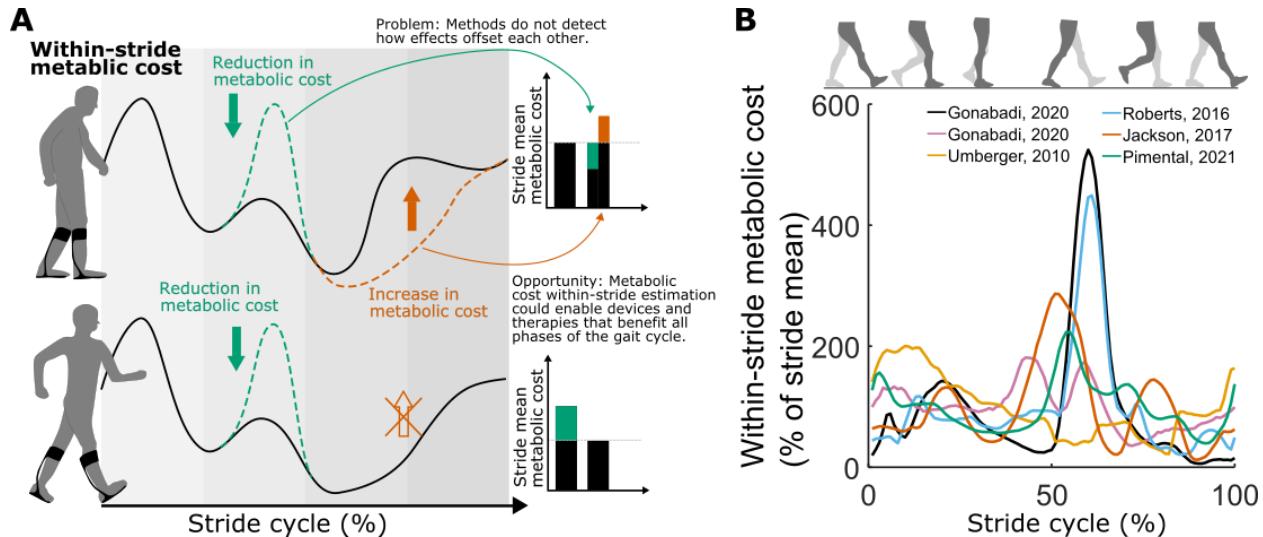
547 54. Kuo AD, Donelan JM, Ruina A. Energetic consequences of walking like an inverted  
548 pendulum: Step-to-step transitions. *Exerc Sport Sci Rev.* 2005;

549 55. Caputo JM, Collins SH. Prosthetic ankle push-off work reduces metabolic rate but not  
550 collision work in non-amputee walking. *Sci Rep.* 2015;4:7213–7213.

551 56. Minetti AE, Alexander RMcN. A Theory of Metabolic Costs for Bipedal Gaits. *J Theor Biol.*  
552 1997;186:467–76.

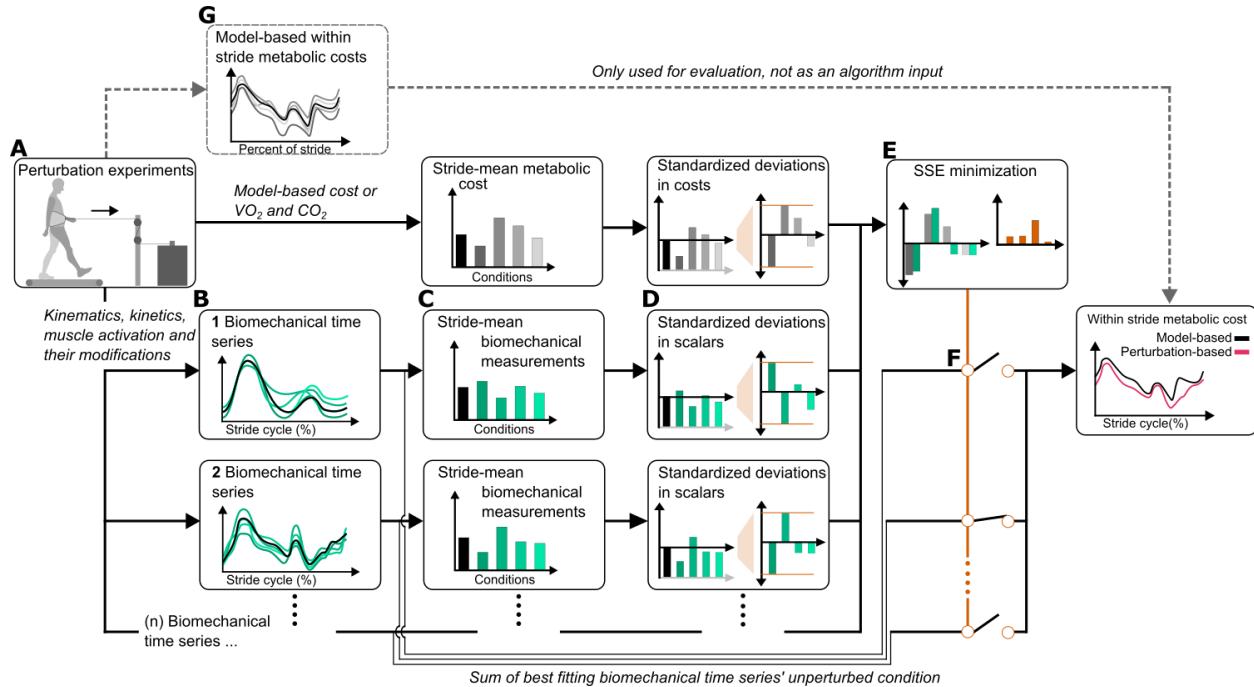
553

554



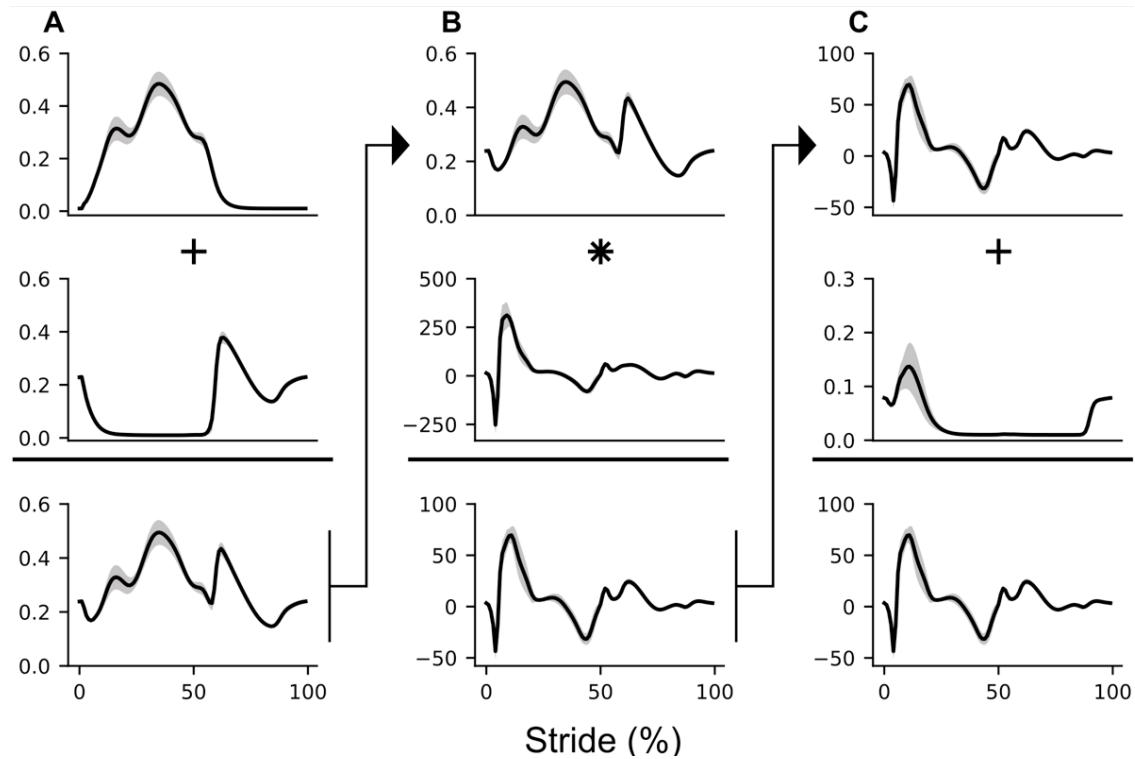
555  
556 **Fig. 1. Motivation.** (A). Limitation of assessing stride-mean metabolic cost using breath-by-breath  
557 measurements. The upper figure illustrates an intervention resulting in a cost reduction (depicted  
558 in green) during push-off and a cost increase (depicted in brown) during swing. The stride-mean  
559 metabolic cost (displayed in bars) does not enable differentiation of these effects. The lower  
560 section of the figure illustrates how comprehending the costs associated with various phases could  
561 facilitate the enhancement of interventions. (B). Limited consistency between estimations of  
562 within-stride metabolic cost using model-based methods. The mean correlation between  
563 estimations is 0.29 (95% confidence interval (CI) = 0.03-0.43) [16,19,31,34,35].

564  
565



566  
567 **Fig. 2. Flow of data for estimating and evaluating within-stride metabolic cost.** (A). A  
568 perturbed dataset was gathered using force perturbations at the COM. Biomechanical time series  
569 (e.g., kinematics, kinetics, muscle activations) as well as stride-mean metabolic cost were  
570 measured for each walking condition. (B). These measurements are stride normalized and (C).  
571 then converted to a stride-mean for each walking condition. (D). The stride means for each  
572 biomechanical measurement are custom standardized by subtracting the unperturbed stride mean  
573 from each perturbed stride mean and then dividing by the range of deviations from unperturbed  
574 walking. (E). The custom standardized biomechanical time series are then compared to the custom  
575 standardized within-stride metabolic cost using the sum of square error. This process will be  
576 iterative, where an additional custom standardized biomechanical time series may be added if it  
577 reduces the sum of square error. (F). The biomechanical time series or combination of  
578 biomechanical time series that corresponded to the lowest sum of square error are selected. The  
579 unperturbed condition from the selected biomechanical time series is used as the estimate for  
580 within-stride metabolic cost. (G). The original model-based within-stride metabolic cost is only  
581 used for validation of our perturbation-based method. Our perturbation-based method leverages  
582 information from stride-mean values that are experimentally available to indirect calorimetry.

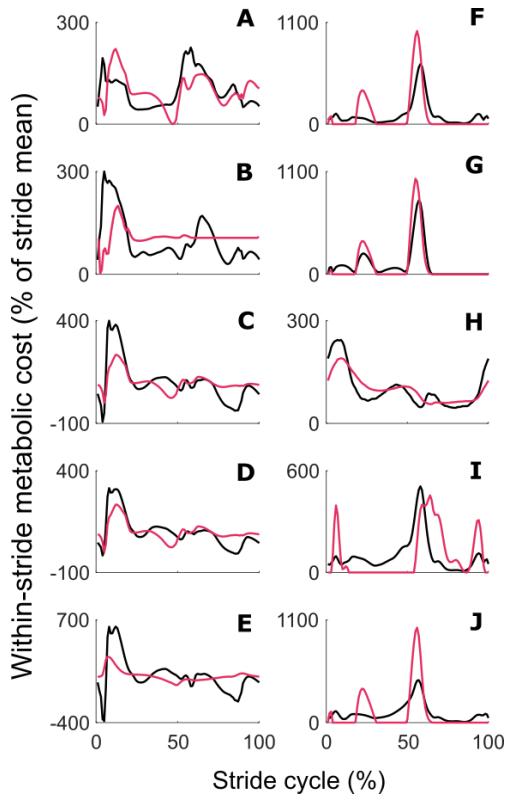
583  
584



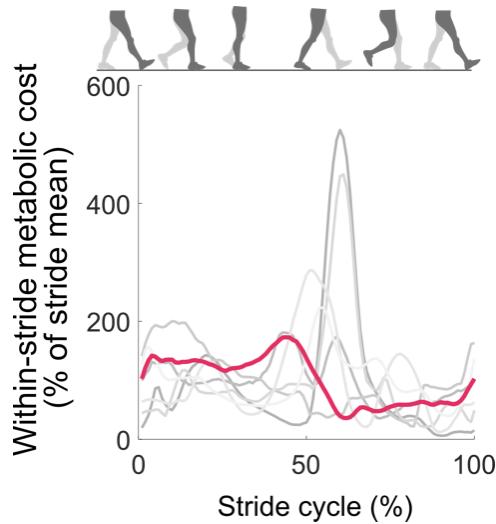
585

586 **Fig. 3. Illustration of how biomechanical and derived time-series are combined to produce a**  
 587 **within-stride metabolic cost time series.** Each column (A, B, C) in the figure represents a  
 588 mathematical operation used to create a new time series. The final plot on the bottom right is the  
 589 estimated within-stride metabolic cost. The specific combination shown here was used to estimate  
 590 the Bhargava et al., 2004 metabolic cost in Table 1.

591



592  
593 **Fig. 4. Evaluation of perturbation-based method.** Evaluation of perturbation-based method's  
594 ability to reproduce within-stride metabolic cost of different model-based methods in different  
595 datasets. Estimations from each model-based method are represented by black lines. Our  
596 perturbation-based method's estimations are represented with red lines. The left column shows  
597 evaluations in the neuromechanical simulation dataset, and the right column shows evaluations in  
598 the human experiment dataset. (A). Umberger et al., 2003 [47], (B). Houdijk et al. 2006 [48], (C).  
599 Bhargava et al., 2004 [49], (D). Lichtwark et al, 2005 [50] (E). Margaria 1968, applied onto muscle  
600 work rate [51,52], (F). Beck et al., 2019,[53] (G). Kim and Roberts, 2015 [18] (H). Margaria 1968,  
601 applied onto COM work rate [52,54], (I). Margaria 1968, applied onto joint work rate [52,55] (J).  
602 Minetti and Alexander, 1997 [56].  
603



604  
 605 **Fig. 5. Application of the perturbation-based method to estimate within-stride metabolic**  
 606 **cost.** The red line shows the perturbation-based estimate of within-stride metabolic cost using  
 607 stride means of  $\dot{V}O_2$  and  $\dot{V}CO_2$  from the human experiment dataset as inputs. The grey lines show  
 608 previous estimations from model-based methods [16,19,31,34,35].

609  
 610  
 611  
 612  
 613  
 614  
 615  
 616  
 617  
 618  
 619  
 620  
 621  
 622  
 623  
 624  
 625  
 626  
 627  
 628  
 629

630

**Table 1. Evaluation of perturbation-based method in neuromechanical dataset**

| Stride mean metabolic cost input | Selected mathematically derived combination of biomechanical time series | Estimated versus actual time series correlation + |
|----------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|
| Bhargava et al., 2004            | (Soleus + tibialis anterior) * hip power + vastus medialis               | 0.76                                              |
| Houdijk et al., 2006             | (COM power + vastus medialis) * rectus femoris + vastus medialis         | 0.22                                              |
| Lichtwark et al., 2005           | (Soleus + tibialis anterior) * hip power + vastus medialis               | 0.77                                              |
| Margaria, 1968, muscle-based     | Knee angle – hip moment                                                  | 0.49                                              |
| Umberger, 2003                   | (Stride time + vastus medialis) * hip power + vastus medialis            | 0.42                                              |
| <b>Mean Pearson correlation</b>  | <b>0.55 (95% CI = 0.22 – 0.77)*</b>                                      |                                                   |

+ The final column lists correlations between model-based within-stride metabolic costs and estimations of these costs using the perturbation-based method (Fig. 4 AE). The stride mean metabolic costs used as inputs for the perturbation-based estimation are named in the first column. The Pearson correlations serve as a measure of the estimation performance.

\* Mean Pearson correlation and confidence interval are calculated following Fisher Z transformation.

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

**Table 2. Evaluation of perturbation-based method in human experiment dataset.**

| Stride mean metabolic cost input    | Selected mathematically derived combination of biomechanical time series | Estimated versus actual time series correlation <sup>+</sup> |
|-------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|
| Beck et al., 2019                   | Hip angle – vastus medialis + gluteus maximus + vertical GRF             | 0.86                                                         |
| Kim and Roberts, 2015               | (Positive portion of hip power)                                          | 0.41                                                         |
| Margaria, 1968 COM-based            | (COM power positive portion)*Soleus+ vertical GRF                        | 0.91                                                         |
| Margaria, 1968 joint-based          | (COM power positive portion)*vastus medialis+ vertical GRF               | 0.78                                                         |
| Minetti and Alexander, 1997         | (COM power positive portion)*tibialis anterior + vertical GRF            | 0.83                                                         |
| $\dot{V}O_2$ and $\dot{V}CO_2$ data | Hip angle – tibialis anterior + gastrocnemius + vertical GRF             | N/A <sup>#</sup>                                             |
| <b>Mean Pearson correlation</b>     |                                                                          | <b>0.80 (95% CI = 0.57 -0.91)*</b>                           |

664

<sup>+</sup> The final column lists correlations between model-based within-stride metabolic costs and estimations of these costs using the perturbation-based method (Fig. 4 FJ). The stride mean metabolic costs used as inputs for the perturbation-based estimation are named in the first column. The Pearson correlations serve as a measure of the estimation performance.

665

666

667

668

669

\* Mean Pearson correlation and confidence interval are calculated following Fisher Z transformation.

# The final row shows the combination that was selected to plot the within-stride metabolic cost time series based on respiratory  $\dot{V}O_2$  and  $\dot{V}CO_2$  data. In this application, there was no reference to compare our estimation-performance against; hence no correlation is reported.

670

671

672

673

674

675

676