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Abstract—Learning multi-object dynamics from visual data
using unsupervised techniques is challenging due to the need
for robust, object representations that can be learned through
robot interactions. This paper presents a novel framework with
two new architectures: SlotTransport for discovering object rep-
resentations from RGB images and SlotGNN for predicting their
collective dynamics from RGB images and robot interactions.
Our SlotTransport architecture is based on slot attention for
unsupervised object discovery and uses a feature transport mech-
anism to maintain temporal alignment in object-centric represen-
tations. This enables the discovery of slots that consistently reflect
the composition of multi-object scenes. These slots robustly bind
to distinct objects, even under heavy occlusion or absence. Our
SlotGNN, a novel unsupervised graph-based dynamics model,
predicts the future state of multi-object scenes. SlotGNN learns
a graph representation of the scene using the discovered slots
from SlotTransport and performs relational and spatial reasoning
to predict the future appearance of each slot conditioned on
robot actions. We demonstrate the effectiveness of SlotTransport
in learning object-centric features that accurately encode both
visual and positional information. Further, we highlight the
accuracy of SlotGNN in downstream robotic tasks, including
challenging multi-object rearrangement and long-horizon predic-
tion. Finally, our unsupervised approach proves effective in the
real world. With only minimal additional data, our framework
robustly predicts slots and their corresponding dynamics in real-
world control tasks. Our project webpage: bit.ly/slotgnn.

I. INTRODUCTION

Studies suggest that the human visual system identifies con-
ceptually distinct visual features, indexes their locations [1],
and utilizes this information as the foundation for higher-level
cognitive processes, such as comprehending and interacting
effectively with the world [2]. A similar principle guides many
robotic systems for goal-directed motor planning. In multi-
object manipulation, early approaches aimed to directly project
the image observation into a unified lower-dimensional space
to infer the dynamics [3], [4]. However, such strategies do not
reflect the inherent structure of a multi-object system and lack
object-level predictions. This limitation not only impedes the
model’s ability to learn object interactions but also results in
inaccurate dynamics predictions. Addressing this limitation,
recent methods build dynamics models by decomposing the
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Fig. 1. Overview of our unsupervised framework. (a) We introduce
SlotTransport to identify temporally-aligned, object-centric slots, that each
consistently represents a unique visual element. (b) We introduce SlotGNN, a
graph-based model that learns scene dynamics from slots and predicts future
states based on the robot’s action. (c) Our unsupervised approach facilitates
planning to transition from an initial state to a goal image without requiring
extensive ground-truth supervision.

observation into object-specific lower-dimensional latents and
subsequently learning dynamics within these “object-centric”
representations [5], [6], [7], [8], [7]. For multi-object systems,
recent studies emphasize the effectiveness of learning object-
centric representations to enhance the accuracy and sample
efficiency of dynamic models [5], [6]. This category of models
follows a natural formulation by first learning to represent a
scene as a set of object-centric features and then learning the
dynamics among them.

In robotics, unsupervised learning of object dynamics is
a key challenge particularly given its significance in model-
based action planning for real-world applications. Neverthe-
less, the majority of existing methods of learning multi-object
dynamics heavily rely on ground-truth information, including
object pose [9], [10], [6] and segmentation masks [6], [5]. This
substantially restricts the applicability of such solutions in real-
world settings where comprehensive ground-truth information
is often unavailable. To address this challenge, our work
focuses on discovering unsupervised object representations in
multi-object scenarios and harnessing these representations to
understand their dynamics. Our primary contributions include:
(1) We introduce SlotTransport for unsupervised object dis-
covery, a novel architecture that refines object-centric rep-
resentation learning through slot attention [11]. Utilizing a
feature transport mechanism, SlotTransport ensures temporal
alignment of the object-centric representations. The discovered
slots capture scene composition, each depicting a visual entity
in a multi-object scene, such as objects, the background, and
the robot. Notably, each slot maintains a consistent association
with a distinct object, even when it’s occluded or absent.
(2) We propose SlotGNN, a novel unsupervised graph-based
model for predicting multi-object scene dynamics from object-
centric representations. SlotGNN uses slots identified by Slot-
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Fi g. 2. Sl ot Tr a ns p o rt : U ns u p er vis e d M ulti- O bj e ct Dis c o v er y. Fr o m a n R G B i m a g e, f s l o t i d e nti fi es o bj e ct- c e ntri c sl ots z 1: K . T hr o u g h sl ot att e nti o n [ 1 1],
sl ots bi n d t o vis u al f e at ur es, a n d f d e c pr o d u c es f e at ur e m a ps Φ i a n d m as ks M i . Te m p or al ali g n m e nt is e ns ur e d b y tr a ns p orti n g sl ot f e at ur es b et w e e n s o ur c e
a n d t ar g et i m a g es. f r e c r e c o nstr u cts e a c h o bj e ct sl ot R i

T , w hi c h t o g et h er c o m p os e t h e t ar g et i m a g e. T h e m o d el is tr ai n e d usi n g o nl y r e c o nstr u cti o n err or.
D uri n g i nf er e n c e, o bj e cts ar e r e c o nstr u ct e d fr o m a si n gl e i m a g e usi n g l e ar n e d sl ots.

Tr a ns p ort t o s y nt h esi z e t h e s c e n e’s f ut ur e a p p e ar a n c e b as e d
o n t h e r o b ot’s a cti o ns. Wit h t h e t e m p or al ali g n m e nt fr o m
Sl ot Tr a ns p ort, t h e s c e n e tr a nsf or ms i nt o a gr a p h w h er e e a c h
n o d e c o nsist e ntl y r e pr es e nts a sl ot, a n d e d g es c a pt ur e t h e sl ot
i nt er a cti o ns. Sl ot G N N p erf or ms r el ati o n al r e as o ni n g o n t h e
gr a p h a n d l e ar ns t o pr oj e ct t h e f ut ur e a p p e ar a n c e of e a c h sl ot.
( 3) We e x a mi n e t h e d y n a mi cs l e ar n e d wit h Sl ot G N N i n
c h all e n gi n g d o w nstr e a m r o b oti c t as ks. We e m pl o y Sl ot G N N
f or c h all e n gi n g g o al- dir e ct e d m ulti- o bj e ct r e arr a n g e m e nt usi n g
p us hi n g a cti o ns a n d l o n g- h ori z o n d y n a mi cs pr e di cti o n.
( 4) D e m o nstr ati n g t h e r e al- w orl d a p pli c ati o ns of o ur u ns u-
p er vis e d a p pr o a c h, w e s u c c essf ull y tr a nsf er Sl ot Tr a ns p ort a n d
Sl ot G N N, i niti all y tr ai n e d i n si m ul ati o n, t o t h e r e al r o b ot b y
c oll e cti n g a mi ni m al d at as et of j ust 2 0 r e al r o b ot d e m o nstr a-
ti o ns ( % 5 of t h e a m o u nt of si m ul at e d tr ai ni n g d at a).
O ur r es ults d e m o nstr at e t h e r o b ust n ess of o ur u ns u p er vis e d
fr a m e w or k, p arti c ul arl y i n d o w nstr e a m r o b oti c a p pli c ati o ns
a n d r e al- w orl d s c e n ari os. O ur a p pr o a c h c o nsist e ntl y pr e di cts
a c c ur at e m ulti- o bj e ct r e pr es e nt ati o ns a n d t h eir c orr es p o n di n g
d y n a mi cs. T hr o u g h o ut t his p a p er, w e will us e t h e t er ms ‘sl ots’
a n d ‘ o bj e ct- c e ntri c r e pr es e nt ati o ns’ i nt er c h a n g e a bl y.

II. R E L A T E D W O R K

L e ar ni n g M ulti- o bj e ct D y n a mi cs M o d el: E arl y m o d els f or
gr a p h- b as e d d y n a mi cs, s u c h as I nt er a cti o n N et w or ks (I N) [ 9],
[ 1 0] a n d f oll o w- u p a d a pt ati o ns [ 1 2], [ 1 3], [ 1 4], r e pr es e nt a
m ulti- o bj e ct s yst e m wit h a gr a p h w h er e e a c h n o d e is a n o bj e ct
gr o u n d-tr ut h st at e ( e. g., p ositi o n, v el o cit y, m ass, fri cti o n).
T h es e m o d els r el y o n e x pli cit st at e i nf or m ati o n. H o w e v er,
f or r e al- w orl d r o b oti c s c e n ari os, o bt ai ni n g gr o u n d-tr ut h st at e
d at a is i nf e asi bl e. R e c e nt m et h o ds h a v e f o c us e d o n l e ar ni n g
o bj e ct r e pr es e nt ati o ns. E a c h o bj e ct is m a p p e d t o a l o w er-
di m e nsi o n al, o bj e ct- c e ntri c r e pr es e nt ati o n. T h e r e pr es e nt ati o ns
ar e t y pi c all y a c o m bi n ati o n of e x pli cit gr o u n d-tr ut h st at es, li k e
p ositi o n, b o u n di n g b o x, a n d m as k, c o m bi n e d wit h i m pli cit
vis u al f e at ur es [ 1 5], [ 7], [ 1 6], [ 6], [ 5]. H o w e v er, t h e pri m ar y
ass u m pti o n of t h e gr o u n d-tr ut h st at e s u p er visi o n li mits t h eir
a p pli c ati o n i n t h e r e al w orl d. I n c o ntr ast, o ur w or k i ntr o d u c es
a n u ns u p er vis e d fr a m e w or k f or l e ar ni n g m ulti- o bj e ct s c e n e

d y n a mi cs b as e d o n dis c o v eri n g u ns u p er vis e d sl ots. T his eli m-
i n at es t h e n e e d f or e x pli cit gr o u n d-tr ut h st at e s u p er visi o n.

U ns u p er vis e d O bj e ct- c e ntri c R e pr es e nt ati o n: O ur w or k
b uil ds o n l e ar ni n g o bj e ct- c e ntri c r e pr es e nt ati o ns usi n g sl ot
att e nti o n [ 1 1]. Sl ot att e nti o n i nt erf a c es wit h vis u al o ut p uts
t o g e n er at e a s et of sl ots. F or r o b oti cs a p pli c ati o ns, e ns uri n g
t e m p or al c o nsist e n c y i n t h es e sl ots is vit al f or a c c ur at e s c e n e
d y n a mi cs u n d erst a n di n g. T his c o nsist e n c y is ess e nti al f or
f or m ul ati n g a pl a n ni n g o bj e cti v e or tr ai ni n g l oss. T h us, w e
e x pli citl y i n c or p or at e a f e at ur e tr a ns p ort m e c h a nis m i n o ur
Sl ot Tr a ns p ort t o m ai nt ai n c o nsist e n c y a cr oss i m a g e p airs fr o m
diff er e nt o bs er v ati o n ti m est e ps i ns pir e d b y [ 1 7]. I n r e c e nt w or k
o n u ns u p er vis e d m ulti- o bj e ct d y n a mi cs, k e y p oi nt e xtr a cti o n
h as b e e n e x pl or e d [ 1 8]. H o w e v er, k e y p oi nt- b as e d d y n a mi cs
f a c e c h all e n g es wit h o c cl usi o n, a c o m m o n iss u e i n r o b oti cs
s c e n ari os. O ur Sl ot Tr a ns p ort a d dr ess es t his pr o bl e m, r eli a bl y
ass o ci ati n g e a c h sl ot wit h s p e ci fi c o bj e cts e v e n u n d er h e a v y
o c cl usi o ns.

III. M E T H O D S

O ur fr a m e w or k h as t w o m ai n c o m p o n e nts:

( 1) Sl ot Tr a ns p o rt : A n u ns u p er vis e d m ulti- o bj e ct dis c o v er y
m o d el t h at ef fi ci e ntl y e xtr a cts r o b ust a n d t e m p or all y c o nsist e nt
o bj e ct- c e ntri c r e pr es e nt ati o n sl ots fr o m m ulti- o bj e ct s c e n es.

( 2) Sl ot G N N : B uil di n g o n t o p of t h e sl ot dis c o v er y, t his
u ns u p er vis e d gr a p h- b as e d m o d el l e ar ns t h e d y n a mi cs of t h e
o bj e ct- c e ntri c r e pr es e nt ati o ns. I m p ort a ntl y, Sl ot G N N is c o n di-
ti o n e d o n t h e r o b ot’s a cti o n w hi c h e n a bl es a p pli c ati o ns s u c h
as m o d el- b as e d a cti o n pl a n ni n g.

A. Sl ot Tr a ns p ort: U ns u p er vis e d M ulti- O bj e ct Dis c o v er y

T h e Sl ot Tr a ns p ort’s r ol e is t o m a p t h e i m a g e t o u n d erl yi n g
o bj e ct- c e ntri c r e pr es e nt ati o ns. A d et ail e d ar c hit e ct ur e of Sl ot-
Tr a ns p ort is s h o w n i n Fi g. 2. We b uil d o n t h e sl ot att e nti o n [ 1 1]
t o e xtr a ct sl ots fr o m i m a g e fr a m es w hil e e ns uri n g t e m p or al
ali g n m e nt of t h e sl ots. Gi v e n a n R G B i m a g e , a c o n v ol uti o n al
e n c o d er a u g m e nt e d wit h p ositi o n al e m b e d di n gs, m a ps
t h e i m a g e t o a n i nt er m e di at e r e pr es e nt ati o n of W 2 R × × .

1 7 5 0 9

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n A pril 2 3, 2 0 2 5 at 1 7: 0 0: 0 3 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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Fi g. 3. Sl ot G N N : U ns u p er vis e d M ulti- O bj e ct D y n a mi cs. ( a) Sl ot G N N pr e di cts sl ot c h a n g es ∆ z t
i aft er a p pl yi n g a p us hi n g a cti o n a t . Usi n g Sl ot Tr a ns p ort’s

sl ots ( f s l o t ), a gr a p h G t is f or m e d wit h sl ots as n o d es a n d sl ot i nt er a cti o ns as e d g es. E d g es a n d n o d es ar e u p d at e d vi a f e d g e a n d f n o d e , r es ulti n g i n n e xt

ti m est e p sl ots z t + 1
i . T h e n e xt i m a g e Î t + 1 is t h e n r e c o nstr u ct e d. ( b) Wit h a s e q u e n c e of r o b ot a cti o ns, Sl ot G N N pr oj e cts f ut ur e m ulti- o bj e ct d y n a mi cs a n d

s y nt h esi z es f ut ur e s c e n es. ( c) Sl ot G N N als o f a cilit at es g o al- dir e ct e d pl a n ni n g t o o pti mi z e a cti o ns t o w ar ds a d esir e d g o al.

Usi n g t h e sl ot att e nti o n [ 1 1], sl ots z 1: K ∈ R d ar e d eri v e d t h at
u ni q u el y r e pr es e nt disti n ct p orti o ns of W .

We r e c o g ni z e t h at o ur ulti m at e g o al of l e ar ni n g d y n a mi cs i n
a n o bj e ct- c e ntri c l at e nt s p a c e r e q uir es t e m p or al c o nsist e n c y of
t h e sl ots. T o e x pli citl y e nf or c e t his, w e i ntr o d u c e t h e tr a ns p ort
m e c h a nis m i n Sl ot Tr a ns p ort t o est a blis h t e m p or al ali g n m e nt i n
sl ots. I ns pir e d b y [ 1 7], t his m e c h a nis m tr a ns p orts sl ot f e at ur es
b et w e e n a p air of s o ur c e a n d t ar g et i m a g es (I S , IT ) s a m pl e d
fr o m a gi v e n s c e n e.

F or e a c h i m a g e, sl ots ar e e xtr a ct e d as (z S
1: K , zT1: K ). First,

usi n g a c o n v ol uti o n al d e c o d er f d e c , w e d e c o d e e a c h sl ot i nt o
a f e at ur e m a p ( Φ 1: K

S Φ 1: K
T ) ∈ R h × w × m a n d a n al p h a m as k

(M 1: K
S , M 1: K

T ) ∈ R h × w . T h es e al p h a m as ks s er v e as mi xt ur e
w ei g hts t o i n p ai nt e a c h sl ot’s f e at ur e m a p fr o m t h e t ar g et
i m a g e o nt o t h e s o ur c e i m a g e (s e e Fi g. 2). We pr o d u c e a
tr a ns p ort e d f e at ur e m a p Φ T ← S b y n ullif yi n g t h e s o ur c e f e at ur e
m a p o utsi d e t h e sl ot’s pr e di ct e d m as k f or b ot h t h e t ar g et a n d
s o ur c e ( 1 − M i

T ) · ( 1 − M i
S ) · Φ i

S , f oll o w e d b y o v erl a yi n g t h e
m as k e d t ar g et f e at ur e m a p M i

T .Φ i
T . Fi n all y, a c o n v ol uti o n al

r e c o nstr u cti o n m o d ul e f r e c r e c o nstr u cts e a c h sl ot as a n R G B
i m a g e R i

T ∈ R h × w × 3 b as e d o n t h e tr a ns p ort e d f e at ur e m a p.
T h e r e c o nstr u ct e d sl ots t o g et h er r e c o nstr u ct e d t ar g et i m a g e Î T .

T h e tr a ns p ort m e c h a nis m is Sl ot Tr a ns p ort e nf or c es t e m p or al
ali g n m e nt b et w e e n i m a g e p airs d uri n g tr ai ni n g. N ot a bl y, t h e
l e ar n e d sl ots t hr o u g h Sl ot Tr a ns p ort c o nsist e ntl y r e gist er t o
a u ni q u e o bj e ct e v e n u n d er h e a v y o c cl usi o n or a bs e n c e of
a n o bj e ct. D uri n g i nf er e n c e, Sl ot Tr a ns p ort c a n dis c o v er a n d
r e c o nstr u ct sl ots fr o m a si n gl e i m a g e b y dir e ctl y r e c o nstr u ct-
i n g t h e e xtr a ct e d p er-sl ot f e at ur es a n d m as ks. Sl ot Tr a ns p ort
e ns ur es t h at e a c h sl ot’s f e at ur e m a p ali g ns w ell wit h its m as k
f or l e ar ni n g c o nsist e nt o bj e ct r e pr es e nt ati o n a c orss ti m e. I m-
p ort a ntl y, t his t e m p or al ali g n m e nt is a c hi e v e d wit h o ut a d di n g
a d diti o n al l e ar n a bl e p ar a m et ers; t h e s a m e f sl o t a n d f d e c ar e
us e d w h e n pr o c essi n g b ot h s o ur c e a n d t ar g et i m a g es.

B. Sl ot G N N: U ns u p er vis e d M ulti- O bj e ct D y n a mi cs

T h e m ai n p ur p os e of Sl ot G N N is t o l e ar n t h e d y n a mi cs a n d
m o d el i nt er a cti o ns b et w e e n t h e vis u al el e m e nts i n a m ulti-

o bj e ct s c e n e, s u c h as t h e r o b ot, o bj e cts, a n d t h e b a c k gr o u n d. It
d o es s o usi n g a gr a p h- b as e d r e pr es e nt ati o n, w h er e e a c h o bj e ct-
c e ntri c sl ot c orr es p o n ds t o a n o d e i n t h e gr a p h. Cr u ci all y,
Sl ot G N N e n a bl es l e ar ni n g u ns u p er vis e d m ulti- o bj e ct d y n a m-
i cs, eli mi n ati n g t h e n e e d f or s u p er vis e d tr aj e ct or y l a b els t h at
r e q uir e a c c ess t o t h e s yst e m’s gr o u n d-tr ut h st at e. T his f e at ur e
b e c o m es ess e nti al i n r e al- w orl d s c e n ari os w h er e o bt ai ni n g
a c c ur at e gr o u n d-tr ut h d at a is c h all e n gi n g or i m pr a cti c al. R ef er
t o t h e d et ail e d ar c hit e ct ur e ill ustr at e d i n Fi g. 3- a.

Gi v e n a n i m a g e I t wit h its ass o ci at e d sl ots z t
1: K dis c o v er e d

t hr o u g h Sl ot Tr a ns p ort, w e c o nstr u ct a f ull y c o n n e ct e d gr a p h
G t = ( V , E ). E a c h n o d e v i ∈ V i n t h e gr a p h r e pr es e nts a sl ot,
a n d e a c h e d g e e i j ∈ E r e pr es e nts t h e i nt er a cti o n b et w e e n t h e
p air of sl ots z i , zj . F or e a c h n o d e, w e ass o ci at e a n e m b e d di n g
n i w hi c h is i niti ali z e d wit h t h e sl ot r e pr es e nt ati o ns z i . T h e
e d g e e m b e d di n gs, r e pr es e nti n g i nt er a cti o ns, ar e i niti ali z e d
b as e d o n a u g m e nti n g t h e c o n n e ct e d sl ots r e pr es e nt ati o ns. T o
pr o c ess t h e i nf or m ati o n i n t h e gr a p h r e pr es e nt ati o n, Sl ot G N N
e m pl o ys a m ess a g e- p assi n g n e ur al n et w or k ar c hit e ct ur e [ 1 9],
[ 1 0] t o u p d at e n o d e a n d e d g e e m b e d di n gs. I n c o mi n g i nf or-
m ati o n fr o m n ei g h b ori n g n o d es is a g gr e g at e d t o u p d at e e a c h
n o d e’s st at e, c a pt uri n g t h e d y n a mi cs a n d i nt er a cti o ns i n t h e
s c e n e.

T h e m ess a g e- p assi n g o p er ati o n i n t h e gr a p h c o nsists of t w o
pri m ar y st e ps (s e e 3). First, t h e e d g e e m b e d di n gs, e i j , ar e
u p d at e d b as e d o n t h eir c o n n e cti n g n o d e e m b e d di n gs: e ′

i j ←
f e d g e (e i j , ni , nj ). S e c o n dl y, t h e n o d e e m b e d di n gs ar e u p d at e d
usi n g t h e u p d at e d e d g e e m b e d di n gs ass o ci at e d wit h t h e m a n d
t h e r o b ot a cti o n: n ′

k ← f n o d e (n k , i ∈ N ( k ) e ′
i k , at ). H er e,

f e d g e a n d f n o d e ar e m ulti-l a y er p er c e pti o n u p d at e f u n cti o ns
f or e d g es a n d n o d es, r es p e cti v el y. N (k ) d e n ot es t h e n ei g h b ors
of n o d e k , w hi c h i n t h e c o nt e xt of a f ull y c o n n e ct e d gr a p h
is all ot h er n o d es. T o c o n diti o n o n e xt er n al a cti o n, t h e r o b ot
a cti o n a t ∈ R 4 , c h ar a ct eri z e d as a p oi nt-t o- p oi nt p us h v e ct or
i n i m a g e c o or di n at es, is i nt e gr at e d as a n i n p ut t o f n o d e i n
Sl ot G N N. T his e ns ur es t h e l e ar n e d d y n a mi cs ar e c o n diti o n e d
o n t h e r o b ot’s a cti o n a n d c a n b e us e d f or pl a n ni n g i n t h e
d o w nstr e a m r o b oti cs c o ntr ol t as k.

1 7 5 1 0

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n A pril 2 3, 2 0 2 5 at 1 7: 0 0: 0 3 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 


































       

    

          

    

Fi g. 4.  Vis u ali z ati o ns of p er-sl ot m as ks a n d r e c o nstr u cti o ns. Sl ot Tr a ns p ort
e x hi bits s u p eri or p erf or m a n c e i n a c c ur a c y a n d c o nsist e n c y of o bj e ct- c e ntri c
r e pr es e nt ati o n, e v e n u n d er o c cl usi o n, c o m p ar e d t o t h e Sl ot Att e nti o n b as eli n e
[ 1 1]. We als o s h o w c as e pr e di ct e d s e g m e nts fr o m S A M [ 2 0].

Aft er m ess a g e- p assi n g, t h e u p d at e d n o d e e m b e d di n gs ar e
us e d t o pr e di ct t h e e v ol uti o n of sl ots i n t h e n e xt
ti m est e p c o n diti o n e d o n t h e a cti o n . T his all o ws f or t h e r oll-
o ut of t h e d y n a mi cs i nt o t h e f ut ur e a n d e n a bl es s y nt h esi zi n g
t h e f ut ur e a p p e ar a n c e of t h e s c e n e.

C. Tr ai ni n g Sl ot Tr a ns p ort a n d Sl ot G N N

Sl ot Tr a ns p ort is tr ai n e d usi n g o nl y t h e i m a g e r e c o nstr u c-
ti o n err or f or s u p er visi o n. T h e i m a g e r e c o nstr u cti o n l oss
L , is d e fi n e d usi n g a pi x el- wis e M e a n S q u ar e d
Err or ( M S E) b et w e e n t h e t ar g et a n d r e c o nstr u ct e d i m a g es.
I n Fi g. 2, m o d ul es wit h l e ar n a bl e p ar a m et ers ar e disti n ctl y
hi g hli g ht e d i n bl u e. O n c e Sl ot Tr a ns p ort is tr ai n e d, it s u p er vis es
t h e tr ai ni n g of Sl ot G N N t o l e ar n vis u al d y n a mi cs.

We us e a sl ot pr e di cti o n M S E l oss t o tr ai n Sl ot G N N,
L . T his l oss r e d u c es t h e dist a n c e b et w e e n t h e
sl ots dir e ctl y pr e di ct e d fr o m t h e n e xt ti m est e p i m a g e usi n g
Sl ot Tr a ns p ort a n d sl ots fr o m t h e si n gl e-st e p d y n a mi cs
wit h Sl ot G N N , as vis u ali z e d i n Fi g. 3- a ( m o d ul es wit h
l e a n a bl e p ar a m et ers ar e hi g hli g ht e d i n bl u e). I m p ort a ntl y, e m-
pl o yi n g a p er-sl ot pr e di cti o n l oss r e q uir es t e m p or al ali g n m e nt
t h at is e ns ur e d t hr o u g h Sl ot Tr a ns p ort. F urt h er m or e, w e us e
t h e si n gl e-st e p sl ot d y n a mi cs t o r e c o nstr u ct t h e i m a g e a n d als o
mi ni mi z e t h e i m a g e r e c o nstr u cti o n M S E l oss L .

D. L o n g- H oriz o n M ulti- O bj e ct D y n a mi cs R oll o ut

Gi v e n a s e q u e n c e of r o b ot p us hi n g a cti o ns , a l e ar n e d
Sl ot G N N r olls o ut t h e d y n a mi cs of a m ulti- o bj e ct s c e n e b as e d
o nl y o n t h e i niti al i m a g e fr a m e . As s h o w n i n Fi g. 3- b, t h e
m o d el’s si n gl e-st e p pr e di cti o ns ar e c as c a d e d t o g e n er at e sl ots
o v er e xt e n d e d f ut ur e h ori z o ns. T his c a p a bilit y f or a c c ur at e
d y n a mi cs r oll o ut is p ossi bl e d u e t o t h e t e m p or al ali g n m e nt
a c hi e v e d wit h Sl ot Tr a ns p ort. F urt h er m or e, f or a n y gi v e n f ut ur e
ti m est e p, c a n s y nt h esi z e a n i m a g e of t h e s c e n e.

E. G o al- Dir e ct e d Pl a n ni n g

L e ar ni n g t h e s c e n e d y n a mi cs f a cilit at es g o al- dir e ct e d s e-
q u e nti al a cti o n pl a n ni n g f or m ulti- o bj e ct m a ni p ul ati o n. As
s h o w n i n Fi g. 3- c, wit h Sl ot G N N, w e o pti mi z e r o b ot a cti o ns
t o ali g n a s c e n e’s st at e wit h a t ar g et g o al i m a g e. T his is
pi v ot al w h e n t h e r o b ot i nt er a cts wit h s e v er al o bj e cts t o r e a c h a
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Fi g. 5.  E x a m pl es of si n gl e-st e p d y n a mi cs pr e di cti o n usi n g Sl ot G N N. Gi v e n
t h e c urr e nt s c e n e i m a g e a n d t h e r o b ot’s p us hi n g a cti o n, o ur m o d el pr e cis el y
pr e di cts t h e f ut ur e st at e of e a c h sl ot a n d s y nt h esi z es t h e f ut ur e s c e n e i m a g e.

d esir e d st at e. Gi v e n a s c e n e i m a g e, w e s a m pl e p ossi bl e a cti o n
s e q u e n c es o v er a pl a n ni n g h ori z o n a n d f or e c ast t h e sl ot
r e pr es e nt ati o n b y r olli n g t h e d y n a mi cs. Usi n g M o d el-
pr e di cti v e c o ntr ol ( M P C) [ 2 1], t h e o pti m al a cti o n s e q u e n c e is
c h os e n b y mi ni mi zi n g t h e sl ot l oss L , w hi c h
q u a nti fi es t h e v ari a n c e b et w e e n pr e di ct e d sl ots a n d t h e g o al
i m a g e sl ots.

I V. E X P E R I M E N T S

We str u ct ur e o ur e x p eri m e nts ar o u n d: ( 1) H o w a c c ur at el y
a n d c o nsist e ntl y d o sl ots e xtr a ct e d b y Sl ot Tr a ns p ort r e pr es e nt
e a c h vis u al el e m e nt i n t h e s c e n e ? ( 2) H o w eff e cti v e is Sl ot-
G N N i n pr e di cti n g m ulti- o bj e ct s c e n e d y n a mi cs ? ( 3) H o w w ell
d o es o ur fr a m e w or k a p pl y t o d o w nstr e a m r o b oti c t as ks ?

A. D at a

Si m ul ati o n: Usi n g M uj o c o [ 2 2], [ 2 3], w e si m ul at e a m ulti-
o bj e ct t a bl et o p s c e n e wit h Y C B o bj e cts [ 2 4] a n d a U R 5 e
r o b ot wit h a c yli n dri c al e n d- eff e ct or. T h e r o b ot p erf or ms
pl a n ar p us hi n g a cti o n, c a pt ur e d b y a n R G B c a m er a. T h e d at a
is f or m att e d as i m a g e- a cti o n t u pl es c o nt ai ni n g
pr e- a n d p ost- a cti o n i m a g es, a n d a cti o n v e ct ors i n t h e i m a g e
c o or di n at es. We g e n er at e e pis o d es st e ps of r a n d o m
p us h es f or a gi v e n s u bs et of o bj e cts. Sl ot Tr a ns p ort is tr ai n e d
b y r a n d o ml y s a m pli n g t ar g et a n d s o ur c e i m a g es a cr oss all
e pis o d es. We t h e n us e t h e l e ar n e d Sl ot Tr a ns p ort t o dis c o v er
sl ots a n d tr ai n Sl ot G N N o n t h e i m a g e- a cti o n t u pl es. E v al u a-
ti o ns o n Sl ot Tr a ns p ort ar e d o n e wit h fi v e o bj e cts usi n g i m a g es
fr o m a t o p- vi e w c a m er a. E x p eri m e nts i n v ol vi n g si n gl e-st e p
d y n a mi cs, l o n g- h ori z o n pr e di cti o ns, a n d o bj e ct r e arr a n g e m e nts
ar e o n s c e n es wit h t hr e e o bj e cts wit h a n a n gl e d c a m er a.

R e al- w orl d: We us e a U R 5 e r o b ot wit h a c ust o m- pri nt e d
c yli n dri c al e n d- eff e ct or a n d a n R G B c a m er a. We c oll e ct d at a

e pis o d es st e ps of r a n d o m p us h es f or s u bs ets of 3
r e al Y C B o bj e cts. M o d els tr ai n e d i n t h e si m ul ati o n f or t h e
s a m e o bj e ct s u bs et ar e r etr ai n e d o n t his r e al- w orl d d at a.

B. B as eli n es

We e v al u at e o ur a p pr o a c h a g ai nst v ari o us m et h o ds:
O bj e ct Dis c o v er y: O ur Sl ot Tr a ns p ort, is c o m p ar e d wit h t h e
ori gi n al sl ot att e nti o n a p pr o a c h [ 1 1]. We f oll o w t h e i m pl e m e n-
t ati o n of t his b as eli n e b y e x cl u di n g t h e tr a ns p ort m e c h a nis m
i ntr o d u c e d i n o ur Sl ot Tr a ns p ort d uri n g tr ai ni n g. F urt h er m or e,
w e c o m p ar e o ur a p pr o a c h wit h t h e off-t h e-s h elf S A M [ 2 0].
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Fi g. 6.  L o n g- h ori z o n sl ot d y n a mi cs pr e di cti o n: Sl ot G N N h as m or e st a bilit y
c o m p ar e d t o Sl ot M L P. We als o s h o w k e y p oi nts d et e ct e d wit h KI N et [ 1 8].

( a) ( b)

Fi g. 7. ( a) L o n g- h ori z o n d y n a mi cs r oll o ut err or. Sl ot G N N e x hi bits r o b ust
d y n a mi cs pr e di cti o ns as t h e ti m est e p i n cr e as es. ( b) Pl a n ni n g r es ults: C o m p ar-
i n g t h e dist a n c e t o t h e g o al i m a g e b et w e e n Sl ot G N N a n d Sl ot M L P.

i niti al g o alt = 1 t = T

Fi g. 8.  Q u alit ati v e r es ults o n c o ntr ol. E a c h r o w s h o ws t h e a cti o n s e q u e n c e
( hi g hli g ht e d i n gr e e n) o pti mi z e d t o m a xi mi z e s c e n e si mil arit y t o g o al i m a g e.

M ulti- O bj e ct D y n a mi cs: F or a cti o n- c o n diti o n e d gr a p h- b as e d
d y n a mi cs, w e c o nsi d er F or w G N N [ 6], w hi c h us es s u p er visi o n
of gr o u n d-tr ut h o bj e ct m as ks. T h e s c e n e gr a p h’s n o d es ar e
e m b e d d e d wit h t h e gr o u n d-tr ut h o bj e ct p ositi o ns a n d m as ks t o
dir e ctl y r e c o nstr u ct t h e f ut ur e i m a g e. We als o c o m p ar e wit h
KI N et [ 1 8], a n u ns u p er vis e d m o d el t h at d et er mi n es d y n a mi cs
b y i d e ntif yi n g a s et of k e y p oi nts fr o m t h e s c e n e i m a g e. L astl y,
w e c o m p ar e wit h Sl ot M L P v ari a nt. W hil e it utili z es sl ots fr o m
Sl ot Tr a ns p ort, it m o d els d y n a mi cs wit h M L Ps r at h er t h a n t h e
gr a p h- b as e d a p pr o a c h of Sl ot G N N.
E v al u ati o n M etri cs: We c o m p ut e pi x el- wis e m e a n s q u ar e d
err or ( M S E) a n d L e ar n e d P er c e pt u al I m a g e P at c h Si mil arit y
( L PI P S) [ 2 5] t o m e as ur e t h e a c c ur a c y of t h e sl ots i n r e c o n-
str u cti n g t h e s c e n e c o m p ositi o n. A d diti o n all y, t o q u a ntif y t h e
q u alit y a n d c o nsist e n c y of t h e sl ot m as ks, w e c o m p ut e t h e
m e a n I nt ers e cti o n o v er U ni o n (I o U) f or sl ot m as ks pr o d u c e d
b y Sl ot Tr a ns p ort, Sl ot Att e nti o n, a n d S A M, c o m p ari n g t h e m
a g ai nst t h e gr o u n d-tr ut h m as ks fr o m si m ul ati o n.

V. R E S U L T S

A. O bj e ct Dis c o v er y Perf or m a n c e

Fi g ur e 4 s h o w c as es t h e sl ot m as ks a n d sl ot r e c o nstr u cti o ns.
I n a s c e n e wit h fi v e o bj e cts, Sl ot Tr a ns p ort q u alit ati v el y o ut p er-

T A B L E I

O bj e ct dis c o v er y p erf or m a n c e m e as ur e d as vis u al q u alit y ( M S E a n d L PI P S)
a n d m as k c o nsist e n c y ( mI o U) ( M S E a n d L PI P S v al u es ar e s c al e d × 1 0 − 2 ).

M et h o d  M S E ↓ L PI P S ↓ mI o U ( %) ↑

Sl ot Tr a ns p o rt ( O u rs) 0. 1 7 ± 0. 0 6 1. 2 9 ± 0. 4 6 9 3. 4 ± 0. 7
Sl ot Att e nti o n [ 1 1] 0. 4 3 ± 0. 1 7 4. 7 9 ± 0. 3 2 5 0. 5 ± 1 6. 2
S A M [ 2 0]  N. A.  N. A. 8 6. 9 ± 8. 5

T A B L E II

Si n gl e-st e p d y n a mi cs pr e di cti o n a c c ur a c y m e as ur e d as vis u al q u alit y ( M S E)
a n d m as k c o nsist e n c y ( mI o U).

M et h o d S u p e r visi o n  M S E ↓ mI o U ( %) ↑

Sl ot G N N ( O u rs) I m g 0. 1 4 ± 0. 0 5 8 6. 9 ± 2. 9
Sl ot M L P I m g 0. 3 2 ± 0. 0 9 7 2. 6 ± 1. 1
KI N et [ 1 8] I m g 1. 8 6 ± 0. 0 9  N. A.
F or w G N N [ 6]  G T St at e 0. 5 0 ± 0. 1 4  N. A.

f or ms t h e Sl ot Att e nti o n b as eli n e [ 1 1]. Sl ot Tr a ns p ort a c c ur at el y
i d e nti fi es all disti n ct vis u al el e m e nts, a n d pr e di cts a n a c c ur at e
m as k f or e a c h — e v e n u n d er h e a v y o c cl usi o n. H o w e v er, as
s e e n i n Fi g. 4, t h e Sl ot Att e nti o n b as eli n e o v erl o o ks t h e s p a m
o bj e ct o c cl u d e d b y t h e p o w er drill. M or e o v er, Sl ot Tr a ns p ort
d eli n e at es cl e ar b o u n d ari es f or e a c h sl ot a n d a c c ur at el y r e c o n-
str u cts t h eir a p p e ar a n c e. I n c o ntr ast, t h e Sl ot Att e nti o n b as eli n e
pr es e nts i n disti n ct, bl urr e d o bj e ct m as ks a n d r e c o nstr u cti o ns.
We f urt h er s h o w t h at r el yi n g o n off-t h e-s h elf s e g m e nt ati o n
m et h o ds, s u c h as S A M [ 2 0], is n ot o pti m al f or l e ar ni n g o bj e ct
r e pr es e nt ati o ns. T his is pri m aril y d u e t o S A M’s t e n d e n c y t o
o v er-s e g m e nt t e xt ur e d o bj e cts ( e. g., b a c k gr o u n ds) a n d u n d er-
s e g m e nt cl utt er e d o bj e cts.

Ta bl e I s u m m ari z es t h e q u a ntit ati v e e v al u ati o n of b ot h t h e
vis u al q u alit y of r e c o nstr u ct e d sl ots a n d t h e pr e cisi o n of sl ot
m as ks. Sl ot Tr a ns p ort disti n ctl y o ut p erf or ms t h e Sl ot Att e nti o n
b as eli n e b y a c hi e vi n g si g ni fi c a ntl y b ett er vis u al fi d elit y, m e a-
s ur e d i n M S E a n d L PI P S. F urt h er m or e, o bj e ct m as ks pr o d u c e d
b y Sl ot Tr a ns p ort d e m o nstr at e s u p eri or ali g n m e nt wit h gr o u n d-
tr ut h m as ks d eri v e d fr o m si m ul at e d d at a. I n c o ntr ast, Sl ot At-
t e nti o n oft e n str u g gl es t o ali g n sl ots a c c ur at el y t o cl utt er e d
o bj e cts, as s h o w n i n Fi g 4. T his li mit ati o n is e vi d e nt i n t h e
l o w er mI o U f or Sl ot Att e nti o n c o m p ar e d t o Sl ot Tr a ns p ort.

B. D y n a mi cs Pr e di cti o n Perf or m a n c e

Fi g ur e 5 ill ustr at es t h e si n gl e-st e p d y n a mi cs pr e di cti o n of
Sl ot G N N. B y t a ki n g as i n p ut t h e c urr e nt i m a g e a n d t h e
i nt e n d e d r o b ot’s p us hi n g a cti o n v e ct or, o ur m o d el a c c ur at el y
pr e di cts t h e f ut ur e s c e n e. It d o es s o b y pr e di cti n g t h e f ut ur e
st at e of e a c h sl ot, b as e d o n t h e l e ar n e d m ulti- o bj e ct d y n a mi cs
of t h e s c e n e. T h e q u a ntit ati v e r es ults pr es e nt e d i n Ta bl e II
hi g hli g ht t h e a c c ur a c y of Sl ot G N N i n si n gl e-st e p d y n a mi cs
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i nf or m ati o n f or s u p er visi o n, it still f alls s h ort i n M S E c o m-
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Fig. 9. Real-world control using SlotTransport and SlotGNN: The top row shows objects being rearranged to align with a goal image. In the bottom row,
objects are persistently displaced from their goal positions, the robot comes up with a sequence of actions to push the objects back to their desired locations.
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Fig. 10. Real-world object slot discovery with SlotTransport. Our unsuper-
vised framework transfers to real settings and discovers accurate object-centric
representations that reflect the positional and visual features of the objects.

pared to SlotGNN, which utilizes image-based supervision.
This further highlights the robustness of the detected slots
in SlotTransport in representing objects enabling SlotGNN to
learn accurate multi-object dynamics.

As illustrated in Fig. 6, SlotGNN excels in predicting
stable long-horizon dynamics compared with SlotMLP. Al-
though the scenes reconstructed with SlotGNN may diverge
from the ground-truth due to cumulative prediction errors, it
yields physically plausible future scenes. In contrast, SlotMLP
struggles to retain the coherence slots over time. Given that
both SlotGNN and SlotMLP use slots by SlotTransport, the
difference in their long-horizon predictions can be attributed
to the graph-based model’s enhanced ability to capture multi-
object dynamics. In Fig. 6, unsupervised keypoints detected by
KINet [18] are also shown. KINet requires stable keypoint-
object correspondences to learn multi-object dynamics. This
stability is compromised when a robot enters or exits the frame
or introduces object occlusions (see the pink keypoint in the
last column of Fig. 6). A quantitative summary of the long-
horizon rollout outcomes can be found in Fig. 7-a.

C. Planning with SlotGNN

Fig. 8 shows our method’s application in control tasks. In a
challenging object rearrangement scenario, the robot plans an
action sequence using SlotTransport and SlotGNN. Through
accurate multi-object dynamics projections, the robot effec-
tively aligns objects to a desired configuration using just the

RGB image. The planning performance of slot-based models
are compared in Fig. 7 which emphasizes the effectiveness of
a graph-based model in learning object-centric dynamics.

D. Real-World Experiments

Demonstrating the real-world applicability of our unsuper-
vised approach, we successfully transfer SlotTransport and
SlotGNN, initially trained in simulation, to the real robot by
collecting a minimal dataset of just 20 real robot demonstra-
tions (%5 of the amount of simulated training data). SlotTrans-
port retains its accuracy in the real environment as shown in
Fig 10. The slots discovered from the real mutli-object scene,
clearly distinguish all the scene elements even under occlusion.
For the real-world control, we experiment with two tasks as
shown in Fig. 9. The first scenario, presented in the top row,
involves rearranging objects to achieve a predetermined goal
image. The bottom row showcases a more dynamic scenario
where objects are continuously displaced from their target
positions by a human with a grabber stick. In response, our
robot, using SlotTransport and SlotGNN, finds a sequence of
actions to restore the objects to their intended locations.

VI. CONCLUSION

This work addresses the challenges of unsupervised learn-
ing for multi-object dynamics through visual observations.
We present SlotTransport, a novel approach based on slot
attention for unsupervised object discovery, ensuring temporal
consistency in object-centric representations. Alongside, we
introduce SlotGNN, an unsupervised graph-based dynamics
model for predicting the future states of multi-object scenes
using the slots. Both methods have proven effective in complex
robotic control tasks and long-horizon dynamics prediction.
Importantly, we demonstrate that our unsupervised approach,
using SlotTransport and SlotGNN, successfully transfers to
real-world settings and enables object discovery and dynamic
modeling solely from RGB images. For limitations, one key
aspect we recognize is that our slot discovery process currently
necessitates the pre-determination of the number of slots. In
our experiments, we predefined the slot count equal to the
anticipated number of elements in the scene. Developing a
more adaptive mechanism that automatically determines the
required slot count could be a promising future research
direction.
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