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1 | INTRODUCTION

For a set X, we denote by X® the set of all subsets of X of size k. A k-uniform hypergraph (or
k-graph) G = (V, E) is an ordered pair of vertices V and edges E, where E C v ® that is, the
edges consist of subsets of vertices of size k. Since the set V' is usually understood from E, we
will usually denote G as the set of edges. The complement of a k-uniform graph G is the graph
G defined as G = VW\G. That is, G is the set of r-tuples in V(") that are not in G. Unless
specified, all the edges (inside or outside our host hypergraph) will have uniformity
corresponding to the hypergraph studied at the moment. In all the arguments we dropped
the floor and ceiling functions whenever these are not necessary.

Let G be a k-uniform hypergraph, a set representation of G on a set T is a system of subsets
{Sy C T : v e V(G)} with the property that

k
v, V2, ..., i} € Gifand onlyif (N S, # @.

i=1
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The representation number ©(G) of G is the smallest cardinality of a set T which admits a set
representation.

We define the clique covering number cc(G) of a k-graph G as the minimum integer m such
that there exist complete graphs Cy, ..., C, satisfying G = %, C;, that is, every edge is covered
by a clique and no clique contains an edge that is not from G. It is well known that the
representation number ©(G) is equal to cc(G) (see, e.g., [8, 9] or Section A for a proof). The
parameter © in graphs (i.e., 2-graphs) has been the subject of interest for a number of
researchers (see, e.g., [1-3]). In particular it was proved in [1] that ®(G) < c;d?log n for any
graph G on n vertices with maximum degree on its complement A(G) < d. On the other hand,
it was proved in [2] that there are graphs G with A(G) < d and ©(G) > cszzdlog n.

lo

Here we will be mainly interested in extending these results to k-uniform hypergraphs.
Perhaps surprisingly, this turned out to be quite nontrivial, and our results in this direction are
far from being optimal for large values of k.

Since most of our results regarding ®(G) will be formulated in terms of restrictions on the
degree of the complement G, we will introduce a parameter 8(G) = ©(G) allowing for simpler
formulation of results. Clearly, $(G) is the minimum cardinality of a set T such that there is a
system {S, C T : v € V(G)} of sets with

k
v, ..., i} € Gifand onlyif M S, = @.

i=1

Alternatively, one can view 8(G) as the minimum cover of the edges of the complement G
by independent sets of G. In what follows we will often use the latter definition instead of the
former. Moreover, we say that G can be t-represented if there exists a system of independent
sets {I; : 1 <j <t} covering the edges of G.
2 | RESULTS
Let G be a k-graph. For S C V(G), let

deg;(S)=l{e€ G : SCe}l

be the degree of the set S in G and

Ai(G) = max deg,(S)
ISI=0,SCV (G)

be the maximum degree of an i-tuple of vertices of G. (Consequently, A;(G) = A(G) is just the
usual maximum degree of a vertex.)

We say that a k-graph G is d-balanced if A;(G) < di"1 for all 1 < i < k. In particular, a
d-balanced graph has maximum degree d. Our first result gives almost sharp bounds on 8(G)
for the family of d-balanced k-graphs. Let

b(n, d, k) = max{8(G) : G is a d-balanced k-graph with n vertices}

be the maximum value of §(G) over all d-balanced k-graphs with n vertices.
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Theorem 2.1. Forn,d, k > 2, there exist positive constants c; and c, depending only on k
such that

Cld% nk_l k

log <b(n,d, k) < c,di-1logn
log d

holds.

For the general family of bounded degree hypergraphs, we obtain the following bounds. Let
9(n,d, k) be the maximum value of 3(G), where G is a k-graph on n vertices with
A(G) = A/(G) < d.

Theorem 2.2. Forn,d, k > 3, there exist positive constants ¢, and c, depending only on k
such that

dkle nk_l k
c1 log < 8(n,d, k) < cpd2 log n.
log d d

Moreover, if k is even the lower bound can be improved to

C1d2

log d

log(%) < 8(n, d, k).

Note that since every 2-graph G with A(G) < d is d-balanced, then the bounds of 8(n, d, k)
provided in Theorems 2.1 and 2.2 are almost sharp for k = 2, 3,4 and d <« n. Finally, we
address similar questions for some other classes of hypergraphs. For example, a linear k-graph
is a hypergraph where two distinct edges do not share more than one vertex. Denoting 9;;,(n, k)
as the maximum value of 8(G), where G runs over all k-uniform linear hypergraphs with n
vertices, we show the following:

Theorem 2.3. For k>3 and n > ny(k), there exist positive constants c; and c;
depending only on k such that

k
O ¢ 8(n, k) < conitilog n
(log n)e-1
holds.
The paper is organised as follows. In Section 3 we discuss the upper bounds of Theorem 2.1
and 2.2, while in Section 4 we provide their respective lower bounds. Section 5 is devoted to the
problem of representing special hypergraphs.

3 | UPPER BOUNDS OF THEOREMS 2.1 AND 2.2

We start with the upper bound of Theorem 2.1. We are going to show that if G is a d-balanced
k-graph, then §(G) < 2*kk+1di"i log n.
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Theorem 3.1. Let n,d, k > 2 and ¢ = 2*%**1 If G is a d-balanced k-graph on n
vertices, then $(G) < cdii log n.

Proof. We recall that 9(G) is the minimum size of a cover of G by independent sets
of G. Consider t = cdis log n random subsets W, W5, ..., W; of V := V (G), where each W
is chosen by selecting vertices from V' independently and uniformly with probability
p= m. Our aim is to cover G by modifying the sets W; for 1 < j < t. For each W,
construct an independent set as follows: For every edge e in G [W] delete all of its vertices
from W;. Let I; be the set obtained after deleting vertices from every edge in G [W}], that is,

=W\ U e
eeG[W)]

Clearly, I; is an independent set. We claim that {I, ..., I} is a covering of G with
positive probability.

For a k-tuple € = {x;, .., X} € G, we examine the probability that & C I; for some
1 <j < t. To do that, note that the only reason why a vertex x; € e could be deleted is if
there exists an edge e € G[Wj] such that x; € ene. That is, ¢ CI; if @ C W, and
eneé = @ for all e € G[W;]. Hence, we obtain

k=l (k = (klii) p*
_ ) Kl _ 2: ) k—i ki1 — —

Consequently, since all I; were chosen independently, we obtain that

t t k\¢ k 1
[P(j/:\l(é ;t_Ij)] = H P(e ;t_lj) < (1 - %) < exp(—th) = —.

j=1 n

Since there are at most (Z) nonedges in G to cover, the probability that one remains

uncovered is at most (Z)ﬁ < 1. Consequently, with positive probability all edges of G

are covered by U, I;. O

The proof of the upper bound of Theorem 2.2 follows similar lines.

1 2k

Theorem 3.2. Letn,d, k>3, = i and ¢ = 5 If G is a k-graph on n vertices

k — 1)2k+2
with A(G) < d, then 8(G) < cd5 log n.

Proof. As in the proof of Theorem 3.1, we want to cover all the edges of G with
independent sets of G. To this end, we consider ¢t = cds log n random subsets W, ..., W, of
V, where each W; is chosen by selecting vertices from V' independently and uniformly

with probability p = %.
Our aim is to modify those sets W; to independent sets I; such that Utj:l I; covers every

k-tuple in G.

Note that the sets W, ..., W, are not necessarily independent.

WILEY-*
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To this end, we consider the auxiliary (k — 1)-graph H given by V (H) = V and
H={SeVv&D : deg,(S) > Jd},

that is, H is the (k — 1)-graph where the edges are the (k — 1)-tuples of large degree in G.
The next proposition gives an upper bound on the maximum degree of H. O

Proposition 3.3. A(H) < (k — 1)/d.

Proof. Assume the contrary and let v be a vertex with deg,(v) > (k — 1)V/d. Then by a
counting argument we obtain that

Z:veSeV(k*UdegG(S) > degH(v)\/E S
k-1 T k-1

degG(v) = d’

which contradicts the fact that A(G) < d. O

Now we describe how to construct the independent sets I;. For each 1 <j<t, we
sequentially remove vertices from W; satisfying the following cleaning strategy:

3.1 | Cleaning strategy
Let X = W;. While there is an edge in G [X] perform one of the two operations:

Operation (i) If there is an edge g € G [X] containing precisely one (k — 1)-tuple S € H, then
we remove the vertex not in S from X, that is, the vertex in the singleton set g\ S.

Operation (ii) Otherwise, if all the edges in G [X] contain either zero or more than one (k — 1)-
tuple from H, then we select an arbitrary edge g € G[X] and delete an arbitrary
vertex from it.

Set I; to be the resulting X obtained after the process is over.

Clearly, the set I; does not contain any edge from G and thus it is independent. It remains to
show that with positive probability any edge from the complement G is covered by U;’:l I;.

For a k-tuple & = {x;, .., X} € G, we want to estimate the probability that & C I; for some
1 <j < t. The following lemma gives us a lower bound on the probability.

Lemma34. ForeeGandl<j<t,

k
1( &
Pecl)>—-|—]|.
V=23 ( N ]
Proof. In what follows, we will say that the set X crosses the pair (Y, Z) if X has nonempty
intersection with both Y and Z. Sete = {x, ..., X}. We start by defining some auxiliary events.

ForasetSCeéwithS ¢ H andISI <k — 1, let

As={ARC W, -2, RUS € G} (1)
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be the event that there is no edge g € G crossing the pair (¢, W; — &) witheng=S.
Similarly, for a set S C e with ISI < k — 2, let

Bs={;RC W;—¢,RUS € H} (2)

be the event stating that there is no (k — 1)-tuple h € H crossing the pair (¢, W; — )
withe nh =S.
The next claim gives a sufficient condition for when & is covered by I;. O

Proposition 3.5. Ife € G is a k-tuple satisfying

(a) for every S C e with|SI <k —1and S ¢ H, the event Ag holds,
(b) for every S C e with IS < k — 2, the event Bs holds,
() ecw,

then e C I;.

Proof. Suppose that & € I;. This means that a vertex of & was deleted while performing
operations (i) and (ii), that is, in our cleaning process we deleted a vertex from an edge g € G
with g N e # @. Since (a) holds, we obtain that g N e is an edge of H. Moreover, by (b), we
have that g N € is the only (k — 1)-tuple of g in H. Therefore, we deleted a vertex of g in the
operation (i). By the definition of operation (i), we obtain that the deleted vertex was in g — e,
which contradicts our assumption that the deleted vertex belongs to e. O

As a consequence of Proposition 3.5, one can estimate the probability of & C I; by

PECI)>P|{e C W} A As A A Bs

A )
Se(ske—l)\H Se(ske—z) (3)

To compute the probability of the intersection of events Ag and Bg, we will estimate the
probability of the complementary events A§ and BS. Set € = % and recall that § = m
We split the computations into cases depending on the size of S:

Case1l. ISI <k - 2.

By using the definitions of Ag in (1) we obtain that

P(45)=P( Vv _RCW-el)< Suse PREW - 0)

< pF'S'deg,;(S) < p’d = 8% <.

“4)
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Proposition 3.3 and the definition of Bs in (2) give us that

[P(Bg):[P( V {RC Wj—é}) < Spusen PR C Wi — @)

RUSEH

< pF1-Sldeg, (S) < pA(H) < (k— 1)6 = «.

(5)

Case2. ISl=k—1and S ¢ H.

By the definition of Ag in (1) and by the fact that S ¢ H implies that deg;(S) < Jd, we
obtain that

[P(Ag)=ﬂ>( L ARC W - é}] < Truse PR C W = 2)

< pF'S'deg,(S) < pJd =6 <.

(6)

Finally, since there exist at most 2 choices of S C &, by putting (3)-(6) together we obtain that

PeCI)>p1- X [P( g) - 2 [P(Bg) > pk(1 — 2k+1¢)
se gke—l)\H Se gl:—z
k
S P 1[1] '
2 2\Jd O

Now the remaining part of the proof of Theorem 3.2 is straightforward. By Lemma 3.4, the
probability that € is not covered by U§-=1 I; is given by

¢ _ t ) 1( s k)¢ (5 ) 1
sl froso-f-3{31 o= 2315

Since there are at most (Z) nonedges in G to cover, the probability that one remains

uncovered is at most (Z)ﬁ < 1. Consequently, with positive probability all edges of G are
covered by U, I. O

4 | LOWER BOUNDS OF THEOREMS 2.1 AND 2.2

In this section, we prove the lower bound of Theorems 2.1 and 2.2. The next proposition shows
the lower bound of Theorems 2.1 and 2.2 when k is odd.

Theorem 4.1. Forn,d, k > 2 withn > dk, there exists a d-balanced k-graph G such that

Ll k—1
3(G)>c de- log "
logd d

:sdiy) SUONIPUOD) pUE SUIIST, Y 995 “[SZ0Z/P0/ST] U0 ATRIqUT AUIUQ AAJIAL *Sa0IM0SAIg-AI0W Aq 11T£Z181/2001"01/10p/w0o Koy KIeIquiounuo;/:sdiy woiy paprojumoq ‘2 *420¢ ‘81104601

Voo Koy

ASUIOIT SUOWIOD) dANeaI) d[qearjdde oYy £q pauIaA0S e SONIE YO 35N JO SN 10§ AILIQUT AUI[UQ KI[IA UO



. and 449
RODL SALES Wl LEY

for a positive constant ¢ depending only on k.

The proof of Theorem 4.1 follows from a counting argument using the next two auxiliary
lemmas. Recall that a t-representation of a k-graph H is a system Z={[; C [n] : 1 <j <t}
covering the edges of the complement H. For a graph H, let f (H, t) be the number of distinct
t-representations for a graph H. If some graph H does not admit a ¢-representation, we say that
f(H, t) = 0. For integers n, a, t > 1, define

fyan=" > f(H0)
His a k-graph
a(H)<a

as the number of all possible ¢-representations of the family of graphs H on the vertex set [n]
with independence number o (H) < «.

t
Lemma 4.2. For o, t > 1 and sufficiently large n, f (n, a, t) < (2(2)) .

Proof. Let Z={I, .., I;} be a set system covering H for some H. Since I; is an
independent set of H and a (H) < «, we obtain that I[;l < a. Hence, the number of ways
to choose distinct systems 7 is bounded by

sso[S[7)] <Cl2)) ;

Given integers m, d, k with d < m, we define %‘fd to be a family of k-partite k-graphs F on
a fixed set of vertices V = (X, V; with [V}l = m for every 1 < i < k satisfying:
(i) All edges e € F are transversal to the partition V] U ... U V4, that is, len Vil = 1 for all
1<i<k.
(ii) F is linear, that is, distinct edges intersects in at most one vertex.
(iii) A(F) < d.

The following lemma gives a lower bound on the size of F Efl‘?d.

Lemma 4.3. Let k, d, m be integers with k > 3 and m > my(k). Then,

md

k—1 2
k m K
‘fi(’n,)d| 2 (—d )

holds.

Proof. Set s = g—:;. We will construct a graph F from F Erlf,)d by successively choosing

edges ey, ..., s transversal to the partition 1 U --- U V4. Suppose that for ¢ < s we already
constructed F, = {ey, ..., e,} satisfying:
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(i) e istransversaltoV; U ---UV foralll <i < #.
(ii) F; is linear.
(i) A(F) < d.

Now we intend to add an edge e, to construct the next graph F,,; = F, U {e,,1}. For
each 1 <i <k, we have

dm
deg.(x) =€ <s=—.
xgw g5, () o

Consequently, if X; = {x € V; : deg (x) = d}, then we have

m

X< 5 (7)

To choose an edge e,+; we need to satisfy le; N e,1l < 1 for every1 < i < €. Given ¢;,

there are at most (’;)mk‘z k-tuples fe Vi X --- X V; such that le; N fI > 2. Therefore,
since d < m, there are at most

k—1 k
€(k)mk_2<s(k)mk_zsdm— m_
2 2 4 4

IA

k-tuples of V4 X --- X V; that violate condition (ii) of F ﬁfl‘?d. Since the addition of any k-
tuple containing an element of X; violates condition (iii) of F %‘,)d, we obtain by (7) that

there are at least

k k k
HlVi\Xil_m_ka (1_L) _l ka(l_i_l)z
4 2k? 4 2k 4

i=1
valid choices for e, .
Thus there exist at least (m*/2)° sequences of edges e,..., e, forming a graph
F = {ey, ..., e} satisfying conditions (i)-(iii) of F §§}d. Since the same graph can be obtained
by at most s! of these sequences, we have

k\S
ﬂ md
‘f(k) ‘ > ( 2 ) > m_k s S mk—l 2k2‘
md] = “l2s) T d L

s!

Proof of Theorem 4.1. We will construct a family of k-graphs H on n vertices of
maximum degree d and small independence number. To this end, set p = (d/2): and
consider a partition [n] = V; U --- U V, with each IV}l = n/k. For each1 < i < k, let H; be
the k-graph with vertex set V; consisting of the union of n/kp vertex disjoint cliques K E,k)
of size p. Let

k

i=1
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be the family of k-graphs obtained by adding a k-graph F € F ﬁlk/)k,d /> With k-partition
Vi U - UV to the union U, H;. By Lemma 4.3, we have

dn
2 k—1 43
M = |F 9| 2 (E(%) ] : ®)

We claim that H=F U Uﬁ‘zl H; is d-balanced for every H € H. First, note that if
x € V(H), then x € V; for some 1 < i < k and consequently

p— 1) d _d d
deg, (x) = deg (x) + degn(x) < +—-< -+ —-=d
g () = degy ) + dege (< (P14 S < S0 8

Thus A(H) < d.

Now let S € [n]® for 2 < ¢ < k — 1. Note that S C e for an edge e € U, H; if and
only if S is a subset of vertices of some Kg‘). Consequently, if S is a subset of the vertex set
of some K g‘), then S C V; for some 1 < i < k. Thus, by condition (i) of 7 5,"},(, 4/ We have
that deg,(S) = 0. Hence,

p—7° y)
deg,(S) < (k B 6) < dit.

Otherwise, if S is not a subset of any Kg,k) then

degH(S) = degF(S) <1,

since F is linear. Therefore, H is a d-balanced k-graph.

Finally, we turn our attention to the independence number of H € H. Note that
UK, H; is a union of n/p vertex disjoint copies of Kg‘). Thus, since U, H; C H, we
have that

k n
OC(H)SOC[U I"Ii]:(k_l); )

for every H € H.

Let ¢t be the minimum integer such that it is possible to t-represent any element
H € H, that is, ¢ is the minimum integer such that for any H € H, there exists a system
of independent sets {I; : 1 <j < t} with the property that every edge in H is covered by
some I;. Lemma 4.2 applied with (9) gives us that there exists at most

n t (k=Dnt/
[2((k— l)n/P)] < Qep)my

ways to t-represent the family H.

WILEY-—*'
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Note that if the system of independent sets {I; : 1 < j < t} represents a graph H, then the
edges of H are covered by H. Since I; is an independent set, this implies that H = U}, I;.
That is, the system {I; : 1 <j < ¢} fully determines the edges of H. Thus, two graphs
H, H' € 'H cannot be represented by the same system {I; : 1 < j < t} and we conclude that

dn

2(n k-1 K3

cp)k=ont/p > |HI > —(—) .
(cp) z Mz 2%

Hence, by the fact that p = (d/2)+- we obtain that

k_ k—1
¢ Z c dr= log n
logd d

for a positive constant ¢ depending only on k. That is, there exists a d-balanced k-graph
H € 'H such that

k_ k-1
8(H) > &2 log(n )
log d

d (I

For k even, we can further improve the lower bound for k-graphs of bounded maximum
degree d.

Theorem 4.4. Forn,d, k > 2 and k even, there exists k-graph G with A(G) < d such that

2
8(G)>c d log(z—n)
log d kd

for a positive constant c.

Proof. Suppose that k = 2¢ for some integer ¢. Theorem 4.1 says that there exists a
2-graph F on n/¢ vertices with A(F) < d such that

2
3(F)>c d log(i).
log d éd
We will construct a k-graph G with A(G) < d satisfying the inequality of the statement
as follows: Let V(F) = [n/¢]. For each i € [n/¢], let V; = {v;1, ..., V; o} be a set consisting
of € copies of the vertex i. We define V (G) = Ui":/f Vi and

EG)={uV;: {i,j} € F}L
That is, the edges of G are the 2¢-tuples of the form V; U V; where i and j are adjacent

in F. We will prove that G is our desired graph. First note that if x € V; for some
i € [n/¢], then deg,(x) = deg.(i). Thus A(G) = A(F) < d.
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Now suppose that G can be t-represented and let Z = {I; : 1 < j < t} be the system of
independent sets covering the edges of G. For each 1 <j < t, we consider the subset
I; C V(F) given by

L[={ieln/t] : V. C L}

That is, f] consists of all vertices i € [n/¢] such that V; is fully contained in I;. Note
that fj is an independent set. Indeed, suppose to the contrary that there exist i, i’ € I~]
adjacent in F. Then, on the one hand, by the definition of fj, we have that V, U Vy C I;.
On the other hand, by the definition of G, we have that V; U V;y € G, which contradicts
the fact that I; is independent.

We claim that 7 = {fj : 1 <j < t}is asystem of independent sets in F which covers
the edges of F. In particular, this proves that 9(G) > 8(F). Let {i,i’} € F be a
nonadjacent pair of vertices in V (F). Then, by the construction of G, the 2¢-tuple V; U Vy
is an edge of G. Since {I; : 1 <j <t} covers the edges of G, there exists I; such that
ViU Vy C I,. Thus {i, i’} C I; and consequently {I; : 1 <j < t} covers F. Therefore, we
obtained a k-graph G with A(G) < d such that

d? 2n
3(G) > $(F) > log[ 2™ ).
©)28F) 2 e ] Og(kd)

5 | SPECIAL HYPERGRAPHS

While for k-graphs of bounded degree with k large we still have a significant gap between lower
and upper bounds, for Steiner systems one can obtain more precise bounds. Given
1< ¢ <k<n, a partial Steiner (n, k, £)-system is a k-graph S C [n]® such that every
¢-tuple P € [n]® is contained in at most one edge of S. An (n, k, £)-system in which every
¢-tuple P € [n]® is contained in precisely one edge of S is called a full Steiner (n, k, £)-system.
While it is easy to check the existence of a partial (n, k, €)-system, the existence of a full
(n, k, €)-system for all admissible parameters 1 < ¢ < k and n > ny(¢, k) was established only
recently in [4, 6]. In this section we are going to provide bounds for the representation number
of partial and full Steiner (n, k, €)-systems for ¢ = 2.
For1l < ¢ < k < n, we define

s(n, k, ¢) = max{8(S) : S isapartial (n,k, £)-system}

as the maximum value of 9(S), where S runs over all partial (n, k, €)-systems. Similarly, we
define s*(n, k, ¢) as the maximum value of $(S), where S runs over all full (n, k, £)-systems.

Theorem 5.1. Given k > 1, there exist positive constants ¢; and ¢, depending only on k
such that the following holds:

(i) For n sufficiently large,
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_k
cln;l1 <sn,k,2) < Coy Mt log n
(log n)w-1
(ii) For infinitely many n,
nisi
———— < s*n, k, 2) < c;nitilog n.
(log n)&=

Note that Theorem 5.1(i) is just a reformulation of Theorem 2.3. Before we give a
proof of the theorem, we are going to introduce two useful results.

Let K{”)(m) be an m-blowup of the complete ¢-graph with k vertices, that is, K{"’(m) is the graph
with vertex set V=),V where IVjl=m for 1 <i<k, and is such that for every
1<ih <+ <ip<k and x; € V; the ¢-tuple {x;, ..., x;,} is an edge. The K gf)-decomposition of
K(m) is a system of pairwise edge disjoint copies of K{” covering all edges of K\”(m).
Equivalently, one can view each such decomposition as a k-partite k-graph F with vertex partition
V(F) = Ug‘zl V;, where IV]l = m for 1 <i < k, and such that for every1 <i; < --- <ip, <k and
vertices x;; € V;, there exists exactly one edge f € F with iy o} CF.

In [7], Keevash obtained strong bounds on the number of such decompositions.

Theorem 5.2 (Keevash [7, Theorem 2.8]). The number of distinct K g)-decompositions of
KO(m) is given by

‘

((el‘(lé) + o(1))mk—€)m

for sufficiently large m.

We will also need the following result on the existence of (n, k, €)-systems with bounded
independence number.

Theorem 5.3 (Grable et al. [5]). For k > ¢ > 2, there is a positive constant ¢ depending
only on k such that the following holds. If m = g? for q sufficiently large prime power, then
there exists a full Steiner (m, k, 2)-system S with a(S) < cemic (log m)ii .

Proof of Theorem 5.1. To establish the upper bound we first note that any full or partial
(n, k, 2)-system S is a A;(S)-balanced k-graph. Indeed, observe that forany2 <i <k —1
we have A;(S) < 1 < A;(S)i51. Also note that for x € V (S),

deg(x) < . deg(fx,yh)<n-1,
yeE[n]\{x}

since deg({x,y}) <1 for all x,y € V(S). Hence A(S) < n and by the upper bound of
Theorem 2.1, there exists positive constant ¢, such that

3(S) < e2A:(S)log n < cyniti log n.
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Next we prove the lower bounds of s(n, k, 2) and s*(n, k, 2). We may assume without
changing the asymptotics that m = n/k = ¢> for ¢ sufficiently large prime. By
Theorem 5.3 there exists a full (m,k,2)-system S with «(S) < cmici (log m)#-.
Consider k vertex disjoint copies Sy, ..., Sy of S and let V; = V' (S;) for 1 <i < k. Let F
be the family of k-partite k-graphs F with vertex set V (F) = U, V such that for every
1<i<j<kandx €V,x; €V, there exists exactly one f € F such that {x;, x;} C f. As
discussed previously, the family F is in one-to-one correspondence with the K(kz)-
decompositions of Kf)(m). Thus, by Theorem 5.2, we have

2

1A = [(el_(g) + o(l))mk‘z)m , (10)

for sufficiently large m.
Let ‘H be the family of graphs defined by

k
H:{FU USlFG]:}

i=1

We observe that every H € H is a full (n, k, 2)-system. Let H = F U Uﬁ;l S; for some
Fe F and let {x,y} C V(H). If {x,y} C V; for some 1 <i <k, then since S; is a full
Steiner system, there exists exactly one edge e € S; such that {x, y} C e. Also if x € V; and
y € Vjfori # j, then by the definition of F, there exists exactly one edge f € F such that

ey cf.
Set & = ka(S) and let t be the minimum integer such that every graph H € H admits

t
a t-representation. By Lemma 4.2 there are (2(;)) ways to t-represent graphs in H.

Since every t-representation corresponds to a unique graph in A and by our assumption
that every graph H € H has a t-representation, we have by (10) that

2

t k m '
2alogn > (2(”)) > [Hl = 1A = ((el_(z) + o(D)m"‘z] > g¢mloen,
a

Since a(S) < emi=i (log m)eti < ¢”nici (log n)#-i , we obtain that

k
Z ClLlly
(log n)i-:1
for a positive constant ¢; depending on k. Therefore, there exists a full (n, k, 2)-system
k

H € H such that 8(H) > ¢; . "f; Since a full (n, k, 2)-system is a partial (n, k, 2)-
og n)k-1

system, we obtain that

_k
Ni-1

s(n, k,2) > s*(n, k,2) > c;———.
(1.2 2 51k, 2) 2 B -

WILEY-—*
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6 | CONCLUDING REMARKS
6.1 | Representation of sparse hypergraphs of high uniformity

In Sections 3 and 4 we determined upper and lower bounds for the family of k-graphs on n
vertices of bounded degree d. In particular, if we define

£.(d) = lim 3 d k)
n—e logn

then we established almost sharp bounds for k=2,3,4, that is, Q(d?/logd)<

£ (d) < 0(d?), Q(d*?/log d) < f,(d) < 0(d*/?) and Q(d?/log d) < f,(d) < 0(d?).
Unfortunately, for k > 5, the bounds we have at the moment are worse. More precisely,

_a k/2
Q[logd] < fi(d) £0(d*?)

for k even and

d% k/2
Q[logd) < fi(d) < 0/

for k odd. We believe that the upper bound can be improved for large k, although maybe a new
idea will be necessary. It would be interesting to close the gap between the bounds for f, (d).
6.2 | Representation of k-partite k-graphs

Let K(n, d, k) be the family of k-partite k-graphs G on n vertices with bounded maximum

degree A(G) < d. As in the previous case, it would be interesting to find good bounds on 8(G)
for G € K(n,d, k). Let

g (d) = lim max{3(G) : G € K(n, d, k)}
k n—co logn '

A similar counting argument as the one used in Section 4 yields that g, (d) = Q(d). For
k = 2, similar techniques as in Section 3 give the upper bound which is linear in d, that is,
g,(d) = O(d). This leads us to believe that perhaps the same could be true for k > 3.

Conjecture 6.1. g,(d) = 0(d) fork > 3.
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APPENDIX A

Proposition A.1. Let F be a k-graph for k > 2. Then ©(F) = cc(F).

Proof. LetC = {Cy, ..., C;} be a system of cliques covering all edges of F. To each vertex
v € V(F) assign the set S, of all cliques containing v. Since C is a covering of the
edges, if {vy, .., v} € F, then there exists a clique C; containing {vy, ..., v¢}. Thus
C e ﬂf‘zl Sy, and hence ﬂf‘zl Sy, #@. On the other hand, by construction,
Sy, ={Ci € C : v; € Ci} and therefore the set ML, S,, contains all cliques containing
{vi, ..., v¢}. Consequently, if ﬂlle Sy, = @, then there is no clique containing {v, ..., v},
which implies that {vy, ..., v} & F. Hence, we proved that C is a set representation of F
and we obtain that

O(F) < cc(F).

To prove the opposite inequality, let V (F) = {vy, ..., v,} and let ¢ be an integer such that

F admits a set representation {S,, C [t] : 1 <i < n}. For each s € [t], we define the set
C(s) ={v : s €S,}. Since s belongs to the intersection of any k sets of the form S, for
v € C(s), we obtain that F[C(s)]is a clique. We claim that 7 = {F[C(1)], ..., F[C(s)]} is
a clique covering of F. Indeed, if {v;, ..., v;} € F is an edge of F, then ﬂ’le S,,,.j # @. Let
= ﬂ’;zl Svij- Then clearly {vi,.., v} € F[C(s)]. Now if {v;,..,v,} & F, then
'J‘-zl Sy, = @ and consequently there is no s such that {vip .., Vi) € C(s). Hence, F is
a clique covering and cc(F) < O(F) follows. O
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