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Abstract
Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An r-daisy deter-
mined by a pair of disjoint sets K andM is the (r + |K|)-uniform hypergraph {K ∪ P : P ∈M(r)}. Bollobás,
Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals
with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We dis-
cuss upper and lower bounds for the Ramsey number of r-daisies and also for special cases where the size
of the kernel is bounded.
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1. Introduction
All hypergraphs and set systems will be defined on [n], where [n] denotes the set {1, 2, . . . , n}. For
a set X, we denote by X(r) the set of all subsets of X of size r. When needed, we will use the natural
ordering of [n].
Definition 1.1. For a pair of disjoint sets K and M and an integer r! 2 the daisy Dr(K,M) is the
hypergraph defined as follows:

Dr(K,M)= {K ∪ P : P ∈M(r)},

that is, an edge X of Dr(K,M) is the union of the kernel K and a petal P. The set M is called the
universe of petals of Dr(K,M). When the pair K,M have sizes |K| = k and |M| =m we say that
the (r + k)-graph Dr(K,M) is a (r,m, k)-daisy. When the size of the kernel is not specified, we talk
about an (r,m)-daisy

Daisies were introduced by Bollobás, Leader, and Malvenuto in ref. [2]. They asked how many
edges an (r + k)-graph can have without containing an (r,m, k)-daisy. These problems are open
except for a few special cases. For instance, it is not known how large the density of a 3-graph with-
out a (2, 4, 1)-daisy can be. In a recent breakthrough, Ellis, King, Ivan, and Leader [6, 7] proved
lower bounds for some families of daisies. In particular, their result disproves a conjecture in ref.
[2] that the Turán density of an (r,m, k)-daisy approaches 0 for fixed r,m and k→ ∞. In this
paper, we will be interested in Ramsey numbers of daisies. While in ref. [2] the main interest of
the authors was in daisies with a kernel of fixed size, we will focus on daisies with unbounded
kernel.
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Definition 1.2. For integers !! 2 and m! r! 2,we define the Ramsey number of daisiesDr(m; !)
as the minimum integer n with the property that any colouring ϕ :P([n])→ [!] of the subsets of [n]
by ! colours yields a monochromatic copy of an (r,m)-daisy.1

Note that in our definition of Dr we do not specify the size of the kernel of the monochromatic
daisy. In Section 6, we will also consider Ramsey numbers Dr(m, k; !) of daisies with kernel of fixed
size k defined analogously.

Our motivation for studying daisies comes from theoretical computer science, specifically, a
problem in the area of randomness extractors. In ref. [3], Cohen and Shinkar studied the concept
of the bit-fixing extractor (more precisely, extractor for bit-fixing sources). Defining this con-
cept exactly would take us too far afield and is not the focus of the paper. However, this area of
research is connected with Ramsey theory (e.g., [11]) and moreover with daisies (see Remark 2.6).
To estimate the Ramsey number of daisies seems to be a simpler problem that could shed light on
the problems about bit-fixing extractors. For the reader interested in randomness extractors, we
recommend Shaltiel’s survey [14].

The problem of getting better estimates for the Ramsey number of daisies could be of indepen-
dent interest as well, since these numbers can be viewed as generalisations of Ramsey numbers
for hypergraphs and there is a huge gap between currently available upper and lower bounds. The
aim of this paper is to popularise this question. To this end we will prove some simple results
that show connections between Ramsey numbers of daisies and the standard Ramsey numbers of
complete hypergraphs.

The paper is organised as follows. In the following section, we present our results and some
definitions. In Section 3, we prove Proposition 2.1, Section 4 deals with Theorem 2.2, while in
Section 5, we give a proof of Proposition 2.5. In Section 6, we discuss some related problems for
daisies of fixed kernel size or specified kernel position with respect to the underlying order of [n].
Finally, Section 7 is devoted to open problems and final remarks.

2. Definitions and results
2.1 Daisies of unrestricted kernel
For integers !! 2 and m! r! 2, let Rr(m; !) be the standard Ramsey number for r-graphs, that
is, the minimum number n such that for every colouring of [n](r) by ! colours, there exists a
monochromatic complete r-graph onm vertices K(r)

m . Since the complete r-graph K(r)
m is an (r,m)-

daisy with empty kernel, we have the basic bound

Dr(m; !)" Rr(m; !). (1)

Setting Rr(m)= Rr(m;2) and Dr(m)=Dr(m;2) we first recall that Erdős, Hajnal and Rado
(see [8, 10]) proved that there exist positive c1 := c1(r) and absolute positive constant c2 such
that

tr−2(c1m2)" Rr(m)" tr−1(c2m) (2)

where the tower function ti is defined recursively as t0(x)= x and ti+1 = 2ti(x). It is conceivable
that a similar bound holds true for Dr , but the standard techniques, in particular the Stepping-up
Lemma and shift graphs, do not seem to work for daisies. The probabilistic argument does work,
but it only gives a lower bound that is far from the upper bound.

1The colours of sets smaller than r play no role, but it will be simpler to talk about colourings of all sets.
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Proposition 2.1. For integers m, !, r! 2, there exists positive constant c := cr such that

Dr(m; !)! !cmr−1
(3)

holds.
The proof is a standard application of the Lovász Local Lemma. For the upper bound, we were
unable to say more than the bound on (1) for general values ofm. However, for small values ofm
we show that there exists a tower gap between Dr(m) and Rr(m).
Theorem 2.2. Given ε> 0, there exists r0 such that for every r! r0 the following holds. If (1+ ε)r"
m" (2− ε)r, then

tεr/2(Dr(m))" Rr(m).
The proof of Theorem 2.2 relies on an observation that the complement of a daisy is still a daisy

and on a result on tower-type lower bounds on Rr(m) when m< 2r. For m> 2r we were unable
to rule out even the possibility that Dr(m; !)= Rr(m; !).

Conjecture 2.3. Let m, r, !! 2 be integers, then limm→∞ Dr(m; !)
Rr(m; !) = 0.

While there is a wide gap between the bounds given in (1) and (3), with a slightly stronger
definition of a daisy one can show fairly tight bounds.
Definition 2.4. An (r,m)-superdaisy D!r(K,M) with kernel K and universe of petals M of size
|M| =m is the system of all sets X with

(1) K ⊆ X ⊆K ∪M,
(2) |X|" |K| + r.

In other words, D!r(K,M)= {K} ∪ ⋃r
i=1 Di(K,M) where Di(K,M) is the daisy of kernel K and

universe of petals M with petal of size i. It is easy to come up with a colouring that avoids
monochromatic superdaisies. Indeed, one can take for example the colouring ϕ :P([n])→ {0, 1}
given by ϕ(X)= |X| (mod 2). For this reason, instead of requiring the entire superdaisy to be
monochromatic, we will be interested only when each daisy in the superdaisy is monochromatic.
We say that a superdaisyD!r(K,M) is level homogeneous, ifDi(K,M) is monochromatic for each
1≤ i≤ r. We will denote by D≤r(m; !) the minimum n such that for every colouring of all subsets
of [n] by ! colours, there exists a level homogeneous (r,m)-superdaisy.
Theorem 2.5. If !, r! 2, then

Rr(m; !)"D!r(m; !)" Rr(m+ r − 1; !r)
holds for every m> r.
Remark 2.6. The concept of superdaisies is closely related with bit-fixing extractors. Indeed, a bit-
fixing extractor for sources of size r and entropy e is, essentially, a colouring χ :2[n] → [2e] of the
subsets of [n] by 2e colours such that for every (r, r)-superdaisyD all 2e colours are represented inD
with almost the same frequency.

2.2 Daisies of fixed kernel
Another variant is the study of Ramsey number of daisies of bounded kernel. Analogously as in
Dr(m; !) we define the Ramsey number Dr(m, k; !) of daises with kernel of size k as the minimum
integer n with the property that any colouring ϕ:[n](k+r) → [!] of the (k+ r)-tuples of [n] by
! colours yields a monochromatic copy of an (r,m, k)-daisy. The next theorem shows that for
daisies of restricted kernel size, one can obtain tower-type lower bounds.
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Theorem 2.7. Let k, !, r! 2 be integers. Then the following two statements hold:

(i) Dr(m, k; !r)! Rr()m/(k+ 1)*; !).
(ii) Dr(m, k; !)! Rr−k()m/(k+ 1)* − k; !) for r > k.

Although a very natural variant of the problem,most of our paper will focus on the unrestricted
version of Daisies. A follow-up paper [13] will study the restricted variant in more detail.

3. A lower bound on Dr(m; ℓ)
The proof of Proposition 2.1 is a standard application of the well-known Lovász Local Lemma.
The lemma was introduced by Erdős and Lovász in ref. [9].
Lemma 3.1 ([1], Corollary 5.1.2). Let A1, A2, . . ., An be events in an arbitrary probability space.
Suppose that each event Ai is mutually independent of a set of all the other events Aj but at most d,
and that P(Ai)" p for all 1" i" n. If

ep(d + 1)" 1,

then P
(∧n

i=1 Ai
)
> 0

Proposition 2.1 follows from the next result by setting n= !cm
r−1 for sufficiently small c.

Proposition 3.2. If n,m, r, !! 2 and n!m! r are integers satisfying
(m
r

)
nm!1−(mr ) < 1,

then Dr(m; !)! n.
Proof. Consider a random !-colouring ϕ:P([n])→ [!], where each set is coloured uniformly
and independently. Let M,K ⊆ [n] with |M| =m such that M +K = ∅. For a daisy D(K,M)=
{K ∪ P : P ∈M(r)}, let A(K,M) be the event that D(K,M) is monochromatic with respect to the
colouring ϕ. Clearly

p := P(A(K,M))= !1−(mr ).
Note that the event A(K,M) only depends on the events A(K′,M′) such that the corresponding

daisies D(K,M) and D(K ′,M′) are not edge disjoint. We will estimate the degree d of the depen-
dency graph. That is, the number of daisies sharing an edge withD(K,M). Let X ∈D(K,M) be an
edge of our daisy. There are

(k+r
r

)
possibilities for an r-set P′ to be a petal determined by X in some

D(K ′,M′). Once the petal P′ is determined, then K ′ = X \ P′. It remains to determine the rest of
the universe of petals M′, that is, m− r elements outside of X. There are

(n−k−r
m−r

)
possibilities for

these elements. Furthermore, we have to multiply it by the number of edges X in D(K,M), which
is

(m
r
)
. Hence the degree is

d"
(m
r

)(k+ r
r

)(n− k− r
m− r

)
<

(m
r

)
nm.

We need to show ep(d + 1)" 1. However, a simple computation shows that

ep(d + 1)<
(m
r

)
nm!1−(mr ) < 1.

Consequently, by Lemma 3.1, we have P(
∧

K,M A(K,M))> 0, which means that for some
!-colouring ϕ, no (r,m)-daisy is monochromatic. #
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4. Proof of Theorem 2.2
In this section we prove Theorem 2.2. The main result in this section is the following lower bound
on 2-colour Ramsey numbers whenm< 2r.
Theorem 4.1. For r! 3 and m! r + 7,

Rr(m)! 4tr−2(.(m− r + 1)/4/).
Let us remark that the best known lower bounds on Ramsey number are due to Conlon, Fox

and Sudakov [4] by a clever application of the Stepping-up lemma. They proved that
Rr(m)! tr−2(cm2)

for a positive constant c> 0 and m! 3r. On the other hand, Theorem 4.1 can be applied for a
wider range ofm. The proof of Theorem 4.1 will use a different approach, which is based on shift
graphs. Similar results were established in refs. [5, 12].

Let Sh(n, r) be the shift graph on [n](r) given by
E(Sh(n, r))= {{{x1, . . . , xr}, {x2, . . . , xr+1}} : x1 < x2 < . . . < xr+1 ∈ [n]}.

For our exposition we will find more convenient to consider Sh(n, r) as a directed graph with
directed pairs ({x1, . . . , xr}, {x2, . . . , xr+1}). When talking about chromatic numbers of directed
graphs we will mean the “usual” chromatic number of a symmetric graph which results by
replacing each directed edge (x, y) by the unordered pair {x, y}.

The proof of Theorem 4.1 relies on the following proposition. Let f (t, !) be the largest integer
m with the property that for any directed graph D with χ(D)=m, there exists an !-colouring of
its arcs with no monochromatic path with t vertices. The next proposition was proved in ref. [5].
Since the proof is simple we will sketch it here.
Proposition 4.2. f (t, !)! (t − 1).!/2/ for !! 2 and t! 3.
Sketch of proof of Proposition 4.2. Consider a digraph D with χ(D)= (t − 1).!/2/. Let V(D)=⋃

a∈[t−1].!/2/ Va be a colour class partition of the vertices of D indexed by the lattice points of
the cube [t − 1].!/2/. We will colour arcs of D with 2.!/2/" ! colours as follows. For two colour
classes Va and Vb, let j be the smallest index such that aj 0= bj. If aj < bj colour all the arcs (x, y) ∈
Va ×Vb by 2j− 1. On the other hand, if aj > bj, then colour the arcs by 2j. Clearly each directed
path in each colour has at most t − 1 vertices. #

For a directed graph G, let ∂G be the directed graph defined by V(∂G)=A(G) and

A(∂G)=
{
((x, y), (z,w)) ∈A(G)(2) : y= z

}
.

That is, the vertices of ∂G are the arcs of G and the arcs of ∂G are the oriented paths of length 2.
The next proposition is a corollary from Proposition 4.2 when t = 3.
Proposition 4.3 (Lemma 5.2, [12]). Let s! 1 be an integer and G a directed graph. If χ(∂G)> 2s,
then χ(G)> 2s.

By considering Sh(n, r) as a directed graph, note that ∂Sh(n, r) can be seen as a copy of
Sh(n, r + 1). Indeed, we can map the vertex {x1, . . . , xr+1} ∈V(Sh(n, r + 1)) with x1 < . . . < xr+1
to the directed pair ({x1, . . . , xr}, {x2, . . . , xr+1}) in V(∂Sh(n, r)). The following is an immediate
corollary.
Corollary 4.4. Let n, r, s! 1 be integers. If χ(Sh(n, r))> 2s, then χ(Sh(n, r − 1))> 2s.

Now we are ready to give a proof of Theorem 4.1.
Proof of Theorem 4.1. Set n= Rr(m). Our aim is to find a lower bound on n. Consider a 2-
colouring ϕ:[n](r) → [2] of the r-tuples of [n]. Note that by our observation that ∂Sh(n, r − 1) is a
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copy of Sh(n, r), the colouring ϕ of the vertices of Sh(n, r) can be also interpreted as a colouring of
the arcs of Sh(n, r − 1).

By the definition of n, there exists a monochromatic set X of size m. Let x1 < . . . < xm be the
elements of X. Since all r-tuples {xi1 , . . . , xir } are of the same colour, we have in particular that the
set of all edges of the directed path

{x1, . . . , xr−1}, {x2, . . . , xr}, . . . , {xm−r+2, . . . , xm}
in Sh(n, r − 1) are monochromatic. Since ϕ is arbitrary, we obtain that Sh(n, r − 1) is a directed
graph such that any 2-colouring of its arcs yields an oriented monochromatic path withm− r + 2
vertices of Sh(n, r − 1). Thus, Proposition 4.2 with != 2 and t =m− r + 2 gives us that

χ(Sh(n, r − 1))> (m− r + 1). (4)

By induction we will observe that χ(Sh(n, r − i))> 4ti−1 (.(m− r + 1)/4/) for 1" i" r − 1.
The base case i= 1 is just inequality (4). Suppose that χ(Sh(n, r − i))> 4ti−1 (.(m− r + 1)/4/)
for i! 1. Then by Corollary 4.4, we obtain that

χ(Sh(n, r − i− 1))> 22ti−1(.(m−r+1)/4/) ! 4ti (.(m− r + 1)/4/)
if .(m− r + 1)/4/! 2, which holds for m! r + 7. This finishes the induction. The result now
follows since for i= r − 2, we have n= χ(Sh(n, 1))> 4tr−2 (.(m− r + 1)/4/). #

We finish the Section by proving the theorem stated in the introduction.
Proof of Theorem 2.2. First, we are going to prove that Dr(m)=Dm−r(m) for integersm> r! 1.
Recalling Definition 1.1, the equality Dr(m)=Dm−r(m) means that the existence of a 2-colouring
ϕ ofP([n]) without a monochromatic (r,m)-daisy can be used to find a colouringψ∗ which yields
no monochromatic (m− r,m)-daisy. Let n=Dr(m)− 1 and let ϕ:P([n])→ [2] be a 2-colouring
of all the subsets of [n] without a monochromatic (r,m)-daisy. Consider the complementary
colouring ϕ∗:P([n])→ [2] given by:

ϕ∗(X)= ϕ([n] \ X)
for every X ⊆ [n].

We claim that ϕ∗ does not contain monochromatic (m− r, r)-daisies. Suppose to the contrary
thatD∗ is amonochromatic (m− r, r)-daisy under the colouring ϕ∗. Then consider the dual graph
D given by

D = {[n] \ X : X ∈D∗}.
The hypergraph D is a monochromatic (r,m)-daisy under the colouring ϕ, contradicting our
choice of ϕ. Hence, Dm−r(m)"Dr(m). Since 1" r <m is arbitrary, it follows that Dr(m)=
Dm−r(m).

Note that Erdős, Hajnal and Rado upper bound on Ramsey numbers in (2) holds for m! 1.
Together with the observation in (1), we obtain that

Dr(m)=Dm−r(m)" Rm−r(m)" tm−r−1(cm)" tm−r−1(2cr) (5)

form< 2r and absolute positive constant c. Moreover, Theorem 4.1 gives form! (1+ ε)r that

Rr(m)! tr−2(.(m− r + 1)/4/)! tr−2(εr/4) (6)

Then the statement follows for sufficiently large r by combining (5) and (6). Indeed,

tεr/2(Dr(m))" tm−r−1+εr/2(2cr)" tr−2(εr/4)" Rr(m),

form< (2− ε)r and sufficiently large r. #
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5. Proof of Theorem 2.5
We start this section by noting that since the complete i-graph K(i)

m is an (i,m)-daisy with empty
kernel, one could restrict the problem to find a level homogeneous superdaisy to the problem of
finding a level homogeneous daisy with empty kernel. In this case, the problem is the same as
finding a setM ⊆ [n] that is a monochromatic with respect to all possible uniformities from 1 to r.
It turns out that we are able to bound the last problem only using the Ramsey number for r-tuples.
Proposition 5.1.

D!r(m; !)" Rr(m+ r − 1; !r)
Proof. Let n= Rr(m+ r − 1; !r) and consider an arbitrary !-colouring ϕ :P([n])→ [!] of the
subsets of [n]. We define an !r-colouring ψ : [n](r) → [!]r of the r-tuples of [n] given as follows.
Let X = {x1, . . . , xr} ∈ [n](r) be an r-tuple of [n]. Then

ψ(X)i = ϕ({x1, x2, . . . , xi})

for every 1" i" r. By our choice of n, there is a set Y ⊆ [n] of sizem+ r − 1 monochromatic with
respect to the colouringψ . LetM be the subset consisting of the firstm elements of Y . Thus, by the
definition ofψ , for every 1" i≤ r the familyM(i) is monochromatic. This implies thatD≤r(∅,M)
is level homogeneous. #

Amore careful analysis of the standard proof of Ramsey’s theorem (see e.g., [10]) gives a similar
upper bound as in Proposition 5.1 (with even better constants). However, for the sake of simplicity
we decided to present the proof above.

For the lower bound, we were able to show that D!r(m; !) is at least the Ramsey number for
r-graphs in ! colours.
Proposition 5.2.

D!r(m; !)! Rr(m; !)

Proof. Let n= Rr(m; !)− 1 and consider an !-colouring ϕ:[n](r) → {0, 1, . . . , !− 1} of the
r-tuples of [n] with no monochromatic clique K(r)

m . We define a colouring ψ :P([n])→
{0, 1, . . . , !− 1} by:

ψ(X)=
{∑

R∈X(r) ϕ(R) (mod !), if |X|! r
0, otherwise,

for X ⊆ [n]. We claim that ψ is a colouring with no level homogeneous (r,m)-superdaisy.
Assume by contradiction that there exists a (r,m)-superdaisyD!r(K,M) that is level homoge-

neous with |K| = k and |M| =m. SinceDi(K,M) is monochromatic for each 1≤ i≤ r, let ci be the
colour of the edges of size k+ i.

Let ψK be an auxiliary !-colouring ψK :M(!r) → {0, 1, . . . , !− 1} of the subsets P ⊆M, |P|" r
defined by

ψK(P)=
{∑

J∈K(r−|P|) ϕ(J ∪ P) (mod !), if |K ∪ P|! r
0, otherwise.

In other words, ψK(P) is the contribution of the colouring ϕ of the r-edges containing P from
[n](r) to the colour of ψ(K ∪ P).

We will show by induction that there are constants di ∈ {0, 1, . . . , !− 1} for 0" i≤ r such that
ψK |M(i)≡ di, that is, for every petal P ∈M(i) we have ψK(P)= di.
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For i= 0 there is nothing to do, because M(0) = {∅}. In this case just take d0 =ψK(∅). Now
suppose that i> 0 and let P ∈M(i). We claim that

ψK(P)=ψ(K ∪ P)−
∑

L!P
ψK(L). (7)

If |K ∪ P| < r, then equation (7) holds sinceψ(K ∪ P)= 0 andψK(L)= 0 for every L⊆ P. Now let
t =min{k, r}. Then

ψ(K ∪ P)=
i∑

!=r−t

∑

J∈K(r−!)

∑

L∈P(!)
ϕ(J ∪ L)=

i∑

!=r−t

∑

L∈P(!)
ψK(L)

Since by definition any set L⊆ P of size |L| < r − t is such that ψK(L)= 0, we have

ψ(K ∪ L)=
i∑

!=0

∑

L∈P(!)
ψK(L)=ψK(P)+

∑

L!P
ψK(L),

which proves (7).
Using that ψ(K ∪ P)= ci and by the induction hypothesis, we obtain

ψK(P)= ci −
i−1∑

j=0

(i
j

)
dj,

which does not depend on the choice of P. Thus setting di = ci −
∑i−1

j=0
(i
j
)
dj gives us that

ψK |M(i)≡ di.
In particular, for i= r, the last paragraph shows thatM(r) is monochromatic with respect toψK .

Since ψK(P)= ϕ(P) for every P ∈M(r), we have thatM(r) is a monochromatic K(r)
m with respect to

the colouring ϕ, which contradicts our assumption on ϕ. #

6. Simple daisies and daisies of kernel of given size
We now study special cases of the daisy problem. We start by defining a simple daisy, a special
type of daisy with the property that the universe of petals separates the kernel in two parts.
Definition 6.1. A daisyDr(K,M) is simple if there exists a partition K =K0 ∪K1 of the kernel such
that K0 <M <K1, that is,max(K0)<min (M)"max(M)<min (K1).

Although we do not have good lower bounds for the Ramsey number of daisies, we can derive
better lower bounds for simple daisies at the cost of increasing the number of colours. More pre-
cisely, let Dsmp

r (m; !) denote the minimum integer n such that any !-colouring of P([n]) yields a
monochromatic simple (r,m)-daisy.
Proposition 6.2. If !, r! 2, then

Dsmp
r (m; !r)! Rr(m; !)

Proof. Let ϕ:[n](r) → {0, 1, . . . , !− 1} be an !-colouring of the r-tuples of [n] with nomonochro-
matic K(r)

m . We will define a colouring ψ :P([n])→ {0, 1, . . . , !− 1}r from the subsets of [n] to
the ordered r-tuples of {0, 1, . . . , !− 1} as follows. Let X = {x1, . . . , xt} ⊆ [n]. We define ψ(X) by

ψ(X)i =
∑

s=i (mod r)
ϕ({xs, xs+1 . . . , xs+r−1}) (mod r)
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for 1" i" r. In other words, the i-th coordinate of ψ(X) is given by summing the colours of all
the blocks of r consecutive elements of X starting with an index congruent to i (mod r).

Suppose that there is a monochromatic simple daisy D =D(K0 ∪K1,M) with respect to ψ
and assume that |K0| = i0 (mod r). Let P, P′ ∈M(r) and consider the edges X =K0 ∪ P ∪K1 =
{x1, . . . , xt} and X′ =K0 ∪ P′ ∪K1 = {x′

1, . . . , x′
t} in D. Note that the petals P and P′ corre-

sponds to the block of r consecutive elements starting with the index i0 + 1 in the edges X
and X′, respectively. Moreover, because |P| = |P′| = r, all the other blocks of r consecutive ele-
ments in X and X′ starting with index congruent to i0 + 1 (mod r) are completely inside K0 ∪K1
and consequently ϕ({xs, . . . , xs+r−1})= ϕ({x′

s, . . . , x′
s+r−1}) for s= i0 + 1 (mod r) and s 0= i0 + 1.

Therefore, ψ(X)i0+1 =ψ(X′)i0+1 implies that ϕ(P)= ϕ(P′). Hence M(r) is monochromatic with
respect to ϕ, which contradicts our assumption on ϕ. #

A natural variation of the daisy problem introduced in Section 1 is to determine the Ramsey
number of daisies of fixed kernel size. To be more precise, we define Dr(m, k; !) as the minimum
integer nwith the property that any !-colouring ϕ:[n](k+r) → [!] of the (k+ r)-tuples of [n] yields
a monochromatic copy of an (r,m, k)-daisy.

The first remark about the problem is that one can immediately obtain an upper bound from
the original Ramsey number. Indeed, given an !-colouring ϕ:[n](k+r) → [!] we can define a
colouring ϕ′:[n− k](r) → [!] by

ϕ′({x1, . . . , xr})= ϕ({x1, . . . , xr , n− k+ 1, . . . , n})
for {x1, . . . , xr} ∈ [n− k](r). It is not difficult to check that a monochromatic clique with respect
to ϕ′ corresponds to a monochromatic daisy of kernel K = {n− k+ 1, . . . , n} with respect to ϕ.
Hence,

Dr(m, k; !)" Rr(m; !)+ k.
In the rest of this section, we will give a proof of Theorem 2.7. Our approach to provide lower

bounds for Dr(m, k; !) is based on the concept of simple daisies given above. The concept was
further explored in ref. [13] to prove Theorem 7.3 below. As in the definition of Dr(m, k; !), let
Dsmp
r (m, k; !) denote the minimum integer n such that any !-colouring of the (k+ r)-tuples of [n]

yields a monochromatic simple (r,m, k)-daisy.
Proposition 6.3. Dr(m, k; !)!Dsmp

r (
⌈
m/(k+ 1)

⌉
, k; !)

Proof. Suppose that a 2-colouring of [n](k+r) contains a monochromatic copy of a (r,m, k)-daisy
D =D(K,M). Write K = {x1, . . . , xk} with x1 < x2 < . . . < xk and let x0 = 0 and xk+1 = n+ 1.
For 0" i≤ k, let Mi be the vertices of M between xi and xi+1. By the pigeonhole principle
there exists index j such that |Mj|!

⌈
|M|/(k+ 1)

⌉
!

⌈
m/(k+ 1)

⌉
. Therefore, the induced sub-

graph D[K ∪Mj] is a monochromatic simple (r,
⌈
m/(k+ 1)

⌉
, k)-daisy and hence Dr(m, k; !)!

Dsmp
r (

⌈
m/(k+ 1)

⌉
, k; !). #

Note that a colouring without a monochromatic simple (r,m)-daisy does not contain in partic-
ular a simple (r,m, k)-daisy. Hence, Dsmp

r (m; !)"Dsmp
r (m, k; !). As a quick corollary, Proposition

6.2 and 6.3 together with the observation above give Part (i) of Theorem 2.7.
Corollary 6.4. If k, !, r! 2, then

Dr(m, k; !r)! Rr()m/(k+ 1)*; !).
We were also able to prove a lower bound without increasing the numbers of colours (part (ii)

of Theorem 2.7), but at the expense of reducing other parameters.
Proposition 6.5. If !! 2 and r > k! 2, then

Dr(m, k; !)! Rr−k()m/(k+ 1)* − k; !)
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Proof. We will prove that Dsmp
r (m, k; !)! Rr−k(m− k; !). The inequality in the statement fol-

lows from Proposition 6.3. Let n= Rr−k(m− k; !)− 1 and let ϕ : [n](r−k) → [!] be an !-colouring
of the (r − k)-tuples of [n] with no monochromatic copy of a K(r−k)

m−k . We define a colouring
ψ : [n](k+r) → [!] by:

ψ({x1, . . . , xk+r})= ϕ({xk+1, . . . , xr}),
for {x1, . . . , xk+r} ∈ [n](k+r).

Suppose by contradiction that there exists a monochromatic simple daisy D =D(K0 ∪K1,M)
with respect to ψ . Write |K0| = k0, |K1| = k1 and M = {x1, . . . , xm}. We claim that the set M′ =
{xk−k0+1, . . . , xm−k+k1} is monochromatic with respect to ϕ. Indeed, if A,A′ ∈M′(k−r), then the
sets

X =K0 ∪ {x1, . . . , xk−k0} ∪A∪ {xm−k+k1+1, . . . , xm} ∪K1

and
X′ =K0 ∪ {x1, . . . , xk−k0} ∪A′ ∪ {xm−k+k1+1, . . . , xm} ∪K1

are edges of D, because {x1, . . . , xk−k0} ∪A∪ {xm−k+k1+1 and {x1, . . . , xk−k0} ∪A′ ∪
{xm−k+k1+1, . . . , xm} are sets of size (k− k0)+ (k− r)+ (k− k1)= r inM. SinceD is monochro-
matic, we obtain that ϕ(A)=ψ(X)=ψ(X′)= ϕ(A′) and consequently M′ is set of size m− k
monochromatic with respect to ϕ, which is a contradiction. #

7. Concluding remarks
7.1 Better bounds on the Ramsey number of daisies with unrestricted kernels
Likely, the most interesting problem is to improve the bounds on Dr(m; !). Proposition 2.1 gives
us only an exponential lower bound. On the other hand, we were unable to rule out even that
Dr(m; !)= Rr(m; !) for sufficiently large m. While we do not believe that this is the case, we
also believe that our lower bound is far from being the best possible. Thus raising the following
question.
Problem 7.1. Improve the lower bound on Dr(m). In particular, is it true that for every r! 2, there
is m0 =m0(r) and s= s(r) such that Dr(m) grows like a tower of exponentials ts(m), where s→ ∞
as r → ∞ and m!m0?

The following weaker question is already interesting.

Problem 7.2. Is Dr(m)> 22εm for some r and ε> 0?

7.2 Lower bounds for daisies with fixed kernel size
In Section 6, we considered the problem of determiningDr(m, k; !), the Ramsey number of daisies
of kernel of size k. We proved that it is lower bounded by Rr(.m/(k+ 1)*;p) if !! pr . Clearly, this
bound works only ifm is sufficiently large with respect to k and r. In the forthcoming paper [13],
the junior author shows a bound for two colours. His proof uses a more involved modification of
the Stepping-up Lemma.
Theorem 7.3 ([13]). Given integers r! 3 and k! 0, there exists a positive absolute constant c> 0
and an integer m0 =m0(r, k) such that

Dr(m, k;2)! tr−2(ck−3m1/2r−4 )
holds for every m!m0.
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The bound is essentially of the same type as known bounds for Rr(m), but also in this theorem
the size of the kernel k must be substantially smaller than m. So the natural next step toward
proving better bounds on the Ramsey numbers of daisies with unrestricted kernel size is to prove
a similar lower bound with k>m.

7.3 Estimates for monochromatic directed paths
Finally, we state a question arising in relation with the function f (t, !) introduced in Section 4.
Recall that we define f (t, !) as the largest integer m with the property that for any directed graph
D with χ(D)=m, there exists an !-colouring of its arcs with no monochromatic directed path of
size t. As shown, the function f (t, !) can be used to determine lower bounds for Ramsey numbers.
This leads to the natural problem of determining f (t, !).

Proposition 4.2 shows that f (t, !)! (t − 1).!/2/. For != 2, it is not hard to check that the
result is actually tight and f (t, 2)= t − 1. However, the lower bound provided by the propo-
sition does not seem optimal. Indeed, one can prove by a blow-up iterated construction that
f (t, !)='(tlog2 !). Since log2 3≈ 1.584..> 1, this construction gives better bounds for != 3, but
fails to give good bounds for large values of !. It would be interesting to know if it is possible to
improve the bounds on f (t, !) for odd ! in general.

7.4 Ramsey number of G ∗H
In ref. [2], the authors proposed the following operation with hypergraphs. Given an r-graph G
and an s-graph H, we construct the (r + s)-graph G ∗H with vertex set the disjoint union of the
vertex sets of G and H and whose edges are all sets of the form X ∪ Y with X ∈ G and Y ∈H.
Observe that if G =K(k)

k (a k-edge) andH=K(r)
m , then G ∗H is just an (r,m, k)-daisy. Similarly to

ref. [2], one can ask the very general question. Given an r-graph G, let R(G; !) be the minimum
number n such that for every colouring of [n](v(G)) by ! colours, there exists a monochromatic
copy of G.
Problem 7.4. Let G be an r-graph and H be an s-graph. How does R(G ∗H; !) compare to R(G; !)
and R(H; !)?

Perhaps a more concrete question could be the following. Let Gt denote the productG ∗ . . . ∗G
t times.
Problem 7.5. What can one say about the growth of R((K(2)

3 )t ; !) as a function of t and !?
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