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Abstract

For any integer i > 2, a set of integers B = {b;};cs is a By-set if all h-sums b;, +
...+ b;, withi; < ... < iy are distinct. Answering a question of Alon and Erd6s [2],
for every h > 2 we construct a set of integers X which is not a union of finitely many
Bj,-sets, yet any finite subset Y C X contains an Bj-set Z with |Z| > ¢|Y|, where
¢ := e(h). We also discuss questions related to a problem of Pisier about the existence
of a set A with similar properties when replacing Bj,-sets by the requirement that all
finite sums ), b; are distinct.

Keywords Ramsey theory - Hypergraphs - Additive combinatorics
1 Introduction
Pisier formulated the following problem in [12] in the context of harmonic analysis

(see also [4]). A set of integers X = {x;}ie; C Z is called free (or quasi-independent)
if for any two distinct finite sets of indices J, J' C I we have
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Pisier was interested in a condition that guarantees that a set X is a union of a finite
family of free sets. In this context, he asked if the following two statements are equiv-
alent:

(1) X is the union of finitely many free sets.
(2) There exists ¢ > 0 such that every finite subset ¥ C X contains a free subset
Z C Y with |Z] > ¢|Y].

Clearly, by the pigeonhole principle, statement (1) implies statement (2). While the
converse implication (2) = (1) is still open, in this paper we will consider several
variants of the question (for more about the problem see [8, 9]).

In the first result we consider a variant of the definition of a free set in which we
assume that one of the sets J (or J’) has bounded size. In this case, one can show
that the implication (2) = (1) fails. To be more precise, for an integer 7 > 1, we say
that a set X is h-free if Eq. (1) holds for any distinct subset of indices J, J' C I with
|J| < h (the size of J' may be arbitrary). We are going to prove the following.

Theorem 1.1 For every h > 1 there exists € > 0 and a set of positive integers X with
the following two properties:

(H1) X is not a union of finitely many h-free sets.
(H2) Every finite subset Y C X contains an h-free set Z with |Z| > ¢|Y | elements.

The proof is a consequence of a related statement regarding Sidon related arithmetic
classes (see Theorem 4.1) which answers a problem suggested by Alon and Erdés [2].
Our approach to prove Theorem 1.1 is based on a set theoretical result in which the
sum in (1) is replaced by the multiset union.

On the other hand, our second result shows that under an additional assumption
on the size of the sets, the implication (2) = (1) of the Pisier problem holds for the
multiset union version of the problem. More precisely, given a set system A = {A;};¢s
on the ground set X, we say that A is free if

a4, # 14 A

jeJ jel’

holds for all pair of distinct finite index sets J and J', where (4] stands for the multiset
union operation, i.e., every element is counted according to its multiplicity in the
operation. For instance, {1, 2} W {2, 3} = {1, 2, 2, 3}.

Theorem 1.2 Let k > 1 be an integer and A = {A;}ic; be a set system such that
|Ai| < k. Then the following two statements are equivalent:

(F1) A is the union of finitely many free sets.
(F2) There exists ¢ > 0 such that every finite subfamily A" C A contains a free
subfamily A" C A with |A"| > ¢|A’| elements.
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The proof Theorem 1.2 follows by showing an upper bound for the size of the
partitions (see Theorem 2.1).

Finally, in the context of hypergraphs with free sets being independent sets of
vertices, one can show the following negative result.

Theorem 1.3 For k > 2 and every 1 < kk;l there exists a k unifrom hypergraph H
with the following two properties:

(I1) The chromatic number x (H) is infinite.
(I2) Every finite subset of vertices Y < V (H) contains an independent set Z C Y
with |Z| > n|Y| vertices.

It would be interesting to find if a version of Theorem 1.3 still holds for u = %
when k > 3 (see Problem 6.2).
1.1 Notation, Preliminaries and Organization
For a natural number n, we set [n] = {1, ..., n}. Given a set of integers X, we denote

by X® the set of k-tuples in X. A k-uniform hypergraph H = (V, E) (or k-graph) is
a pair of a vertex set V and a family of k-tuples E € V® called the edges of H. Since
the hypergraph can be retrieved by its edges, we will often refer to H as the set of edges.
Unless stated otherwise, the elements of a set X will be always indexed in increasing
order. That is, if we write X = {xy, ..., xx}, then we mean that x| < ... < x.

Throughout the paper, we will prove infinitary statements concerning chromatic
number using their corresponding finitary versions. To do that, we use the following
variant of a well known theorem of de Bruijn and Erdés [6]

Theorem 1.4 Let 'H be a (infinite) hypergraph such that every edge of H has finite
cardinality. If x (G) < r for every finite G C 'H, then x (H) < r.

We note that in [6] this result is stated for edges of cardinality two only. The proof for
hypergraph with edges of finite cardinality goes along the same lines and the statement
above follows also from a more general result considered in [13].

The paper is organized as follows: We discuss a version of the problem for sets
and prove Theorem 1.2 in Sect.2. Section3 is devoted to prove the main technical
result in the proof of Theorem 1.1. We study the Pisier problem for Bj-sets and prove
Theorem 1.1 in Sect.4. Finally, we study the problem for hypergraphs and prove
Theorem 1.3 in Sect.5. Throughout the paper, we do not attempt to optimize any
constants.

2 Set Version of the Pisier Problem

Since the proof of Theorem 1.1 occupies most of the paper, we start with the simpler
proof of Theorem 1.2. Let A = {A;};<; be a system of finite sets on the ground set X.
For each x € X, and finite subset J C I, we define the degree of x in A; = {Aj}jes
as

da,(x)={j €J:xeAj
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Moreover, we define the degree sequence of J in 4 as the vector

Dy = (da, ), oy

where A; = {A;};cs. Akey observation is that for two finite sets of indices J, J ey
the equality #);.; Aj = 4y ;s Aj» holds if and only if D; = D, . In particular, the
set system A is free if and only if its degree sequences D, are distinct for all finite
subsets J of .

With this definition in mind, one can state a version of the Pisier problem for set
systems: Given a set system A = {A;};c;, determine if the following two statements
are equivalent:

(F1) A is the union of finitely many free sets.
(F2) There exists ¢ > 0 such that every finite subsystem A" C A contains a free
subsystem A” € A" with |A”| > ¢| A’| elements

As discussed in the introduction, statement (F1) implies statement (F2). So it
remains to answer if the converse implication holds. The next result shows the impli-
cation (F2) = (F1) if we assume that all elements of A are of bounded size. Hence,
Theorem 1.2 follows.

Theorem 2.1 Let ¢ > 0, k > 2 be an integer and A = {A;}ic; be a set system
satisfying the following two conditions:

() |A;| < kforiel.
(ii) For every finite subsystem A’ C A, there exists free subfamily A" < A’ with
|A”| > e|A| elements.

Then there exists a partition

A=
t

Ay
1

t
with t < 2k*logk and Ay free for 1 < € < t.

The proof of Theorem 2.1 is based on the following lemma.

Lemma2.2 Let B = {Bj};cs be a free set system on the ground set Y, |Y| = n, such
that |Bj| < k for every j € J. Then

> dp(y) < 4nklogk.
yeY

Proof Let

d= Y ds).

yeY
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For any subsystem B = {Bj/}jc; with J' C J, the degree sequence Dy =
(Dp(y))yey satisfies 0 < dp(y) < dg(y). Hence, by the AM-GM inequality, we
infer that there are at most

[T@sm+n<@d+1) ©)

yeY

degree sequences corresponding to subsystems 3’ C B. On the other hand, we have
Zyey dp(y) < k|B| and consequently there are

218l > 2% 3)

subsystems B’ C B. Since B is free, we have that every degree sequence corresponds
to at most one subsystem 5. Hence, by (2) and (3), we infer that

dn
2% < (d+ 1),

which implies that IOg(fii—H) < kandhence }° .y dp(y) = dn < 4nklogk fork > 2.
O

Proof of Theorem 2.1 First, we will observe that it is sufficient to prove the statement
for A = {A;}ic; finite on a ground set X with |X| = n. To this end, for a possibly
infinite A, let H be the hypergraph with vertex set V (H) = A and edges given by

H=1{1{Aj}jesus: J.J CIfiniteand [+ A; = |+ A
jeJ j'ed’

That is, the edges of 7 are the subsets of .4 violating the condition of being free.
Therefore, the conclusion of the statement of Theorem 2.1 is equivalent to x (H) <
ékz log k. Thus, by Theorem 1.4, it suffices to prove for any finite subgraph G € H
that x (G) < ;—‘kz log k, i.e., to prove the theorem for a finite set system.

We claim that A is (gk2 log k)-degenerate, i.e., there is a labeling {xi, ..., x,}
of elements of X such that dA[Xj](xj) < gkz logk for each 1 < j < n, where
X; =X\{x1,...,xj—1} and A[X ] is the subgraph of A induced on X ;. That is, the
number of edges in A induced by X ; containing x; is smaller or equal than ;—‘kz logk.

Suppose that we already have chosen {x1,...,x;-1} € X and now we need to
choose x ;. By condition (ii) of the statement, there exists free subsystem B C A[X]
with |B| > el A[X;]|. Hence, Lemma 2.2 applied to ¥ = X; gives us that
erxj dg(x) < 4(n — j + Dklogk. Moreover, erxj dp(x) = |B|] > el A[X;]]
and erxj dapx;(x) < k| A[X ;]|. Thus,

& .
© 2 dax () <4 = j+ Dklogk

XEXj
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and consequently there exists a vertex x; € X such that
4.
dA[Xj](x]‘) < Ek Ing.

This concludes the proof of the claim.
For1 < j < n,let

Cj={A€A[Xj]Zx]'€A}

be the sets containing x ; in A[ X ;]. Clearly A = U?:l Cjisapartition of Aand |C;| <
%kz logk. For t = maxige<n ICj] < %kz log k, construct disjoint sets {A¢}1<e<s
sequentially by adding if we can one element from each C;. Hence, we obtain a
partition 4 = U/tz=1 Ag with t = maxi e ICj| < %kz log k such that [ A, NC;| < 1
forevery l <Z<tand1 < j <n.

We claim that A, is free for every 1 < ¢ < t. Suppose that there exist distinct
B, B € Agsuchthat|tz. 5 B = |53 B'. We can assume without loss of generality
that BN B = @. Let xj, = min|JB = min|JB'". Since | A, N Cjy| < 1, either
B'NCj, =@or B NCj, = ¥. However, by the minimality of jo this would imply that
either x, ¢ |J B or xj, ¢ B, which contradicts |}z 3 B =tz B'. |

3 A Local Version of the Pisier Problem for Sets

In this section we introduce a version of the Pisier problem for sets that will be useful in
the proof of Theorem 1.1. Let A = {A;};c; be a system of finite sets on the ground set
X. We say that A is h-independent if for any indices J, J' C I with |J| = |J'| = h,

A # 4 Ay

jeJ jlel’

One can see h-independent sets as the correspondent of a Bj,-sets (see Sect.4) in the
context of sets equipped with the multiset union operation.
In this context, statements (1) and (2) of the Pisier problem can be rewritten as

(1) A is the union of finitely many /-independent set systems.
(2) There exists ¢ > 0 such that every finite set system A" C A contains a h-
independent subset A” with | A”| > ¢| A’| elements.

The next result shows that statement (2) does not imply statement (1) and consequently
these statements are not equivalent.

Theorem 3.1 For every h > 1, there exists ¢ > 0 and a set system A on the ground
set N with the following two properties:

(S1) A is not the union of finitely many h-independent sets.
(S2) Every finite subsystem A" C A contains an h-independent set A” < A’ with
|A”| > &|A'| elements.
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e
— ¢ — . N
*—5 N
A, ® N
® N

Fig.1 An edge e and its corresponding set A,

To prove Theorem 3.1 we will use the following result from [11]. A partial Steiner
(k, £)-system G is a k-uniform hypergraph (shortly k-graph) with the property that
every £-element subset of the vertex set of G is in at most one edge. For this problem
all Steiner systems will be ordered, i.e., the vertex set of the graph has a linear order.
We will say that F' is a subgraph of G if there is an order preserving injective mapping
¢ : V(F) — V(G) whichis ahomomorphism. Let S (k, £) be the class of all ordered
partial Steiner (k, £)-systems. The next result shows that the class of ordered partial
Steiner systems has the Ramsey property.

Theorem 3.2 ([11], Theorem 6.2) The class S<(k, ) of all ordered partial Steiner
(k, £)-systems has the edge Ramsey property, i.e., for every F € S_(k, £) and for any
integer r there exists G € S (k, £) with the property that any r-coloring of edges of
G yields a monochromatic copy of F.

Let k be a even number and G a k-uniform graph with vertex set V(G) € N.
On the set N x [k/2] we will construct a set system A as follows: For an edge
e ={x1,...,x}, withx; < --- < xi, define the set A, € N x [k/2] given by

k/2

Ae =] xai1, x20) x (i},

i=1

where [a, b) x {i} = {(a, i), (@a+1,i),..., (b—1, i)} denotes the interval of integers
between a and b, with b not included, in the i-th copy of N. With this in mind, we
define the set system Ag on the ground set N x [k/2] as

Ag ={A. : e € G}.

We say that a graph G is h-independent if the associated set system Ag is h-
independent, i.e., if there is no subgraph F C G and labeling FF = {f1, ..., fag} of
its edges such that
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8 2g
Han=H Ax
r=I1 s=g+1

for every 1 < g < h. The following lemma shows that every non 4-independent finite
ordered k-partite k-graph has at least two edges with large intersection.

Lemma 3.3 Let k > h be integers with k even. Let H be a finite k-graph with vertex
set 'V satisfying the following properties:

(1) H is not h-independent.
(ii) There exists partition V. = V1U. ..UV} suchthat for everyedgee = {x1, ..., xx} €
H withx; < ... < xi, we have x; € V;.

Then there exist distinct edges e, f € H such that e N f| > k/h.

Proof Since H is not h-independent, there exists subgraph ' € H with labeling
F ={fi1,..., f2g} such that

g 2g
r=1 s=g+1
forsome 1 < g <h.Let F'={f1,..., fy}and F” = {fe41, ..., fog} be subgraphs

of F. We claim that for every x € V, we have degy (x) = degp»(x).
For (a,i) € N x [k/2] and subgraph E C H, let

pe(a,i) ={e € E: (a,i) € A}l
i.e., we(a, i) is the multiplicity of (a, i) in |4,z Ae. The relation (4) gives us that
wpra, i) = ppr(a,i) Q)

for every (a,i) € N x [k/2].

Fix i € [k/2]. We will prove that degz/ (x) = degp~(x) for every x € Vo1 U V5.
Let x be the minimal integer in V;_1 U V,; such that the statement is false. Suppose
that x € Vp;_1.Let A C V;_1, B C V»; be defined as

A={a e Vy_1:a<x},
B={beVy:b<x}

That is, A and B are the subsets of V»;_1 and V5; with elements smaller than x. If
e = {x1,...,xr} € E is an edge such that (x,i) € A,, then x € [x2;_1, x2;). This
implies that xp;_1 € AU {x} and xp; ¢ B. Hence,

pe(, i)=Y degp({a, y}) +degp(x) = Y degg(a) — Y degp(b) + degp(x),

acA, acA beB
yeV2\B

(6)
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where the last equality holds by Condition (ii) of H. By the minimality of x, we
have that degy/(y) = degp,(y) for all y € A U B. Therefore, (5) and (6) gives us
that deg/(x) = degp~(x), which is a contradiction. If x € Vy;, then x2;_1 € A and
x2; ¢ B U {x} and one can show similarly that

pe(,i)y= Y degp(la,y) =) degp(a) — ) degp(b) — degp(x).
acA, acA beB
yeVa \(BU{x})

The result now follows in the same way, which concludes the proof of the claim.
To finish the proof of Lemma 3.3 note that by the claim,

k
DYoo =)0 degpix)degpn (x)
fleF! f"eF" i=1 xeV;
k k
=Y > degh(x) =Y ) degp(x) = Y g =kg.
i=1 xeV; i=1 xeV; i=1

Hence, by averaging, there exist e € F’ and f € F” such that

kg
2

S o

len fl =

o | =

=

O

Remark 3.4 We observe that the same proof works if we allow multiplicity on the
edges. To be more precise, we say that a k-graph G is multi h-independent if there are
no multiset of edges F = {fi, ..., fo} and F' = {fo41, ..., f24} of G such that

g 2g
L—ﬂ Ay = L—!—J Ay
r=1 s=g+1
That is, we allow repetitions on the multiset union.

The next lemma shows that for £ < k/h there exists a partial Steiner (k, £)-system
violating the A-independence condition.

Lemma 3.5 Forh > 2, there exists an even integer k and a partial Steiner (k, £)-system
F=A{f1,..., fan} with £ < k/h such that

h 2h
Ha,= 4 Ay
r=1

s=h+1

In particular, the graph F is not h-independent.
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Fig.2 A 4-cycle C\?) ( | oi(2q)
0;(2g — 1

€1 Ty

0j(2q9) +h

O’j(2q— 1) +h

Proof We will construct a k-graph F satisfying the statement for k = 2(h!)> and
2 h(h!)? vertices. The construction depends on the parity and size of i. During the
proof a labeled 2-graph is just a 2-graph with a label of its edges.

Case l: h =2t > 4.

Let Sy, be the set of permutations o : [A] — [h]. Write S}, = {01, ..., on}. For
a pair (i, j) € [A!]%, let Fij = Cl-(}) u...u Ci(]t-) be a labeled 2-graph consisting of
h/2 =t cycles of length 4. For each 1 < ¢ < t, we label the edges of C[.(;i) as follows:
Let V(Ci(f)) = {x1, x2, x3, x4} with x| < x2 < x3 < x4 and label the edges of the
cycle as in Fig. 2.

We order the vertices of all Ci(j?) such that max V(Cl.(j'f)) < min V(Cl.(,qj,) ) if and only
if (i, j,q) <iex (i’, j', ¢q) in the lexicographical ordering. This in particular gives us
a total ordering of Ulgi,jgh! V (Fjj). For a fixed F;;, each one of its 4t = 2 h edges
is labeled by precisely one of the labels from [2A]. Set F;; = { i}., el fli.h}, where
fl; is the edge of F;; labeled with s.

We finally define the k-graph F as the graph with vertex set V(F) =
Ulgi,j,gh! V (Fjj), where the ordering of V (F) respects the total ordering of V (F;;)
described above, and edge set given by

F=1{f = U £ 0 1<s < 2h
1<i,j, <h!

That is, the graph F consists of 2/ edges of size k = 2(h!)> where the edge f; of F
is the union of all the pairs labeled with s.

We claim that F is a partial Steiner (k, £)-system with £ = h(h — 2)!h! 4+ 1 <
2(h—1)!h! =k/h for h > 2. Let f, and f; be two edges of F suchthat1 < r,s < h.
Then f, and f; only intersect in the cycles Cl.(;}) such that

{0i(2q — 1), 0i(29)} = {r, s}. (N
For each 1 < ¢ < ¢, there are 2(h — 2)! choices of o; satisfying (7). Consequently
there are 2¢(h — 2)!h! choices of g and 07, 0; € S, such that f, and f; intersect in

C l.(;.]). Since f, and f; intersect in at most one vertex for each C l.(j’.]) we obtain that

[fr O fs] =2t(h —2)!h! = h(h — 2)!h!.
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oW c? c®

1] ) ]

Fig.3 The pairs flrj forl <r<h

A similar computation shows that for 2 + 1 < r, s, < 2h
|fr O fs] = h(h —2)h!

holds. Finally, if | <r < handh + 1 <s < 2h, then f, and f; only intersect in the
cycles Cl.(;.’) such that either

0i(2g—1)=randoj(2g —1)+h=s or 0;(2q) =rando;(2q) +h =s.

Each of these possibilities happen ¢ ((h — !? times and therefore

Ifr O fsl = 2t((h — DY = h((h — D)%
Since h(h — 2)!h! > h((h — D)% for h > 2, we obtain that F is a partial Steiner
(k, £)-system for £ = h(h — 2)\h! + 1.

Itremains toshow that H’_; Ay, = 42/, | Ay,.Sincek/2 = (h!)?, there exists an
order preserving bijection ¢ : [h!]> — [k/2], where [h!]? is ordered lexicographically.
Note that

Ag DM X oG, ) = [min V£, max(V(£)) x (¢, )}
for every 1 < r < 2h. Therefore,

h
U 4 [min V(i max(V(fl-;-)) x A, )}

1<i, j<h! r=1

h
G2
r=I1

t
U U [minved), maxvc) x toi. )

1<i, j<h! g=1

2h h
U W [minves. mxv(£)) x (e, ) = 4 Ay,

1<i, j<h! s=h+1 s=1

since the pairs fl; and fl; for ] <r < handh+ 1 < s < 2h cover precisely once
the entire interval of each cycle Cl.(j(?) from1 < g <1t.
Case2: h=2t+1>3

The constructions is very similar to the previous case. For a pair (i, j) € [A!]?,
let Fij = U;J;ll Cl.(j(.’) be a labeled multigraph consisting of ¢ cycles of length 4 and
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. 1
Fig.4 The 2-cycle Ci(;-_" ) oi(2t+1)

O’j(2t+ 1) +h

a 2-cycle C @+ For each 1 < g < t, we label the 4- -cycle C @ exactly as in Case
1 (see Fig. 2). We define Cl.(;Jr ) as the multigraph with two vertlces and two edges
labeled as in Fig. 4.

As in Case 1, we label the vertices of C;; @ Such that max V (C (q)) < min V(C;, @ ))

if and only if (i, j, q) <wex (', J', q)). Moreover Fijisa multlgraph with 2h edges
labeled in an one-to-one correspondence with [24]. Write Fjj = { fl} ... fjh} where
fl; is the edge of F;; with label s.

We define F as the k-graph with vertex set V (F) = Ulgi,jgh! V(Fi;) and edges

F=3fi= |J fi:1<s<2n

1<i, j<h!

A similar argument as in Case 1 shows that Lﬂle Ap = Lﬂ%ﬁh 11 Ay, . Furthermore,

note that for 1 < r, s < A, the edges f and f; intersect at Ci(jq) if 0; and o satisfies
(7). As in the first case, this happens 2¢(h — 2)!h! times and therefore

| £ N fy] == 2t(h — 2)1h! = (h — 1)!AL.

A similar computation obtain the same bound for 2 + 1 < r,s < 2 h. Finally, for
I <r<handh+1 < s < 2h, the counting is almost the same as in Case 1, except
for the extra possibility that f. and f intersect in the 2-cycle Ci(;+1). This happens

2((h — 1)!)2 times and we conclude that
I 0 fil = 2t((h — DHY? +2((h — DY = (h + D((h — DY

Thus, F is a partial Steiner (k, £)-system with £ = (h + 1)((h — D2 +1<2h—
D! =k/h forh > 1.
Case 3: h=2.

Let F = {f1, f2, f3, fa} be the 8-uniform hypergraph on 16 vertices described in
Fig.5, where, for each 1 < s < 4, the edge f; is the union of all the pairs labeled with
s. Let the vertices of F' be ordered from left to right exactly as shown in Fig.5.

Following a similar argument as in Case 1, one can show that A s, WA p, = A ;WA .
Moreover, one can also check that | f; N f;| < 3 forevery 1 <i < j < 4. Hence, F
is a partial Steiner (k, £)-system with £ =4 = 8/2 = k/h. O
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1 2 1 2 2 1 2 1

X s O O
4 3 3 4 4 3

3 4

Fig.5 The graph F forh =2

Proof of Theorem 3.1 Since there is a bijection between N x [k/2] and N, to prove
Theorem 3.1 we just need to show that there exists ¢ > 0 and a k-graph G such that
Ag satisfies properties (S1) and (S2) of the statement, i.e., a k-graph G such that

(1) Any finite coloring of G contains a monochromatic subgraph F that is not A-
independent.

(ii) Every finite subgraph G’ C G contains an h-independent subgraph G” C G’ with
e(G") = ee(G).

Let F be the partial Steiner (k, £)-system obtained by Lemma 3.5. Given an integer
r, by Theorem 3.2, there exists a partial Steiner (k, £)-system G, such that any r-
coloring of the edges of G, contains a monochromatic copy of F. Let G = |2, G,
be the union of disjoint copies of G, for r > 1. Order the vertex set of G such that
V(G) € N and max V(G,) < minV(Gy) for r < s. We claim that G satisfies
properties (i) and (ii).

For r > 1, consider an arbitrary r-coloring ¢ : G — [r] of the edges of G.
In particular, c|g, is an r-coloring of G, € G and by Theorem 3.2, there exists a
monochromatic copy of F. By Lemma 3.5, the graph F is not h-independent, which
proves statement (i).

For statement (ii), let G’ € G be a finite subgraph of G. We are going to show
that there exists a subgraph H C G’ with e(H) > e(G’)/k* such that the vertex set
of H can be partitioned into V(H) = V1 U ... U Vj satisfying the following: For
every edge ¢ = {x1,...,xx} € H with x1 < ... < xi, we have x; € V;. Indeed,
consider a random partition V(G’) = V| U ... U V; such that every x is chosen to
be in V; independently with probability 1/k. Thus, if e = {x1,...,xt} € G, then
IP(/\{;l{x,- c v,~}) — 1/kk.

Let H be the graph consisting of all the transversal edges e = {x1,...,xx} € G
with x; € V; for 1 <i < k. Then

\ e(G')
EeH)= Y P(Aievil]==—r

{x1,...,xx }€G i=l1

which by Markov inequality implies that with positive probability one can obtain
H with e(H) > e(G’)/k¥. We claim that such H is h-independent. Suppose to the
contrary that is not. Then by Lemma 3.3, there exists edges e, f € H such that
leN f| = k/h. However, by Lemma 3.5, the graph H C G is a partial Steiner (k, £)-
system with £ < k/h, which is a contradiction. Therefore, statement (ii) holds by
taking ¢ = 1/k* and G” = H. O
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Remark 3.6 As in Remark 3.6, we observe that the same proof give us a similar state-
ment where we allow repetition on the multiset union. Indeed, in the proof we only
need to check that there is no set violating the “multi 4-independence” in Condition
(ii). However, there we invoke Lemma 3.3 that by Remark 3.6 can be modified to
allow repetition of edges.

4 Proof of Theorem 1.1 and the Pisier Problem for B,-Sets

A consequence of Theorem 3.1 is the following negative result on a variant of the
Pisier problem for Bj-sets. For & > 1, we say that a set of integers X = {x;};cs is a
By -set if

D% # DAy

JjeJ jlel’

forJ # J',|J| = |J'| = h,i.e.,if all the h-sums of distinct i-tuples of X are distinct.
Note that this definition is slightly different than the usual definition of By, sets, where
we allowed repetitions between the elements in {x;} and {x;.} (see [10, 14]). However,
for our purposes we find it more convenient to state this way. By replacing the concept
of h-free by Bj-sets, one can ask if the following two statements are equivalent:

(1) X is the union of finitely many B;-sets.
(2) There exists ¢ > 0 such that every finite subset Y € X contains a B;; subsetZ C Y
with |Z] > ¢|Y].
As in the original problem, the implication (1) = (2) holds. In [2], Alon and Erd6s
suggested the problem of determining whether the implication (2) = (1) is true. The
next result shows that the implication is not true.

Theorem 4.1 For every h > 1 there exists € > 0 and a set of positive integers X with
the following two properties:

(B1) X is not a union of finitely many Bj-sets.

(B2) Every finite subset Y C X contains a Bj-set Z with |Z| > g|Y| elements.

Proof Let A = {A;};c; be the set system on the ground set N obtained by Theorem 3.1.
Let X = {x;}ic; € N be the set of integers defined by

xi= Yy (h+1).

JEA;

Then for two set of indices J, J' € I of size h, wehave } ;. xj =} ;e x;r if and
only if U—Jjej Aj = Lﬂj/ej/ A jr. This implies that a subset X' = {x;/}yc;y € X isa B;-
set if and only if the correspondent subfamily A" = {A;/};7¢; € A is h-independent.
Hence, X satisfies statements (B1) and (B2) of Theorem 4.1. O

Remark 4.2 We observe that the same proof works for B, sets by using a modified
version of Theorem 3.1 (see Remarks 3.4 and 3.6).
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We are now ready to prove Theorem 1.1 from Theorem 4.1. Recall that an h-free
set X = {x;}ies is a set such that

D% # DAy

jeJ j'ed’
holds for any distinct subset of indices J, J' C I with |J| < h.

Proof of Theorem 1.1 Let A = {a;}ic; < N be the set of integers and ¢ > 0 the
constant obtained from Theorem 4.1 satisfying statements (B1) and (B2). Let H be
the hypergraph with vertex set V(H) = A and with set of edges of size at most 2h
consisting of

H = {{aj}jesuy: J,J S Iwith|J| =|J'| =hand Zaj = Z aj
jeJ j'eJ’

Statement (B1) says that the chromatic number of H is infinite. Therefore, by The-
orem 1.4, there exists finite subhypergraph with arbitrarily large chromatic number.
That is, one can obtain for every r > 1 a finite set A, C A satisfying the following
two properties:

(B*1) A, is not an union of at most r B;:-sets.
(B*2) Every subset B C A, contains a B}-set C C B with |C| > ¢|B|.

We construct a sequence of finite sets {W;}7Z, and X, = U;zo W; such that

(H*1) X, is not a union of at most r h-free sets.
(H*2) Every subset Y € X, contains an h-free set Z C Y with |Z]| > ¢|Y]|.

Theorem 1.1 follows by taking X = (72, W;.
Let Wy = {0}. Suppose that we already constructed Wy, ..., W,_; and X, =
U;;é W, satisfies statements (H*1) and (H*2). We choose 7, and m, to satisfy

ny > Z x and m, > n, 1—1—261 . (8)

xeX,—1 acA,

Define W, = {n,a+m, :a € A,}and X, = U;zo W; = W, U X,_i. Note that by
our choice of n, and m,, we have that W, N X,,_; = . It remains to prove that X,
satisfies properties (H*1) and (H*2).

Property (H*1) follows by the fact that an £-coloring of X, for £ < r,is in particular
an £-coloring of W,. Since there is a bijective linear map from A, to W,, we obtain
that the £-coloring in W, corresponds to an ¢-coloring in A,. By construction, this
coloring must contain a monochromatic equation

db=>"b

beB b'eB’
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for B, B C A, with |B| = |B’| = h. Then the equation

Z(”rb +m;) = Z (nrb/ +m,)

beB b'eB’

is monochromatic in W,., which implies that one of the colors classes is not i-free.

In order to prove Property (H*2), consider an arbitrary subset ¥ C X,. Write
Y =Y'UY",whereY' = YNX,_;andY” = YNW, are disjoint sets. By our induction
hypothesis, there exists h-free set Z' C Y’ with |Z'| > ¢|Y’|. Let f : A, — W, be the
bijective linear map given by f(a) = n,a +m,. By property (B*2) of A,, there exists
aBj-set C € f71(Y") € A, with [C| > e|f~1(Y")| = |Y"|. Take Z" = f(C).
We claim that Z = Z' U Z" is h-free.

Suppose that } ,.p p = >_,c¢q for some P, QO € Z. We want to show that
|P|,|Q| > h.Let P = P"U P" and Q = Q' U Q" be partitions of the sets such that
P=PNZ,P'=PNZ" Q' =0NZ and Q" = QN Z". A computation shows
that

Z p— Z q Z (nra +m;) — Z (nyb+m;)

peP’  qeQ’ aef~1(P") bef~1@")

= (1P| =1Q"Dmy+n [ > a— D> b]l. ®
acf~1(P") be f~1(Q"

Suppose that |P”| # |Q”|, then our choice of n, and m, in (8) and Eq. (9) gives us
that

= m, —

N EDI

pEP// (1€Q”

nr( Z a— Z b) >mr—nr(a§-a)>nr.

acf~1(P") bef~1(Q")

Hence, by (8) and the fact that P/, Q' C X,_1,
0=|> p=D a|>|d p= D a— |2 p-Dd a>n—) x>0
PEP qeQ peP” qeQ” peP’ qeQ’ xeX;,

which is a contradiction. Therefore, | P”| = |Q”|. We also claim that ), e a =

> bef-1(gr) b- Indeed, suppose to the contrary that 3 ,c r-1(pny @ # D pe p-1(om) b-
Then, by (8) and (9) we have

=D a=n Yooa— Y bz

peP” qeQ” aef~1(P") bef~1(Q"
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and we reach a contradiction similarly as in the proof of |P”| = |Q”|. To finish the
proof, note that C = f~1(Z")isa By -set and consequently all the g-sums are distinct
for g < h. Hence, |P”| = |Q”| > h and consequently Z is h-free O

5 Pisier Type Problems for Hypergraphs

In this section we consider the Pisier type problem for k-uniform hypergraphs. Viewing
our sets as vertex sets from a hypergraph and replacing the notion of being free by
being an independent set of vertices leads to the following question. For what values
of w is there a k-graph H with the properties:

(I1) The chromatic number x (H) is infinite.
(I2) Every finitesubsetY € V (H) contains anindependentset Z C Y with |Z| > u|Y|
vertices.

That is, for what values of u the converse implication of the Pisier problem fails. We
say that a hypergraph H satisfying statement (I2) has the p-property. By taking Y as
the vertex set of an edge, one can clearly note that there is no nontrivial H satisfying

the p-property for pu > % On the other hand we will show that such hypergraphs

exist for each u < % In fact, below we will show the following stronger statement.

We say that a weight vector w = (w;);es is stochastic if w; € [0, 1] for every
ieland) ;.; w;i =1.Let H be a k-graph. For given ;v > 0, we say that H has the
u-fractional property if for every finite subset Y € V (H) and every stochastic weight

vector w = (wy)yey, there exists an independent set Z C Y with

sz>u2wy:,u.

zeZ yeY

By taking wy = ﬁ forevery y € Y, one can see that the j«-fractional property implies
the p-property. Hence, the next theorem in particular proves Theorem 1.3.

Theorem 5.1 For every pu < %, there exists a k-graph H with the following two
properties:

(I1) The chromatic number x (H) is infinite.
(I2) H has the p-fractional property.

Proof We will prove that the infinite shift graph has such a property. Shift graphs were

2
used before in a similar context in [7]. Set ¢ = % —u, = ’V@_I Let H be

the infinite k graph with set of vertices V (H) = N, i.e., all the £-tuples of positive

integers. A k-tuple {x1, ..., xi} € V(H)® is an edge if and only if there exists a set
A={ay, ..., a0} € N6=D guch that
xi =A{ai, ..., aive-1},

for 1 < i < k. Thatis, H is the infinite shift k-graph on the £-tuples of N. We claim
that H is our desired graph.
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Statement (I1) follows from Ramsey theorem. Indeed, for any finite coloring of
the ¢-tuples of N, there exists a set X € N of size k + £ — 1 such that X ® is
monochromatic. In particular, this implies that H has an edge with all its vertices
monochromatic. Hence, x (H) is infinite.

In order to address statement (I2), let ¥ C V(H) be a subset of vertices and
w = (wy)yey astochastic weight vector. We will show by induction on the cardinality
of Y that there is an independent set Z C Y with ZzeZ w; > k%l —e.For|Y| =k, the
statement follows immediately from the fact that there exists independent set Z C Y
of size |Y| — 1 with

For |Y| < k, just take Z = Y as the independent set.
Assume now that |Y| > k and let n be an integer such that ¥ C [1]®. For an
integer ¢ € [n], we define

Sc)={yeY:cey}
to be the set of vertices of Y that contain c. Similarly, let
S'(c) = {y ={b1,....be} €Y : c € {b, ...,bg,(k,l)}}
as the set of vertices of Y such that c is neither one of the first or last k — 1 elements
. f’\}e claim that H[S(c)] is a k-partite k-graph for every ¢ € [n]. To see that consider
the partition S(c) = Vo U ... U Vi_1 where
Vi={y=1{b1,...,b} € S(c) : thereexistsi = j (mod k) such that ¢ = b;}

for0 < j < k—1.Thatis, V; are the vertices of S(c) where ¢ is in a position congruent

to j (mod k). Note thatif e = {y1, ..., y¢} is an edge in H[S(c)], then [eN V;| =1
for every 0 < j < k — 1. Hence, H[S(c)] is k-partite.

By double counting the weights over all the pairs (c, y) where y = {by, ..., by}
and ¢ € {b, ..., bg_k—1)}, we obtain that
Z Z wy=(£—2(k—1))2wy=£—2(k—1). (10)
ce[n] yeS'(c) yeyY

Similarly, by double counting the weights over all the pairs (c, y) with ¢ € [n], we
have

DY wy=t)Y wy=t. (11)

ce[n] yeS(c) yeyY
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Hence, inequalities (10) and (11) combined show that there exists co € [n] such that
-2k —1)
> wy > — > wy. (12)
yeS'(co) y€S(co)

Since S'(co) C S(co) we have that H[S(co)] is a k-partite graph and consequently
by inequality (12) we have that there exists independent set I C S’ (cq) satisfying

k—1/¢—-2k—1
Zw) Zwy/ X ( (Z ))Zwy

vel yeS(co) yeS(co)

(S -e) 2w (13)

y€S(co)

Furthermore, applying the inductive assumption to the set ¥ — S(cg) with weights
W, = W /(Y yey—s(c) Wy) gives us an independent set I Y — S(co) with

k—1
> wy > <— - e) > (14)
yelp yeY—=S(co)

We claim that if ¢ € H is such that e N S'(co) # @, then e C S(cp). Indeed, let
e={y1,..., Yk} € H with

yi ={ai,...,aiye-1}
forl <i <k.
If e N S"(co) # 9, then there exists a vertex y; = {aj,...,aj4¢—1} such that
co € {ajik,...,ajre—r}. However, because 1 < i < k, wehavei < j+k <
J+4€—k <i+€—1andconsequently co € {aji,...,ajr¢—x} S y; for every

1 <i < k.Hence, e C S(cg) and since I, C Y — S(cp), we obtain that there is no
edge intersecting both 77 and I,. This implies that /1 U I» is and independent set and
by inequalities (13) and (14) we have that

> owztlo
yelUl
(]
The following theorem shows that the condition p = ]%1 — & cannot be replaced

by in Theorem 5.1.

Theorem 5.2 Suppose H is a k-graph with kk;l—fractional property. Then x (H) < 2

The proof of Theorem 5.2 uses techniques of linear programming (see also [1, 3])
The following Minimax Theorem will be useful to us.
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Theorem 5.3 ([5], Theorem 15.1) For every m x n matrix A there is a stochastic vector
v* of length n and a stochastic vector 7* of length m such that

min(z*)”T Ay = max z7 Ay*
y b4

with the minimum taken over all stochastic vectors y of length n and the maximum
taken over all stochastic vectors z of length m. Moreover; if all entries of A are rational,
then so are all entries of y* and z*.

Proof of Theorem 5.2 We are going to prove that for every finite subset Y C V (H), the
subgraph H[Y] satisfies x (H[Y]) < 2. Theorem 5.2 will then follow by Theorem 1.4.
Let Y = [n]. We claim that there exists an integer s such that the hypergraph H[Y]
can be represented by assigning the vertices of Y to subsets {S;}; e[ of [s] satisfying:

(1) 18;] > 5ts foreach 1 <i < n,
Q) N, S =@ for (ji,.... jx} € H[Y].

First we will prove that if such a representation exists, then x (H[Y]) < 2. To see
that consider the partition Y = I} U I, where

I ={i en]: ses}
L ={ien]:s¢S}

Note that for every {ji, ..., jk} € Il(k), we have s € ﬂle S;. Hence, by condition

(2) we obtain that /7 is independent. Now consider a k-tuple {ji, ..., jk} € Iz(k). By
construction of />, we have that §;; C [s — 1] forevery 1 <i < k. Given/ € [s — 1],
let ng be the number of sets S, such that £ € Sj,. By condition (1), we have

k
D =181 = (k= Ds.
i=1

tefs—1]

Therefore, there exists £o € [s — 1] such that ny, =k, 1.e., £y € ﬂle S;;. Hence, by
condition (2), we obtain that I, is independent. This concludes that ¥ can be partitioned
into two independent sets and consequently x (H[Y]) < 2.

It remains to show that such a representation {S;};[, exists. Let Wy, ..., W, be
all the independent sets of H[Y]. We consider a (0, 1)-matrix A = (a;;), 1 <i <m,
1 < j < nwitha;; = 1ifand only if j € W;. Let y* and z* be the vectors given by
Theorem 5.3 applied to the (0, 1)-matrix A above. We will view y* as a weight vector
of Y. Since H has the ]%l-fractional property, there exists a j such that

k—1 k—1
T
A= D iz Y=

ieW; i€ln]
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where e stands for the standard unit vector with all entries equal to 0 except the j-th
one. Hence, by Theorem 5.3, we have that

k—1
Y =@ Ae = m}jn(z*)TAy =maxzlAy* > e Ayt > ——  (15)

; k
ieW,

forevery 1 <i < n.

Moreover, since all the entries of A are rational, by Theorem 5.3, the vector z* has
rational values. Let z}‘ = rs—‘, where rq, ..., ry and s are integers. Due to the fact that
z* is a stochastic vector, we have Z;-"zl ri =s.

We construct the representation as follows. Let [s] = U'le R be a partition of [s]
such that |Ry| = r¢. For each 1 < i < n, consider the set

S, = U Ry.

ieW,

To prove that {S;};c[n] satisfies condition (1) note that by inequality (15) that

|Si|=zr€=SZZZ2k;1s.

ieWy ieW

Now, to check condition (2), let {ji,..., jx} be an edge of H. Suppose that
ﬂf;l Sj; # . Then, there exists an index ¢ such that Ry C S, forevery 1 <i < k.
This implies that {ji, . .., jx} € W;, which contradicts the fact that W, is an indepen-
dent set. Hence, ﬂle S}, = ¥ and condition (2) holds. O

6 Concluding Remarks

We recall that the quantifications of Theorems 1.1, 3.1, and 4.1 guarantee for every
h > 2 the existence of ¢ := &(h) such that the statement holds. In our proof of
Proposition 3.1, ¢ — 0 as h — oo. This is perhaps not necessary and we propose the
following conjecture.

Conjecture 6.1 Does there exist € > 0 with the property that for any h > 2 there is a
set of integers X C N with the properties (HI) and (H2) of Theorem 1.1?

The same problem may be also asked in the context of Theorem 4.1 and Theo-
rem 3.1.

In Sect.5, we show that for every u < ’%1, there exists a k-graph with arbitrarily
large chromatic number and p-fractional property. Moreover, this is optimal, since
Theorem 5.2 shows that if H is a k-graph with %—fractional property, then H is
bipartite. It seems to be an interesting problem to decide if the assumption of H
having the %-fractional property on Theorem 5.2 could be replaced by having the

weaker %-property.
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Problem 6.2 Is it true that there exists integer m := m(k) such that x (H) < m for
any k-graph H with kk;l—property?

Note that the statement is true for k = 2 and m = 2, since every non-bipartite
graph contains an odd cycle which violates the %—property. However, we were unable
to show it for k > 3.
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