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Abstract—Learning multi-object dynamics from visual data
using unsupervised techniques is challenging due to the need
for robust, object representations that can be learned through
robot interactions. This paper presents a novel framework with
two new architectures: SlotTransport for discovering object rep-
resentations from RGB images and SlotGNN for predicting their
collective dynamics from RGB images and robot interactions.
Our SlotTransport architecture is based on slot attention for
unsupervised object discovery and uses a feature transport mech-
anism to maintain temporal alignment in object-centric represen-
tations. This enables the discovery of slots that consistently reflect
the composition of multi-object scenes. These slots robustly bind
to distinct objects, even under heavy occlusion or absence. Our
SlotGNN, a novel unsupervised graph-based dynamics model,
predicts the future state of multi-object scenes. SIotGNN learns
a graph representation of the scene using the discovered slots
from SlotTransport and performs relational and spatial reasoning
to predict the future appearance of each slot conditioned on
robot actions. We demonstrate the effectiveness of SlotTransport
in learning object-centric features that accurately encode both
visual and positional information. Further, we highlight the
accuracy of SlotGNN in downstream robotic tasks, including
challenging multi-object rearrangement and long-horizon predic-
tion. Finally, our unsupervised approach proves effective in the
real world. With only minimal additional data, our framework
robustly predicts slots and their corresponding dynamics in real-
world control tasks. Our project webpage: bit.ly/slotgnn.

I. INTRODUCTION

Studies suggest that the human visual system identifies con-
ceptually distinct visual features, indexes their locations [1],
and utilizes this information as the foundation for higher-level
cognitive processes, such as comprehending and interacting
effectively with the world [2]. A similar principle guides many
robotic systems for goal-directed motor planning. In multi-
object manipulation, early approaches aimed to directly project
the image observation into a unified lower-dimensional space
to infer the dynamics [3], [4]. However, such strategies do not
reflect the inherent structure of a multi-object system and lack
object-level predictions. This limitation not only impedes the
model’s ability to learn object interactions but also results in
inaccurate dynamics predictions. Addressing this limitation,
recent methods build dynamics models by decomposing the
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Fig. 1. Overview of our unsupervised framework. (a) We introduce

SlotTransport to identify temporally-aligned, object-centric slots, that each
consistently represents a unique visual element. (b) We introduce SIotGNN, a
graph-based model that learns scene dynamics from slots and predicts future
states based on the robot’s action. (c) Our unsupervised approach facilitates
planning to transition from an initial state to a goal image without requiring
extensive ground-truth supervision.

observation into object-specific lower-dimensional latents and
subsequently learning dynamics within these “object-centric”
representations [5], [6], [7], [8], [7]. For multi-object systems,
recent studies emphasize the effectiveness of learning object-
centric representations to enhance the accuracy and sample
efficiency of dynamic models [5], [6]. This category of models
follows a natural formulation by first learning to represent a
scene as a set of object-centric features and then learning the
dynamics among them.

In robotics, unsupervised learning of object dynamics is
a key challenge particularly given its significance in model-
based action planning for real-world applications. Neverthe-
less, the majority of existing methods of learning multi-object
dynamics heavily rely on ground-truth information, including
object pose [9], [10], [6] and segmentation masks [6], [S]. This
substantially restricts the applicability of such solutions in real-
world settings where comprehensive ground-truth information
is often unavailable. To address this challenge, our work
focuses on discovering unsupervised object representations in
multi-object scenarios and harnessing these representations to
understand their dynamics. Our primary contributions include:
(1) We introduce SlotTransport for unsupervised object dis-
covery, a novel architecture that refines object-centric rep-
resentation learning through slot attention [11]. Utilizing a
feature transport mechanism, SlotTransport ensures temporal
alignment of the object-centric representations. The discovered
slots capture scene composition, each depicting a visual entity
in a multi-object scene, such as objects, the background, and
the robot. Notably, each slot maintains a consistent association
with a distinct object, even when it’s occluded or absent.
(2) We propose SlotGNN, a novel unsupervised graph-based
model for predicting multi-object scene dynamics from object-
centric representations. SIotGNN uses slots identified by Slot-
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SlotTransport: Unsupervised Multi-Object Discovery. From an RGB image, f.;,; identifies object-centric slots z;.g . Through slot attention [11],

slots bind to visual features, and f4.. produces feature maps ®° and masks M?. Temporal alignment is ensured by transporting slot features between source
and target images. frer reconstructs each object slot R%., which together compose the target image. The model is trained using only reconstruction error.
During inference, objects are reconstructed from a single image using learned slots.

Transport to synthesize the scene’s future appearance based
on the robot’s actions. With the temporal alignment from
SlotTransport, the scene transforms into a graph where each
node consistently represents a slot, and edges capture the slot
interactions. SlotGNN performs relational reasoning on the
graph and learns to project the future appearance of each slot.
(3) We examine the dynamics learned with SIotGNN in
challenging downstream robotic tasks. We employ SIotGNN
for challenging goal-directed multi-object rearrangement using
pushing actions and long-horizon dynamics prediction.

(4) Demonstrating the real-world applications of our unsu-
pervised approach, we successfully transfer SlotTransport and
SlotGNN, initially trained in simulation, to the real robot by
collecting a minimal dataset of just 20 real robot demonstra-
tions (%5 of the amount of simulated training data).

Our results demonstrate the robustness of our unsupervised
framework, particularly in downstream robotic applications
and real-world scenarios. Our approach consistently predicts
accurate multi-object representations and their corresponding
dynamics. Throughout this paper, we will use the terms ‘slots’
and ‘object-centric representations’ interchangeably.

II. RELATED WORK

Learning Multi-object Dynamics Model: Early models for
graph-based dynamics, such as Interaction Networks (IN) [9],
[10] and follow-up adaptations [12], [13], [14], represent a
multi-object system with a graph where each node is an object
ground-truth state (e.g., position, velocity, mass, friction).
These models rely on explicit state information. However,
for real-world robotic scenarios, obtaining ground-truth state
data is infeasible. Recent methods have focused on learning
object representations. Each object is mapped to a lower-
dimensional, object-centric representation. The representations
are typically a combination of explicit ground-truth states, like
position, bounding box, and mask, combined with implicit
visual features [15], [7], [16], [6], [5]. However, the primary
assumption of the ground-truth state supervision limits their
application in the real world. In contrast, our work introduces
an unsupervised framework for learning multi-object scene

dynamics based on discovering unsupervised slots. This elim-
inates the need for explicit ground-truth state supervision.

Unsupervised Object-centric Representation: Our work
builds on learning object-centric representations using slot
attention [11]. Slot attention interfaces with visual outputs
to generate a set of slots. For robotics applications, ensuring
temporal consistency in these slots is vital for accurate scene
dynamics understanding. This consistency is essential for
formulating a planning objective or training loss. Thus, we
explicitly incorporate a feature transport mechanism in our
SlotTransport to maintain consistency across image pairs from
different observation timesteps inspired by [17]. In recent work
on unsupervised multi-object dynamics, keypoint extraction
has been explored [18]. However, keypoint-based dynamics
face challenges with occlusion, a common issue in robotics
scenarios. Our SlotTransport addresses this problem, reliably
associating each slot with specific objects even under heavy
occlusions.

I11. METHODS

Our framework has two main components:

(1) SlotTransport: An unsupervised multi-object discovery
model that efficiently extracts robust and temporally consistent
object-centric representation slots from multi-object scenes.

(2) SlotGNN: Building on top of the slot discovery, this
unsupervised graph-based model learns the dynamics of the
object-centric representations. Importantly, SIotGNN is condi-
tioned on the robot’s action which enables applications such
as model-based action planning.

A. SlotTransport: Unsupervised Multi-Object Discovery

The SlotTransport’s role is to map the image to underlying
object-centric representations. A detailed architecture of Slot-
Transport is shown in Fig. 2. We build on the slot attention [11]
to extract slots from image frames while ensuring temporal
alignment of the slots. Given an RGB image , a convolutional
encoder augmented with positional embeddings, maps
the image to an intermediate representation of W R * * |
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Using the slot attention [11], slots z;.5 € R? are derived that
uniquely represent distinct portions of W.

We recognize that our ultimate goal of learning dynamics in
an object-centric latent space requires temporal consistency of
the slots. To explicitly enforce this, we introduce the transport
mechanism in SlotTransport to establish temporal alignment in
slots. Inspired by [17], this mechanism transports slot features
between a pair of source and target images (s, It) sampled
from a given scene.

For each image, slots are extracted as (27,21, ). First,
using a convolutional decoder fg;,.., we decode each slot into
a feature map (BLK®LH) ¢ RA*w*™ gnd an alpha mask
(MEE, MEE) € R"*™_ These alpha masks serve as mixture
weights to inpaint each slot’s feature map from the target
image onto the source image (see Fig. 2). We produce a
transported feature map $,_ ¢ by nullifying the source feature
map outside the slot’s predicted mask for both the target and
source (1 — M%) - (1 — M%) - &%, followed by overlaying the
masked target feature map AM75..$%.. Finally, a convolutional
reconstruction module fre. reconstructs each slot as an RGB
image RY. € R"w*3 baged on the transported feature map.
The reconstructed slots together reconstructed target image fr.

The transport mechanism is SlotTransport enforces temporal
alignment between image pairs during training. Notably, the
learned slots through SlotTransport consistently register to
a unique object even under heavy occlusion or absence of
an object. During inference, SlotTransport can discover and
reconstruct slots from a single image by directly reconstruct-
ing the extracted per-slot features and masks. SlotTransport
ensures that each slot's feature map aligns well with its mask
for learning consistent object representation acorss time. Im-
portantly, this temporal alignment is achieved without adding
additional learnable parameters; the same fuo and fz.. are
used when processing both source and tarpet images.

B. SlotGNN: Unsupervised Multi-Object Dynamics

The main purpose of SlotGNN is to learn the dynamics and
model interactions between the visual elements in a multi-

____Par-slot Foature and Mask |

ShotGNN: Unsupervised Multi-Object Dynamics. (a) SlotGNN predicts slot changes Az! after applying a ing action a.. Using SlotTransport's
G, is formed with slots as nodes and slot interactions as edges. Edges and nodes are w
. The next image [, is then reconstructed (b) With a saquence of robot actions, SIotGNN projects future multi-object dynamics and

Vid fegge a0d fro4., Tesulting in next

object scene, such as the robot, objects, and the background. It
does so using a graph-based representation, where each object-
centric slot corresponds to a node in the graph. Crucially,
S1otGNN enables leaming unsupervised multi-object dynam-
ics, eliminating the need for supervised trajectory labels that
require access to the system’s ground-truth state. This feature
becomes essential in real-world scenarios where obtaining
accurate ground-truth data is challenging or impractical. Refer
to the detailed architecture illustrated in Fig. 3-a

Given an image I, with its associated slots z]. discovered
through SlotTransport, we construct a fully connected graph
G: = (V,&). Each node v; £ V in the graph represents a slot,
and each edge ;; £ £ represents the interaction between the
pair of slots z;, z;. For each node, we associate an embedding
n; which is initialized with the slot representations z;. The
edge embeddings, mepresenting interactions, are initialized
based on augmenting the connected slots representations. To
process the information in the graph representation, SlotGNN
employs a message-passing neural network architecture [19],
[10] to update node and edge embeddings. Incoming infor-
mation from neighboring nodes is aggregated to update each
node’s state, capturing the dynamics and interactions in the
scene.

The messape-passing operation in the graph consists of two
primary steps (see 3). First, the edge embeddings, e, are
updated based on their connecting node embeddings: ej; +
fedge (€47, 114, mg). Secondly, the node embeddings are updated
using the updated edge embeddings associated with them and
the robot action: nj + f“”"e'{“’“’zt&wk} £y, ae ). Here,
fedge and froge are multi-layer perception update functions
for edges and nodes, respectively. N'(k) denotes the neighbors
of node k, which in the context of a fully connected graph
is all other nodes. To condition on external action, the robot
action a, € R?, characterized as a point-to-point push vector
in image coordinates, is integrated as an input to frpge in
S1otGNN. This ensures the learned dynamics are conditioned
on the robot’s action and can be used for planning in the
downstream robotics control task.
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Fig. 4. Visualizations of per-slot masks and reconstructions. SlotTransport
exhibits superior performance in accuracy and consistency of object-centric
representation, even under occlusion, compared to the SlotAttention baseline
[11]. We also showcase predicted segments from SAM [20].

After message-passing, the updated node embeddings are
used to predict the evolution of slots in the next
timestep conditioned on the action . This allows for the roll-
out of the dynamics into the future and enables synthesizing
the future appearance of the scene.

C. Training SlotTransport and SlotGNN

SlotTransport is trained using only the image reconstruc-
tion error for supervision. The image reconstruction loss
L , is defined using a pixel-wise Mean Squared
Error (MSE) between the target and reconstructed images.
In Fig. 2, modules with learnable parameters are distinctly
highlighted in blue. Once SlotTransport is trained, it supervises
the training of SlotGNN to learn visual dynamics.

We use a slot prediction MSE loss to train SIotGNN,
L . This loss reduces the distance between the
slots directly predicted from the next timestep image using
SlotTransport and slots from the single-step dynamics
with SIotGNN , as visualized in Fig. 3-a (modules with
leanable parameters are highlighted in blue). Importantly, em-
ploying a per-slot prediction loss requires temporal alignment
that is ensured through SlotTransport. Furthermore, we use
the single-step slot dynamics to reconstruct the image and also
minimize the image reconstruction MSE loss £

D. Long-Horizon Multi-Object Dynamics Rollout

Given a sequence of robot pushing actions , a learned
SlotGNN rolls out the dynamics of a multi-object scene based
only on the initial image frame . As shown in Fig. 3-b, the
model’s single-step predictions are cascaded to generate slots
over extended future horizons. This capability for accurate
dynamics rollout is possible due to the temporal alignment
achieved with SlotTransport. Furthermore, for any given future
timestep, can synthesize an image of the scene.

E. Goal-Directed Planning

Learning the scene dynamics facilitates goal-directed se-
quential action planning for multi-object manipulation. As
shown in Fig. 3-c, with SIotGNN, we optimize robot actions
to align a scene’s state with a target goal image. This is
pivotal when the robot interacts with several objects to reach a
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Fig. 5. Examples of single-step dynamics prediction using SIotGNN. Given
the current scene image and the robot’s pushing action, our model precisely
predicts the future state of each slot and synthesizes the future scene image.

desired state. Given a scene image, we sample possible action
sequences over a planning horizon and forecast the slot
representation by rolling the dynamics. Using Model-
predictive control (MPC) [21], the optimal action sequence is
chosen by minimizing the slot loss £ , which
quantifies the variance between predicted slots and the goal
image slots.

IV. EXPERIMENTS

We structure our experiments around: (1) How accurately
and consistently do slots extracted by SlotTransport represent
each visual element in the scene? (2) How effective is Slot-
GNN in predicting multi-object scene dynamics? (3) How well
does our framework apply to downstream robotic tasks?

A. Data

Simulation: Using Mujoco [22], [23], we simulate a multi-
object tabletop scene with YCB objects [24] and a URS5e
robot with a cylindrical end-effector. The robot performs
planar pushing action, captured by an RGB camera. The data
is formatted as image-action tuples containing
pre- and post-action images, and action vectors in the image
coordinates. We generate episodes steps of random
pushes for a given subset of objects. SlotTransport is trained
by randomly sampling target and source images across all
episodes. We then use the learned SlotTransport to discover
slots and train SlotGNN on the image-action tuples. Evalua-
tions on SlotTransport are done with five objects using images
from a top-view camera. Experiments involving single-step
dynamics, long-horizon predictions, and object rearrangements
are on scenes with three objects with an angled camera.

Real-world: We use a URSe robot with a custom-printed
cylindrical end-effector and an RGB camera. We collect data

episodes steps of random pushes for subsets of 3
real YCB objects. Models trained in the simulation for the
same object subset are retrained on this real-world data.

B. Baselines

We evaluate our approach against various methods:

Object Discovery: Our SlotTransport, is compared with the
original slot attention approach [11]. We follow the implemen-
tation of this baseline by excluding the transport mechanism
introduced in our SlotTransport during training. Furthermore,
we compare our approach with the off-the-shelf SAM [20].
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Multi-Object Dynamics: For action-conditioned graph-based
dynamics, we consider ForwGNN [6], which uses supervision
of ground-truth object masks. The scene graph’s nodes are
embedded with the ground-truth object positions and masks to
directly reconstruct the future image. We also compare with
KINet [18], an unsupervised model that determines dynamics
by identifying a set of keypoints from the scene image. Lastly,
we compare with SlotMLP variant. While it utilizes slots from
SlotTransport, it models dynamics with MLPs rather than the
graph-based approach of SlotGNN.

Evaluation Memics: We compute pixel-wise mean squared
error (MSE) and Learned Perceptual Image Patch Similarity
(LPIPS) [25] to measure the accuracy of the slots in recon-
structing the scene composition. Additionally, to quantify the
quality and consistency of the slot masks, we compute the
mean Intersection over Union (loU) for slot masks produced
by SlotTransport, SlotAttention, and SAM, comparing them
against the ground-truth masks from simulation.

V. RESULTS
A. Object Discovery Performance

Figure 4 showcases the slot masks and slot reconstructions.
In a scene with five objects, SlotTransport qualitatively outper-

TABLE 1

Object discovery performance measured as visual quality (MSE and LPIPS)
and mask consistency (mloU) (MSE and LPIPS values are scaled = 10~2),

Method MSE | LPIPS |  mloU (%) 1

SlotTransport (Ours) 017 £ 0.06 129+ 046 934 07

SlotA ttention [11] D43 £ 017 479032 505 = 16.2

SAM [20] NA. N.A. B6.0 + 8.5
TABLE II

Single-siep dynamics prediction accuracy measured as visual guality (MSE)
and mask consistency (mlolJ).

Method Supervision MSE | mlol (%) 1
SlotGNN (Durs) Img 014 + 0LO5 869 + 2.9
SiMLP Img 032 £ 0.09 726+ 11
KINet [18] Img LE6 + 0.09 NA.
ForwGNN [6] GT State 050+ 0.14 M.A.

forms the SlotAttention baseline [11]. SlotTransport accurately
identifies all distinct visual elements, and predicts an accurate
mask for each—even under heavy occlusion. However, as
seen in Fig. 4, the SlotAttention baseline overlooks the spam
object occluded by the power drill. Moreover, SlotTransport
delineates clear boundaries for each slot and accurately recon-
structs their appearance. In contrast, the SlotAttention baseline
presents indistinct, blurred object masks and reconstructions.
We further show that relying on off-the-shelf segmentation
methods, such as SAM [20], is not optimal for learning object
representations. This is primarily due to SAM's tendency to
over-segment textured objects (e.g., backgrounds) and under-
segment cluttered objects.

Table I summarizes the quantitative evaluation of both the
visual quality of reconstructed slots and the precision of slot
masks. SlotTransport distinctly outperforms the SlotAttention
baseline by achieving significantly better visual fidelity, mea-
sured in MSE and LPIPS. Furthermore, object masks produced
by SlotTransport demonstrate superior alignment with ground-
truth masks derived from simulated data. In contrast, SlotAt-
tention often struggles to align slots accurately to cluttered
objects, as shown in Fig 4. This limitation is evident in the
lower mloU for SlotAttention compared to SlotTransport.

B. Dynamics Prediction Performance

Figure 5 illustrates the single-step dynamics prediction of
SlotGNN. By taking as input the current image and the
intended robot’s pushing action vector, our model accurately
predicts the future scene. It does so by predicting the future
state of each slot, based on the learned multi-object dynamics
of the scene. The quantitative results presented in Table II
highlight the accuracy of SlotGNN in single-step dynamics
prediction. In single-step dynamics prediction, SIotGNN out-
performs all other baselines, including the SlotMLP variant
and the unsupervised keypoint dynamics KINet [18]. It's worth
noting that while ForwGNN does rely on ground-truth state
information for supervision, it still falls short in MSE com-
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Fig. 9.

Real-world control using SlotTransport and SIotGNN: The top row shows objects being rearranged to align with a goal image. In the bottom row,

objects are persistently displaced from their goal positions, the robot comes up with a sequence of actions to push the objects back to their desired locations.
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Fig. 10.  Real-world object slot discovery with SlotTransport. Our unsuper-
vised framework transfers to real settings and discovers accurate object-centric
representations that reflect the positional and visual features of the objects.

pared to SlotGNN, which utilizes image-based supervision.
This further highlights the robustness of the detected slots
in SlotTransport in representing objects enabling SIotGNN to
learn accurate multi-object dynamics.

As illustrated in Fig. 6, SIotGNN excels in predicting
stable long-horizon dynamics compared with SlotMLP. Al-
though the scenes reconstructed with SIotGNN may diverge
from the ground-truth due to cumulative prediction errors, it
yields physically plausible future scenes. In contrast, SlotMLP
struggles to retain the coherence slots over time. Given that
both SIotGNN and SlotMLP use slots by SlotTransport, the
difference in their long-horizon predictions can be attributed
to the graph-based model’s enhanced ability to capture multi-
object dynamics. In Fig. 6, unsupervised keypoints detected by
KINet [18] are also shown. KINet requires stable keypoint-
object correspondences to learn multi-object dynamics. This
stability is compromised when a robot enters or exits the frame
or introduces object occlusions (see the pink keypoint in the
last column of Fig. 6). A quantitative summary of the long-
horizon rollout outcomes can be found in Fig. 7-a.

C. Planning with SlotGNN

Fig. 8 shows our method’s application in control tasks. In a
challenging object rearrangement scenario, the robot plans an
action sequence using SlotTransport and SlotGNN. Through
accurate multi-object dynamics projections, the robot effec-
tively aligns objects to a desired configuration using just the

RGB image. The planning performance of slot-based models
are compared in Fig. 7 which emphasizes the effectiveness of
a graph-based model in learning object-centric dynamics.

D. Real-World Experiments

Demonstrating the real-world applicability of our unsuper-
vised approach, we successfully transfer SlotTransport and
SlotGNN, initially trained in simulation, to the real robot by
collecting a minimal dataset of just 20 real robot demonstra-
tions (%35 of the amount of simulated training data). SlotTrans-
port retains its accuracy in the real environment as shown in
Fig 10. The slots discovered from the real mutli-object scene,
clearly distinguish all the scene elements even under occlusion.
For the real-world control, we experiment with two tasks as
shown in Fig. 9. The first scenario, presented in the top row,
involves rearranging objects to achieve a predetermined goal
image. The bottom row showcases a more dynamic scenario
where objects are continuously displaced from their target
positions by a human with a grabber stick. In response, our
robot, using SlotTransport and SlotGNN, finds a sequence of
actions to restore the objects to their intended locations.

VI. CONCLUSION

This work addresses the challenges of unsupervised learn-
ing for multi-object dynamics through visual observations.
We present SlotTransport, a novel approach based on slot
attention for unsupervised object discovery, ensuring temporal
consistency in object-centric representations. Alongside, we
introduce SlotGNN, an unsupervised graph-based dynamics
model for predicting the future states of multi-object scenes
using the slots. Both methods have proven effective in complex
robotic control tasks and long-horizon dynamics prediction.
Importantly, we demonstrate that our unsupervised approach,
using SlotTransport and SlotGNN, successfully transfers to
real-world settings and enables object discovery and dynamic
modeling solely from RGB images. For limitations, one key
aspect we recognize is that our slot discovery process currently
necessitates the pre-determination of the number of slots. In
our experiments, we predefined the slot count equal to the
anticipated number of elements in the scene. Developing a
more adaptive mechanism that automatically determines the
required slot count could be a promising future research
direction.

17513

Authorized licensed use limited to: University of Minnesota. Downloaded on April 23,2025 at 17:00:03 UTC from IEEE Xplore. Restrictions apply.



[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Z. Pylyshyn, “The role of location indexes in spatial perception: A sketch
of the finst spatial-index model,” Cognition, vol. 32, no. 1, pp. 65-97,
1989.

D. Marr, Vision: A computational investigation into the human repre-
sentation and processing of visual information. MIT press, 2010.

C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2017, pp. 2786-2793.

P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” arXiv
preprint arXiv:1606.07419, 2016.

D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning
multi-object dynamics with compositional neural radiance fields,” in
Conference on Robot Learning. PMLR, 2023, pp. 1755-1768.

Y. Ye, D. Gandhi, A. Gupta, and S. Tulsiani, “Object-centric forward
modeling for model predictive control,” in Conference on Robot Learn-
ing. PMLR, 2020, pp. 100-109.

H. Qi, X. Wang, D. Pathak, Y. Ma, and J. Malik, “Learning long-
term visual dynamics with region proposal interaction networks,” arXiv
preprint arXiv:2008.02265, 2020.

M. Minderer, C. Sun, R. Villegas, F. Cole, K. Murphy, and H. Lee,
“Unsupervised learning of object structure and dynamics from videos,”
arXiv preprint arXiv:1906.07889, 2019.

P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, and K. Kavukcuoglu,
“Interaction networks for learning about objects, relations and physics,”
arXiv preprint arXiv:1612.00222, 2016.

A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Ried-
miller, R. Hadsell, and P. Battaglia, “Graph networks as learnable
physics engines for inference and control,” in International Conference
on Machine Learning. PMLR, 2018, pp. 4470-4479.

F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold,
J. Uszkoreit, A. Dosovitskiy, and T. Kipf, “Object-centric learning with
slot attention,” Advances in Neural Information Processing Systems,
vol. 33, pp. 11525-11538, 2020.

T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural
relational inference for interacting systems,” in International Conference
on Machine Learning. PMLR, 2018, pp. 2688-2697.

Y. Li, J. Wu, J.-Y. Zhu, J. B. Tenenbaum, A. Torralba, and R. Tedrake,
“Propagation networks for model-based control under partial observa-
tion,” in /ICRA, 2019.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec,
and P. Battaglia, “Learning to simulate complex physics with graph
networks,” in International conference on machine learning. PMLR,
2020, pp. 8459-8468.

W. Yuan, C. Paxton, K. Desingh, and D. Fox, “Sornet: Spatial object-
centric representations for sequential manipulation,” in Conference on
Robot Learning. PMLR, 2022, pp. 148-157.

N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tac-
chetti, “Visual interaction networks: Learning a physics simulator from
video,” Advances in neural information processing systems, vol. 30, pp.
4539-4547, 2017.

T. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zis-
serman, and V. Mnih, “Unsupervised learning of object keypoints for
perception and control,” arXiv preprint arXiv:1906.11883, 2019.

A. Rezazadeh and C. Choi, “Kinet: Unsupervised forward models for
robotic pushing manipulation,” IEEE Robotics and Automation Letters,
2023.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263-1272.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
arXiv preprint arXiv:2304.02643, 2023.

E. Camacho and C. Alba, Model Predictive Control, ser. Advanced
Textbooks in Control and Signal Processing. Springer London, 2013.
E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 5026-5033.

Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiriany,
and Y. Zhu, “robosuite: A modular simulation framework and benchmark
for robot learning,” in arXiv preprint arXiv:2009.12293, 2020.

[24]

[25]

17514

B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks for
manipulation research,” in 2015 international conference on advanced
robotics (ICAR). 1EEE, 2015, pp. 510-517.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 586-595.

Authorized licensed use limited to: University of Minnesota. Downloaded on April 23,2025 at 17:00:03 UTC from IEEE Xplore. Restrictions apply.





