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Jaroslav Nešetřil1 · Vojtěch Rödl2 ·Marcelo Sales3

Received: 17 April 2023 / Revised: 2 April 2024 / Accepted: 15 June 2024 /
Published online: 11 July 2024
© The Author(s) 2024

Abstract
For any integer h ! 2, a set of integers B = {bi }i!I is a Bh-set if all h-sums bi1 +
. . .+ bih with i1 < . . . < ih are distinct. Answering a question of Alon and Erdős [2],
for every h ! 2 we construct a set of integers X which is not a union of finitely many
Bh-sets, yet any finite subset Y ⊆ X contains an Bh-set Z with |Z | ! ε|Y |, where
ε := ε(h). We also discuss questions related to a problem of Pisier about the existence
of a set A with similar properties when replacing Bh-sets by the requirement that all
finite sums

∑
j!J b j are distinct.

Keywords Ramsey theory · Hypergraphs · Additive combinatorics

1 Introduction

Pisier formulated the following problem in [12] in the context of harmonic analysis
(see also [4]). A set of integers X = {xi }i!I ⊆ Z is called free (or quasi-independent)
if for any two distinct finite sets of indices J , J ′ ⊆ I we have
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∑

j!J

x j %=
∑

j ′!J ′
x j ′ . (1)

Pisier was interested in a condition that guarantees that a set X is a union of a finite
family of free sets. In this context, he asked if the following two statements are equiv-
alent:

(1) X is the union of finitely many free sets.
(2) There exists ε > 0 such that every finite subset Y ⊆ X contains a free subset

Z ⊆ Y with |Z | ! ε|Y |.
Clearly, by the pigeonhole principle, statement (1) implies statement (2). While the

converse implication (2) ⇒ (1) is still open, in this paper we will consider several
variants of the question (for more about the problem see [8, 9]).

In the first result we consider a variant of the definition of a free set in which we
assume that one of the sets J (or J ′) has bounded size. In this case, one can show
that the implication (2) ⇒ (1) fails. To be more precise, for an integer h ! 1, we say
that a set X is h-free if Eq. (1) holds for any distinct subset of indices J , J ′ ⊆ I with
|J | " h (the size of J ′ may be arbitrary). We are going to prove the following.

Theorem 1.1 For every h ! 1 there exists ε > 0 and a set of positive integers X with
the following two properties:

(H1) X is not a union of finitely many h-free sets.
(H2) Every finite subset Y ⊆ X contains an h-free set Z with |Z | ! ε|Y | elements.

The proof is a consequence of a related statement regarding Sidon related arithmetic
classes (see Theorem 4.1) which answers a problem suggested by Alon and Erdős [2].
Our approach to prove Theorem 1.1 is based on a set theoretical result in which the
sum in (1) is replaced by the multiset union.

On the other hand, our second result shows that under an additional assumption
on the size of the sets, the implication (2) ⇒ (1) of the Pisier problem holds for the
multiset union version of the problem.More precisely, given a set systemA = {Ai }i!I
on the ground set X , we say that A is free if

⊎

j!J

A j %=
⊎

j ′!J ′
A j ′

holds for all pair of distinct finite index sets J and J ′, where
⊎

stands for the multiset
union operation, i.e., every element is counted according to its multiplicity in the
operation. For instance, {1, 2} ' {2, 3} = {1, 2, 2, 3}.

Theorem 1.2 Let k ! 1 be an integer and A = {Ai }i!I be a set system such that
|Ai | " k. Then the following two statements are equivalent:

(F1) A is the union of finitely many free sets.
(F2) There exists ε > 0 such that every finite subfamily A′ ⊆ A contains a free

subfamily A′′ ⊆ A′ with |A′′| ! ε|A′| elements.
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The proof Theorem 1.2 follows by showing an upper bound for the size of the
partitions (see Theorem 2.1).

Finally, in the context of hypergraphs with free sets being independent sets of
vertices, one can show the following negative result.

Theorem 1.3 For k ! 2 and every µ < k−1
k , there exists a k unifrom hypergraph H

with the following two properties:

(I1) The chromatic number χ(H) is infinite.
(I2) Every finite subset of vertices Y ⊆ V (H) contains an independent set Z ⊆ Y

with |Z | ! µ|Y | vertices.
It would be interesting to find if a version of Theorem 1.3 still holds for µ = k−1

k
when k ! 3 (see Problem 6.2).

1.1 Notation, Preliminaries and Organization

For a natural number n, we set [n] = {1, . . . , n}. Given a set of integers X , we denote
by X (k) the set of k-tuples in X . A k-uniform hypergraph H = (V , E) (or k-graph) is
a pair of a vertex set V and a family of k-tuples E ⊆ V (k) called the edges of H . Since
the hypergraph can be retrieved by its edges, wewill often refer to H as the set of edges.
Unless stated otherwise, the elements of a set X will be always indexed in increasing
order. That is, if we write X = {x1, . . . , xk}, then we mean that x1 < . . . < xk .

Throughout the paper, we will prove infinitary statements concerning chromatic
number using their corresponding finitary versions. To do that, we use the following
variant of a well known theorem of de Bruijn and Erdős [6]

Theorem 1.4 Let H be a (infinite) hypergraph such that every edge of H has finite
cardinality. If χ(G) " r for every finite G ⊆ H, then χ(H) " r .

Wenote that in [6] this result is stated for edges of cardinality two only. The proof for
hypergraph with edges of finite cardinality goes along the same lines and the statement
above follows also from a more general result considered in [13].

The paper is organized as follows: We discuss a version of the problem for sets
and prove Theorem 1.2 in Sect. 2. Section3 is devoted to prove the main technical
result in the proof of Theorem 1.1. We study the Pisier problem for Bh-sets and prove
Theorem 1.1 in Sect. 4. Finally, we study the problem for hypergraphs and prove
Theorem 1.3 in Sect. 5. Throughout the paper, we do not attempt to optimize any
constants.

2 Set Version of the Pisier Problem

Since the proof of Theorem 1.1 occupies most of the paper, we start with the simpler
proof of Theorem 1.2. LetA = {Ai }i!I be a system of finite sets on the ground set X .
For each x ! X , and finite subset J ⊆ I , we define the degree of x in AJ = {A j } j!J
as

dAJ (x) = |{ j ! J : x ! A j }|.
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Moreover, we define the degree sequence of J in A as the vector

DJ =
(
dAJ (x)

)
x!X

whereAJ = {A j } j!J . A key observation is that for two finite sets of indices J , J ′ ⊆ I
the equality

⊎
j!J A j =

⊎
j ′!J ′ A j ′ holds if and only if DJ = DJ ′ . In particular, the

set system A is free if and only if its degree sequences DJ are distinct for all finite
subsets J of I .

With this definition in mind, one can state a version of the Pisier problem for set
systems: Given a set system A = {Ai }i!I , determine if the following two statements
are equivalent:

(F1) A is the union of finitely many free sets.
(F2) There exists ε > 0 such that every finite subsystem A′ ⊆ A contains a free

subsystem A′′ ⊆ A′ with |A′′| ! ε|A′| elements

As discussed in the introduction, statement (F1) implies statement (F2). So it
remains to answer if the converse implication holds. The next result shows the impli-
cation (F2) ⇒ (F1) if we assume that all elements ofA are of bounded size. Hence,
Theorem 1.2 follows.

Theorem 2.1 Let ε > 0, k ! 2 be an integer and A = {Ai }i!I be a set system
satisfying the following two conditions:

(i) |Ai | " k for i ! I .
(ii) For every finite subsystem A′ ⊆ A, there exists free subfamily A′′ ⊆ A′ with

|A′′| ! ε|A′| elements.
Then there exists a partition

A =
t⋃

#=1

A#

with t " 4
ε k

2 log k and A# free for 1 " # " t .

The proof of Theorem 2.1 is based on the following lemma.

Lemma 2.2 Let B = {Bj } j!J be a free set system on the ground set Y , |Y | = n, such
that |Bj | " k for every j ! J . Then

∑

y!Y
dB(y) " 4nk log k.

Proof Let

d = 1
n

∑

y!Y
dB(y).
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For any subsystem B′ = {Bj ′} j ′!J ′ with J ′ ⊆ J , the degree sequence DJ ′ =
(DB′(y))y!Y satisfies 0 " dB′(y) " dB(y). Hence, by the AM-GM inequality, we
infer that there are at most

∏

y!Y
(dB(y)+ 1) " (d + 1)n (2)

degree sequences corresponding to subsystems B′ ⊆ B. On the other hand, we have∑
y!Y dB(y) " k|B| and consequently there are

2|B| ! 2
dn
k (3)

subsystems B′ ⊆ B. Since B is free, we have that every degree sequence corresponds
to at most one subsystem B. Hence, by (2) and (3), we infer that

2
dn
k " (d + 1)n,

which implies that d
log(d+1) " k and hence

∑
y!Y dB(y) = dn " 4nk log k for k ! 2.

)*

Proof of Theorem 2.1 First, we will observe that it is sufficient to prove the statement
for A = {Ai }i!I finite on a ground set X with |X | = n. To this end, for a possibly
infinite A, let H be the hypergraph with vertex set V (H) = A and edges given by

H =




{A j } j!J+J ′ : J , J ′ ⊆ I finite and
⊎

j!J

A j =
⊎

j ′!J ′
A j ′




 .

That is, the edges of H are the subsets of A violating the condition of being free.
Therefore, the conclusion of the statement of Theorem 2.1 is equivalent to χ(H) "
4
ε k

2 log k. Thus, by Theorem 1.4, it suffices to prove for any finite subgraph G ⊆ H
that χ(G) " 4

ε k
2 log k, i.e., to prove the theorem for a finite set system.

We claim that A is ( 4ε k
2 log k)-degenerate, i.e., there is a labeling {x1, . . . , xn}

of elements of X such that dA[X j ](x j ) " 4
ε k

2 log k for each 1 " j " n, where
X j = X \ {x1, . . . , x j−1} andA[X j ] is the subgraph ofA induced on X j . That is, the
number of edges inA induced by X j containing x j is smaller or equal than 4

ε k
2 log k.

Suppose that we already have chosen {x1, . . . , x j−1} ⊆ X and now we need to
choose x j . By condition (i i) of the statement, there exists free subsystem B ⊆ A[X j ]
with |B| ! ε|A[X j ]|. Hence, Lemma 2.2 applied to Y = X j gives us that∑

x!X j
dB(x) " 4(n − j + 1)k log k. Moreover,

∑
x!X j

dB(x) ! |B| ! ε|A[X j ]|
and

∑
x!X j

dA[X j ](x) " k|A[X j ]|. Thus,

ε

k

∑

x!X j

dA[X j ](x) " 4(n − j + 1)k log k
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and consequently there exists a vertex x j ! X such that

dA[X j ](x j ) " 4
ε
k2 log k.

This concludes the proof of the claim.
For 1 " j " n, let

C j = {A ! A[X j ] : x j ! A}

be the sets containing x j inA[X j ]. ClearlyA = ⋃n
j=1 C j is a partition ofA and |C j | "

4
ε k

2 log k. For t = max1!#!n |C j | " 4
ε k

2 log k, construct disjoint sets {A#}1!#!t
sequentially by adding if we can one element from each C j . Hence, we obtain a
partitionA = ⋃t

#=1A# with t = max1!#!n |C j | " 4
ε k

2 log k such that |A# ∩C j | " 1
for every 1 " # " t and 1 " j " n.

We claim that A# is free for every 1 " # " t . Suppose that there exist distinct
B,B′ ⊆ A# such that

⊎
B!B B = ⊎

B′!B′ B ′.Wecan assumewithout loss of generality
that B ∩ B′ = ∅. Let x j0 = min

⋃
B = min

⋃
B′. Since |A# ∩ C j0 | " 1, either

B′ ∩ C j0 = ∅ or B′ ∩ C j0 = ∅. However, by the minimality of j0 this would imply that
either x j0 /! ⋃

B or x j0 /! B′, which contradicts
⊎

B!B B = ⊎
B′!B′ B ′. )*

3 A Local Version of the Pisier Problem for Sets

In this sectionwe introduce a version of the Pisier problem for sets that will be useful in
the proof of Theorem 1.1. LetA = {Ai }i!I be a system of finite sets on the ground set
X . We say that A is h-independent if for any indices J , J ′ ⊆ I with |J | = |J ′| = h,

⊎

j!J

A j %=
⊎

j ′!J ′
A j ′ .

One can see h-independent sets as the correspondent of a Bh-sets (see Sect. 4) in the
context of sets equipped with the multiset union operation.

In this context, statements (1) and (2) of the Pisier problem can be rewritten as

(1) A is the union of finitely many h-independent set systems.
(2) There exists ε > 0 such that every finite set system A′ ⊆ A contains a h-

independent subset A′′ with |A′′| ! ε|A′| elements.

The next result shows that statement (2) does not imply statement (1) and consequently
these statements are not equivalent.

Theorem 3.1 For every h ! 1, there exists ε > 0 and a set system A on the ground
set N with the following two properties:

(S1) A is not the union of finitely many h-independent sets.
(S2) Every finite subsystem A′ ⊆ A contains an h-independent set A′′ ⊆ A′ with

|A′′| ! ε|A′| elements.
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Fig. 1 An edge e and its corresponding set Ae

To prove Theorem 3.1 we will use the following result from [11]. A partial Steiner
(k, #)-system G is a k-uniform hypergraph (shortly k-graph) with the property that
every #-element subset of the vertex set of G is in at most one edge. For this problem
all Steiner systems will be ordered, i.e., the vertex set of the graph has a linear order.
We will say that F is a subgraph of G if there is an order preserving injective mapping
ϕ : V (F) → V (G)which is a homomorphism. Let S<(k, #) be the class of all ordered
partial Steiner (k, #)-systems. The next result shows that the class of ordered partial
Steiner systems has the Ramsey property.

Theorem 3.2 ([11], Theorem 6.2) The class S<(k, #) of all ordered partial Steiner
(k, #)-systems has the edge Ramsey property, i.e., for every F ! S<(k, #) and for any
integer r there exists G ! S<(k, #) with the property that any r-coloring of edges of
G yields a monochromatic copy of F.

Let k be a even number and G a k-uniform graph with vertex set V (G) ⊆ N.
On the set N × [k/2] we will construct a set system AG as follows: For an edge
e = {x1, . . . , xk}, with x1 < · · · < xk , define the set Ae ⊆ N × [k/2] given by

Ae =
k/2⋃

i=1

[x2i−1, x2i ) × {i},

where [a, b)× {i} = {(a, i), (a+1, i), . . . , (b−1, i)} denotes the interval of integers
between a and b, with b not included, in the i-th copy of N. With this in mind, we
define the set system AG on the ground set N × [k/2] as

AG = {Ae : e ! G}.

We say that a graph G is h-independent if the associated set system AG is h-
independent, i.e., if there is no subgraph F ⊆ G and labeling F = { f1, . . . , f2g} of
its edges such that
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g⊎

r=1

A fr =
2g⊎

s=g+1

A fs

for every 1 " g " h. The following lemma shows that every non h-independent finite
ordered k-partite k-graph has at least two edges with large intersection.

Lemma 3.3 Let k > h be integers with k even. Let H be a finite k-graph with vertex
set V satisfying the following properties:

(i) H is not h-independent.
(ii) There exists partition V = V1+. . .+Vk such that for every edge e = {x1, . . . , xk} !

H with x1 < . . . < xk , we have xi ! Vi .

Then there exist distinct edges e, f ! H such that |e ∩ f | ! k/h.

Proof Since H is not h-independent, there exists subgraph F ⊆ H with labeling
F = { f1, . . . , f2 g} such that

g⊎

r=1

A fr =
2g⊎

s=g+1

A fs (4)

for some 1 " g " h. Let F ′ = { f1, . . . , fg} and F ′′ = { fg+1, . . . , f2g} be subgraphs
of F . We claim that for every x ! V , we have degF ′(x) = degF ′′(x).

For (a, i) ! N × [k/2] and subgraph E ⊆ H , let

µE (a, i) = |{e ! E : (a, i) ! Ae}|,

i.e., µE (a, i) is the multiplicity of (a, i) in
⊎

e!E Ae. The relation (4) gives us that

µF ′(a, i) = µF ′′(a, i) (5)

for every (a, i) ! N × [k/2].
Fix i ! [k/2]. We will prove that degF ′(x) = degF ′′(x) for every x ! V2i−1 + V2i .

Let x be the minimal integer in V2i−1 + V2i such that the statement is false. Suppose
that x ! V2i−1. Let A ⊆ V2i−1, B ⊆ V2i be defined as

A = {a ! V2i−1 : a < x},
B = {b ! V2i : b < x}.

That is, A and B are the subsets of V2i−1 and V2i with elements smaller than x . If
e = {x1, . . . , xk} ! E is an edge such that (x, i) ! Ae, then x ! [x2i−1, x2i ). This
implies that x2i−1 ! A + {x} and x2i /! B. Hence,

µE (x, i) =
∑

a!A,
y!V2i \B

degE ({a, y})+ degE (x) =
∑

a!A

degE (a) −
∑

b!B
degE (b)+ degE (x),

(6)
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where the last equality holds by Condition (ii) of H . By the minimality of x , we
have that degF ′(y) = degF ′′(y) for all y ! A + B. Therefore, (5) and (6) gives us
that degF ′(x) = degF ′′(x), which is a contradiction. If x ! V2i , then x2i−1 ! A and
x2i /! B + {x} and one can show similarly that

µE (x, i) =
∑

a!A,
y!V2i\(B+{x})

degE ({a, y}) =
∑

a!A

degE (a) −
∑

b!B
degE (b) − degE (x).

The result now follows in the same way, which concludes the proof of the claim.
To finish the proof of Lemma 3.3 note that by the claim,

∑

f ′!F ′, f ′′!F ′′
| f ′ ∩ f ′′| =

k∑

i=1

∑

x!Vi
degF ′(x) ˙degF ′′(x)

=
k∑

i=1

∑

x!Vi
deg2F ′(x) !

k∑

i=1

∑

x!Vi
degF ′(x) !

k∑

i=1

g = kg.

Hence, by averaging, there exist e ! F ′ and f ! F ′′ such that

|e ∩ f | ! kg
g2

= k
g

! k
h
.

)*

Remark 3.4 We observe that the same proof works if we allow multiplicity on the
edges. To be more precise, we say that a k-graph G is multi h-independent if there are
no multiset of edges F = { f1, . . . , fg} and F ′ = { fg+1, . . . , f2 g} of G such that

g⊎

r=1

A fr =
2g⊎

s=g+1

A fs .

That is, we allow repetitions on the multiset union.

The next lemma shows that for # " k/h there exists a partial Steiner (k, #)-system
violating the h-independence condition.

Lemma 3.5 For h ! 2, there exists an even integer k and a partial Steiner (k, #)-system
F = { f1, . . . , f2h} with # " k/h such that

h⊎

r=1

A fr =
2h⊎

s=h+1

A fs .

In particular, the graph F is not h-independent.
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Fig. 2 A 4-cycle C(q)
i j

Proof We will construct a k-graph F satisfying the statement for k = 2(h!)2 and
2 h(h!)2 vertices. The construction depends on the parity and size of h. During the
proof a labeled 2-graph is just a 2-graph with a label of its edges.
Case 1: h = 2t ! 4.

Let Sh be the set of permutations σ : [h] → [h]. Write Sh = {σ1, . . . , σh!}. For
a pair (i, j) ! [h!]2, let Fi j = C (1)

i j + . . . + C (t)
i j be a labeled 2-graph consisting of

h/2 = t cycles of length 4. For each 1 " q " t , we label the edges of C (q)
i j as follows:

Let V (C (q)
i j ) = {x1, x2, x3, x4} with x1 < x2 < x3 < x4 and label the edges of the

cycle as in Fig. 2.
We order the vertices of allC (q)

i j such that max V (C (q)
i j ) < min V (C (q ′)

i ′ j ′ ) if and only
if (i, j, q) <lex (i ′, j ′, q ′) in the lexicographical ordering. This in particular gives us
a total ordering of

⋃
1!i, j!h! V (Fi j ). For a fixed Fi j , each one of its 4t = 2 h edges

is labeled by precisely one of the labels from [2h]. Set Fi j = { f 1i j , . . . , f 2hi j }, where
f si j is the edge of Fi j labeled with s.
We finally define the k-graph F as the graph with vertex set V (F) =⋃
1!i, j,!h! V (Fi j ), where the ordering of V (F) respects the total ordering of V (Fi j )

described above, and edge set given by

F =




 fs :=
⋃

1!i, j,!h!
f si j : 1 " s " 2h




 .

That is, the graph F consists of 2h edges of size k = 2(h!)2 where the edge fs of F
is the union of all the pairs labeled with s.

We claim that F is a partial Steiner (k, #)-system with # = h(h − 2)!h! + 1 "
2(h−1)!h! = k/h for h > 2. Let fr and fs be two edges of F such that 1 " r , s " h.
Then fr and fs only intersect in the cycles C (q)

i j such that

{σi (2q − 1), σi (2q)} = {r , s}. (7)

For each 1 " q " t , there are 2(h − 2)! choices of σi satisfying (7). Consequently
there are 2t(h − 2)!h! choices of q and σi , σ j ! Sh such that fr and fs intersect in
C (q)
i j . Since fr and fs intersect in at most one vertex for each C (q)

i j we obtain that

| fr ∩ fs | = 2t(h − 2)!h! = h(h − 2)!h!.
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Fig. 3 The pairs f ri j for 1 " r " h

A similar computation shows that for h + 1 " r , s," 2h

| fr ∩ fs | = h(h − 2)!h!

holds. Finally, if 1 " r " h and h + 1 " s " 2 h, then fr and fs only intersect in the
cycles C (q)

i j such that either

σi (2q − 1) = r and σ j (2q − 1)+ h = s or σi (2q) = r and σ j (2q)+ h = s.

Each of these possibilities happen t((h − 1)!)2 times and therefore

| fr ∩ fs | = 2t((h − 1)!)2 = h((h − 1)!)2.

Since h(h − 2)!h! > h((h − 1)!)2 for h ! 2, we obtain that F is a partial Steiner
(k, #)-system for # = h(h − 2)!h! + 1.

It remains to show that
⊎h

r=1 A fr =
⊎2 h

s=h+1 A fs . Since k/2 = (h!)2, there exists an
order preserving bijection ϕ : [h!]2 → [k/2], where [h!]2 is ordered lexicographically.
Note that

A fr ∩ (N × {ϕ(i, j)}) =
[
min V ( f ri j ),max(V ( f ri j )

)
× {ϕ(i, j)}

for every 1 " r " 2h. Therefore,

h⊎

r=1

A fr =
⋃

1!i, j!h!

h⊎

r=1

[
min V ( f ri j ),max(V ( f ri j )

)
× {ϕ(i, j)}

=
⋃

1!i, j!h!

t⋃

q=1

[
min V (C (q)

i j ),max(V (C (q)
i j )

)
× {ϕ(i, j)}

=
⋃

1!i, j!h!

2h⊎

s=h+1

[
min V ( f si j ),max(V ( f si j )

)
× {ϕ(i, j)} =

h⊎

s=1

A fs

since the pairs f ri j and f si j for 1 " r " h and h + 1 " s " 2h cover precisely once

the entire interval of each cycle C (q)
i j from 1 " q " t .

Case 2: h = 2t + 1 ! 3
The constructions is very similar to the previous case. For a pair (i, j) ! [h!]2,

let Fi j =
⋃t+1

q=1 C
(q)
i j be a labeled multigraph consisting of t cycles of length 4 and
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Fig. 4 The 2-cycle C(t+1)
i j

a 2-cycle C (t+1)
i j . For each 1 " q " t , we label the 4-cycle C (q)

i j exactly as in Case

1 (see Fig. 2). We define C (t+1)
i j as the multigraph with two vertices and two edges

labeled as in Fig. 4.
As in Case 1, we label the vertices of C (q)

i j such that max V (C (q)
i j ) < min V (C (q ′)

i ′ j ′ )

if and only if (i, j, q) <lex (i ′, j ′, q ′). Moreover, Fi j is a multigraph with 2h edges
labeled in an one-to-one correspondencewith [2h].Write Fi j = { f 1i j , . . . , f 2hi j }, where
f si j is the edge of Fi j with label s.
We define F as the k-graph with vertex set V (F) = ⋃

1!i, j!h! V (Fi j ) and edges

F =




 fs :=
⋃

1!i, j!h!
f si j : 1 " s " 2h




 .

Asimilar argument as inCase 1 shows that
⊎h

r=1 A fr =
⊎2 h

s=h+1 A fs . Furthermore,

note that for 1 " r , s " h, the edges fr and fs intersect at C
(q)
i j if σi and σ j satisfies

(7). As in the first case, this happens 2t(h − 2)!h! times and therefore

| fr ∩ fs | == 2t(h − 2)!h! = (h − 1)!h!.

A similar computation obtain the same bound for h + 1 " r , s " 2 h. Finally, for
1 " r " h and h + 1 " s " 2 h, the counting is almost the same as in Case 1, except
for the extra possibility that fr and fs intersect in the 2-cycle C (t+1)

i j . This happens
2((h − 1)!)2 times and we conclude that

| fr ∩ fs | = 2t((h − 1)!)2 + 2((h − 1)!)2 = (h + 1)((h − 1)!)2.

Thus, F is a partial Steiner (k, #)-system with # = (h + 1)((h − 1)!)2 + 1 " 2(h −
1)!h! = k/h for h > 1.
Case 3: h=2.

Let F = { f1, f2, f3, f4} be the 8-uniform hypergraph on 16 vertices described in
Fig. 5, where, for each 1 " s " 4, the edge fs is the union of all the pairs labeled with
s. Let the vertices of F be ordered from left to right exactly as shown in Fig. 5.

Following a similar argument as inCase 1, one can show that A f1'A f2 = A f3'A f4 .
Moreover, one can also check that | fi ∩ f j | " 3 for every 1 " i < j " 4. Hence, F
is a partial Steiner (k, #)-system with # = 4 = 8/2 = k/h. )*
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Fig. 5 The graph F for h = 2

Proof of Theorem 3.1 Since there is a bijection between N × [k/2] and N, to prove
Theorem 3.1 we just need to show that there exists ε > 0 and a k-graph G such that
AG satisfies properties (S1) and (S2) of the statement, i.e., a k-graph G such that

(i) Any finite coloring of G contains a monochromatic subgraph F that is not h-
independent.

(ii) Every finite subgraph G ′ ⊆ G contains an h-independent subgraph G ′′ ⊆ G ′ with
e(G ′′) ! εe(G ′).

Let F be the partial Steiner (k, #)-system obtained by Lemma 3.5. Given an integer
r , by Theorem 3.2, there exists a partial Steiner (k, #)-system Gr such that any r -
coloring of the edges of Gr contains a monochromatic copy of F . Let G = ⋃∞

r=1 Gr
be the union of disjoint copies of Gr for r ! 1. Order the vertex set of G such that
V (G) ⊆ N and max V (Gr ) < min V (Gs) for r < s. We claim that G satisfies
properties (i) and (ii).

For r ! 1, consider an arbitrary r -coloring c : G → [r ] of the edges of G.
In particular, c|Gr is an r -coloring of Gr ⊆ G and by Theorem 3.2, there exists a
monochromatic copy of F . By Lemma 3.5, the graph F is not h-independent, which
proves statement (i).

For statement (ii), let G ′ ⊆ G be a finite subgraph of G. We are going to show
that there exists a subgraph H ⊆ G ′ with e(H) ! e(G ′)/kk such that the vertex set
of H can be partitioned into V (H) = V1 + . . . + Vk satisfying the following: For
every edge e = {x1, . . . , xk} ! H with x1 < . . . < xk , we have xi ! Vi . Indeed,
consider a random partition V (G ′) = V1 + . . . + Vk such that every x is chosen to
be in Vi independently with probability 1/k. Thus, if e = {x1, . . . , xk} ! G ′, then
P
(∧k

i=1{xi ! Vi }
)
= 1/kk .

Let H be the graph consisting of all the transversal edges e = {x1, . . . , xk} ! G
with xi ! Vi for 1 " i " k. Then

E(e(H)) =
∑

{x1,...,xk }!G
P
(

k∧

i=1

{xi ! Vi }
)

= e(G ′)
kk

,

which by Markov inequality implies that with positive probability one can obtain
H with e(H) ! e(G ′)/kk . We claim that such H is h-independent. Suppose to the
contrary that is not. Then by Lemma 3.3, there exists edges e, f ! H such that
|e ∩ f | ! k/h. However, by Lemma 3.5, the graph H ⊆ G is a partial Steiner (k, #)-
system with # " k/h, which is a contradiction. Therefore, statement (ii) holds by
taking ε = 1/kk and G ′′ = H . )*

123



1224 Combinatorica (2024) 44:1211–1232

Remark 3.6 As in Remark 3.6, we observe that the same proof give us a similar state-
ment where we allow repetition on the multiset union. Indeed, in the proof we only
need to check that there is no set violating the “multi h-independence” in Condition
(ii). However, there we invoke Lemma 3.3 that by Remark 3.6 can be modified to
allow repetition of edges.

4 Proof of Theorem 1.1 and the Pisier Problem for Bh-Sets

A consequence of Theorem 3.1 is the following negative result on a variant of the
Pisier problem for Bh-sets. For h ! 1, we say that a set of integers X = {xi }i!I is a
B∗
h -set if

∑

j!J

x j %=
∑

j ′!J ′
x j ′

for J %= J ′, |J | = |J ′| = h, i.e., if all the h-sums of distinct h-tuples of X are distinct.
Note that this definition is slightly different than the usual definition of Bh sets, where
we allowed repetitions between the elements in {x j } and {x ′

j } (see [10, 14]). However,
for our purposes we find it more convenient to state this way. By replacing the concept
of h-free by B∗

h -sets, one can ask if the following two statements are equivalent:

(1) X is the union of finitely many B∗
h -sets.

(2) There exists ε > 0 such that every finite subset Y ⊆ X contains a B∗
h subset Z ⊆ Y

with |Z | ! ε|Y |.
As in the original problem, the implication (1) ⇒ (2) holds. In [2], Alon and Erdős

suggested the problem of determining whether the implication (2) ⇒ (1) is true. The
next result shows that the implication is not true.

Theorem 4.1 For every h ! 1 there exists ε > 0 and a set of positive integers X with
the following two properties:

(B1) X is not a union of finitely many B∗
h -sets.

(B2) Every finite subset Y ⊆ X contains a B∗
h -set Z with |Z | ! ε|Y | elements.

Proof LetA = {Ai }i!I be the set systemon the ground setN obtained byTheorem3.1.
Let X = {xi }i!I ⊆ N be the set of integers defined by

xi =
∑

j!Ai

(h + 1) j .

Then for two set of indices J , J ′ ⊆ I of size h, we have
∑

j!J x j =
∑

j ′!J ′ x j ′ if and
only if

⊎
j!J A j =

⊎
j ′!J ′ A j ′ . This implies that a subset X ′ = {xi ′}i ′!I ′ ⊆ X is a B∗

h -
set if and only if the correspondent subfamily A′ = {Ai ′}i ′!I ′ ⊆ A is h-independent.
Hence, X satisfies statements (B1) and (B2) of Theorem 4.1. )*
Remark 4.2 We observe that the same proof works for Bh sets by using a modified
version of Theorem 3.1 (see Remarks 3.4 and 3.6).
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We are now ready to prove Theorem 1.1 from Theorem 4.1. Recall that an h-free
set X = {xi }i!I is a set such that

∑

j!J

x j %=
∑

j ′!J ′
x j ′

holds for any distinct subset of indices J , J ′ ⊆ I with |J | " h.

Proof of Theorem 1.1 Let A = {ai }i!I ⊆ N be the set of integers and ε > 0 the
constant obtained from Theorem 4.1 satisfying statements (B1) and (B2). Let H be
the hypergraph with vertex set V (H) = A and with set of edges of size at most 2h
consisting of

H =




{a j } j!J+J ′ : J , J ′ ⊆ I with |J | = |J ′| = h and
∑

j!J

a j =
∑

j ′!J ′
a j ′




 .

Statement (B1) says that the chromatic number of H is infinite. Therefore, by The-
orem 1.4, there exists finite subhypergraph with arbitrarily large chromatic number.
That is, one can obtain for every r ! 1 a finite set Ar ⊆ A satisfying the following
two properties:

(B*1) Ar is not an union of at most r B∗
h -sets.

(B*2) Every subset B ⊆ Ar contains a B∗
h -set C ⊆ B with |C | ! ε|B|.

We construct a sequence of finite sets {Wj }∞j=0 and Xr =
⋃r

j=0 Wj such that

(H*1) Xr is not a union of at most r h-free sets.
(H*2) Every subset Y ⊆ Xr contains an h-free set Z ⊆ Y with |Z | ! ε|Y |.
Theorem 1.1 follows by taking X = ⋃∞

j=0 Wj .
Let W0 = {0}. Suppose that we already constructed W0, . . . ,Wr−1 and Xr−1 =⋃r−1
j=0 Wj satisfies statements (H*1) and (H*2). We choose nr and mr to satisfy

nr >
∑

x!Xr−1

x and mr > nr



1+
∑

a!Ar

a



 . (8)

Define Wr = {nra + mr : a ! Ar } and Xr = ⋃r
j=0 Wj = Wr + Xr−1. Note that by

our choice of nr and mr , we have that Wr ∩ Xr−1 = ∅. It remains to prove that Xr
satisfies properties (H*1) and (H*2).

Property (H*1) follows by the fact that an #-coloring of Xr , for # " r , is in particular
an #-coloring of Wr . Since there is a bijective linear map from Ar to Wr , we obtain
that the #-coloring in Wr corresponds to an #-coloring in Ar . By construction, this
coloring must contain a monochromatic equation

∑

b!B
b =

∑

b′!B′
b
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for B, B ′ ⊆ Ar with |B| = |B ′| = h. Then the equation

∑

b!B
(nrb + mr ) =

∑

b′!B′
(nrb′ + mr )

is monochromatic in Wr , which implies that one of the colors classes is not h-free.
In order to prove Property (H*2), consider an arbitrary subset Y ⊆ Xr . Write

Y = Y ′+Y ′′, whereY ′ = Y∩Xr−1 andY ′′ = Y∩Wr are disjoint sets. By our induction
hypothesis, there exists h-free set Z ′ ⊆ Y ′ with |Z ′| ! ε|Y ′|. Let f : Ar → Wr be the
bijective linear map given by f (a) = nra+mr . By property (B*2) of Ar , there exists
a B∗

h -set C ⊆ f −1(Y ′′) ⊆ Ar with |C | ! ε| f −1(Y ′′)| = ε|Y ′′|. Take Z ′′ = f (C).
We claim that Z = Z ′ + Z ′′ is h-free.

Suppose that
∑

p!P p = ∑
q!Q q for some P, Q ⊆ Z . We want to show that

|P|, |Q| > h. Let P = P ′ + P ′′ and Q = Q′ + Q′′ be partitions of the sets such that
P ′ = P ∩ Z ′, P ′′ = P ∩ Z ′′, Q′ = Q ∩ Z ′ and Q′′ = Q ∩ Z ′′. A computation shows
that

∣∣∣∣∣∣

∑

p!P ′′
p −

∑

q!Q′′
q

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

a! f −1(P ′′)

(nra + mr ) −
∑

b! f −1(Q′′)

(nrb + mr )

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(|P ′′| − |Q′′|)mr + nr




∑

a! f −1(P ′′)

a −
∑

b! f −1(Q′′)

b





∣∣∣∣∣∣
. (9)

Suppose that |P ′′| %= |Q′′|, then our choice of nr and mr in (8) and Eq. (9) gives us
that

∣∣∣∣∣∣

∑

p!P ′′
p −

∑

q!Q′′
q

∣∣∣∣∣∣
! mr −

∣∣∣∣∣∣
nr




∑

a! f −1(P ′′)

a −
∑

b! f −1(Q′′)

b





∣∣∣∣∣∣
! mr − nr




∑

a!Ar

a



 > nr .

Hence, by (8) and the fact that P ′, Q′ ⊆ Xr−1,

0 =

∣∣∣∣∣∣

∑

p!P

p −
∑

q!Q
q

∣∣∣∣∣∣
!

∣∣∣∣∣∣

∑

p!P ′′
p −

∑

q!Q′′
q

∣∣∣∣∣∣
−

∣∣∣∣∣∣

∑

p!P ′
p −

∑

q!Q′
q

∣∣∣∣∣∣
> nr −

∑

x!Xr

x > 0,

which is a contradiction. Therefore, |P ′′| = |Q′′|. We also claim that
∑

a! f −1(P ′′) a =∑
b! f −1(Q′′) b. Indeed, suppose to the contrary that

∑
a! f −1(P ′′) a %= ∑

b! f −1(Q′′) b.
Then, by (8) and (9) we have

∣∣∣∣∣∣

∑

p!P ′′
p −

∑

q!Q′′
q

∣∣∣∣∣∣
=

∣∣∣∣∣∣
nr




∑

a! f −1(P ′′)

a −
∑

b! f −1(Q′′)

b





∣∣∣∣∣∣
! nr
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and we reach a contradiction similarly as in the proof of |P ′′| = |Q′′|. To finish the
proof, note that C = f −1(Z ′′) is a B∗

h -set and consequently all the g-sums are distinct
for g " h. Hence, |P ′′| = |Q′′| > h and consequently Z is h-free )*

5 Pisier Type Problems for Hypergraphs

In this sectionwe consider the Pisier type problem for k-uniformhypergraphs.Viewing
our sets as vertex sets from a hypergraph and replacing the notion of being free by
being an independent set of vertices leads to the following question. For what values
of µ is there a k-graph H with the properties:

(I1) The chromatic number χ(H) is infinite.
(I2) Every finite subsetY ⊆ V (H) contains an independent set Z ⊆ Y with |Z | ! µ|Y |

vertices.

That is, for what values of µ the converse implication of the Pisier problem fails. We
say that a hypergraph H satisfying statement (I2) has the µ-property. By taking Y as
the vertex set of an edge, one can clearly note that there is no nontrivial H satisfying
the µ-property for µ > k−1

k . On the other hand we will show that such hypergraphs
exist for each µ < k−1

k . In fact, below we will show the following stronger statement.
We say that a weight vector w = (wi )i!I is stochastic if wi ! [0, 1] for every

i ! I and
∑

i!I wi = 1. Let H be a k-graph. For given µ > 0, we say that H has the
µ-fractional property if for every finite subset Y ⊆ V (H) and every stochastic weight
vector w = (wy)y!Y , there exists an independent set Z ⊆ Y with

∑

z!Z
wz ! µ

∑

y!Y
wy = µ.

By takingwy = 1
|Y | for every y ! Y , one can see that theµ-fractional property implies

the µ-property. Hence, the next theorem in particular proves Theorem 1.3.

Theorem 5.1 For every µ < k−1
k , there exists a k-graph H with the following two

properties:

(I1) The chromatic number χ(H) is infinite.
(I2) H has the µ-fractional property.

Proof Wewill prove that the infinite shift graph has such a property. Shift graphs were
used before in a similar context in [7]. Set ε = k−1

k − µ, # =
⌈
2(k−1)2

εk

⌉
. Let H be

the infinite k graph with set of vertices V (H) = N(#), i.e., all the #-tuples of positive
integers. A k-tuple {x1, . . . , xk} ! V (H)(k) is an edge if and only if there exists a set
A = {a1, . . . , ak+#−1} ! N(k+#−1) such that

xi = {ai , . . . , ai+#−1},

for 1 " i " k. That is, H is the infinite shift k-graph on the #-tuples of N. We claim
that H is our desired graph.
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Statement (I1) follows from Ramsey theorem. Indeed, for any finite coloring of
the #-tuples of N, there exists a set X ⊆ N of size k + # − 1 such that X (#) is
monochromatic. In particular, this implies that H has an edge with all its vertices
monochromatic. Hence, χ(H) is infinite.

In order to address statement (I2), let Y ⊆ V (H) be a subset of vertices and
w = (wy)y!Y a stochastic weight vector. We will show by induction on the cardinality
of Y that there is an independent set Z ⊆ Y with

∑
z!Z wz >

k−1
k −ε. For |Y | = k, the

statement follows immediately from the fact that there exists independent set Z ⊆ Y
of size |Y | − 1 with

∑

z!Z
wz ! |Y | − 1

|Y | >
k − 1
k

− ε.

For |Y | < k, just take Z = Y as the independent set.
Assume now that |Y | > k and let n be an integer such that Y ⊆ [n](#). For an

integer c ! [n], we define

S(c) = {y ! Y : c ! y}

to be the set of vertices of Y that contain c. Similarly, let

S′(c) =
{
y = {b1, . . . , b#} ! Y : c ! {bk, . . . , b#−(k−1)}

}

as the set of vertices of Y such that c is neither one of the first or last k − 1 elements
of Y .

We claim that H [S(c)] is a k-partite k-graph for every c ! [n]. To see that consider
the partition S(c) = V0 + . . . + Vk−1 where

Vj = {y = {b1, . . . , b#} ! S(c) : there exists i ≡ j (mod k) such that c = bi }

for 0 " j " k−1. That is, Vj are the vertices of S(c)where c is in a position congruent
to j (mod k). Note that if e = {y1, . . . , yk} is an edge in H [S(c)], then |e ∩ Vj | = 1
for every 0 " j " k − 1. Hence, H [S(c)] is k-partite.

By double counting the weights over all the pairs (c, y) where y = {b1, . . . , b#}
and c ! {bk, . . . , b#−(k−1)}, we obtain that

∑

c![n]

∑

y!S′(c)

wy = (# − 2(k − 1))
∑

y!Y
wy = # − 2(k − 1). (10)

Similarly, by double counting the weights over all the pairs (c, y) with c ! [n], we
have

∑

c![n]

∑

y!S(c)
wy = #

∑

y!Y
wy = #. (11)
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Hence, inequalities (10) and (11) combined show that there exists c0 ! [n] such that

∑

y!S′(c0)

wy ! # − 2(k − 1)
#

∑

y!S(c0)
wy . (12)

Since S′(c0) ⊆ S(c0) we have that H [S′(c0)] is a k-partite graph and consequently
by inequality (12) we have that there exists independent set I1 ⊆ S′(c0) satisfying

∑

y!I1
wy ! k − 1

k

∑

y!S′(c0)

wy ! k − 1
k

(
# − 2(k − 1)

#

) ∑

y!S(c0)
wy

!
(
k − 1
k

− ε

) ∑

y!S(c0)
wy . (13)

Furthermore, applying the inductive assumption to the set Y − S(c0) with weights
w′
z = wz/(

∑
y!Y−S(c0) wy) gives us an independent set I2 ⊆ Y − S(c0) with

∑

y!I2
wy !

(
k − 1
k

− ε

) ∑

y!Y−S(c0)

wy . (14)

We claim that if e ! H is such that e ∩ S′(c0) %= ∅, then e ⊆ S(c0). Indeed, let
e = {y1, . . . , yk} ! H with

yi = {ai , . . . , ai+#−1}

for 1 " i " k.
If e ∩ S′(c0) %= ∅, then there exists a vertex y j = {a j , . . . , a j+#−1} such that

c0 ! {a j+k, . . . , a j+#−k}. However, because 1 " i " k, we have i < j + k <

j + # − k < i + # − 1 and consequently c0 ! {a j+k, . . . , a j+#−k} ⊆ yi for every
1 " i " k. Hence, e ⊆ S(c0) and since I2 ⊆ Y − S(c0), we obtain that there is no
edge intersecting both I1 and I2. This implies that I1 + I2 is and independent set and
by inequalities (13) and (14) we have that

∑

y!I1+I2

wy ! k − 1
k

− ε.

)*

The following theorem shows that the condition µ = k−1
k − ε cannot be replaced

by k−1
k in Theorem 5.1.

Theorem 5.2 Suppose H is a k-graph with k−1
k -fractional property. Then χ(H) " 2.

The proof of Theorem 5.2 uses techniques of linear programming (see also [1, 3])
The following Minimax Theorem will be useful to us.
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Theorem 5.3 ([5], Theorem 15.1)For every m×n matrix A there is a stochastic vector
y∗ of length n and a stochastic vector z∗ of length m such that

min
y
(z∗)T Ay = max

z
zT Ay∗

with the minimum taken over all stochastic vectors y of length n and the maximum
taken over all stochastic vectors z of lengthm.Moreover, if all entries of A are rational,
then so are all entries of y∗ and z∗.

Proof of Theorem 5.2 We are going to prove that for every finite subset Y ⊆ V (H), the
subgraph H [Y ] satisfies χ(H [Y ]) " 2. Theorem 5.2 will then follow by Theorem 1.4.
Let Y = [n]. We claim that there exists an integer s such that the hypergraph H [Y ]
can be represented by assigning the vertices of Y to subsets {Si }i![n] of [s] satisfying:
(1) |Si | ! k−1

k s for each 1 " i " n,
(2)

⋂k
i=1 S ji = ∅ for { j1, . . . , jk} ! H [Y ].

First we will prove that if such a representation exists, then χ(H [Y ]) " 2. To see
that consider the partition Y = I1 + I2, where

I1 = {i ! [n] : s ! Si },
I2 = {i ! [n] : s /! Si }.

Note that for every { j1, . . . , jk} ! I (k)1 , we have s ! ⋂k
i=1 S ji . Hence, by condition

(2) we obtain that I1 is independent. Now consider a k-tuple { j1, . . . , jk} ! I (k)2 . By
construction of I2, we have that S ji ⊆ [s − 1] for every 1 " i " k. Given # ! [s − 1],
let n# be the number of sets S ji such that # ! S ji . By condition (1), we have

∑

#![s−1]
n# =

k∑

i=1

|S ji | ! (k − 1)s.

Therefore, there exists #0 ! [s − 1] such that n#0 = k, i.e., #0 ! ⋂k
i=1 S ji . Hence, by

condition (2), we obtain that I2 is independent. This concludes thatY can be partitioned
into two independent sets and consequently χ(H [Y ]) " 2.

It remains to show that such a representation {Si }i![n] exists. Let W1, . . . ,Wm be
all the independent sets of H [Y ]. We consider a (0, 1)-matrix A = (ai j ), 1 " i " m,
1 " j " n with ai j = 1 if and only if j ! Wi . Let y∗ and z∗ be the vectors given by
Theorem 5.3 applied to the (0, 1)-matrix A above. We will view y∗ as a weight vector
of Y . Since H has the k−1

k -fractional property, there exists a j such that

eTj Ay
∗ =

∑

i!Wj

y∗
i ! k − 1

k

∑

i![n]
y∗
i = k − 1

k
,
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where e j stands for the standard unit vector with all entries equal to 0 except the j-th
one. Hence, by Theorem 5.3, we have that

∑

i!W#

z∗# = (z∗)T Aei ! min
y
(z∗)T Ay = max

z
zT Ay∗ ! eTj Ay

∗ ! k − 1
k

(15)

for every 1 " i " n.
Moreover, since all the entries of A are rational, by Theorem 5.3, the vector z∗ has

rational values. Let z∗# = r#
s , where r1, . . . , rm and s are integers. Due to the fact that

z∗ is a stochastic vector, we have
∑m

i=1 ri = s.
We construct the representation as follows. Let [s] = ⋃m

#=1 R# be a partition of [s]
such that |R#| = r#. For each 1 " i " n, consider the set

Si =
⋃

i!W#

R#.

To prove that {Si }i![n] satisfies condition (1) note that by inequality (15) that

|Si | =
∑

i!W#

r# = s
∑

i!W#

z∗# ! k − 1
k

s.

Now, to check condition (2), let { j1, . . . , jk} be an edge of H . Suppose that⋂k
i=1 S ji %= ∅. Then, there exists an index # such that R# ⊆ S ji for every 1 " i " k.

This implies that { j1, . . . , jk} ⊆ W#, which contradicts the fact thatW# is an indepen-
dent set. Hence,

⋂k
i=1 S ji = ∅ and condition (2) holds. )*

6 Concluding Remarks

We recall that the quantifications of Theorems 1.1, 3.1, and 4.1 guarantee for every
h ! 2 the existence of ε := ε(h) such that the statement holds. In our proof of
Proposition 3.1, ε → 0 as h → ∞. This is perhaps not necessary and we propose the
following conjecture.

Conjecture 6.1 Does there exist ε > 0 with the property that for any h ! 2 there is a
set of integers X ⊆ N with the properties (H1) and (H2) of Theorem 1.1?

The same problem may be also asked in the context of Theorem 4.1 and Theo-
rem 3.1.

In Sect. 5, we show that for every µ < k−1
k , there exists a k-graph with arbitrarily

large chromatic number and µ-fractional property. Moreover, this is optimal, since
Theorem 5.2 shows that if H is a k-graph with k−1

k -fractional property, then H is
bipartite. It seems to be an interesting problem to decide if the assumption of H
having the k−1

k -fractional property on Theorem 5.2 could be replaced by having the
weaker k−1

k -property.
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Problem 6.2 Is it true that there exists integer m := m(k) such that χ(H) " m for
any k-graph H with k−1

k -property?

Note that the statement is true for k = 2 and m = 2, since every non-bipartite
graph contains an odd cycle which violates the 1

2 -property. However, we were unable
to show it for k ! 3.
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