
EQUIVALENT REGULAR PARTITIONS OF 3-UNIFORM
HYPERGRAPHS

BRENDAN NAGLE, VOJT!CH RÖDL, AND MATHIAS SCHACHT

Abstract. The regularity method was pioneered by Szemerédi for graphs and is an important
tool in extremal combinatorics. Over the last two decades, several extensions to hypergraphs
were developed which were based on seemingly di"erent notions of quasirandom hypergraphs.
We consider the regularity lemmata for 3-uniform hypergraphs of Frankl and Rödl and of
Gowers, and present a new proof that the concepts behind these approaches are equivalent.

§1. Introduction

Szemerédi [13] introduced the regularity method for graphs, which became an important
tool in extremal graph theory. The regularity lemma asserts that every large graph G “ pV, Eq
can be approximated by a bounded number of quasirandom bipartite subgraphs that are
induced by a partition of V . This approximation allows the use of results on quasirandom
graphs for the analysis of G, which is a key feature in the success of the regularity method.

Szemerédi’s regularity lemma was extended from graphs to k-uniform hypergraphs by
Rödl et al. [3, 9, 12] and Gowers [4,5]. For a fixed k-uniform hypergraph H “ pV, Eq, these
regularity lemmata provide well-structured partitions P of V pk´1q “ tX ! V : |X| “ k ´ 1u
where for most edges e P E, the hypergraph H is quasirandom on the unique minimal family
of classes from P containing a pk ´ 1q-element subset from e. By quasirandom, we follow
either uniform edge distribution [3, 9, 12] or deviation [4, 5].

For graphs it is well known that both concepts are essentially equivalent quasirandom
properties and for 3-uniform hypergraphs a similar equivalence was obtained in joint work
with Poerschke [7]. The proof from [7] is technical and it invokes two applications of the
hypergraph regularity lemma. Here, we present a conceptually simpler proof using a single
application of the regularity lemma.
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1.1. Quasirandom bipartite graphs. We begin our discussion with the notion of quasiran-
domness that is central to Szemerédi’s regularity lemma. For ω " 0 and d P r0, 1s, we say a
bipartite graph G “ pX Ÿ Y, Eq is pω, dq-regular if all subsets X 1 ! X and Y 1 ! Y satisfy

ˇ̌
epX 1, Y 1q ´ d |X 1||Y 1|

ˇ̌
# ω |X||Y | , (1)

where epX 1, Y 1q denotes the number of edges between X 1 and Y 1. Note that (1) ensures a
fairly uniform edge density across the large induced bipartite subgraphs of G, which is a
property holding almost surely in the binomial random bipartite graph.

The second notion of quasirandomness considers induced subgraphs on only four vertices.
For ε " 0 and d P r0, 1s, we say G “ pX Ÿ Y, Eq is pε, dq-conformant∗ if

ÿ

x0,x1PX

ÿ

y0,y1PY

!

ω,µPt0,1u
fG,dpxω, yµq # ε |X|2|Y |2 ,

where fG,d : X ˆ Y $Ñ r´1, 1s is the d-shifted indicator of E given by

fG,dpx, yq “ 1Epx, yq ´ d .

Note that when d “ dpX, Y q is the density of G above, fG,d sums to 0 over X ˆ Y .
The aforementioned equivalence is made precise by the following two statements:

(i ) For all d P r0, 1s and ω " 0, there exists ε " 0 such that every pε, dq-conformant
bipartite graph is pω, dq-regular.

(ii ) For all d P r0, 1s and ε " 0, there exists ω " 0 such that every su!ciently large
pω, dq-regular bipartite graph is pε, dq-conformant.

We briefly sketch the well known proofs of (i ) and (ii ).
The proof of the implication in (i ) starts with the identity

epX 1, Y 1q ´ d |X 1||Y 1| “
ÿ

xPX 1

ÿ

yPY 1
fG,dpx, yq “

ÿ

xPX

ÿ

yPY

1X 1pxq1Y 1pyqfG,dpx, yq .

With two applications of the Cauchy–Schwarz inequality, to separate the indicator functions
involving vertices from X and from Y , one can show that

ˇ̌
epX 1, Y 1q ´ d |X 1||Y 1|

ˇ̌4 # |X 1|2 ¨ |Y 1|2 ¨
ÿ

x0,x1PX

ÿ

y0,y1PY

!

ω,µPt0,1u
fG,dpxω, yµq

and the pω, dq-regularity follows from the assumed pε, dq-conformity when ε # ω4.
The proof of implication (ii ) makes use of the following bounds (see (2) below) on the

number of induced copies of subgraphs of the 4-cycle C4 “ K2,2. Let F be a spanning subgraph
∗We remark that this concept is often called deviation. However, referring to such well-behaved graphs as

pω, dq-deviant seemed to be a mismatch and that is why we chose a di"erent name here.
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of K2,2 with vertex partition tx0, x1u Ÿ ty0, y1u. We say a function ϑ : V pF q $Ñ V pGq is an
induced homomorphism when xy P EpF q if, and only if, ϑpxqϑpyq P EpGq. If in addition, ϑ

satisfies ϑpx0q, ϑpx1q P X and ϑpy0q, ϑpy1q P Y , then ϑ is a partite induced homomorphism
of F into G, and we denote the number of such homomorphisms by ihompF, Gq.

If G “ pX Ÿ Y, EGq is an pω, dq-regular bipartite graph, then the counting lemma for graphs
implies

ˇ̌
ˇ ihompF, Gq ´ d|EpF q|p1 ´ dq4´|EpF q||X|2|Y |2

ˇ̌
ˇ # 4ω |X|2|Y |2 . (2)

The proof of (ii ) then follows immediately for ω # ε{64 from the identity
ÿ

x0,x1PX

ÿ

y0,y1PY

!

ω,µPt0,1u
fG,dpxω, yµq “

ÿ

F !C4

p1 ´ dq|EpF q|p´dq4´|EpF q| ihompF, Gq .

with 16 applications of (2), one for every labeled spanning subgraph F ! K2,2.

1.2. Quasirandom tripartite hypergraphs. We continue the discussion above for 3-
uniform hypergraphs. In the context of the 3-uniform hypergraph regularity lemma, we
consider 3-partite 3-uniform hypergraphs H “ pV, EHq, where EH is a subset of the triangles
of an underlying graph G “ pV, EGq on the same vertex set V . To make this precise, we
denote by K3pGq the set of triples of vertices, which span a graph triangle K3 in G. We say
that G “ pV, EGq underlies H “ pV, EHq when EH ! K3pGq. Also, for a subgraph J ! G, we
write EHpJq “ EH X K3pJq for the set of hyperedges matching triangles of J , and we set

eHpJq “
ˇ̌
EH X K3pJq

ˇ̌
.

The following notion of a complex plays a similar rôle in the hypergraph regularity lemma as
a bipartite graph does in the graph regularity lemma.

Definition 1.1 (complex). For ω2, d2 " 0, an pω2, d2q-complex H “ ppX, Y, Zq, G, Hq is a
triple satisfying the following properties:

(a ) X, Y , and Z are pairwise disjoint vertex sets with |X| “ |Y | “ |Z|;
(b ) G “ pX ŸY ŸZ, EGq is a 3-partite graph where each of the induced bipartite subgraphs

GrX, Y s, GrX, Zs, and GrY, Zs is pω2, d2q-regular;
(c ) H “ pX Ÿ Y Ÿ Z, EHq is a 3-uniform hypergraph which G underlies, i.e., EH ! K3pGq.

More simply, we refer to G as a triad and H as a complex.

We now introduce analogues of regularity and conformity for complexes.
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Definition 1.2 (regular complex). Let H “ ppX, Y, Zq, G, Hq be an pω2, d2q-complex on 3n

vertices. For ω3 " 0 and d3 P r0, 1s, we say H is pω3, d3q-regular if all subgraphs J ! G satisfy
ˇ̌
eHpJq ´ d3 |K3pJq|

ˇ̌
# ω3 ¨ d3

2n
3 .

In Definition 1.2, the quantity d3
2n

3 approximates the number of triangles of G (cf. (b ) of
Definition 1.1). Similarly, the quantity d12

2 n6 below approximates its number of K2,2,2’s.

Definition 1.3 (conformant complex). Let H “ ppX, Y, Zq, G, Hq be an pω2, d2q-complex
on 3n vertices. For ε3 " 0 and d3 P r0, 1s, we say H is pε3, d3q-conformant if

ÿ

x0,x1PX

ÿ

y0,y1PY

ÿ

z0,z1PZ

!

ω,µ,εPt0,1u
fH,d3pxω, yµ, zεq # ε3 ¨ d12

2 n6 ,

where fH,d3 : X ˆ Y ˆ Z $Ñ r´1, 1s is defined by

fH,d3px, y, zq “ 1K3pGqpx, y, zq ¨ p1EH
px, y, zq ´ d3q . (3)

Note that when d3 is the relative density of H

dpH |Gq “

$
&

%

eH pGq
|K3pGq| , if K3pGq ‰ ⊋,

0, otherwise,

the fH,d3 sums to 0 over X ˆ Y ˆ Z.
It was proven in [7] that Definitions 1.2 and 1.3 are equivalent. We will give an alternative

proof of this equivalence. First, we will show that conformity implies regularity.

Proposition 1.4. For all ε3, d3, d2 " 0, there exists ω2 " 0 so that the following holds. If H
is a pε3, d3q-conformant pω2, d2q-complex on 3n vertices, then H is pp2ε3q1{8, d3q-regular.

Proposition 1.4 follows from standard iterative applications of the Cauchy–Schwarz inequality
(similar to those in the proof of (i ) in Section 1.1).

Second, we will show that regularity implies conformity.

Theorem 1.5. For all ε3, d3 " 0, there exists ω3 " 0 so that for every d2 " 0, there exist
ω2 " 0 and n0 P N so that the following holds. If H is an pω3, d3q-regular pω2, d2q-complex on
3n % 3n0 vertices, then H is pε3, d3q-conformant.

The new proof of Theorem 1.5 is the main contribution here. The main challenge is that
its quantification allows for d2 ! ω3, ε3, whereby the underlying graph G is much sparser than
the hypergraph H is regular. This quantification matches the environment obtained by the
hypergraph regularity lemma and cannot be avoided. To overcome this challenge, in [7] two
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applications of the regularity lemma for hypergraphs were used. We present a simpler proof
using one such application. In the opposite extreme d2 " ω3, ε3, the corresponding version of
Theorem 1.5 appears in [1, 6].

Organisation. In Section 2, we prove Proposition 1.4. The proof of Theorem 1.5 is based on
estimates similar to (2), where in a regular 3-uniform complex we estimate the number of
induced copies of all 3-partite subhypergraphs on vertex classes of size two. Theorem 3.1 of
Section 3 provides these bounds, and we deduce Theorem 1.5 in that section. In Section 5, we
prove Theorem 3.1. This proof is based on the regularity method for 3-uniform hypergraphs,
which we review in Section 4.

§2. Proof of Proposition 1.4: Conformity implies Regularity

The proof of Proposition 1.4 is based on three applications of the Cauchy–Schwarz inequality,
and follows lines similar to the proof of piq in Section 1.1. Let H “ ppX, Y, Zq, G, Hq be a
pε3, d3q-conformant pω2, d2q-complex on 3n vertices, where ω2 “ ω2pd2q " 0 satisfies

pd2 ` ω2q4 ¨ pd2
2 ` 2ω2q2 ¨ pd4

2 ` 4ω2q # 2d12
2 . (4)

Fix a subgraph J ! G. Since fH,d3px, y, zq in (3) is 1EpHqpx, y, zq ´ d3 on xyz P K3pJq†, the
quantity eHpJq ´ d3|K3pJq| equals

ÿ

xyzPK3pJq
fH,d3px, y, zq“

ÿ

xPX

ÿ

yPY

1EJ
px, yq

ÿ

zPZ

1EJ
px, zq1EJ

py, zqfH,d3px, y, zq .

A first application of the Cauchy–Schwarz inequality yields

ˇ̌
eHpJq ´ d3 |K3pJq|

ˇ̌2 #
ÿ

xPX

ÿ

yPY

12
EJ

px, yq ¨
ÿ

xPX

ÿ

yPY

ˆ ÿ

zPZ

1EJ
px, zq1EJ

py, zqfH,d3px, y, zq
˙2

“ eJpX, Y q
ÿ

z0,z1PZ

ÿ

xPX

!

εPt0,1u
1EJ

px, zεq
ÿ

yPY

!

εPt0,1u
1EJ

py, zεqfH,d3px, y, zεq .

†For simplicity, if there is no danger of confusion we sometimes omit parentheses, braces, and commas for
2-element and 3-element sets. In particular, we denote edges tu, vu, hyperedges tu, v, wu, or the vertex set of
a graph triangle tx, y, zu by uv, uvw, and xyz, respectively.



6 BRENDAN NAGLE, VOJT!CH RÖDL, AND MATHIAS SCHACHT

A second application of the Cauchy–Schwarz inequality bounds |eHpJq ´ d3 |K3pJq||4 by

eJpX, Y q2 ¨
ÿ

z0,z1PZ

ÿ

xPX

ˆ !

εPt0,1u
1EJ

px, zεq
˙2

¨
ÿ

z0,z1PZ

ÿ

xPX

ˆ ÿ

yPY

!

εPt0,1u
1EJ

py, zεqfH,d3px, y, zεq
˙2

# eJpX, Y q2 ¨ hom
`
K1,2, JrX, Zs

˘

¨
ÿ

y0,y1PY

ÿ

z0,z1PZ

!

µ,εPt0,1u
1EJ

pyµ, zεq
ÿ

xPX

!

µ,εPt0,1u
fH,d3px, yµ, zεq ,

where hompK1,2, JrX, Zsq denotes the number of (partite) graph homomorphisms of K1,2 into
JrX, Zs. A third application of the Cauchy–Schwarz inequality yields

ˇ̌
eHpJq ´ d3 |K3pJq|

ˇ̌8 # eJpX, Y q4 ¨ hom
`
K1,2, JrX, Zs

˘2 ¨ hom
`
K2,2, JrY, Zs

˘

¨
ÿ

x0,x1PX

ÿ

y0,y1PY

ÿ

z0,z1PZ

!

ω,µ,εPt0,1u
fHpxω, yµ, zεq , (5)

where hompK2,2, JrY, Zsq is defined analogously to hompK1,2, JrX, Zsq. Now, the pω, d2q-
regularity of GrX, Y s, GrX, Zs, and GrY, Zs guarantees (see, e.g., (2))

eJpX, Y q # eGpX, Y q # pd2 ` ω2qn2 ,

hom
`
K1,2, JrX, Zs

˘
# hom

`
K1,2, GrX, Zs

˘
# pd2

2 ` 2ω2qn3 ,

and hom
`
K2,2, JrY, Zs

˘
# hom

`
K2,2, GrY, Zs

˘
# pd4

2 ` 4ω2qn4 .

Applying these bounds and the pε3, d3q-conformity of H to (5) implies
ˇ̌
eHpJq ´ d3 |K3pJq|

ˇ̌8 # pd2 ` ω2q4n8 ¨ pd2
2 ` 2ω2q2n6 ¨ pd4

2 ` 4ω2qn4 ¨ ε3d
12
2 n6 (4)

# 2ε3d
24
2 n24 ,

which concludes the proof of Proposition 1.4. ↭

§3. Proof of Theorem 1.5: Regularity implies Conformity

Theorem 1.5 is a consequence of Theorem 3.1 below, which extends (2) to regular complexes
H “ ppX, Y, Zq, G, Hq. In particular, Theorem 3.1 asserts that H admits around the expected
number of labeled induced copies of any spanning subhypergraph F of the octahedron Kp3q

2,2,2:

V pKp3q
2,2,2q “ tx0, x1u Ÿ ty0, y1u Ÿ tz0, z1u and EpKp3q

2,2,2q “
"
xωyµzε : ϖ, µ, ϱ P t0, 1u

(
.

For this, a map ϑ : V pF q $Ñ V pGq is a partite homomorphism of F into H when

(1) ϑpx0q, ϑpx1q P X, ϑpy0q, ϑpy1q P Y , and ϑpz0q, ϑpz1q P Z;
(2) ϑpxωqϑpyµqϑpzεq P K3pGq for all ϖ, µ, ϱ P t0, 1u;
(3) ϑpxωqϑpyµqϑpzεq P EpHq whenever xωyµzε P EpF q.

When, additionally, ϑ satisfies
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p31q ϑpxωqϑpyµqϑpzεq P EpHq if, and only if, xωyµzε P EpF q,
we say that ϑ is a partite induced homomophism of F into H. In these contexts, we denote by
hompF, Hq (ihompF, Hq) the number of partite (induced) homomorphisms of F into H.

Theorem 3.1. For all ς " 0 and d3 P r0, 1s, there exists ω3 " 0 so that for every d2 " 0,
there exist ω2 " 0 and n0 % 1 so that the following holds for every spanning subhypergraph F

of Kp3q
2,2,2. If H is an pω3, d3q-regular pω2, d2q-complex on 3n % 3n0 many vertices, then

ˇ̌
ˇ ihompF, Hq ´ d|EpF q|

3 p1 ´ d3q8´|EpF q|d12
2 n6

ˇ̌
ˇ # ς ¨ d12

2 n6 . (6)

We defer the proof of Theorem 3.1 to Section 5.

Proof of Theorem 1.5. For any given ε3, d3 " 0 we set ς “ ε3{256 and for d2 " 0, let
H “ ppX, Y, Zq, G, Hq be an pω3, d3q-regular pω2, d2q-complex on 3n % 3n0 vertices, where
ω3 “ ω3pε3, d3, ςq " 0, ω2 “ ω2pε3, d3, ς, d2q " 0, and n0 “ n0pε3, d3, ς, d2, ω2q P N are those
parameters guaranteed by Theorem 3.1. It follows from (3) that

ÿ

x0,x1PX

ÿ

y0,y1PY

ÿ

z0,z1PZ

!

ω,µ,εPt0,1u
fH,d3pxω, yµ, zεq “

ÿ

F

p1 ´ d3q|EpF q|p´d3q8´|EpF q| ¨ ihompF, Hq ,

where the sum on the right-hand side runs over all 256 labeled spanning subhypergraphs
of Kp3q

2,2,2. Applying Theorem 3.1 to all such F bounds the left-hand side from above by

256ςd12
2 n6 `

ÿ

F

p´1q8´|EpF q| ¨ d8
3p1 ´ d3q8d12

2 n6 “ 256ςd12
2 n6,

and the pε3, d3q-conformity of H follows from the choice of ς. ↭

§4. Regularity Method for 3-uniform Hypergraphs

In this section, we state a regularity lemma from [3] (Theorem 4.2 below) and a counting
lemma from [8] (Theorem 4.4 below) which we need for proving Theorem 3.1. These require
the following notion of a regular complex, which is somewhat stronger than Definition 1.2.

Definition 4.1 (r-regular complex). Let H “ ppX, Y, Zq, G, Hq be an pω2, d2q-complex.
For ω3 " 0, d3 P r0, 1s, and an integer r % 1, we say H is pω3, d3, rq-regular if all sequences
J “ pJ1, . . . , Jrq of subgraphs of G satisfy

ˇ̌
eHpJq ´ d3 |K3pJq|

ˇ̌
# ω3 |K3pGq| ,

where eHpJq “
ˇ̌ #

r

i“1 EHpJiq
ˇ̌
and K3pJq “ #

r

i“1 K3pJiq. Moreover, we say H is pω3, rq-regular
when it is pω3, d3, rq-regular for d3 “ dpH |Gq.
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We remark that for r “ 1, Definition 4.1 reduces to Definition 1.2. Otherwise, Definition 4.1
is stronger than Definition 1.2, and for large r it is stronger than Definition 1.3 (see [2]).

The following regularity lemma for complexes is adapted from [3] (see, e.g., [11, Lemma 4.1]).

Theorem 4.2 (Regularity Lemma). For all constants d2, φ3 " 0, integers ↼0, t0 % 1, and
functions φ2 : p0, 1s $Ñ p0, 1s and r : p0, 1s ˆ N $Ñ N, there exist a constant ω2 " 0 and
integers L0, T0, and N0 so that the following hold.

Let H “ ppX, Y, Zq, G, Hq be an pω2, d2q-complex on 3n % 3N0 vertices, where T0! divides
n. There exist integers ↼ and t with ↼0 # ↼ # L0, t0 # t # T0, vertex partitions

#¨
iPrts Xi “ X,

#¨
jPrts Yj “ Y , and

#¨
kPrts Zk “ Z, edge-partitions

$
¨

i,jPrts

$
¨

ϑPrϖs
P ij

ϑ
“ EpGrX, Y sq ,

$
¨

i,kPrts

$
¨

ϱPrϖs
Qik

ϱ
“ EpGrX, Zsq , and

$
¨

j,kPrts

$
¨

ςPrϖs
Rjk

ς
“ EpGrY, Zsq ,

and complexes Hijk

ϑϱς
“ ppXi, Yj, Zkq, Gijk

ϑϱς
, H ijk

ϑϱς
q for every pi, j, k, ↽, ⇀, ⇁q P rts3 ˆ r↼s3, where

Gijk

ϑϱς
“

`
Xi Ÿ Yj Ÿ Zk, P ij

ϑ
Ÿ Qik

ϱ
Ÿ Rjk

ς

˘
and H ijk

ϑϱς
“

`
Xi Ÿ Yj Ÿ Zk, EpHq X K3

`
Gijk

ϑϱς

˘˘
,

satisfying the following properties:

(a ) all Hijk

ϑϱς
above are pφ2pd2{↼q, d2{↼q-complexes on 3n{t vertices;

(b ) all but φ3t3↼3 many Hijk

ϑϱς
above are pφ3, rpd2{↼, tqq-regular.

We call the graphs Gijk

ϑϱς
of Theorem 4.2 the triads of the regular partition.

In Theorem 4.4 below, we consider a special case of the counting lemma from [8], tailored for
counting subhypergraphs of the octahedron Kp3q

2,2,2 within the following octahedral complexes.

Definition 4.3 (octahedral complex). For φ2 " 0 and d " 0, an octahedral pφ2, dq-complex
O “ ppX0, X1, Y0, Y1, Z0, Z1q, G, Hq is a triple satisfying the following properties:

(i ) X0, X1, Y0, Y1, Z0, and Z1 are pairwise disjoint vertex sets of common size;
(ii ) G is a 3-partite graph with vertex classes X0 Y X1, Y0 Y Y1, and Z0 Y Z1, and H is a

3-partite 3-uniform hypergraph which G underlies;
(iii ) for each ϖ, µ, ϱ P t0, 1u, the complex

Oωµε “
`
pXω, Yµ, Zεq, Gωµε “ GrXω, Yµ, Zεs, Hωµε

˘
,

where EpHωµεq “ EpHq X K3pGωµεq, is a pφ2, dq-complex.

Moreover, for φ3 " 0 and an integer r % 1, we say O is pφ3, rq-regular when all ϖ, µ, ϱ P t0, 1u
satisfy that Oωµε is pφ3, rq-regular.
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Fix a spanning subhypergraph F of the octahedron Kp3q
2,2,2 on the fixed vertex partition

V pF q “ tx0, x1u Ÿ ty0, y1u Ÿ tz0, z1u,

and fix an octahedral complex O “ ppX0, X1, Y0, Y1, Z0, Z1q, G, Hq. A map ϑ : V pF q $Ñ V pGq
is a partite homomorphism of F into O when all ϖ, µ, ϱ P t0, 1u satisfy the following properties:

(1) ϑpxωq P Xω, ϑpyµq P Yµ, and ϑpzεq P Zε ;
(2) ϑpxωqϑpyµqϑpzεq P K3pGq;
(3) ϑpxωqϑpyµqϑpzεq P EpHq whenever xωyµzε P EpF q.

We denote by hompF, Oq the number of partite homomorphisms of F into O.

Theorem 4.4 (Octahedral Counting Lemma). For every ϑ " 0, there exist φ3 " 0 and
functions φ2 : p0, 1s $Ñ p0, 1s, r : p0, 1s $Ñ N, and m0 : p0, 1s $Ñ N such that for all
d P p0, 1s, the following holds. For every pφ3, rpdqq-regular octahedral pφ2pdq, dq-complex
O “ ppX0, X1, Y0, Y1, Z0, Z1q, G, Hq on 3m % 3m0pdq vertices, and for and every spanning
subhypergraph F of Kp3q

2,2,2, we have
ˇ̌
ˇ hompF, Oq ´ d12m6

!

xωyµzεPEpF q
dpH | Gωµεq

ˇ̌
ˇ # ϑd12m6 .

The essential di"erence between Theorems 3.1 and 4.4 (aside from counting induced versus
non-induced homomorphisms) is the assumed regularity of the given complex. In Theorem 3.1,
the given complex H is pω3, d3q-regular, while in Theorem 4.4, the given octahedral complex O
satisfies the stronger property of being pφ3, rq-regular for some large integer r depending on
the density of the underlying graph G.

§5. Proof of Theorem 3.1

In this section, we prove Theorem 3.1 in a non-induced but equivalent form.

Theorem 5.1. For all ς " 0 and d3 P r0, 1s, there exists ω3 " 0 so that for every d2 " 0,
there exist ω2 " 0 and n0 % 1 so that the following holds for every spanning subhypergraph F

of Kp3q
2,2,2. If H is an pω3, d3q-regular pω2, d2q-complex on 3n % 3n0 many vertices, then

ˇ̌
ˇ hompF, Hq ´ d|EpF q|

3 d12
2 n6

ˇ̌
ˇ # ς ¨ d12

2 n6 .

Up to the error ς, Theorems 3.1 and Theorems 5.1 are equivalent. Indeed, fixing F above,

hompF, Hq “
ÿ

F 1
ihompF 1, Hq and ihompF, Hq “

ÿ

F 1
p´1q|EpF

1q|´|EpF q| hompF 1, Hq ,
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where we sum over all spanning subhypergraphs F 1 satisfying F ! F 1 ! Kp3q
2,2,2, and where we

use the elementary identities

d|EpF q|
3 “

ÿ

F 1
d|EpF

1q|
3 p1 ´ d3q8´|EpF

1q| and d|EpF q|
3 p1 ´ d3q8´|EpF q| “

ÿ

F 1
p´1q|EpF

1q|´|EpF q|d|EpF
1q|

3 .

In the proof of Theorem 5.1, we invoke the regularity method from Section 4. We also use
the following standard consequence of the counting lemma for graphs.

Fact 5.2 (counting/extension lemma for graphs). For all tripartite graphs G “ pXŸY ŸZ, EGq
with GrX, Y s, GrX, Zs, and GrY, Zs being pω, dq-regular we have

(a )
ˇ̌
|K3pGq| ´ d3|X||Y ||Z|

ˇ̌
# 3ω|X||Y ||Z|

(b ) and all but 4ω1{4|X||Y ||Z| many triangles of G extend to at most
`
d9 ` 4ω1{4˘

|X||Y ||Z|
partite homomorphisms of K2,2,2 into G.

Similarly, given a tripartite graph G “ pX Ÿ Y Ÿ Z, EGq with vertex classes X “ X0 Y X1,
Y “ Y0 Y Y1, and Z “ Z0 Y Z1 with GrXω, Yµs, GrXω, Zεs, and GrYµ, Zεs being pω, dq-regular
for all ϖ, µ, ϱ P t0, 1u we have

(c )
ˇ̌
hompK2,2,2, Gq ´ d12|X0||X1||Y0||Y1||Z0||Z1|

ˇ̌
# 12ω|X0||X1||Y0||Y1||Z0||Z1|, where in

hompK2,2,2, Gq we only consider those homomorphisms ϑ from V pK2,2,2q “ tx0, x1u Ÿ
ty0, y1u Ÿ tz0, z1u such that ϑpx0q P X0, . . . , ϑpz1q P Z1. ↭

Note that Fact 5.2 (c ) also applies in a situation when for example X0 and X1 are not disjoint.

Proof of Theorem 5.1. We start by defining all involved constants. Following the quantification
of the theorem for given ς " 0 and d3 P r0, 1s we define

ω3 “ ς

213 . (7)

Let d2 " 0 be given. To define the corresponding constant ω2 " 0, we assemble constants and
functions suitable for applications of Theorems 4.2 and 4.4. To that end, set

ϑ “ ς

212 . (8)

Let φ3 " 0 and functions φ2 : p0, 1s $Ñ p0, 1s, r : p0, 1s $Ñ N and m0 : p0, 1s $Ñ N be those
parameters guaranteed by Theorem 4.4. W.l.o.g., we may assume that

φ3 # ς

215
(7)“ ω3

4 , and φ2pζq # ς

3 ¨ 212 ζ12 for all ζ P p0, 1s , (9)

and that m0pxq decreases in x. With constants d2, φ3 " 0 fixed above, with fixed integers

t0 “
Q212

ς

U
(10)
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and ↼0 “ 1, and with functions φ2p¨q and rp¨q fixed above, Theorem 4.2 guarantees a constant
ω1

2 " 0 and positive integers L0, T0, and N0. We define the promised constant

ω2 “ min
!

ω1
2 ,

ˆ
ςd12

2
12 ¨ 210

˙4
,

d12
2

12T0

)
, (11)

and we take the integer n0 to be su!ciently large whenever needed.
Let H “ ppX, Y, Zq, G, Hq be an pω3, d3q-regular pω2, d2q-complex with |X| “ |Y | “ |Z| “

n % n0, where ω3, ω2, and n0 are defined above. It su!ces to assume that T0! divides n

since removing up to T0! vertices from each of X, Y , and Z decreases hompF, Hq by only
6T0!n5 “ Opn5q while still resulting in a p2ω3, d3q-regular p2ω2, d2q-complex.

For every fixed spanning subhypergraph F ! Kp3q
2,2,2 we shall establish

ˇ̌
ˇ hompF, Hq ´ d|EpF q|

3 d12
2 n6

ˇ̌
ˇ # 2|EpF q|

28 ς ¨ d12
2 n6 . (12)

Note that (12) holds when F is the empty (spanning) subhypergraph of Kp3q
2,2,2, since then

hompF, Hq “ hompK2,2,2, Gq, for which (c ) of Fact 5.2 yields
ˇ̌
hompF, Hq ´ d0

3 ¨ d12
2 n6 ˇ̌

# 12ω2n
6 (11)

# 20

28 ς ¨ d12
2 n6 .

We assume, for a contradiction, that there exists an edge-minimal non-empty spanning
subhypergraph F of Kp3q

2,2,2 for which (12) fails. W.l.o.g., we assume that x0y0z0 P EpF q and
we set F ´ “ F ´ x0y0z0 to be the subhypergraph of F obtained by removing the hyperedge
x0y0z0. Since (12) fails for F but holds for F ´, we deduce that

ˇ̌
hompF, Hq ´ d3 ¨ hompF ´, Hq

ˇ̌
" 2|EpF q| ´ d3 ¨ 2|EpF

´q|

28 ς ¨ d12
2 n6 % ς

28 ¨ d12
2 n6 . (13)

We shall use the discrepancy in (13) to establish the existence of a subgraph J0 ! G violating
the regularity of H:

ˇ̌
eHpJ0q ´ d3 |K3pJ0q|

ˇ̌
" ω3 ¨ d3

2n
3 . (14)

The proof of the existence of J0 consist of four steps. First, we apply Theorem 4.2 and locate
a triad in the regular partition where (13) carries over (in an appropriately scaled way) to
copies of F ´ and F that extend hyperedges supported by that triad (see (18) below).

Step 1: Applying the regularity lemma. We apply Theorem 4.2 to H with the chosen parameters
d2, φ3, ↼0, t0, φ2p¨q and rp¨q. Theorem 4.2 guarantees integers ↼0 # ↼ # L0 and t0 # t # T0,
vertex partitions

#¨
iPrts Xi “ X,

#¨
jPrts Yj “ Y , and

#¨
kPrts Zk “ Z, edge-partitions

$
¨

i,jPrts

$
¨

ϑPrϖs
P ij

ϑ
“ EpGrX, Y sq ,

$
¨

i,kPrts

$
¨

ϱPrϖs
Qik

ϱ
“ EpGrX, Zsq , and

$
¨

j,kPrts

$
¨

ςPrϖs
Rjk

ς
“ EpGrY, Zsq ,
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and complexes Hijk

ϑϱς
, pi, j, k, ↽, ⇀, ⇁q P rts3 ˆ r↼s3, where

Gijk

ϑϱς
“

`
Xi Ÿ Yj Ÿ Zk, P ij

ϑ
Ÿ Qik

ϱ
Ÿ Rjk

ς

˘
and H ijk

ϑϱς
“

`
Xi Ÿ Yj Ÿ Zk, EpHq X K3pGijk

ϑϱς
q
˘

,

which satisfy properties (a ) and (b ) of its conclusion. We set

m “ n

t
, φ2 “ φ2

´d2
↼

¯
, and r “ r

´d2
↼

¯

and note that m % n{T0 % m0pd2{↼q and by (9) we have

φ2 # ς

3 ¨ 212 ¨
´d2

↼

¯12
. (15)

We remove hyperedges xyz from H when they belong to some H ijk

ϑϱς
for which Hijk

ϑϱς
is not

pφ3, rq-regular, and we let H 1 and H1 denote the resulting hypergraph and complex. By (b ) of
Theorem 4.2 and (a ) of Fact 5.2,

|EpHq ⫅̸ EpH 1q| # φ3t
3↼3 ¨ ppd2{↼q3m3 ` 3φ2m

3q
(15)
# 2φ3d

3
2n

3 . (16)

Consequently, (b ) of Fact 5.2 applied to G and (16) implies
ˇ̌
hompF, H1q ´ d3 ¨ hompF ´, H1q

ˇ̌

%
ˇ̌
hompF, Hq ´ d3 ¨ hompF ´, Hq

ˇ̌
´

`
2φ3d

3
2n

3 ¨ pd9
2n

3 ` 4ω1{4
2 n3q ` 4ω1{4

2 n3 ¨ n3˘
.

Thus, inequality (13) can be transferred from H to H1 by
ˇ̌
hompF, H1q ´ d3 ¨ hompF ´, H1q

ˇ̌
" ς

28 d12
2 n6 ´ 2φ3d

12
2 n6 ´ 12ω1{4

2 n6 (9),(11)
% ς

29 ¨ d12
2 n6 . (17)

Next we shall find a triad Gijk

ϑϱς
such that a similar (appropriately scaled) inequality like (17)

holds for the homomorphisms of F and F ´ in H 1 that map the three vertices x1, y1, z1

to K3pGijk

ϑϱς
q and the other three vertices x0, y0, z0 (which span the additional hyperedge

in F ) outside Xi, Yk, and Zk. For that we denote by hompF, H 1 | Gijk

ϑϱς
q (respectively by

hompF ´, H 1 | Gijk

ϑϱς
q) the number of those injective partite homomorphisms. It follows from (c )

of Fact 5.2 that are at most

3t5↼12 ¨
`
pd2{↼q12m6 ` 12φ2m

6˘ (15)
# 4

t0
¨ d12

2 n6 (10)
# ς

210 ¨ d12
2 n6

homomorphism from K2,2,2 in G with two vertices contained in the same vertex class from the
vertex partitions

#¨
iPrts Xi,

#¨
jPrts Yj, or

#¨
kPrts Zk. Consequently, summing hompF, H 1 | Gijk

ϑϱς
q

over all t3↼3 triads Gijk

ϑϱς
of the regular partition yields

ÿ

i,j,kPrts

ÿ

ϑ,ϱ,ςPrϖs
hompF, H 1 | Gijk

ϑϱς
q % hompF, H 1q ´ ς

210 ¨ d12
2 n6
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and the same inequality holds for F ´. Therefore, (17) implies
ˇ̌
ˇ̌

ÿ

i,j,kPrts

ÿ

ϑ,ϱ,ςPrϖs
hompF, H 1 | Gijk

ϑϱς
q ´ d3 ¨

ÿ

i,j,kPrts

ÿ

ϑ,ϱ,ςPrϖs
hompF ´, H 1 | Gijk

ϑϱς
q
ˇ̌
ˇ̌ " ς

210 ¨ d12
2 n6 .

Since there are t3↼3 triads, by the pigeonhole principle there exists a triad Gijk

ϑϱς
such that

ˇ̌
hompF, H 1 | Gijk

ϑϱς
q ´ d3 ¨ hompF ´, H 1 | Gijk

ϑϱς
q
ˇ̌

" ς

210 ¨ d12
2 n6

↼3t3 . (18)

We may assume that i “ j “ k “ t and ↽ “ ⇀ “ ⇁ “ ↼ and this concludes the first step.

Step 2: Further restricting the considered copies of F ´ and F . In the second step, we further
restrict the set of copies of F and F ´ that we consider in (18). For that, fix 1 # i # t ´ 1. We
wish to select a fixed bipartite graph P it

ϑi
among the ↼ such with vertex bipartition Xi Ÿ Yt.

More generally, for all i, j, k P rt ´ 1s we wish to respectively select

P it

ϑi
, P tj

ϑ
1
j

, Qit

ϱi
, Qtk

ϱ
1
k

, and Rjt

ςj
, Rtk

ς
1
h

from the partition of pairs. To make these selections, for áa “ pá↽, á↽1,
á
⇀,

á
⇀ 1, á⇁ , á⇁ 1q P r↼s6pt´1q

where

á↽ “ p↽1, . . . , ↽t´1q ,
á
⇀ “ p⇀1, . . . , ⇀t´1q , á⇁ “ p⇁1, . . . , ⇁t´1q ,

á↽1 “ p↽1
1, . . . , ↽1

t´1q ,
á
⇀ 1 “ p⇀1

1, . . . , ⇀1
t´1q , á⇁ 1 “ p⇁1

1, . . . , ⇁1
t´1q ,

we denote by hompF, H1 | Gttt

ϖϖϖ
, áaq (respectively hompF ´, H1 | Gttt

ϖϖϖ
, áaq) the number of partite

homomorphisms ϑ from F (resp. F ´) to H1 that satisfy

ϑpx1q P Xt , ϑpy1q P Yt , ϑpz1q P Zt , ϑpx1qϑpy1qϑpz1q P K3pGttt

ϖϖϖ
q (19)

(as before), and also that for some fixed indices i, j, k P rt ´ 1s,

ϑpx0q P Xi , ϑpy0q P Yj , ϑpz0q P Zk , (20)

and

ϑpx0qϑpy1q P P it

ϑi
, ϑpx0qϑpz1q P Qit

ϱi
, ϑpy0qϑpz1q P Rjt

ςj
,

ϑpx1qϑpy0q P P tj

ϑ
1
j

, ϑpx1qϑpz0q P Qtk

ϱ
1
k

, ϑpy1qϑpz0q P Rtk

ς
1
k

.

Homomorphisms ϑ satisfying (19) alone are counted by hompF, H1 | Gttt

ϖϖϖ
q, and for each such

there are precisely ↼6pt´2q vectors áa P r↼s6pt´1q so that ϑ also satisfies (20). Consequently,

hompF, H1 | Gttt

ϖϖϖ
q ¨ ↼6pt´2q “

ÿ

á
aPrϖs6pt´1q

hompF, H1 | Gttt

ϖϖϖ
, áaq
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and the same identity holds for F ´. Applying these identities to (18) yields

1
↼6pt´2q

ˇ̌
ˇ̌

ÿ

á
aPrϖs6pt´1q

´
hompF, H1 | Gttt

ϖϖϖ
, áaq ´ d3 ¨ hompF ´, H1 | Gttt

ϖϖϖ
, áaq

¯ˇ̌
ˇ̌ " ς

210 ¨ d12
2 n6

↼3t3 ,

and applying the triangle inequality further yields

ÿ

á
aPrϖs6pt´1q

ˇ̌
hompF, H1 | Gttt

ϖϖϖ
, áaq ´ d3 ¨ hompF ´, H1 | Gttt

ϖϖϖ
, áaq

ˇ̌
" ς

210 ¨ d12
2 n6

↼3t3 ¨ ↼6pt´2q.

Averaging over the ↼6pt´1q terms above yields some vector áa P r↼s6pt´1q that satisfies

ˇ̌
ˇ hompF, H 1 | Gttt

ϖϖϖ
, áaq ´ d3 ¨ hompF ´, H 1 | Gttt

ϖϖϖ
, áaq

ˇ̌
ˇ " ς

210 ¨ d12
2 n6

↼3t3 ¨ ↼6pt´2q

↼6pt´1q “ ς

210 ¨ d12
2 n6

↼9t3 . (21)

In Step 1, we fixed the triad Gttt

ϖϖϖ
to satisfy (18), and in Step 2, we fixed the vector áa to

satisfy (21). We now observe that every triad Gijk

ϑϱς
with i, j, k P rt ´ 1s determines a unique

octahedral complex (see Definition 4.3)

Oijk

ϑϱς
“

`
pXi, Xt, Yj, Yt, Zk, Ztq, Ĝijk

ϑϱς
, Ĥ ijk

ϑϱς

˘
, (22)

where the edge-set of Ĝijk

ϑϱς
is given by the edges of the graph

P ij

ϑ
Ÿ P it

1 Ÿ P tj

1 Ÿ P tt

ϖ
Ÿ Qik

ϱ
Ÿ Qit

1 Ÿ Qtk

1 Ÿ Qtt

ϖ
Ÿ Rjk

ς
Ÿ Rjt

1 Ÿ Rtk

1 Ÿ Rtt

ϖ
,

and where EpĤ ijk

ϑϱς
q “ EpH 1q X K3pĜijk

ϑϱς
q. It follows by these constructions that

hompF, H 1 | Gttt

ϖϖϖ
, áaq “

ÿ

i,j,kPrt´1s

ÿ

ϑ,ϱ,ςPrϖs
hompF, Oijk

ϑϱς
q ,

and the same identity holds for F ´. We may therefore rewrite (21) to say
ˇ̌
ˇ̌

ÿ

i,j,kPrt´1s

ÿ

ϑ,ϱ,ςPrϖs

´
hompF, Oijk

ϑϱς
q ´ d3 ¨ hompF ´, Oijk

ϑϱς
q
¯ˇ̌

ˇ̌ " ς

210 ¨ d12
2 n6

↼9t3 . (23)

In Step 3, we will invoke Theorem 4.4 to evaluate the di"erences above.

Step 3: Applying the octahedral counting lemma. Theorem 4.4 expresses each hompF, Oijk

ϑϱς
q

and hompF ´, Oijk

ϑϱς
q in (23) as products of densities of triads of Oijk

ϑϱς
. We express these same

densities in terms of the following piece-wise defined weight function w : V pGqYEpGq $Ñ r0, 1s.
First, we weight all vertices v P V pGq and edges e P EpGq incident to Xt Ÿ Yt Ÿ Zt with
wpvq “ wpeq “ 1. Then, we weight remaining vertices and edges of G systematically by the
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following constant functions: for each pi, j, k, ↽, ⇀, ⇁q P rt ´ 1s3 ˆ r↼s3, set

w|Xi
”

$
&

%
dpH 1 | Gitt

11ϖ
q if x0y1z1 P EpF q ,

1 otherwise,

w|Yj
”

$
&

%
dpH 1 | Gtjt

1ϖ1q if x1y0z1 P EpF q ,

1 otherwise,

w|Zk
”

$
&

%
dpH 1 | Gttk

ϖ11q if x1y1z0 P EpF q ,

1 otherwise,

w|
P

ij

ϑ

”

$
&

%
dpH 1 | Gijt

ϑ11q if x0y0z1 P EpF q ,

1 otherwise,

w|
Q

ik

ϖ

”

$
&

%
dpH 1 | Gitk

1ϱ1q if x0y1z0 P EpF q ,

1 otherwise,

and w|
R

jk

ϱ

”

$
&

%
dpH 1 | Gtjk

11ςq if x1y0z0 P EpF q ,

1 otherwise.

Finally, we define the weight of the triad Gijk

ϑϱς
by the product of the six values given to its

vertex classes and edge sets, i.e., we set

wpGijk

ϑϱς
q “ wpXiqwpYjqwpZkqwpP ij

ϑ
qwpQik

ϱ
qwpRjk

ς
q . (24)

The number of copies of F (resp. F ´) in Oijk

ϑϱς
also depends on dpH 1 | Gttt

ϖϖϖ
q if x1y1z1 is an

edge of F and we set

w111 “

$
&

%
dpH 1 | Gttt

ϖϖϖ
q if x1y1z1 P EpF q ,

1 otherwise.

We can now use the weights defined above to rewrite (23). Since H 1 is pφ3, rq-regular w.r.t.
every triad of the regular partition we obtain from Theorem 4.4

ˇ̌
ˇ̌ hompF, H 1 | Gttt

ϖϖϖ
, áaq ´

ÿ

i,j,kPrt´1s

ÿ

ϑ,ϱ,ςPrϖs
dpH 1 | Gijk

ϑϱς
qwpGijk

ϑϱς
qw111 ¨

´d2
↼

¯12
m6

ˇ̌
ˇ̌

# pt ´ 1q3↼3 ¨ ϑ
´d2

↼

¯12
m6 # ϑ

d12
2 n6

↼9t3 .
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Similarly, for F ´ we arrive at
ˇ̌
ˇ̌ hompF ´, H 1 | Gttt

ϖϖϖ
, áaq ´

ÿ

i,j,kPrt´1s

ÿ

ϑ,ϱ,ςPrϖs
wpGijk

ϑϱς
qw111 ¨

´d2
↼

¯12
m6

ˇ̌
ˇ̌ # ϑ

d12
2 n6

↼9t3 .

This way we can rewrite (21) and after dividing both sides with pd2{↼q9m3 we obtain
ˇ̌
ˇ̌

ÿ

i,j,kPrt´1s

ÿ

ϑ,ϱ,ςPrϖs

`
dpH 1 | Gijk

ϑϱς
q´d3

˘
wpGijk

ϑϱς
qw111 ¨

´d2
↼

¯3
m3

ˇ̌
ˇ̌ "

´ ς

210 ´2ϑ
¯

¨d3
2n

3 (8)
% ς

211 ¨d3
2n

3 .

It follows that w111 " 0 and, since by definition w111 # 1, we may divide both sides by w111

and, owing to another application of (a ) of Fact 5.2 for every triad Gijk

ϑϱς
considered in the

sum, we can replace pd2{↼q3m3 by |K3pGijk

ϑϱς
q| ˘ 3φ2m3. This way we obtain

ˇ̌
ˇ̌

ÿ

i,j,kPrt´1s

ÿ

ϑ,ϱ,ςPrϖs

`
dpH 1 | Gijk

ϑϱς
q ´ d3

˘
wpGijk

ϑϱς
q
ˇ̌
K3pGijk

ϑϱς
q
ˇ̌ˇ̌ˇ̌ " ς

211 ¨ d3
2n

3 ´ 3pt ´ 1q3↼3φ2m
3

(15)
% ς

212 ¨ d3
2n

3 (7)“ 2ω3 ¨ d3
2n

3 .

Rewriting the left-hand side by summing over all triangles of G1 “ GrX⫅̸Xt, Y ⫅̸Yt, Z⫅̸Zts
instead over all triads Gijk

ϑϱς
! G1 and expanding wpGijk

ϑϱς
q according to (24) tells us

ˇ̌
ˇ̌

ÿ

xyzPK3pG1q

`
1EpH 1qpx, y, zq ´ d3

˘
wpxqwpyqwpzqwpxyqwpxzqwpyzq

ˇ̌
ˇ̌ " 2ω3 ¨ d3

2n
3 . (25)

Step 4: Determining the promised subgraph J0 ! G. Inequality (25) shows that there exists
a weighted subgraph of G1 such that the weighted version of Definition 1.2 fails. Since all
weights are in r0, 1s, we may view them as a probability distribution over all subgraph of
J ! G1 and the left-hand side of (25) corresponds the expected value of |eH 1pJq ´ d3 |K3pJq||.
Consequently, there exists a concrete subgraph J ! G1 ! G such that

ˇ̌
eH 1pJq ´ d3 |K3pJq|

ˇ̌
" 2ω3 ¨ d3

2n
3 .

Finally, (16) allows us to move back from H 1 to H and we get the desired inequality

ˇ̌
eHpJq ´ d3 |K3pJq|

ˇ̌
%

ˇ̌
eH 1pJq ´ d3 |K3pJq|

ˇ̌
´ 2φ3d

3
2n

3 (9)" ω3 ¨ d3
2n

3 ,

which yields the desired contradiction to the pω3, d3q-regularity of the pω2, d2q-complex H and
concludes the proof of Theorem 3.1. ↭
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