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Abstract: 19 

Metabolic cost greatly impacts trade-offs within a variety of human movements. Standard 20 

respiratory measurements only obtain the mean cost of a movement cycle, preventing 21 

understanding of the contributions of different phases in, for example, walking.  We present a 22 

method that estimates the within-stride cost of walking by leveraging measurements under 23 

different force perturbations. The method reproduces time series with greater consistency (r = 24 

0.55 and 0.80 in two datasets) than previous model-based estimations (r = 0.28). This 25 

perturbation-based method reveals how the cost of push-off (10%) is much smaller than would 26 

be expected from positive mechanical work (~70%). This work elucidates the costliest phases 27 

during walking, offering new targets for assistive devices and rehabilitation strategies.  28 
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Introduction:  45 

Metabolic cost is a critical measure used to characterize movement behavior [1–3]. Healthy 46 

walkers naturally adopt an energetically optimal stride cycle, for example, by walking with a step 47 

length [4] and knee flexion angle [5] that minimizes metabolic cost. Pathologies like stroke and 48 

cerebral palsy alter patients’ walking stride resulting in increases to metabolic cost by 60 to 2-49 

300% [6,7]. Such increases in metabolic cost correlate to drastic reductions in people’s mobility 50 

and overall quality of life [8,9]. If we understand how stride cycle phases contribute to metabolic 51 

cost, therapies and devices may be better optimized to improve mobility (Fig. 1A).  52 

 53 

Measurements of metabolic cost are too slow to detect the contributions of different stride phases. 54 

Current methods to calculate energy from oxidative reactions include measuring respiratory CO2 55 

production by ingesting water with a radioisotope (‘doubly labelled water method’), measuring 56 

oxidative heat production using a chamber (‘direct calorimetry’), and measuring O2 consumption 57 

from respiration (‘indirect calorimetry’) [10]. Indirect calorimetry is the fastest and most 58 

commonly used method for measuring metabolic cost during locomotion; however, it still requires 59 

averaging several minutes of breaths to be reliable [11–13]. A typical walking stride lasts about 60 

one second meaning current methods can only measure the mean metabolic cost following a bout 61 

of steady-state walking. Experiments that approximated the cost of the swing phase by recording 62 

cyclical leg swinging [14] and by measuring blood flow from injected microspheres in animals 63 

that are then sacrificed [15] suggest that the stride-mean metabolic cost does not necessarily 64 

represent the contributions of individual phases ('within-stride metabolic cost’). 65 

 66 

Several model-based methods of estimating within-stride metabolic cost have been proposed but 67 

remain inconclusive. Umberger developed a set of equations to estimate metabolic cost from 68 



 

 

muscle parameters and used this to produce the first estimation of within-stride metabolic cost 69 

from a forward simulation of walking [16]. Other groups used EMG-driven simulations [17] or 70 

equations based on joint kinetics instead of muscle parameters [18]. However, when comparing 71 

those methods to each other, their estimations of within-stride metabolic cost are relatively 72 

inconsistent (Pearson correlation: r = 0.29, n = 6 estimations, Fig. 1B) [19]. Currently, there is no 73 

way to validate these model-based estimations for within-stride metabolic cost since measurements 74 

from indirect calorimetry only obtain a stride mean. This motivates the development of an 75 

alternative method to estimate within-stride metabolic cost that is supported by indirect validation 76 

approaches.  77 

 78 

We hypothesized that applying a set of perturbations creates a set of instances of the behavior 79 

where the differences in the time series between each perturbed instance can be attributed to the 80 

different magnitudes and timings of the applied perturbation. By applying perturbations repeatedly 81 

to a specific part of the gait cycle for several minutes, we can induce changes in the stride-mean 82 

metabolic cost as well as in the biomechanical time series (e.g., kinematics, kinetics, and muscle 83 

activations) [19–21]. We postulated the variation across the set of perturbed walking strides would 84 

be representative of the fluctuations in metabolic cost within the stride cycle so long as the set 85 

contained a large number of different perturbations. If true, this would enable a method to extract 86 

key features of within-stride metabolic cost. Our approach is inspired by prior studies that utilized 87 

ankle perturbations to assess time series of joint impedance during the stance phase [22,23] as well 88 

as studies that used elastic bands and added mass to estimate the cost of stance and swing phases 89 

[24,25]. To our knowledge, using of a perturbation-based approach for estimating within-stride 90 

metabolic cost time series is novel. 91 

 92 



 

 

Using this concept, extraction of within-stride behaviour from a collection of perturbed instances, 93 

we developed an alternative method to estimate within-stride metabolic cost that we refer to as our 94 

‘perturbation-based method’.  Our method estimates within-stride metabolic cost using 95 

measurements from a set of perturbed walking strides. We then evaluated our method's ability to 96 

consistently reproduce model-based estimates of within-stride metabolic cost. 97 

 98 

Materials and Methods: 99 

Overview 100 

The perturbation-based method was initially developed and tuned using a dataset from a 101 

neuromechanical simulation [26,27]. The tuned method was then validated against distinct signals 102 

from the neuromechanical simulation as well as a separate dataset from human experiments. In 103 

both datasets, biomechanical time series were recorded during 35 different perturbed walking 104 

conditions and one unperturbed, normal walking condition [20]. In each perturbation condition, 105 

we applied a force profile onto the COM with specific timings, durations, and magnitudes. The 106 

same perturbation force profiles were used in the neuromechanical simulations and human 107 

experiments. In the neuromechanical simulation, we applied the perturbations by simulating a 108 

forward force applied to the hip. In the human experiments, we applied forward forces using a 109 

robotic waist tether connected to the hip.  In both datasets, we generated model-based estimations 110 

of within-stride metabolic cost as test cases to evaluate our perturbation-based method's 111 

performance. Re-evaluating our method in two distinct datasets avoids dataset bias [28]. We 112 

indirectly validated our perturbation-based method by reproducing the within-stride metabolic cost 113 

from those model-based estimations.  114 

 115 

Simulation dataset  116 



 

 

We adapted a neuromechanical simulation from Song and Geyer to walk under force perturbations 117 

from a waist tether [26,27]. Specifically, we used a two-dimensional variant that restricts motion 118 

to the sagittal plane [26]. We simulated perturbations with forward forces applied at the hip of a 119 

model with seven rigid segments in Simscape First Generation Multibody (MathWorks, Natick, 120 

MA). In this framework, we simulated 32 sinusoidal force profiles with peak timings covering the 121 

entire gait cycle and peak forces ranging from 0 to 24% percent of body weight, three constant 122 

force profiles, and an unperturbed walking condition.  123 

 124 

The neuromechanical model’s walking control strategy was optimized for each perturbed walking 125 

condition (cf. Supplementary: Neuromechanical simulation dataset for tuning and in silico 126 

evaluation). Time series data were extracted for each of the optimized control strategies to 127 

constitute the neuromechanical dataset. We then constructed 100 time series to serve as test data 128 

for tuning our perturbation-based method. These test time series were random linear combinations 129 

of the different biomechanical time series, so they were distinct from the model-based estimates 130 

that would be used later for evaluation.   131 

 132 

Experimental dataset  133 

We used biomechanical and indirect calorimetry data from previous human experiments [20] with 134 

a robotic waist tether [21] for the in vivo evaluation and application of our perturbation-based 135 

method (Supplementary Data 1). Ten healthy participants (age: 28.0 ± 4.7 years, body mass: 83.2 136 

± 12.2 kg, height: 1.80 ± 0.05 m; mean ± SD) walked under the same perturbations as in the 137 

neuromechanical simulation dataset. In this case, the perturbations were generated by a robotic 138 

waist tether controlled by a temporal algorithm that enables pulling during a specific portion of 139 

the gait cycle with high consistency.  140 



 

 

 141 

Perturbation-based method input signals 142 

Our perturbation-based estimation method uses the stride-mean metabolic cost as well as within-143 

stride biomechanical time series to estimate within-stride metabolic cost (Fig. 2 C and F. Methods: 144 

Perturbation-based method). The biomechanical time series as well as additional mathematically 145 

derived combinations of those time series are considered potential estimates of within-stride 146 

metabolic cost. Our perturbation-based method first calculates the mean cycle from 0 to 100% of 147 

the stride for each biomechanical time series for each perturbation condition. Then each stride-148 

normalized biomechanical time series is reduced to one scalar for each perturbation condition 149 

using a custom standardization method based on the deviation from unperturbed walking (cf. 150 

Methods: Custom standardization method). A collection of these standardized scalar values of 151 

biomechanical data across all perturbations form a perturbed biomechanical set. Finally, we select 152 

the biomechanical set that matches the perturbed set of the stride-mean metabolic cost (cf. 153 

Methods: Time series estimation procedure). The original biomechanical time series that most 154 

closely matched the standardized set for the stride-mean metabolic cost is used as the estimate of 155 

within-stride metabolic cost. 156 

 157 

We chose to estimate the metabolic cost of one side of the body rather than the whole body's 158 

metabolic cost. The within-stride metabolic cost of one side of the body provides more descriptive 159 

and potentially useful information for interventions, such as assistive devices, than whole-body 160 

cost, which cannot be attributed to a specific leg. Using model-based methods, we generated a set 161 

of five estimates of the within-stride metabolic cost to indirectly validate our perturbation-based 162 

method's performance which were distinct from the five evaluations that were used in the 163 



 

 

neuromechanical dataset (cf. Supplementary: Model-based metabolic costs used in the human 164 

experiment dataset). 165 

 166 

All kinematic, kinetic, and muscle activation time series as well as the derived signals (cf. 167 

Methods: Additional derived input time series and algorithm tuning) are stride-normalized and 168 

organized in matrices with one row for each percent of the stride cycle and one column for each 169 

of the 36 perturbation conditions.  170 

𝑋𝑏𝑡𝑠 = [100 ×  36]         (1)  171 

Each perturbation’s force profile was repeated over multiple stride cycles for a sufficient duration 172 

to obtain steady-state metabolic cost (40 s to obtain ten sufficiently stable strides in the 173 

neuromechanical simulations and 2 min to estimate the steady-state metabolic cost in the human 174 

experiments) [11]. 175 

 176 

The stride mean metabolic cost for every condition is also used as an input in our perturbation-177 

based method. 178 

𝑌̅ = [1 ×  36]          (2) 179 

 180 

This stride mean can be estimated from model-based metabolic costs as well as from respiratory 181 

𝑉̇𝑂2 and 𝑉̇𝐶𝑂2 measurements; hence this input is available when estimating the within-stride 182 

metabolic cost in human experiments.  183 

 184 

Custom standardization method 185 

Each time series is standardized using a custom method (Supplementary Data 1). First, we take 186 

the stride mean of each biomechanical time series for every perturbation condition. 187 



 

 

𝑋̅𝑏𝑡𝑠 = [1 ×  36]          (3) 188 

 189 

Next, we calculate the deviation of each perturbed walking condition from the unperturbed 190 

walking condition.  191 

Δ𝑋̅𝑏𝑡𝑠 = 𝑋̅𝑏𝑡𝑠 − 𝑋̅𝑏𝑡𝑠,0  = [1 ×  36]      (4) 192 

 193 

where Δ𝑋̅𝑏𝑡𝑠 is the set of deviations from the unperturbed condition and 𝑋̅𝑏𝑡𝑠,0 is the stride mean 194 

of the unperturbed condition.  195 

 196 

Each set of deviations is then normalized by its range of deviations from unperturbed walking  197 

 𝑋̅𝑠𝑡𝑎𝑛𝑑  = 𝑟𝑜𝑢𝑛𝑑(
 𝛥𝑋̅𝑏𝑡𝑠𝑛𝑏𝑖𝑛𝑠

𝑚𝑎𝑥( 𝛥𝑋̅𝑏𝑡𝑠)−min ( 𝛥𝑋̅𝑏𝑡𝑠)
) = [1 ×  36]    (5) 198 

 199 

where 𝑋̅𝑠𝑡𝑎𝑛𝑑 is the standardized set of deviations from unperturbed walking for each 200 

biomechanical time series and nbins is the number of bins. The standardized set is enumerated to 201 

reduce the effects of floating-point differences between biomechanical measurements. The number 202 

of bins was set to 80 based on tuning (cf. Methods: Tuning of available data for metabolic cost 203 

estimation, Supplementary Data 2). This process is similar to Slade et al., (2022) [29]. 204 

 205 

In summary, this procedure converted the stride means of biomechanical time series to a range of 206 

standardized values ranging from 1 to 80. We also applied the same standardization procedure 207 

(eqs. 4, 5) to the stride means of derived biomechanical time series as well as to the stride mean 208 

metabolic cost (𝑌̅).  209 

 210 



 

 

Time series estimation procedure 211 

We ran a minimization procedure that evaluates which standardized biomechanical time series best 212 

matches the standardized metabolic cost. First, we evaluate how well the standardized set of each 213 

biomechanical time series and each derived time series matches the standardized set of metabolic 214 

cost using a sum of square comparison  215 

𝑆𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = ∑ (𝑋̅𝑠𝑡𝑎𝑛𝑑,𝑐 −  𝑌̅𝑠𝑡𝑎𝑛𝑑,𝑐)
2

 𝑐𝑜𝑛𝑑 36
𝑐 = 1       (6) 216 

 217 

where 𝑆𝑆 is the sum of squares and 𝑐 represents each perturbation condition. 218 

 219 

Then, we conduct a stepwise optimization procedure whereby we evaluate if adding another 220 

standardized biomechanical time series or derived signals to the previous standardized set 221 

improves the 𝑆𝑆 222 

𝑆𝑆𝑛𝑒𝑤 =  ∑ ((𝑋̅𝑠𝑡𝑎𝑛𝑑,𝑐,𝑗 +  𝑋̅𝑠𝑡𝑎𝑛𝑑,𝑐,𝑝𝑟𝑒𝑣 𝑜𝑝𝑡 𝑆𝑆) −  𝑌̅𝑠𝑡𝑎𝑛𝑑,𝑐)
2

𝑐𝑜𝑛𝑑35
𝑐= 1    (7) 223 

 224 

where 𝑋̅𝑠𝑡𝑎𝑛𝑑,𝑐,𝑝𝑟𝑒𝑣 𝑜𝑝𝑡 𝑆𝑆 is the standardized set that produced the best SS in the previous iteration 225 

and j represents a new biomechanical measurement or derived signal that is evaluated.  226 

 227 

Finally, the time series of the biomechanical measurement, derived signal, or combination of 228 

signals with the lowest 𝑆𝑆 is then used to estimate within-stride metabolic cost (Fig. 3). If the 229 

lowest SS results from one single biomechanical measurement or derived signal, the corresponding 230 

unperturbed time series is used to estimate within-stride metabolic cost 231 

𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑋𝑆𝑆 𝑜𝑝𝑡 =  [100 ×  1]       (8) 232 

 233 



 

 

where 𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated within-stride metabolic cost, 𝑋𝑆𝑆 𝑜𝑝𝑡is the time series of the 234 

biomechanical measurement or derived signal that resulted in the lowest 𝑆𝑆. In the event the lowest 235 

𝑆𝑆 is from a combination of biomechanical measurements and derived signals, we normalize each 236 

signal by its range and sum to serve as the estimate of within-stride metabolic cost 237 

           𝑌𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  ∑
𝑋𝑏𝑡𝑠  𝑆𝑆 𝑜𝑝𝑡,𝑖

max(𝑋𝑏𝑡𝑠  𝑆𝑆 𝑜𝑝𝑡,𝑖)−min (𝑋𝑏𝑡𝑠  𝑆𝑆 𝑜𝑝𝑡,𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑡𝑠
𝑖=1     (9) 238 

 239 

where 𝑖 is the index of the biomechanical signals used to achieve the lowest sum of squares.  240 

 241 

The approach of leveraging perturbations constitutes a paradigm shift compared to previous 242 

iterative improvements of model-based methods. Our procedure of using data from the perturbed 243 

conditions to estimate the unperturbed condition intrinsically involves estimating (just) outside of 244 

test data, and it is known that overfitting can be an issue in such a procedure. Some features of the 245 

perturbation-based method likely helped avoid this overfitting. We limited the number of inputs 246 

by using a standardization that converted each time series to a scalar (eqs. 3-5). We also generated 247 

a very large number of derived signals. 248 

 249 

Additional derived input signals and algorithm tuning 250 

We tuned two features of our perturbation-based method: the selection of which mathematical 251 

derived time series would be available for creating the estimation of within-stride metabolic cost 252 

and the number of bins in the custom standardization procedure (cf. Methods: Additional derived 253 

input signals and algorithm tuning). During the tuning, we evaluated which settings improved the 254 

lower-bound, 95% confidence interval of Pearson’s correlations between the estimated and the test 255 

time series. After tuning, the mean Pearson’s correlation between our perturbation-based method's 256 



 

 

estimate and time series within the test set was 0.41 (95% CI = 0.33-0.50). We evaluated the impact 257 

of the following options: 258 

• Options 1-2: The separation of positive and negative regions of the original biomechanical 259 

time series.  260 

• Options 3-5: The square, cube, or inverse of the original biomechanical time series.  261 

• Options 6-8: The subtraction, addition, or multiplication of all pairs of the biomechanical 262 

time series. 263 

• Option 9: An additional set of additions and multiplication of pairs of the mathematically 264 

derived time series (generated from options 1-8). 265 

We restricted option 9 to stop after generating 4000 combinations because considering all the 266 

combination permutations was not feasible. We also tuned the number of bins for standardizing 267 

biomechanical time series (eq. 5). This tuning is similar to the sensor selection and bin optimization 268 

in Slade et al. [29]. 269 

 270 

The tuning criterion was correlation performance against 100 test time series. The test time series 271 

used were distinct from the model-based metabolic costs to avoid biasing the evaluation of our 272 

method [28]. As test time series for tuning, we generated 100 time series based on random 273 

combinations of the biomechanical time series from the neuromechanical simulation dataset  274 

𝑌𝑡𝑢𝑛𝑖𝑛𝑔,𝑘 =  𝑐1|𝑋𝑏𝑡𝑠,1|  +  𝑐2|𝑋𝑏𝑡𝑠,2| … 𝑐𝑛|𝑋𝑏𝑡𝑠,𝑛| = [100 × 36]   (10) 275 

where 𝑌𝑡𝑢𝑛𝑖𝑛𝑔,𝑘 represents one of the 100 test time series, 𝑐1 to n are random coefficients between 276 

0 and 1, 𝑋𝑏𝑡𝑠,1 to 𝑋𝑏𝑡𝑠,𝑛  are the positive or negative portions of a randomly chosen number of 277 

biomechanical measurement time series.  278 

 279 



 

 

The perturbation-based method’s correlation with the 100 test time series was evaluated for each 280 

of 512 (29) combinations of mathematically derived time series for bin numbers ranging from 10 281 

to 100 (Supplementary Data 2). 282 

 283 

Statistical Analysis 284 

As a measure of the uncertainty in the literature, we generated a cross-table with pairwise Pearson 285 

correlations between all six literature sources, and we calculated the mean and 95% confidence 286 

interval of the correlations (Fig. 1b). Due to the limits of a Pearson correlation at –1 and 1, we 287 

converted each r-value to a Z-score using Fisher’s Z-transformation. Average Z-scores and z-score 288 

confidence intervals across the correlations in literature, between perturbation-based and 289 

neuromechanical model-based, and between perturbation-based human experimental model-based 290 

were converted back to Pearson r-values for easier interpretation [30]. All analyses were conducted 291 

in MATLAB 2021b. 292 

 293 

Results: 294 

Once tuning was completed, and our perturbation-based method was finalized, we evaluated its 295 

performance at reproducing a variety of model-based estimates of within-stride metabolic cost (cf. 296 

Supplementary: Model-based metabolic costs used in neuromuscular simulation dataset). We 297 

calculated five within-stride metabolic costs using model-based methods [26]. The mean Pearson's 298 

correlation between the five different model-based within-stride metabolic costs and our 299 

estimations of those using the perturbation-based method was 0.55 (95% CI = 0.22 – 0.77). This 300 

evaluation performance constitutes an improvement of at least 50% compared to the mutual 301 

consistency between model-based estimations in the literature for four out of five estimations (Fig. 302 

4 A-E, Table 1). 303 



 

 

We also indirectly validated our perturbation-based method in data from human experiments. In 304 

vivo, human walking experiments were conducted with a perturbation from a robotic waist tether 305 

applied to the COM (cf. Supplementary: Human experimental dataset for in-vivo evaluation and 306 

application) [20]. In each condition, the tether applied pulling forces with a specific profile 307 

repeatedly to stride cycles for a sufficient duration to induce a different steady-state gait.  We 308 

applied the same perturbation-based method to our human experimental dataset without any 309 

additional tuning or changes. Our estimation reproduced five independent model-based 310 

estimations of metabolic cost with a mean Pearson's correlation of 0.80 between the model-based 311 

metabolic costs and their estimations using the perturbation-based method (95% CI = 0.57 – 0.91, 312 

Table 2). This result is also greater than the correlation between model-based estimations currently 313 

in literature with an improvement of at least 75% (Fig. 4F-J) [19,31]. 314 

 315 

After successfully completing the indirect validations, we applied our perturbation-based method 316 

to estimate within-stride metabolic cost based on 𝑉̇𝑂2 and 𝑉̇𝐶𝑂2 data from the human experiment 317 

(Fig. 5). When we divide the stride into the first double stance (1-15% of the stride), single stance 318 

(16-50%), push-off (51-65%), and swing (66-100%), their metabolic cost respectively accounted 319 

for 20, 49, 10 and 21% of the total. The estimated cost of push-off is considerably lower than that 320 

of single stance. This is markedly different from the evolution of positive mechanical work 321 

performed by the leg onto the COM, which is about three times as much during push-off compared 322 

to single stance. As such, our perturbation-based estimation confirms that metabolic cost can be 323 

related to sources other than mechanical work [32,33].  324 

 325 

Our estimation that push-off accounts for about one-tenth of the total metabolic cost is similar to 326 

the first estimation using a forward-dynamics musculoskeletal model-based approach (8% [16]) 327 



 

 

but is low compared to estimations from model-based methods that use only joint-based equations 328 

(39% [18] and 49% [19]). Our estimation of the cost of the swing phase (21%) is close to the mean 329 

from previous model-based studies (24%, 95% CI = 19-28% [16,17,19,31,34,35]). This also 330 

supports previous estimations from experimental studies with perturbations to the swing or stance 331 

phase that suggest that the swing phase substantially contributes to the metabolic cost of walking 332 

(swing phase contribution to metabolic cost reported as 10, 12.5 and 17% [14,36,37]). 333 

  334 

While our approach of using perturbations is innovative and yields results consistent with existing 335 

literature, we acknowledge some limitations in our methods, results, and the application. One 336 

methodological limitation is that our method solely relied on lower limb signals for estimating 337 

metabolic costs. Our evaluation replicated model-based costs using lower-limb data and a 338 

simplified neuromuscular model. Notably, we did not directly account for metabolic contributions 339 

from trunk and arm muscles  [38]. Another methodological constraint is the tuning of the derived 340 

time series and the number of perturbations required to create the datasets. Adapting this method 341 

for other datasets might require expanding the types of derived time series. In terms of the results, 342 

we recognized that our perturbation-based for estimating within-stride metabolic cost is empirical. 343 

While this offers the advantage of being less biased than model-based methods, this is not 344 

favorable for understanding causal relationships, such as the impact of altering a specific gait 345 

impairment [27,39,40]. Application-wise, a drawback of our method is its reliance on datasets of 346 

walking under various perturbations which can be time-consuming and physically demanding for 347 

participants.  348 

 349 

To advance perturbation-based within-stride metabolic cost estimation's practicality, future 350 

research needs to tackle challenges concerning tuning, time efficiency, and validation. Developing 351 



 

 

algorithms with greater generality, such as neural networks, could mitigate reliance on specific 352 

tuned options. Investigating perturbation types yielding the most valuable data will streamline data 353 

collection efforts. Finally, exploring innovative indirect validation methods could bolster 354 

confidence in the methodology.  355 

 356 

Conclusion: 357 

The present work describes a perturbation-based method that can reproduce a wide variety of 358 

model-based, within-stride metabolic costs in two different datasets using a collection of perturbed 359 

conditions. The result suggests that the metabolic cost of push-off is lower than the preceding 360 

single stance phase and that the swing phase has a non-negligible metabolic cost. These findings 361 

may have important applications for designing rehabilitation strategies and assistive devices. For 362 

example, the finding of a large cost of single stance may help explain how an unpowered ankle 363 

exoskeleton that primarily provides torque during single stance could reduce metabolic cost 364 

despite increasing plantar flexor activation during push-off [41]. The trajectory of community 365 

research has incrementally reduced the time to estimate steady-state metabolic cost from several 366 

minutes using Douglas bag, mixing chamber, to 1-2 minutes with breath-by-breath systems [42] 367 

and fitted approximation methods [11,43,44], and finally, to a matter of seconds via a combination 368 

of sensors and fitting methods [45,46]. This work grants greater understanding of metabolic cost 369 

beyond what was previously possible by presenting within movement cycle interpretability instead 370 

of more rapid interpretation of steady-state metabolic cost. 371 

 372 

 373 
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 555 
Fig. 1. Motivation. (A). Limitation of assessing stride-mean metabolic cost using breath-by-breath 556 

measurements. The upper figure illustrates an intervention resulting in a cost reduction (depicted 557 

in green) during push-off and a cost increase (depicted in brown) during swing. The stride-mean 558 

metabolic cost (displayed in bars) does not enable differentiation of these effects. The lower 559 

section of the figure illustrates how comprehending the costs associated with various phases could 560 

facilitate the enhancement of interventions. (B). Limited consistency between estimations of 561 

within-stride metabolic cost using model-based methods. The mean correlation between 562 

estimations is 0.29 (95% confidence interval (CI) = 0.03-0.43) [16,19,31,34,35]. 563 
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 566 
Fig. 2. Flow of data for estimating and evaluating within-stride metabolic cost. (A). A 567 

perturbed dataset was gathered using force perturbations at the COM. Biomechanical time series 568 

(e.g., kinematics, kinetics, muscle activations) as well as stride-mean metabolic cost were 569 

measured for each walking condition. (B). These measurements are stride normalized and (C). 570 

then converted to a stride-mean for each walking condition. (D). The stride means for each 571 

biomechanical measurement are custom standardized by subtracting the unperturbed stride mean 572 

from each perturbed stride mean and then dividing by the range of deviations from unperturbed 573 

walking. (E). The custom standardized biomechanical time series are then compared to the custom 574 

standardized within-stride metabolic cost using the sum of square error. This process will be 575 

iterative, where an additional custom standardized biomechanical time series may be added if it 576 

reduces the sum of square error. (F). The biomechanical time series or combination of 577 

biomechanical time series that corresponded to the lowest sum of square error are selected. The 578 

unperturbed condition from the selected biomechanical time series is used as the estimate for 579 

within-stride metabolic cost. (G). The original model-based within-stride metabolic cost is only 580 

used for validation of our perturbation-based method. Our perturbation-based method leverages 581 

information from stride-mean values that are experimentally available to indirect calorimetry.  582 
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 585 

Fig. 3. Illustration of how biomechanical and derived time-series are combined to produce a 586 

within-stride metabolic cost time series. Each column (A, B, C) in the figure represents a 587 

mathematical operation used to create a new time series. The final plot on the bottom right is the 588 

estimated within-stride metabolic cost. The specific combination shown here was used to estimate 589 

the Bhargava et al., 2004 metabolic cost in Table 1.  590 
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 592 
Fig. 4. Evaluation of perturbation-based method. Evaluation of perturbation-based method's 593 

ability to reproduce within-stride metabolic cost of different model-based methods in different 594 

datasets. Estimations from each model-based method are represented by black lines. Our 595 

perturbation-based method's estimations are represented with red lines. The left column shows 596 

evaluations in the neuromechanical simulation dataset, and the right column shows evaluations in 597 

the human experiment dataset. (A). Umberger et al., 2003 [47], (B). Houdijk et al. 2006 [48], (C). 598 

Bhargava et al., 2004 [49], (D). Lichtwark et al, 2005 [50] (E). Margaria 1968, applied onto muscle 599 

work rate [51,52], (F). Beck et al., 2019,[53] (G). Kim and Roberts, 2015 [18] (H). Margaria 1968, 600 

applied onto COM work rate [52,54], (I). Margaria 1968, applied onto joint work rate [52,55] (J). 601 

Minetti and Alexander, 1997 [56]. 602 
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 604 
Fig. 5. Application of the perturbation-based method to estimate within-stride metabolic 605 

cost. The red line shows the perturbation-based estimate of within-stride metabolic cost using 606 

stride means of 𝑉̇𝑂2 and 𝑉̇𝐶𝑂2 from the human experiment dataset as inputs. The grey lines show 607 

previous estimations from model-based methods [16,19,31,34,35]. 608 
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Table 1. Evaluation of perturbation-based method in neuromechanical dataset  630 

Stride mean 

metabolic cost input  

Selected mathematically derived 

combination of biomechanical time series 

Estimated versus actual 

time series correlation ┼ 

Bhargava  

et al., 2004 

(Soleus + tibialis anterior) * hip power + 

vastus medialis 
0.76 

Houdijk  

et al., 2006 

(COM power + vastus medialis) * rectus 

femoris + vastus medialis 
0.22 

Lichtwark  

et al., 2005 

(Soleus + tibialis anterior) * hip power + 

vastus medialis  
0.77 

Margaria,1968, 

muscle-based 
Knee angle – hip moment  0.49 

Umberger,  

2003 

(Stride time + vastus medialis) * hip power 

+ vastus medialis 
0.42 

Mean Pearson correlation                                                           0.55 (95% CI = 0.22 – 0.77)* 

┼ The final column lists correlations between model-based within-stride metabolic costs and 631 

estimations of these costs using the perturbation-based method (Fig. 4 AE). The stride mean 632 

metabolic costs used as inputs for the perturbation-based estimation are named in the first column. 633 

The Pearson correlations serve as a measure of the estimation performance. 634 

* Mean Pearson correlation and confidence interval are calculated following Fisher Z 635 

transformation. 636 
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Table 2. Evaluation of perturbation-based method in human experiment dataset.  663 

Stride mean 

metabolic cost input  

Selected mathematically derived 

combination of biomechanical time series 

Estimated versus actual 

time series correlation ┼ 

Beck  

et al., 2019 

Hip angle – vastus medilias + gluteus 

maximus + vertical GRF 
0.86 

Kim and  

Roberts, 2015 
(Positive portion of hip power) 0.41 

Margaria, 1968 

COM-based 

(COM power positive portion)*Soleus+ 

vertical GRF  
0.91 

Margaria, 1968 

joint-based 

(COM power positive portion)*vastus 

medialis+ vertical GRF  
0.78 

Minetti and 

Alexander, 1997 

(COM power positive portion)*tibialis 

anterior + vertical GRF 
0.83 

V̇O2 and  

V̇CO2 data 

Hip angle – tibialis anterior + gastrocnemius 

+ vertical GRF 
N/A # 

Mean Pearson correlation                                                             0.80 (95% CI = 0.57 -0.91)* 

┼ The final column lists correlations between model-based within-stride metabolic costs and 664 

estimations of these costs using the perturbation-based method (Fig. 4 FJ). The stride mean 665 

metabolic costs used as inputs for the perturbation-based estimation are named in the first column. 666 

The Pearson correlations serve as a measure of the estimation performance. 667 

* Mean Pearson correlation and confidence interval are calculated following Fisher Z 668 

transformation. 669 

# The final row shows the combination that was selected to plot the within-stride metabolic cost 670 

time series based on respiratory V̇O2 and V̇CO2 data. In this application, there was no reference to 671 

compare our estimation-performance against; hence no correlation is reported. 672 
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