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19  Abstract:
20 Metabolic cost greatly impacts trade-offs within a variety of human movements. Standard
21 respiratory measurements only obtain the mean cost of a movement cycle, preventing
22 understanding of the contributions of different phases in, for example, walking. We present a
23 method that estimates the within-stride cost of walking by leveraging measurements under
24 different force perturbations. The method reproduces time series with greater consistency (r =
25 0.55 and 0.80 in two datasets) than previous model-based estimations (r = 0.28). This
26 perturbation-based method reveals how the cost of push-off (10%) is much smaller than would
27 be expected from positive mechanical work (~70%). This work elucidates the costliest phases
28 during walking, offering new targets for assistive devices and rehabilitation strategies.
29
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Introduction:

Metabolic cost is a critical measure used to characterize movement behavior [1-3]. Healthy
walkers naturally adopt an energetically optimal stride cycle, for example, by walking with a step
length [4] and knee flexion angle [5] that minimizes metabolic cost. Pathologies like stroke and
cerebral palsy alter patients’ walking stride resulting in increases to metabolic cost by 60 to 2-
300% [6,7]. Such increases in metabolic cost correlate to drastic reductions in people’s mobility
and overall quality of life [8,9]. If we understand how stride cycle phases contribute to metabolic

cost, therapies and devices may be better optimized to improve mobility (Fig. 1A).

Measurements of metabolic cost are too slow to detect the contributions of different stride phases.
Current methods to calculate energy from oxidative reactions include measuring respiratory CO2
production by ingesting water with a radioisotope (‘doubly labelled water method’), measuring
oxidative heat production using a chamber (‘direct calorimetry’), and measuring O2 consumption
from respiration (‘indirect calorimetry’) [10]. Indirect calorimetry is the fastest and most
commonly used method for measuring metabolic cost during locomotion; however, it still requires
averaging several minutes of breaths to be reliable [11-13]. A typical walking stride lasts about
one second meaning current methods can only measure the mean metabolic cost following a bout
of steady-state walking. Experiments that approximated the cost of the swing phase by recording
cyclical leg swinging [14] and by measuring blood flow from injected microspheres in animals
that are then sacrificed [15] suggest that the stride-mean metabolic cost does not necessarily

represent the contributions of individual phases (‘'within-stride metabolic cost’).

Several model-based methods of estimating within-stride metabolic cost have been proposed but

remain inconclusive. Umberger developed a set of equations to estimate metabolic cost from
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muscle parameters and used this to produce the first estimation of within-stride metabolic cost
from a forward simulation of walking [16]. Other groups used EMG-driven simulations [17] or
equations based on joint kinetics instead of muscle parameters [18]. However, when comparing
those methods to each other, their estimations of within-stride metabolic cost are relatively
inconsistent (Pearson correlation: » = 0.29, n = 6 estimations, Fig. 1B) [19]. Currently, there is no
way to validate these model-based estimations for within-stride metabolic cost since measurements
from indirect calorimetry only obtain a stride mean. This motivates the development of an
alternative method to estimate within-stride metabolic cost that is supported by indirect validation

approaches.

We hypothesized that applying a set of perturbations creates a set of instances of the behavior
where the differences in the time series between each perturbed instance can be attributed to the
different magnitudes and timings of the applied perturbation. By applying perturbations repeatedly
to a specific part of the gait cycle for several minutes, we can induce changes in the stride-mean
metabolic cost as well as in the biomechanical time series (e.g., kinematics, kinetics, and muscle
activations) [19-21]. We postulated the variation across the set of perturbed walking strides would
be representative of the fluctuations in metabolic cost within the stride cycle so long as the set
contained a large number of different perturbations. If true, this would enable a method to extract
key features of within-stride metabolic cost. Our approach is inspired by prior studies that utilized
ankle perturbations to assess time series of joint impedance during the stance phase [22,23] as well
as studies that used elastic bands and added mass to estimate the cost of stance and swing phases
[24,25]. To our knowledge, using of a perturbation-based approach for estimating within-stride

metabolic cost time series is novel.
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Using this concept, extraction of within-stride behaviour from a collection of perturbed instances,
we developed an alternative method to estimate within-stride metabolic cost that we refer to as our
‘perturbation-based method’.  Our method estimates within-stride metabolic cost using
measurements from a set of perturbed walking strides. We then evaluated our method's ability to

consistently reproduce model-based estimates of within-stride metabolic cost.

Materials and Methods:

Overview

The perturbation-based method was initially developed and tuned using a dataset from a
neuromechanical simulation [26,27]. The tuned method was then validated against distinct signals
from the neuromechanical simulation as well as a separate dataset from human experiments. In
both datasets, biomechanical time series were recorded during 35 different perturbed walking
conditions and one unperturbed, normal walking condition [20]. In each perturbation condition,
we applied a force profile onto the COM with specific timings, durations, and magnitudes. The
same perturbation force profiles were used in the neuromechanical simulations and human
experiments. In the neuromechanical simulation, we applied the perturbations by simulating a
forward force applied to the hip. In the human experiments, we applied forward forces using a
robotic waist tether connected to the hip. In both datasets, we generated model-based estimations
of within-stride metabolic cost as test cases to evaluate our perturbation-based method's
performance. Re-evaluating our method in two distinct datasets avoids dataset bias [28]. We
indirectly validated our perturbation-based method by reproducing the within-stride metabolic cost

from those model-based estimations.

Simulation dataset
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We adapted a neuromechanical simulation from Song and Geyer to walk under force perturbations
from a waist tether [26,27]. Specifically, we used a two-dimensional variant that restricts motion
to the sagittal plane [26]. We simulated perturbations with forward forces applied at the hip of a
model with seven rigid segments in Simscape First Generation Multibody (MathWorks, Natick,
MA). In this framework, we simulated 32 sinusoidal force profiles with peak timings covering the
entire gait cycle and peak forces ranging from 0 to 24% percent of body weight, three constant

force profiles, and an unperturbed walking condition.

The neuromechanical model’s walking control strategy was optimized for each perturbed walking
condition (cf. Supplementary: Neuromechanical simulation dataset for tuning and in silico
evaluation). Time series data were extracted for each of the optimized control strategies to
constitute the neuromechanical dataset. We then constructed 100 time series to serve as test data
for tuning our perturbation-based method. These test time series were random linear combinations
of the different biomechanical time series, so they were distinct from the model-based estimates

that would be used later for evaluation.

Experimental dataset

We used biomechanical and indirect calorimetry data from previous human experiments [20] with
a robotic waist tether [21] for the in vivo evaluation and application of our perturbation-based
method (Supplementary Data 1). Ten healthy participants (age: 28.0 = 4.7 years, body mass: 83.2
+ 12.2 kg, height: 1.80 £ 0.05 m; mean = SD) walked under the same perturbations as in the
neuromechanical simulation dataset. In this case, the perturbations were generated by a robotic
waist tether controlled by a temporal algorithm that enables pulling during a specific portion of

the gait cycle with high consistency.
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Perturbation-based method input signals

Our perturbation-based estimation method uses the stride-mean metabolic cost as well as within-
stride biomechanical time series to estimate within-stride metabolic cost (Fig. 2 C and F. Methods:
Perturbation-based method). The biomechanical time series as well as additional mathematically
derived combinations of those time series are considered potential estimates of within-stride
metabolic cost. Our perturbation-based method first calculates the mean cycle from 0 to 100% of
the stride for each biomechanical time series for each perturbation condition. Then each stride-
normalized biomechanical time series is reduced to one scalar for each perturbation condition
using a custom standardization method based on the deviation from unperturbed walking (cf.
Methods: Custom standardization method). A collection of these standardized scalar values of
biomechanical data across all perturbations form a perturbed biomechanical set. Finally, we select
the biomechanical set that matches the perturbed set of the stride-mean metabolic cost (cf.
Methods: Time series estimation procedure). The original biomechanical time series that most
closely matched the standardized set for the stride-mean metabolic cost is used as the estimate of

within-stride metabolic cost.

We chose to estimate the metabolic cost of one side of the body rather than the whole body's
metabolic cost. The within-stride metabolic cost of one side of the body provides more descriptive
and potentially useful information for interventions, such as assistive devices, than whole-body
cost, which cannot be attributed to a specific leg. Using model-based methods, we generated a set
of five estimates of the within-stride metabolic cost to indirectly validate our perturbation-based

method's performance which were distinct from the five evaluations that were used in the
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neuromechanical dataset (cf. Supplementary: Model-based metabolic costs used in the human

experiment dataset).

All kinematic, kinetic, and muscle activation time series as well as the derived signals (cf.
Methods: Additional derived input time series and algorithm tuning) are stride-normalized and
organized in matrices with one row for each percent of the stride cycle and one column for each
of the 36 perturbation conditions.
Xpes = [100 X 36] (1)

Each perturbation’s force profile was repeated over multiple stride cycles for a sufficient duration
to obtain steady-state metabolic cost (40 s to obtain ten sufficiently stable strides in the
neuromechanical simulations and 2 min to estimate the steady-state metabolic cost in the human

experiments) [11].

The stride mean metabolic cost for every condition is also used as an input in our perturbation-
based method.

Y =[1 x 36] (2)
This stride mean can be estimated from model-based metabolic costs as well as from respiratory
V0, and VCO, measurements; hence this input is available when estimating the within-stride

metabolic cost in human experiments.

Custom standardization method

Each time series is standardized using a custom method (Supplementary Data 1). First, we take

the stride mean of each biomechanical time series for every perturbation condition.
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Xpes = [1 % 36] 3)
Next, we calculate the deviation of each perturbed walking condition from the unperturbed
walking condition.

AXpes = Kpes — ths,o =[1 x 36] (4)

where AX,, is the set of deviations from the unperturbed condition and Xj,s  is the stride mean

of the unperturbed condition.

Each set of deviations is then normalized by its range of deviations from unperturbed walking

z _ AXptsNpins _

where Xgqnqis the standardized set of deviations from unperturbed walking for each
biomechanical time series and npins 1S the number of bins. The standardized set is enumerated to
reduce the effects of floating-point differences between biomechanical measurements. The number
of bins was set to 80 based on tuning (cf. Methods: Tuning of available data for metabolic cost

estimation, Supplementary Data 2). This process is similar to Slade et al., (2022) [29].

In summary, this procedure converted the stride means of biomechanical time series to a range of
standardized values ranging from 1 to 80. We also applied the same standardization procedure
(egs. 4, 5) to the stride means of derived biomechanical time series as well as to the stride mean

metabolic cost (V).
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Time series estimation procedure

We ran a minimization procedure that evaluates which standardized biomechanical time series best
matches the standardized metabolic cost. First, we evaluate how well the standardized set of each
biomechanical time series and each derived time series matches the standardized set of metabolic

cost using a sum of square comparison

_ d36(§ 7 2
SSinitial - Zgo=nl 36(Xstand,c - Ystand,c) (6)
where SS is the sum of squares and ¢ represents each perturbation condition.

Then, we conduct a stepwise optimization procedure whereby we evaluate if adding another
standardized biomechanical time series or derived signals to the previous standardized set

improves the SS

2
— cond35 v v 174
SSnew - Zc: 1 ((Xstand,c,j + Xstand,c,prev opt SS) - Ystand,c) (7)

where X stand,c,prev opt ss 18 the standardized set that produced the best SS in the previous iteration

and j represents a new biomechanical measurement or derived signal that is evaluated.

Finally, the time series of the biomechanical measurement, derived signal, or combination of
signals with the lowest SS is then used to estimate within-stride metabolic cost (Fig. 3). If the
lowest SS results from one single biomechanical measurement or derived signal, the corresponding

unperturbed time series is used to estimate within-stride metabolic cost

Yestimatea = Xss opt — [100 x 1] (8)
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where Yestimateq 18 the estimated within-stride metabolic cost, Xgg op¢18 the time series of the

biomechanical measurement or derived signal that resulted in the lowest SS. In the event the lowest
SS is from a combination of biomechanical measurements and derived signals, we normalize each

signal by its range and sum to serve as the estimate of within-stride metabolic cost

number of bts Xbts SS opt,i
Yesti = X ' 9)

estimated = .
=1 maX(ths SS opt,i)_mln (Xbts sS opt,i)

where i is the index of the biomechanical signals used to achieve the lowest sum of squares.

The approach of leveraging perturbations constitutes a paradigm shift compared to previous
iterative improvements of model-based methods. Our procedure of using data from the perturbed
conditions to estimate the unperturbed condition intrinsically involves estimating (just) outside of
test data, and it is known that overfitting can be an issue in such a procedure. Some features of the
perturbation-based method likely helped avoid this overfitting. We limited the number of inputs
by using a standardization that converted each time series to a scalar (egs. 3-5). We also generated

a very large number of derived signals.

Additional derived input signals and algorithm tuning

We tuned two features of our perturbation-based method: the selection of which mathematical
derived time series would be available for creating the estimation of within-stride metabolic cost
and the number of bins in the custom standardization procedure (cf. Methods: Additional derived
input signals and algorithm tuning). During the tuning, we evaluated which settings improved the
lower-bound, 95% confidence interval of Pearson’s correlations between the estimated and the test

time series. After tuning, the mean Pearson’s correlation between our perturbation-based method's
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estimate and time series within the test set was 0.41 (95% CI=0.33-0.50). We evaluated the impact
of the following options:
e Options 1-2: The separation of positive and negative regions of the original biomechanical
time series.
e Options 3-5: The square, cube, or inverse of the original biomechanical time series.
e Options 6-8: The subtraction, addition, or multiplication of all pairs of the biomechanical
time series.
e Option 9: An additional set of additions and multiplication of pairs of the mathematically

derived time series (generated from options 1-8).

We restricted option 9 to stop after generating 4000 combinations because considering all the
combination permutations was not feasible. We also tuned the number of bins for standardizing
biomechanical time series (eq. 5). This tuning is similar to the sensor selection and bin optimization

in Slade et al. [29].

The tuning criterion was correlation performance against 100 test time series. The test time series
used were distinct from the model-based metabolic costs to avoid biasing the evaluation of our
method [28]. As test time series for tuning, we generated 100 time series based on random

combinations of the biomechanical time series from the neuromechanical simulation dataset
Yeuningk = C1|ths,1| + C2|ths,2| Cnlxbts,n| = [100 x 36] (10)

where Yy ning k represents one of the 100 test time series, ¢; to n are random coefficients between

0 and 1, X541 to Xpesp are the positive or negative portions of a randomly chosen number of

biomechanical measurement time series.
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The perturbation-based method’s correlation with the 100 test time series was evaluated for each
of 512 (2°) combinations of mathematically derived time series for bin numbers ranging from 10

to 100 (Supplementary Data 2).

Statistical Analysis

As a measure of the uncertainty in the literature, we generated a cross-table with pairwise Pearson
correlations between all six literature sources, and we calculated the mean and 95% confidence
interval of the correlations (Fig. 1b). Due to the limits of a Pearson correlation at —1 and 1, we
converted each r-value to a Z-score using Fisher’s Z-transformation. Average Z-scores and z-score
confidence intervals across the correlations in literature, between perturbation-based and
neuromechanical model-based, and between perturbation-based human experimental model-based
were converted back to Pearson r-values for easier interpretation [30]. All analyses were conducted

in MATLAB 2021b.

Results:

Once tuning was completed, and our perturbation-based method was finalized, we evaluated its
performance at reproducing a variety of model-based estimates of within-stride metabolic cost (cf.
Supplementary: Model-based metabolic costs used in neuromuscular simulation dataset). We
calculated five within-stride metabolic costs using model-based methods [26]. The mean Pearson's
correlation between the five different model-based within-stride metabolic costs and our
estimations of those using the perturbation-based method was 0.55 (95% CI = 0.22 — 0.77). This
evaluation performance constitutes an improvement of at least 50% compared to the mutual
consistency between model-based estimations in the literature for four out of five estimations (Fig.

4 A-E, Table 1).
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We also indirectly validated our perturbation-based method in data from human experiments. In
vivo, human walking experiments were conducted with a perturbation from a robotic waist tether
applied to the COM (cf. Supplementary: Human experimental dataset for in-vivo evaluation and
application) [20]. In each condition, the tether applied pulling forces with a specific profile
repeatedly to stride cycles for a sufficient duration to induce a different steady-state gait. We
applied the same perturbation-based method to our human experimental dataset without any
additional tuning or changes. Our estimation reproduced five independent model-based
estimations of metabolic cost with a mean Pearson's correlation of 0.80 between the model-based
metabolic costs and their estimations using the perturbation-based method (95% CI=0.57 - 0.91,
Table 2). This result is also greater than the correlation between model-based estimations currently

in literature with an improvement of at least 75% (Fig. 4F-J) [19,31].

After successfully completing the indirect validations, we applied our perturbation-based method
to estimate within-stride metabolic cost based on V0, and V€O, data from the human experiment
(Fig. 5). When we divide the stride into the first double stance (1-15% of the stride), single stance
(16-50%), push-off (51-65%), and swing (66-100%), their metabolic cost respectively accounted
for 20, 49, 10 and 21% of the total. The estimated cost of push-off is considerably lower than that
of single stance. This is markedly different from the evolution of positive mechanical work
performed by the leg onto the COM, which is about three times as much during push-off compared
to single stance. As such, our perturbation-based estimation confirms that metabolic cost can be

related to sources other than mechanical work [32,33].

Our estimation that push-off accounts for about one-tenth of the total metabolic cost is similar to

the first estimation using a forward-dynamics musculoskeletal model-based approach (8% [16])
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but is low compared to estimations from model-based methods that use only joint-based equations
(39% [18] and 49% [19]). Our estimation of the cost of the swing phase (21%) is close to the mean
from previous model-based studies (24%, 95% CI = 19-28% [16,17,19,31,34,35]). This also
supports previous estimations from experimental studies with perturbations to the swing or stance
phase that suggest that the swing phase substantially contributes to the metabolic cost of walking

(swing phase contribution to metabolic cost reported as 10, 12.5 and 17% [14,36,37]).

While our approach of using perturbations is innovative and yields results consistent with existing
literature, we acknowledge some limitations in our methods, results, and the application. One
methodological limitation is that our method solely relied on lower limb signals for estimating
metabolic costs. Our evaluation replicated model-based costs using lower-limb data and a
simplified neuromuscular model. Notably, we did not directly account for metabolic contributions
from trunk and arm muscles [38]. Another methodological constraint is the tuning of the derived
time series and the number of perturbations required to create the datasets. Adapting this method
for other datasets might require expanding the types of derived time series. In terms of the results,
we recognized that our perturbation-based for estimating within-stride metabolic cost is empirical.
While this offers the advantage of being less biased than model-based methods, this is not
favorable for understanding causal relationships, such as the impact of altering a specific gait
impairment [27,39,40]. Application-wise, a drawback of our method is its reliance on datasets of
walking under various perturbations which can be time-consuming and physically demanding for

participants.

To advance perturbation-based within-stride metabolic cost estimation's practicality, future

research needs to tackle challenges concerning tuning, time efficiency, and validation. Developing
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algorithms with greater generality, such as neural networks, could mitigate reliance on specific
tuned options. Investigating perturbation types yielding the most valuable data will streamline data
collection efforts. Finally, exploring innovative indirect validation methods could bolster

confidence in the methodology.

Conclusion:

The present work describes a perturbation-based method that can reproduce a wide variety of
model-based, within-stride metabolic costs in two different datasets using a collection of perturbed
conditions. The result suggests that the metabolic cost of push-off is lower than the preceding
single stance phase and that the swing phase has a non-negligible metabolic cost. These findings
may have important applications for designing rehabilitation strategies and assistive devices. For
example, the finding of a large cost of single stance may help explain how an unpowered ankle
exoskeleton that primarily provides torque during single stance could reduce metabolic cost
despite increasing plantar flexor activation during push-off [41]. The trajectory of community
research has incrementally reduced the time to estimate steady-state metabolic cost from several
minutes using Douglas bag, mixing chamber, to 1-2 minutes with breath-by-breath systems [42]
and fitted approximation methods [11,43,44], and finally, to a matter of seconds via a combination
of sensors and fitting methods [45,46]. This work grants greater understanding of metabolic cost
beyond what was previously possible by presenting within movement cycle interpretability instead

of more rapid interpretation of steady-state metabolic cost.
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EMG: Electromyography
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Fig. 1. Motivation. (A). Limitation of assessing stride-mean metabolic cost using breath-by-breath
measurements. The upper figure illustrates an intervention resulting in a cost reduction (depicted
in green) during push-off and a cost increase (depicted in brown) during swing. The stride-mean
metabolic cost (displayed in bars) does not enable differentiation of these effects. The lower
section of the figure illustrates how comprehending the costs associated with various phases could
facilitate the enhancement of interventions. (B). Limited consistency between estimations of
within-stride metabolic cost using model-based methods. The mean correlation between
estimations is 0.29 (95% confidence interval (CI) = 0.03-0.43) [16,19,31,34,35].
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Fig. 2. Flow of data for estimating and evaluating within-stride metabolic cost. (A). A
perturbed dataset was gathered using force perturbations at the COM. Biomechanical time series
(e.g., kinematics, kinetics, muscle activations) as well as stride-mean metabolic cost were
measured for each walking condition. (B). These measurements are stride normalized and (C).
then converted to a stride-mean for each walking condition. (D). The stride means for each
biomechanical measurement are custom standardized by subtracting the unperturbed stride mean
from each perturbed stride mean and then dividing by the range of deviations from unperturbed
walking. (E). The custom standardized biomechanical time series are then compared to the custom
standardized within-stride metabolic cost using the sum of square error. This process will be
iterative, where an additional custom standardized biomechanical time series may be added if it
reduces the sum of square error. (F). The biomechanical time series or combination of
biomechanical time series that corresponded to the lowest sum of square error are selected. The
unperturbed condition from the selected biomechanical time series is used as the estimate for
within-stride metabolic cost. (G). The original model-based within-stride metabolic cost is only
used for validation of our perturbation-based method. Our perturbation-based method leverages
information from stride-mean values that are experimentally available to indirect calorimetry.
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Fig. 3. Illustration of how biomechanical and derived time-series are combined to produce a
within-stride metabolic cost time series. Each column (A, B, C) in the figure represents a
mathematical operation used to create a new time series. The final plot on the bottom right is the
estimated within-stride metabolic cost. The specific combination shown here was used to estimate
the Bhargava et al., 2004 metabolic cost in Table 1.
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Fig. 4. Evaluation of perturbation-based method. Evaluation of perturbation-based method's
ability to reproduce within-stride metabolic cost of different model-based methods in different
datasets. Estimations from each model-based method are represented by black lines. Our
perturbation-based method's estimations are represented with red lines. The left column shows
evaluations in the neuromechanical simulation dataset, and the right column shows evaluations in
the human experiment dataset. (A). Umberger et al., 2003 [47], (B). Houdijk et al. 2006 [48], (C).
Bhargava et al., 2004 [49], (D). Lichtwark et al, 2005 [50] (E). Margaria 1968, applied onto muscle
work rate [51,52], (F). Beck et al., 2019,[53] (G). Kim and Roberts, 2015 [18] (H). Margaria 1968,
applied onto COM work rate [52,54], (I). Margaria 1968, applied onto joint work rate [52,55] (J).
Minetti and Alexander, 1997 [56].
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Table 1. Evaluation of perturbation-based method in neuromechanical dataset
Stride mean Selected mathematically derived Estimated versus actual
metabolic cost input combination of biomechanical time series  time series correlation T

Bhargava (Soleus + tibialis anterior) * hip power + 0.76
et al., 2004 vastus medialis ’
Houdijk (COM power + vastus medialis) * rectus 0.22
et al., 2006 femoris + vastus medialis ’
Lichtwark (Soleus + tibialis anterior) * hip power + 0.77
et al., 2005 vastus medialis ’
Margaria, 1968, )

muscle-based Knee angle — hip moment 0.49
Umberger, (Stride time + vastus medialis) * hip power 0.42
2003 + vastus medialis ’
Mean Pearson correlation 0.55 (95% CI =0.22 - 0.77)"

-|— The final column lists correlations between model-based within-stride metabolic costs and
estimations of these costs using the perturbation-based method (Fig. 4 AE). The stride mean
metabolic costs used as inputs for the perturbation-based estimation are named in the first column.
The Pearson correlations serve as a measure of the estimation performance.

* Mean Pearson correlation and confidence interval are calculated following Fisher Z
transformation.
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Table 2. Evaluation of perturbation-based method in human experiment dataset.
Stride mean Selected mathematically derived Estimated versus actual
metabolic cost input combination of biomechanical time series  time series correlation T

Beck Hip angle — vastus medilias + gluteus 0.86
etal., 2019 maximus + vertical GRF ’
Kim and .. . .

Roberts, 2015 (Positive portion of hip power) 0.41
Margaria, 1968 (COM power positive portion)*Soleus+ 0.91]
COM-based vertical GRF '
Margaria, 1968 (COM power positive portion)*vastus 0.78
joint-based medialis+ vertical GRF ’
Minetti and (COM power positive portion)*tibialis 0.83
Alexander, 1997 anterior + vertical GRF )
VOZ and Hip angle — tibialis anterior + gastrocnemius N/A #
VCO:; data + vertical GRF

Mean Pearson correlation 0.80 (95% CI = 0.57 -0.91)"

-|— The final column lists correlations between model-based within-stride metabolic costs and
estimations of these costs using the perturbation-based method (Fig. 4 FJ). The stride mean
metabolic costs used as inputs for the perturbation-based estimation are named in the first column.
The Pearson correlations serve as a measure of the estimation performance.

* Mean Pearson correlation and confidence interval are calculated following Fisher Z
transformation.

# The final row shows the combination that was selected to plot the within-stride metabolic cost
time series based on respiratory VO, and VCO; data. In this application, there was no reference to
compare our estimation-performance against; hence no correlation is reported.



