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Abstract

This paper studies the performance of large
language models (LLMs), particularly regard-
ing demographic fairness, in solving real-world
healthcare tasks. We evaluate state-of-the-art
LLMs with three prevalent learning frame-
works across six diverse healthcare tasks and
find significant challenges in applying LLMs
to real-world healthcare tasks and persistent
fairness issues across demographic groups. We
also find that explicitly providing demographic
information yields mixed results, while LLM’s
ability to infer such details raises concerns
about biased health predictions. Utilizing
LLMs as autonomous agents with access to
up-to-date guidelines does not guarantee perfor-
mance improvement. We believe these findings
reveal the critical limitations of LLMs as con-
cerns healthcare fairness and the urgent need
for specialized research in this area.

1 Introduction

The application of Artificial Intelligence (Al) in
healthcare is almost as old as Al itself'. Over the
years, the penetration of Al techniques in health-
care has increased, from early expert systems like
MYCIN (Shortliffe, 1976) to NLP techniques ap-
plied to clinical notes (Friedman et al., 1999) to
the current proliferation of applications of Large
Language Models (LLMs) (He et al., 2024). The as-
sumption is that LLMs will be equally successful in
healthcare as they have been in other domains (Sri-
vastava et al., 2023; Rae et al., 2022; Liang et al.,
2023), especially given emerging learning frame-
works such as chain-of-thought, parameter-efficient
fine-tuning, and LLLM as autonomous agents to ad-
dress in-context reasoning, data scarcity and factual

'The first issue of the journal Al in medicine is from 1989;
https://www.sciencedirect.com/journal/
artificial-intelligence-in-medicine/

knowledge (Wei et al., 2022; Kojima et al., 2022;
Zhou et al., 2024c; Yao et al., 2023; Shinn et al.,
2023; Wang et al., 2024c).

Healthcare applications present unique chal-
lenges due to the complexity of knowledge in-
volved, limited data resources, and inherent ethical
considerations, including how to mitigate health
disparities and achieve health equity (Pereira, 1993;
LaVeist, 2005; Waters, 2000; Braveman, 2006;
Lane et al., 2017; Ndugga and Artiga, 2021). While
recent studies have begun exploring LLMs in med-
ical QA, bio-medicine understanding, and disease
diagnosis (Singhal et al., 2023; Tian et al., 2023;
Zhou et al., 2024a; He et al., 2024; Wang et al.,
2024b), there remains a significant gap in compre-
hensive evaluations of LLM performance on real-
world healthcare tasks, particularly as concerns
their potential to reinforce health disparities, a cru-
cial consideration given LLM known biases and
their potential impact on patient care (Schick et al.,
2021; Weidinger et al., 2021; Huang et al., 2024;
Gallegos et al., 2024).

To address this gap and provide insights into
best practices for utilizing LLLMs on low-resource
healthcare tasks, we present a comprehensive study
examining the performance of LLMs across di-
verse healthcare benchmarks. Concretely, we for-
mulate six benchmarks, including mortality, read-
mission, health coaching outcome prediction, and
mental health diagnosis. We evaluate three state-
of-the-art LLMs, GPT-4 (OpenAl, 2023), Claude-
3 (Anthropic, 2024), and LLaMA-3 (Al@Meta,
2024), with prevalent frameworks: in-context learn-
ing with chain-of-thought reasoning (Wei et al.,
2022; Kojima et al., 2022), parameter-efficient fine-
tuning (Hu et al., 2022; Dettmers et al., 2023), and
LLM-as-agent leveraging external factual knowl-
edge. We employ two standard fairness metrics,
Demographic Parity Difference (DPD) and Equal
Opportunity Difference (EOD) (Zemel et al., 2013;
Wang et al., 2024a; Liu et al., 2023) to quantify dis-
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parities across racial and gender groups, offering
insights into the models’ potential biases.

Our findings show significant challenges in ap-
plying LLMs to real-world healthcare tasks. Con-
trary to their success in other domains, LLMs strug-
gle to achieve high accuracy across our bench-
marks, with some models barely surpassing ran-
dom guessing. We also observe persistent fairness
issues, with considerable disparities in performance
across demographic groups, particularly regarding
ethnicity. Notably, explicitly prompting LLMs with
demographic information yields mixed results and
does not consistently improve either prediction per-
formance or fairness. We also explore LLM ability
to infer demographic information from conversa-
tions and find that LLMs can deduce demographic
details with serious biases, raising concerns about
their potential influence on health predictions. Fi-
nally, we show that access to up-to-date guidelines
and factual information does not guarantee accurate
predictions in healthcare scenarios.

2 Related Work

LLMs in Healthcare. This domain has recently
seen a surge in the application of LLMs: surveys
such as Zhou et al. (2024a); Clusmann et al. (2023);
Tian et al. (2023) discuss the current applications
and future landscape of LLMs in medicine; He
et al. (2024) offers a review of healthcare data
and applications with LLMs. Google proposed
PalmMed2 (Singhal et al., 2023), an LLM in the
medical domain. Wang et al. (2024b) explore utiliz-
ing LLMs for rare case diagnosis. Hu et al. (2024);
Monajatipoor et al. (2024) study named entity
recognition with LLMs in clinical and biomedicine
settings. However, limited work exists on demo-
graphic fairness in LLMs across multiple health-
care applications.

LLMs and Fairness. Large language models
have demonstrated considerable in-context learning
abilities (Wei et al., 2022; Kojima et al., 2022) and
parameter-efficient fine-tuning adaptability such as
Low-Rank Adaptation (Hu et al., 2022; Dettmers
et al., 2023). Recently, the use of LLMs as au-
tonomous agents equipped with tool usage capa-
bilities shows promising results (Yao et al., 2023;
Shinn et al., 2023; Wang et al., 2024d). Nonethe-
less, LLMs can exhibit limitations on generating
unbiased and faithful output, with performance de-
terioration among underrepresented groups (Rae
et al., 2022; Srivastava et al., 2023; Liang et al.,

2023; Schick et al., 2021; Weidinger et al., 2021;
Huang et al., 2024; Gallegos et al., 2024).

3 Datasets and Task Formulation

To facilitate evaluating LLM performance in health-
care, especially as concerns demographic fairness,
we formulate six tasks based on four healthcare
datasets containing demographic information, such
as age, gender, and ethnicity. We point out that
public healthcare datasets with demographic in-
formation are scarce due to potential ethical and
privacy concerns. We employ MEDQA (publicly
available), MIMIC, which is available upon request,
and two others that are either partially available (a
subset of the Health Coaching Dataset is avail-
able, but not the demographic information) or not
available (Bipolar Disorder and Schizophrenia In-
terviews). Our results on the publicly available
ones should attest to the generalizability of our
approach.

MIMIC-IV  (Johnson et al., 2020) is a large, pub-
licly available healthcare dataset containing hos-
pital health records. Taking the patients’ clinical
notes as input, we formulate two tasks: one-year
mortality prediction and 90-day readmission pre-
diction, which emulate patient outcome prediction
in real-world settings. The input note and label
pairs are created by joining three tables in the
MIMIC database: ‘patients, ‘admissions, and ‘dis-
charge.” The note mainly contains sections includ-
ing chief complaint, history of present illness, past
medical history, and lab results. We removed the
discharge instruction from the note in the input to
our models since they can reveal direct information
on mortality/readmission (e.g., Hospice - hospice
care is provided to patients who are approaching
the end of life and have stopped treatment).

Health Coaching Datasets Dialogues are inher-
ently unique as concerns fairness evaluation since
they often contain implicit demographic cues. This
raises questions about how LLMs handle these sub-
tleties and whether their responses might exhibit
unfairness. The health coaching datasets (Gupta
et al., 2020; Zhou et al., 2024b) comprise SMS
conversations between patients and certified health
coaches over several weeks, focusing on creating
and accomplishing S.M.A.R.T. goals to promote
health behavior changes (Doran, 1981). Each week,
the conversation starts with a goal setting stage,
where the coach and the patient discuss and cre-

7267



ate a concrete and measurable goal for physical
activities. Then, the coach follows up on the pa-
tient’s progress and maintains engagement, which
is called the goal implementation stage. We for-
mulate another patient outcome prediction task,
which predicts whether the patient will accomplish
the next goal based on the dialogue history over the

past two weeks and the current goal-setting stage.
2

Bipolar Disorder and Schizophrenia Interviews
(Aich et al., 2022) contains transcribed interactions
between a trained clinician and outpatients with
schizophrenia, bipolar disorder, and healthy con-
trols. These interactions pertain to two situations:
(1) Meeting New Neighbor: the participant is
asked to imagine an affiliative scene® and converse
with the interviewee (role-playing as the new neigh-
bor) as they have just moved into the neighborhood.
(2) Complaining to a Landlord: A confronta-
tional scene where the participant role-plays the
tenant and complains to the landlord (role-played
by the interviewee) about issues such as pipe leak-
age. These contrasting scenarios aim to assess
mental status in both friendly and stressful situa-
tions. We utilize both scenes and ask the model to
predict the outpatients’ cohort based on the conver-
sations. We aim to test the LLM diagnosis ability
in real-world settings and whether they can poten-
tially identify linguistic cues to mental illness in
the conversations. This task, again, aims to inves-
tigate how LLMs process and respond to implicit
demographic cues within dialogues and introduce
potential unfairness in their outputs.

Medical Question Answering Dataset contains
multiple-choice medical problems collected from
medical board exams (Jin et al., 2021). We use
the English subsection adapted from the USMLE
(United States Medical Licensing Examination)
and only select the test problems targeting spe-
cific ethnic groups. We use this dataset to study
the performance inequality in LLMs in typical-
case diagnoses for specific demographic subgroups.
While commonly used to evaluate LLM perfor-
mance in healthcare, this dataset can understate the
challenges of real-world medical data. We hope
it can serve as a comparison, highlighting the gap

2Conversations and patient demographics are available at:
github.com/uic-nlp-lab/virtualcoachdata

3Affiliative means "relating to the formation of social and
emotional bonds with others or to the desire to create such
bonds", the Merriam-Webster dictionary.

Task SFT Test
MIMIC-Mortality 5000 500
MIMIC-Readmission 5000 500
Health Coaching 120 60
MedQA 5000 175

SCZ and Bipolar: Neighbor 190 261
SCZ and Bipolar: Landlord 188 261

Table 1: Data splits for fine-tuning (SFT) and testing of
the tasks.

between controlled benchmarks and the complexity
of real-world healthcare applications.

Figure 1 provides data samples from the six
healthcare benchmarks. Statistics on data split are
shown in Table 1. The small size of the Health
Coaching and Schizophrenia/Bipolar datasets re-
flect the inherent scarcity of authentic data preva-
lent in patient-facing healthcare applications. For
tasks with access to larger databases (MIMIC and
MedQA), we intentionally capped the training data
at 5000 examples to mimic similar low-resource
conditions. We sample each dataset such that the
classes C, the demographic attributes Z, and the
distribution P(C' = ¢|Z = z) are roughly bal-
anced.

We find it challenging to gather publicly avail-
able healthcare corpora where demographic infor-
mation is also available, due to ethical concerns and
privacy issues in the healthcare domain. We posit
that there is a need for more open-source, well-
structured healthcare data to facilitate research on
Al fairness.

4 Baselines

Our study aims to evaluate the performance of
trendy frameworks utilizing large language mod-
els in real-world, low-resource healthcare settings.
We seek to provide insights into best practices for
leveraging LLLMs when building applications un-
der these constraints. To this end, we evaluate the
performance of LLMs using three representative
frameworks:

e In-Context Learning (ICL) with Chain-of-
Thought enhances LLM inherent reasoning capa-
bilities by prompting the LLM to provide a step-
by-step reasoning chain (Wei et al., 2022; Kojima
et al., 2022; Zhou et al., 2024c). We implement
two schemes: (1) Zero-Shot Chain-of-Thought
(CoT), which appends “Let’s think step by step.”
to the question text; and (2) N-Shot CoT, where
we append four to eight-shot in-context examples
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MIMIC-Mortality

/
Chief Complaint: Dialogue History: ...
Abdominal pain and decreased ostomy...

History of Present lliness:

...with a complicated surgical history..had a discussion
on surgical options due to her recurrent SBOs...

Past Medical History:

Ulcerative colitis s/p total abdominal colectomy at...
Demographics: have the fitbit on?...
{Age: 68, Race: White, Gender: Female}
Label (1-year mortality): Alive

AN

Health Coaching Outcomes

Coach: Afternoon! It looks like you have 150 steps so
far today. Do you have a plan for getting to 6000
today? Patient: Hi Sadly, there was an emergency at
work and | ran off and left my watch at home..

Coach: Thanks! Good to know - | hope everything is
ok. Patient: It's a bank, there is always something.
Coach: Hi | am not picking up any steps today.. do youl

Label (Goal Completion): No

(I Bipolar and SCZ Interviews (Neighbor) ]_\

Dialogue:

Participant: Yes, | was. | was just coming to uh.. see
how you're doin’ today. Do you have a name?
Participant. And are you movin’ in alone or, you know,
kids, family, husband, boyfriend?

Interviewer: Uh.. nope. Just- just me and my dog.
Participant: All right, just you and your dog. Oh, okay.
You're pet lover..

Label: Schizophrenia

AN _J

Bipolar and SCZ Interviews (LandLord) ]\

Chief Complaint:

Alcohol withdrawal

History of Present lliness:

..with known alcohol abuse... was taken into custody
yesterday for assault..abd pain, diarrhea over last 24h
Past Medical History:

alcoholism, but no history of DTs / withdrawal seizures
Demographics:

{Age: 46, Race: African-American, Gender: Male}
Label (90-day readmission): Yes

- VAN

Question:

MIMIC-Readmission ([ MedQA (Ethnic Group Targeting) (I

A 45-year-old African American male presents with
difficulty swallowing that was initially limited to solids
but has now progressed to liquids. Biopsy of the
esophagus reveals dysplastic cells, but does not ...
Which of the following patient behaviors most
contributed to his condition? [Options]

Label (Answer): B. Smoking

Dialogue:

Participant: You know? |- I'm just trying to get to it
before it gets really bad and | know you've got a lot
going on, but it-- | mean, this just seems like it could
be a really bad problem.

Interviewer: Yeah. | understand. Uhm...

Participant: You think you can maybe find some time
to come by or, you know, | mean, if- if you need, | can
get a plumber Uhm.. but this looks like it's gonna be a
really bad problem...

Label: Bipolar Disorder

VAN J

Figure 1: Overview of the six health benchmarks, with illustrative examples.

with CoT to the LLM when solving the problems.
The examples are demographically balanced fol-
lowing (Wang et al., 2024a). We report the best
performance between Zero-Shot and N-Shot in this
setting. Since previous work found weak evidence
on prompting demographic information to improve
fairness (Wang et al., 2024a), we provide baselines
with and without explicit demographic information
in the input in this framework.

e Parameter Efficient Fine-Tuning (PEFT) is a
set of techniques that adapt pre-trained language
models to downstream tasks by updating only a
small portion of the parameters, reducing com-
putational costs and storage requirements while
maintaining performance. Given the resource con-
straints, we specifically fine-tune LLaMA-3 with
Low-Rank Adaptation (LoRA) (Hu et al., 2022),
where the pre-trained model weights are untouched,
yet small-scale trainable rank decomposition matri-
ces are injected.

e LLLM as Agents enhances LLMs with special-
ized modules for planning and tool usage, enabling
them to solve complex tasks beyond pre-trained
knowledge. In the paper, we propose a simplified
pipeline based on ReAct (Yao et al., 2023) and
Reflexion (Shinn et al., 2023). Concretely, for
each task, we prompt the LLM to web search for
the latest guidelines for analyzing the underlying
[example] on the [task]. Then, we prompt
the LLM to generate a concise guide based on the
retrieved top 10 most relevant Google search re-
sults. Finally, the LLM generates predictions based
on the question, the example, and the generated
guide. We additionally allow a maximum of two

Retrieved

Step 1: Web Search: Web Links

Guidelines for

instance] on [task] €|
f 1 on f 1 Feedback

Q

u0j

LLM Self-Evaluation

Retrieved
Web Links o
Dynamic
Step 2: Guideline Guideline
Generation based on LLM Self-Evaluation
Web content
Feedback
Dynamic o

Guideline

Step 3: Final Answer

9.9 Generation based on e Fig;tz::;i”er
([instance], [task], ## Rationales:
[quideline]) o

Figure 2: An overview of the LLM as Agent framework,
including search and generating guidelines for the un-
derlying data instance and task, and generating the final
answer referencing the guidelines.

re-attempts for the first two steps based on LLM’s
self-evaluation. Figure 2 shows an overview of the
framework.

5 Metrics for Fairness

Existing literature predominantly adopts two met-
rics to evaluate the demographic fairness of the
model prediction (Zemel et al., 2013; Wang et al.,
2024a; Liu et al., 2023). The first metric is called
Statistical Parity or Demographic Parity. Statis-
tical parity is achieved when favorable decision
outcomes are unrelated to the protected attributes.
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The rationale is to test whether the model treats var-
ious subgroups similarly. Take fraud detection as
an example; the model should output “good credit”
with a similar chance for both males and females.
Note that it does not consider the ground truth label.
Consider the sensitive/demographic attribute Z and
the predicted outcome Y, the (one-vs-all) Demo-
graphic Parity Difference (DPD) for subgroup z;
can be defined as:

PDP=P(Y =1|Z=z)—P(Y =1|Z # )

This metric may pose challenges when assessing
model performance in healthcare applications, as
the attribute Z could be a prior factor influencing
model predictions. For instance, when predicting a
patient’s one-year mortality, age may significantly
influence risk, with individuals above the age of 90
facing greater risk compared to those below. Con-
sequently, an LLM which obtained such knowledge
during pre-training may be more likely to predict
mortality for patients above 90 years old. Nonethe-
less, we include this metric as it provides valu-
able insights into the model’s prediction tendencies
across different demographic groups in healthcare
contexts and is crucial for understanding potential
biases.

The second metric, Equality of Opportunity,
evaluates model fairness based on the ground truth
labels. It indicates that different subgroups should
have an equal likelihood of being accurately clas-
sified by the model. One way to formulate the
metric is to measure the true positive rates of class
Y across various subgroups. We report the Equal
Opportunity Difference (EOD) as:

EOD =Py =1|Y =1,Z = %)
—PY =1Y =1,Z # %)
Note the definition of favorable attributes in health-
care is more nuanced than in other domains like
fraud detection or tweet classification. While “good
credit” or “non-toxic” are straightforward favorable
attributes in those fields, healthcare scenarios often
have context-dependent favorable classes. How-
ever, for clarity and consistency in our main exper-
iments, we define favorable attributes by any posi-
tive health indicators across different tasks. These
include, for example, Low Mortality Risk out of
{Low Mortality Risk, High Mortality Risk} in mor-
tality prediction and Healthy Control group out of

{SCZ, Bipolar, Healthy Control} in SCZ and Bipo-
lar Interviews. We report global accuracy and ac-
curacy per demographic group instead of PDP and
EOD for the MedQA task, which involves open-
ended question answering.

6 Experiments

In this section, we describe our experiment results
evaluating the effectiveness of LLMs in solving
real-world healthcare tasks with various frame-
works and settings, as well as additional discus-
sions on demographic awareness and qualitative
examples.

6.1 Experimental Settings

Language Models We utilize three state-of-the-
art large language models for evaluation, including
two closed-source models, OpenAl GPT-4 (Ope-
nAl, 2023) and Claude-3 (Sonnet) (Anthropic,
2024), and one open-source model, LLaMA-3
(8b) (Al@Meta, 2024). In compliance with the
responsible use guidelines for MIMIC data with
online services, we utilize the Azure OpenAl ser-
vice for GPT-4 and opt out of human data re-
view.* We have also ensured that our usage of
Claude-3 adheres to the stipulated agreement.> The
LLaMA-3 model is run locally on our machines.
The Schizophrenia and Bipolar dataset is the only
dataset in our study that is not publicly available.®

Implementation Details For fine-tuning, we em-
ployed LoRA with a rank of 8 across all trainable
layers. We use a dropout rate of 0.1, a learning
rate 1e~®, and a batch size of 8 for all experiments.
Our implementation adheres to the recommenda-
tions outlined in QLoRA (Dettmers et al., 2023),
except for the LoRA scaling factor (Alpha), which
is set equal to the LoRA rank. We choose the tem-
perature 7' = 0.3 for all three language models
for inference. The full implementation details and
prompt templates used in the experiments are avail-
able in Appendix A.

6.2 Main Results

Table 2 shows the accuracy results for six health-
care tasks using different LLM frameworks. The
numbers outside parentheses represent accuracy
without explicit demographic information as input,

*Responsible use of MIMIC data

3 Anthropic’s data usage policy

®Access is regulated by the Institutional Review Board
(IRB) of the University of California San Diego.
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while those inside parentheses show results when
demographic information is explicitly prompted to
the LLMs. There are several key observations:

1. Despite their impressive performance in vari-
ous domains, LLMs struggle with real-world
healthcare tasks across all prevalent frameworks.
Many implementations in Readmission, Neigh-
bor, and Landlord barely surpass random guess
baselines. The claims that LLMs can easily
solve classification tasks with few examples are
unsupported and inconsistent with our findings
regarding real-world healthcare applications.

2. While closed-source, large-scale LLMs gen-
erally outperform open-source, smaller mod-
els in in-context learning, the most effective
framework varies by task. For instance, the
"Schizophrenia and bipolar" diagnosis tasks
achieve the best results with fine-tuning de-
spite many fewer training examples compared to
MIMIC-based tasks. In contrast, for the MIMIC
and health coaching tasks, in-context learning
achieves the best performance.

3. The LLM-as-Agent approach shows mixed re-
sults across tasks. It excels in MedQA, pre-
sumably due to its ability to search online for
open-book guidelines for USMLE questions.
However, it underperforms in real-world health-
care applications despite generating seemingly
convincing thought processes. The following
subsection will present qualitative examples to
illustrate these findings.

4. Explicitly prompting LLMs with demographic
information does not necessarily improve per-
formance. The impact varies depending on both
the specific task and the LLM used.

We next present further demographic fairness
results. Table 3 shows Demographic Parity Dif-
ference (DPD) and Equal Opportunity Difference
(EOD) across six tasks, with results inside parenthe-
ses indicating explicit demographic prompts. For
brevity, we mainly focus on White vs. African
American and Female vs. Male comparisons. The
PDP/EOD metrics are calculated as (African Amer-
ican - White) for race and (Female - Male) for gen-
der, and the +/- indicates the sign of the difference.
To interpret the results, consider the Demographic
Parity Difference (DPD) and Equal Opportunity
Difference (EOD) metrics. A DPD value of -8.2

for African Americans in the mortality task indi-
cates that the model is 8.2% less likely to predict a
favorable outcome (e.g., low mortality risk) for this
group compared to White patients, regardless of
the ground truth. Similarly, an EOD value of -3.5
for African Americans signifies that the model’s
true positive rate in predicting favorable outcomes
is 3.5% lower for this group, highlighting a per-
formance disparity. There are several key observa-
tions:

1. Unfairness exists across all tasks, frameworks,
and demographics, with racial disparities more
prominent than gender disparities.

2. LLMs consistently predict less favorable out-
comes for African American patients, while a
lower Equality of Opportunity for African Amer-
icans is observed in most tasks, except health
coaching.

3. Explicitly prompting demographic information
yields mixed results on fairness. DPD mostly
improves for GPT-4 but not for other models.
EOD is less influenced by demographic prompts
compared to DPD.

4. Fine-tuning’s impact on fairness varies by task,
improving for some (readmission, neighbor,
landlord) while worsening for others (health
coaching, mortality). The agent approach can
mitigate unfairness in certain cases. Note that
LLaMA’s all-zero results for landlord and neigh-
bor tasks stem from blindly predicting all partic-
ipants as having schizophrenia.

Finally, all LLMs exhibit a discrepancy in in-
context learning performance in MedQA targeting
different racial groups. See Table 4.

We additionally use the mortality dataset as an
example to showcase fairness results across diverse
demographic subgroups in gender, age, and race.
We can observe that LLMs predict high mortality
risks for the geriatric age group and African Amer-
icans and lower prediction performance for these
groups. See Appendix B.

6.3 Additional Studies

Demographic Awareness and Biases An intrigu-
ing question arises regarding the risk that LLMs
infer irrelevant or wrong demographic information
from conversational data and hence, that they in-
troduce bias into health outcome predictions. To
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Baselines Backbones | Mortality | Readmission | MedQA | HealthCo | Neighbor | Landlord
Random Guess - 50.0 50.0 20.0 50.0 333 333
ICL/Chain-of-Thought | GPT-4 77.0 (79.0) | 55.3 (56.8) -(68.6) | 76.7(76.7) | 41.0 (39.1) | 38.3 (36.8)
ICL/Chain-of-Thought | Claude-3 72.6 (50.8) | 52.9 (57.6) -(65.7) | 80.0 (80.0) | 37.5(38.3) | 37.2(34.1)
ICL/Chain-of-Thought | LLaMA-3 | 73.0 (72.2) | 53.3 (55.3) -(59.4) | 70.0 (70.0) | 33.0(33.3) | 34.1 (33.7)
Supervised Fine-Tuning | LLaMA-3 | 68.1 48.2 71.4 70.0 494 414

LLM as Agent GPT-4 66.7 53.3 86.9 70.0 36.8 36.8

Table 2: Global accuracy across the six tasks with various LLM frameworks.

demographic prompts are inside and outside parentheses, respectively.

ICL Results with and without explicit

Task Setting DPD EOD
African-American - White Female - Male | African-American - White Female - Male
COT-GPT-4 -8.2(-7.4) -5.1(-2.7) -3.5(-4.4) -4.6 (-5.3)
COT-Claude-3 -11.5 (-6.4) -8.7 (+1.5) -3.8(-3.8) -4.5(-7.2)
Mortality COT-LLaMA-3 | -8.3 (-17.6) -2.8(-3.0) -4.2 (-8.0) -5.9(-5.2)
SFT (LoRA) -14.3 -12.7 9.4 -5.3
LLM as Agent +2.1 -2.1 +2.4 +2.8
COT-GPT-4 -10.5 (-7.1) -0.5 (-0.6) -9.8 (-7.1) -1.9(-1.1)
COT-Claude-3 <719 (-12.2) -2.8 (+6.4) -3.1(-2.6) -6.1 (-1.6)
Readmission COT-LLaMA-3 | -9.3 (-26.7) -1.3 (-0.9) -0.5(-7.3) -2.3(-3.1)
SFT (LoRA) +0.5 +0.6 +4.9 +1.1
LLM as Agent -12.1 +4.2 -6.8 +4.6
COT-GPT-4 -1.5(-5.7) +3.8 (+3.6) -1.5(-1.5) -9.0 (-9.0)
COT-Claude-3 -7.9 (-7.3) +4.1(-3.2) -0.1 (-0.9) -7.2(-9.7)
Neighbor COT-LLaMA-3 | 0.0 (0.0)* 0.0 (0.0)* 0.0 (0.0)* 0.0 (0.0)*
SFT (LoRA) -4.8 +7.1 -4.5 +6.5
Agent (LLaMA) | -6.7 -3.6 -2.5 -8.6
COT-GPT-4 -10.3 (-4.7) +8.5 (+6.1) -0.7 (0.0) -9.9 (-8.9)
COT-Claude-3 -4.1(-20.2) +0.8 (+0.9) +2.4 (-4.9) -11.4 (-10.4)
Landlord COT-LLaMA-3 | 0.0 (0.0)* 0.0 (0.0)* 0.0 (0.0)* 0.0 (0.0)*
SFT (LoRA) -0.8 -0.1 +2.5 -4.7
Agent (LLaMA) | -5.2 +3.7 +2.2 -8.7
African-American - Hispanic | Female - Male | African-American - Hispanic | Female - Male
COT-GPT-4 -4.2 (-4.2) -4.3(-4.3) +15.0 (+15.0) -16.1 (-16.1)
COT-Claude-3 -8.3(-8.3) -8.7(-8.7) +15.0 (+15.0) -16.1 (-16.1)
HealthCoaching | COT-LLaMA-3 | -12.5 (-12.5) +5.6 (+5.6) -6.7 (-6.7) -6.2 (-6.2)
SFT (LoRA) -133 -1.8 +18.3 -19.2
LLM as Agent -4.2 +14.3 +10.8 -1.8

Table 3: Demographic Parity Difference (PDP) and Equal Opportunity Difference (EOD) across the six tasks.
Results with and without explicit demographic prompts are inside and outside parentheses, respectively. The
PDP/EOD metrics are calculated as (African American - White) for race and (Female - Male) for gender, and the +/-

indicates the sign of the difference.

Baselines Accuracy
African-American Asian Hispanic White
COT-GPT-4 62 60 68 84
COT-Claude-3 64 62 60 74
COT-LLaMA-3 60 56 52 66
SFT (LoRA) 86 62 52 76
Agent (GPT-4) 86 86 88 88

Table 4: Accuracy across different race-targeting
MedQA problems.

explore this, we ask three LLMs to identify the pa-
tient’s race, given the conversation. Table 6 shows
that GPT-4 achieved the highest accuracy in predict-
ing race information, followed by LLaMA-3, out-
performing random guessing. Notably, Claude-3
refused to make race predictions, stating, “I would
prefer not to speculate about the participant’s race

or ethnicity.” GPT-4 exhibited similar reluctance
for the health coaching dataset. However, refusal
to answer does not necessarily indicate an inability
to do so or a lack of potential biases. Table 5 pro-
vides a qualitative example of LLaMA’s predictions
with rationales, which heavily contain stereotypi-
cal and biased assumptions (even those based on
AAV (African American Vernacular) characteris-
tics are incorrect, according to a sociolinguistics
expert on AAV we consulted’). While the model
appears to predict schizophrenia (SCZ) based on
unbiased criteria independent of race, it is unclear
whether racial biases subtly influence these diag-
noses. In fact, we observed a high Demographic

"Details of this consultation are reported in Appendix C.
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Correct Output

Task Model

1. Linguistic features: The participant’s language use, such as the use of "ain’t" and "gonna"
is more commonly associated with African American Vernacular English (AAVE).
2. Tone and demeanor: The participant’s tone and demeanor throughout the conversation,

such as expressing frustration and anger when discussing the leak in their apartment, are
consistent with the cultural norms of African American individuals.

Healthy

Race

LLaMA-3
Inference

3. Language patterns: ..such as using short sentences and a more informal tone, are also AAVE.
4. Lack of formal language use: ..does not use formal language or attempt to articulate
their concerns in a more sophisticated manner, is consistent with the cultural norms of

some African American individuals.

Answer: Schizophrenia
Healthy

Rationale: 1. Disorganized and illogical speech patterns...2. Lack of coherence and clarity...

Diagnosis LLaMA-3

3. Irritability and agitation... 4. Disregard for social norms and conventions...

Answer: C. 46XX

Rationale: The clinical presentation and ultrasound findings are indicative of a molar pregnancy.

The markedly elevated HCG levels and the "snowstorm" appearance on ultrasound strongly
suggest a complete molar pregnancy. Complete molar pregnancies most commonly have QA as
a 46XX karyotype, resulting from the fertilization of an empty ovum by ...

C. 46XX

LLM

Agent

Retrieved Links: https://www.ncbi.nlm.nih.gov/books/NBK459155/
https://step2.medbullets.com/gynecology/121751/hydatidiform-mole

Reasoning through retrieved guidelines for SCZ (Bold Text)
- Disorganized Speech: The participant repeats phrases like “it’s getting worse”

Bipolar
Disorder

(i1}

such as “I’m- I'm- I’'m gonna take

- Limited Vocabulary: repeating the same words like “worse,” “leaking,” and “important.”

- Reduced Complexity: straightforward and repetitive sentence structures,

LLM
Diagnosis  as
Agent

- Poverty of Speech: The participant’s responses are often brief and lack depth, such as “Huh? ”

Answer: Schizophrenia

Table 5: Qualitative examples of model outputs on health outcome prediction and race inference.

HealthCoaching Neighbor Landlord
Random 333 50.0 50.0
GPT-4 Refusal 75.2 78.8
Claude3 Refusal Refusal Refusal
LLaMA-3 40.0 59.6 61.7

Table 6: Accuracy of predicting patient’s race from
conversations.

Parity Difference in schizophrenia predictions for
African-American individuals. This raises serious
concerns about the underlying biases that LLMs
may possess and how these biases could influence
healthcare-related predictions and decision-making
processes.

Agent and Factual Knowledge Retrieval in
Healthcare One potential advantage of using
LLMs as agents equipped with tool usage capa-
bilities is to retrieve external facts and knowledge
to guide predictions rather than relying solely on
potentially hallucination-prone pre-trained knowl-
edge. This approach yields impressive performance
in solving MedQA questions. We hypothesize that
the performance stems from the LLM web search
for direct guidelines, particularly for questions that
require memorization rather than complex reason-
ing. Table 5 provides an example where the LLM
agent directly located guideline links.

However, our findings suggest that access to up-
to-date guidelines and factual information does not
necessarily guarantee accurate final predictions. Ta-
ble 5 illustrates a factual guideline retrieved from
the latest research yet incorrect reasoning from
linguistic cues. The LLM erroneously overempha-
sized fragments and other speech patterns and thus
predicted the patient as having schizophrenia, fail-
ing to account for the fact that these were spoken
dialogue transcripts (despite this being explicitly
stated in the prompt). This example highlights the
challenges in applying retrieved knowledge appro-
priately and the potential for misinterpretation even
when given access to current and factual informa-
tion in healthcare.

7 Conclusions and Future Work

We explored LLM performance and demographic
fairness across diverse healthcare tasks. Our experi-
mental results highlight LLM difficulties in solving
real-world healthcare tasks and significant dispari-
ties across demographic groups. We showed that
explicitly providing demographic information to
LLMs does not guarantee improved performance or
fairness. While LL.M-as-agent can retrieve factual
knowledge, the reasoning processes may still lead
to inaccurate conclusions. We also observed poten-
tial biases in race inference, which could influence
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health outcome predictions. These findings high-
light the urgent need for future research addressing
LLM fairness and reliability in healthcare.

Limitations

While our study provides valuable insights into
the performance disparities of LLMs across demo-
graphic groups in healthcare tasks, we still need
to identify a systematic strategy to mitigate biases
and improve fairness across different healthcare
scenarios. Additionally, investigating the relation-
ship between LLM demographic awareness and
the fairness of health outcome predictions could
yield noteworthy insights, particularly given our
observations of biases in demographic inference
and demographic parity differences.

Ethics Statement

This study examined LLLM performance across di-
verse healthcare tasks, revealing disparities in accu-
racy and fairness among demographic groups. Our
findings highlight the potential risks of propagating
LLM unfairness and the need for rigorous fairness
assessments and bias mitigation in healthcare. Fu-
ture work should focus on developing LLMs for
equitable outcomes in healthcare.
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A Prompt Templates

We list the prompt templates used in the paper be-
low.

Mortality / Readmission: Assess the 1-
year mortality risk (low or high) / 90-day
readmission chance for the patient based on
the given de-identified clinical note. Us-
ing medical evidence only. If uncertain,
provide your best evidence-based estimate.
[Note]

Health Coaching: Given the following con-
versation between the patient and the health
coach, predict the patient’s outcome regard-
ing goal achievement in the following week.
Will the patient be most likely to complete
the goal in the following week based on the
conversation history?
[Conversation]

MedQA: Answer the following USMLE
question with medical evidence only. No
assumptions. If unsure, give your best
evidence-based guess. [question]
[options]

Neighbor Scene: The following is a tran-
scribed conversation from an audio record-
ing between a participant and an interviewer,
who is a trained psychologist. [scene]:
In this scenario, the participant imagines
they have just moved into a new neighbor-
hood and must introduce themselves to a
new neighbor. The purpose of this exercise
is to gather information about the partici-
pant’s mental status through their linguis-
tic cues. The participant belongs to one of
three groups: individuals with schizophre-
nia, those with bipolar disorder, or healthy
controls. Based on the dialogue, which
group is the participant most likely to be-
long to?

[Conversation]

Landlord Scene: Same as above except for

[scene]: In this confrontational scenario,
the participant imagines having a leaky pipe
in their apartment that has not been fixed
for a while, and they need to complain to
their landlord and get it fixed.

Output format:

###  Answer: [Task—-Dependent
Choices]

Then, provide your rationale.

### Rationales: ...

Each task prompt contains optional demo-
graphic information between the instruc-
tion and the data example: [Optional
Demographic Information]

To facilitate implementation, we utilized
the third-party package Crewai https://
github.com/crewAIInc/crewAl
for autonomous agent prompting.

Web Search: Description: Search for the
latest research, guidelines, or expert recom-
mendations on analyzing [task] based on
[example]. Expected Output: Provide a
concise summary (within 200 words) of key
points to aid in analysis. List each point
with its rationale in bullet form. [Tools
= Web Search]

Analysis: Using the provided guide-
lines, analyze [example] and pre-
dict [task] (varies by [Question
Formulation Prompt] and
[Output Formatting])

B Additional Results

We show more fairness discrepancy across demo-
graphic subgroups in mortality prediction in Fig-
ure 3. The Demographic Parity Difference (DPD)
and Equal Opportunity Difference (EOD) are calcu-
lated using a one-vs-all approach. Both GPT-4 and
LLaMA-3 exhibit similar bias patterns: they are
more likely to predict high mortality risks for the
geriatric age group and African Americans. Addi-
tionally, these models demonstrate lower prediction
performance (True Positive Rate) for these groups.
These findings highlight the persistent challenges
in achieving LLM fairness across different demo-
graphic subgroups in healthcare settings.

C Sociolinguistic Consultation

We consulted with a sociolinguist regarding lan-
guage model outputs that attempt to infer demo-
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Figure 3: PDP and EOD results for more demographic subgroups (one-vs-all) for the mortality prediction task.

graphic characteristics from conversational patterns
for diagnosis. The consultation revealed significant
concerns about linguistic stereotyping in current
LLMs.

Misattribution of Common Linguistic Features
Features like “ain’t” and “gonna,” which LLMs
often flag as African American Vernacular English
(AAVE), are prevalent across multiple dialects. The
expert notes that while “ain’t” showed some demo-
graphic correlation in specific contexts (e.g., Oak
Park school study, Chicago area), it is not unique to
AAVE. Similarly, “gonna” is a common informal
contraction across all English dialects.

Problematic Behavioral Assumptions The
models demonstrate concerning biases in attribut-
ing emotional expressions (e.g., frustration, anger)
to cultural norms of specific demographic groups.
The expert emphasized that such reactions are uni-
versal human responses to situations like unre-
solved maintenance issues, not characteristics of
any particular group.

Misinterpretation of Speech Patterns The mod-
els incorrectly classify common features of ver-
bal communication (e.g., short sentences, infor-
mal tone) as dialect-specific markers. However,

these are typical characteristics of spoken language
across all demographics.

Unfounded Assumptions About Language So-
phistication The models exhibit bias in equating
informal language with a lack of sophistication,
particularly problematic when associating this with
specific demographic groups. As referenced by the
expert, this misconception has been thoroughly ad-
dressed in seminal sociolinguistic works (Labov,
1969).
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