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Abstract: We devise some differential forms after Chern to compute a family of formulas for comparing total
mean curvatures of nested hypersurfaces in Riemannian manifolds. This yields a quicker proof of a recent result
of the author with Joel Spruck, which had been obtained via Reilly’s identities.
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1 Introduction

The total rth mean curvature of an oriented C! hypersurface I' in a Riemannian n-manifold M, for0 <r <n-—1,
is given by

M, D) := /or(rc),
r
where x :=(ky, ..., k,_;) denotes the principal curvatures of I', with respect to the choice of orientation, and
fo R"! > Ris the rth symmetric function; so

o.(k) = Z K, - K-
1<i;<...<i,<n—1
We set 0 :=1, and o, :=0 for r > n by convention. Thus M, (I') is the (n — 1)-dimensional volume, M, (")
is the total mean curvature, and M,,_,;(I) is the total Gauss-Kronecker curvature of I'. Up to multiplicative con-
stants, these quantities form the coefficients of Steiner’s polynomial, and are known as quermassintegrals when
I" is a convex hypersurface in Euclidean space. The following result was established in [1, Thm. 3.1] generalizing
earlier work in [2, Thm. 4.7]:

Theorem 1.1. ([1]). Let M be a compact orientable Riemannian n-manifold with boundary components I';, I,
Suppose there exists a C*! function u:M — [0,1] with Vu# 0 on M, andu=ionT; Let k:=(kq, ..., k,_1) be
principal curvatures of level sets of u with respect to e, :=Vu/|Vul|, and let e,, ... , e,_; be an orthonormal set of
the corresponding principal directions. Then, for0 <r <n-—1,
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MIT)—MT) =00+ 1)/0'r+1(1<) + /< — Z K - ’CiHKi,n
M M

1
+ w z K‘i1 - Kir—zlvuli,_lRi,i,_lirn> ) (1)
where |Vul;:=V, [Vul, Ry, = (R(e;, e))ey, e;) are components of the Riemann curvature tensor of M, K;; = Ry;; is
the sectional curvature, and the sums range over distinct values of1 < i, ... i, < n—1, withi; < ... <i._;inthe

first sum, and i; < ... < i,_, in the second sum.

In [1], the above theorem was established via Reilly’s identities [3]. Here we present a somewhat shorter
and conceptually simpler proof using differential forms which we construct after Chern [4], as Borbély [5], [6]
had also done earlier. More specifically, we devise a differential (n — 1)-form @, on M so that M,.(I";) correspond
to integration of @, on I';. Then computing the exterior derivative d®, yields (1) via Stokes theorem. Various
applications of Theorem 1.1 are developed in [2], [7], including total curvature bounds, and rigidity results in
Riemannian geometry. See also [1] for more results of this type.

2 Basic formulas

As in the statement of Theorem 1.1, we let M be a compact orientable Riemannian n-manifold with boundary
0M =T, UT,. Furthermore, (-, -) denotes the metric on M, with induced norm | - | :=¢-, ')1/ 2 connection V, and
curvature operator

RX,Y)Z:=VyVyZ —VyVyZ + Vs yZ,

for vector fields X, Y, Z on M. The sectional curvature of M with respect to a pair of orthonormal vectors x, y in
the tangent space T,M may be defined as

KX, y):=(RX,Y)X,Y),

where X, Y are local extensions of x, y. With u as in the statement of Theorem 1.1,and for 0 < t < 1,letI’;:= ul()
be the level hypersurface of u at height t. Since u is C%%, T', is twice differentiable almost everywhere by
Rademacher’s theorem. At every such point p of I';, let e;, i =1, ..., n, be the orthonormal frame mentioned
above, i.e.,

oz VU
oVl
and ey, ..., e,_; form a set of orthonormal principal directions of I'; at p. Furthermore we assume that e; is
positively oriented, i.e.,
dvoly (e, ..., e,) =1, 2)

where dvol,, denotes the volume form of M. We call e; a principal frame associated to (level sets of) u. Let 6" be
the corresponding dual one forms on T,M given by

where 5; is the Kronecker function. Note that e; may be extended to a C* orthonormal frame e; in a neighborhood
of pin M so that e, = e, and thus e,, ..., e,_, remain tangent to I, (though they may no longer be principal
directions). The corresponding connection 1-forms on T,M are then given by

wﬂ.(-) =(Vyej,e) = —(e;, Vye) = —o!(),
for1<i,j <n.Sincee;, i=1,...,n—1are principal directions, and e, = e, is the normal of I',,
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where k; are the principal curvatures of I'; with respect to e,. We also record that,

_ (Ve"Vu, &) (VeiVu, ) (VeiVu,Vu) | Vuy;

wi(e) = = = = , 1<i<n-—-1, 5
n(en) |Vul |Vul |Vul? |Vul - ©
where |Vu|; = V, |Vul, and the second equality is due to the symmetry of the Hessian of u. Next, we compute w{
for i, j # n. We may assume that e, ..., e,_, are parallel translations of e;, ..., e,_, on T, ie, 56@ =0,forl<
i,j <n—1where V:=VT is the induced connection on I';. Then w{(ek) = (Vekéj, e)=0forl1<ijk<n-1
Furthermore, we may assume thate,, ... , e,_; are parallel translated along integral curves of e,. Then V, ¢; = 0
for1 <i < n—1, which yields w{ (e,)=0,for1<i,j<n—1 Sowerecord that
®/=0, 1<ij<n-1 )
Cartan’s structure equations state that
n n
i_ iAo i _ 0ol _ K on oo
d0'=Y A0, and  dol=Q- ) of raj, (7
=1 k=1
where Q; are the curvature 2-forms given by
Q;(ef,ek):z — (R(es. e)ej e;) = (Re,, e)e;, e;) = Ry
Note that R/j;; = —Ry,;;. We also set

Finally we record some basic formulas from exterior algebra which will be used in the next section. If A is
a k-form, and ¢ is an #-form, then

ANPley, ... e )= D eliy ... iy ) Ay, ....e) ble . ....e ) ©

where the sum ranges over 1<1i,...,i,, <k+¢, with i; < ... <, and i 4 < ... <iy,,; furthermore,
€@y ... i)):=1,or —1depending on whether i; ... i, isan even or odd permutation of1 ... nrespectively. Note
that

iy oo i Ny iy ) = (DTG ), (10)

since €(i; ... i,_q) = €(i; ... i,_yn). The following identities will also be useful
dO" A ... A0 = eliy ... i) dOT AO% A ... A
= (DY el ... i) 65 AL AGR AdOY, an

where the sums range over 1 < i, ..., I < kwithi, < ... < i inthe first sum,and i; < ... < i;_; in the second
sum.

3 Proof of Theorem 1.1

Let 6’ be the dual 1-forms, and w' be the connection forms corresponding to the principal frame e; of u discussed
in the last section. For 0 < r < n — 1, we define the (n — 1)-forms

D= Y eliy... iy ) Op A Ao AT AL A,

where the sum ranges over 1 <i,...,i,  <n—1withi < ... <i, and i, ;; <... <i, . For r =n—1, this
form appears in Chern [4], and later in Borbély [6] (where it is denoted as “®,” and “®” respectively). The form
@, has also been used by Borbély in [5]. One quickly checks, using (3), (4), and (9), that

(I)r(el, . en—l) = Ur(K), (12)
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which is the main feature of these forms. Recall that I, := u~!(¢) is the level hypersurface of u at height ¢, for
0 <t <1 Let®,| denote the pull back of ®, via the inclusion map I'; - M. Since @, | is an (n — 1)-form on
I';, it is a multiple of the volume form of I";, which is given by

dvoly (ey, ..., e,_y) :=dvoly(e,, ey, ...,e, 1) =€(nl...n—1) = (=L, 13)

Note that here we have used the assumption (2) that e; is positively oriented. So it follows from (12) and (13)
that
@, |r, = (=1""o,(x) dvoly,. (14)

This shows that @, depends only on e, not the choice of ey, ... , e,_; (which also follows from transformation
rules for a);l and &' under a change of frame e — elf withe, = e;l; see [5, p. 269]). In addition, (14) shows that

M, [Ty = /O‘r(K)ZZ/O'r(K) avoly, = (—1)"_1/<I>,.
r[

r, r,
Consequently, by Stokes theorem, for the left hand side of (1) we have
M) — M) = (<17 / ®, = (1! / 0®,. (15)
oM M

Here we have used the assumption that u|, > ulr , which ensures that e, points outward on I'; and inward
on I', with respect to M. Furthermore, since @, depends only on e, and u is C%%, it follows that @, is Lipschitz
(in local coordinates). Hence d®, is integrable, and the use of Stokes theorem here is justified.

Next we compute d®,. Since ;' A ... Aw; is an r-form, the product rule for exterior differentiation
yields that

A0, = (=1 Y £liy ... iy ) O) A ... A Ad(07 A .. AO™)
+ Y ey .. i,,_l)d(wg A /\a)g) NG A LA O, (16)

where the sums still range over i; < ... <i.andi, 4 < ... <i,_4. By (11), the structure equations (7), and (6), the
first term in (16) reduces to

DY £y b)) A A AT AOTABEA LA G
= (DY el by ) @) A AGF A AGTEA LA G A O

= (D" + DD, A O,

where the sums now range over i; < ... <1, and i,,, < ... < i,_;. The factor (r + 1) appears in the last line
because definition of @, requires that i; < ... < i,,4. Applying (11) and (7) also to the second term in (16), we
obtain

dD, = (D" T+ DD,y A0+ (DY €y ... by ) A
AT AQE A A LA G, 17)

where the sum ranges over i; < ... <i._y, and i,y < ... <,_;. For r =1, this formula had been computed
earlier by Borbély [5, (6)].
By (15), it remains to show that (=1)"~* /, d®, yields the right hand side of (1). To see this first note that, by
(9) and (12),
DO AO"=D, A"y, ..., e,)dvoly = 0,,4(k) dvoly,.
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Thus the first term on the right hand side of (17) quickly yields the first integral on the right hand side of (1).
To obtain the second integral there, we evaluate the sum in (17) at e;, which yields

. . . . i i i i i
D ey el . i) oile)) ... ey Qe e; )0 e ) ... 0(e;)
. . . . . i i
= Ze(}l ot o ) €T @) (e DR

where the sums range over 1< j, ... j, < n with j. <j.,; by (9), and the range for 1<4i,...,i,;, <n-—1
remains as in (17), i.e,, i; < ... < iy, and i,,4 < ... <i,_;. The last sum may be partitioned into A + B, where
A consists of terms with j,.; = n, and B of terms with j, ., #n. If j,,; = n, then j;, ..., j,_; # n, which yields
Iy = Jrqa fork =1, ...,r — 2 by (4). This in turn forces j, = i,, as they are the only remaining indices. So by (10)
and (8),

A=Y el bRy oy ) €l o Gy ) K oo K Ry
= (-1 Z K - Ki_ K
where we still have i; < ... < i,_;. This yields the first term in the second integral in (1), after multiplication
by the sign factors (—1)"~* from (17) and (=1)"~! from (15), which ensures the desired sign —1. Next, to compute

B, note that if j, ., # n, then j, # n either, since j, < j,,,, which forces j, = n, for some 1 < k <r —1. We may
assume k = r — 1 after reindexing. Then j,, ..., j,_, # n,whichyields i, = j, fork =1, ...,r —2by (4). So by (5)

, , L. . . . [Vul;
B= el ... i yMpfrsalig - byt €0y ooy ) Ky oo Ky IVur| 'R; ) in

Vul;
M) |VM| bl

=D el e bygR g oy ) G o Gy K K

|Vul;
— (1T . ) bap
= (-1 E Ki - Ki_, V| erlr_llrn’

where the second equality holds because {j., j.,1} = {i,_;, 1.}, since these are the only remaining indices. We
may assume then that j. =i._,, and j, ., = i, since switching j,. and j,,; does not change the sign of the right
hand side of the first equality for B. The sign (—1)"~" in the third equality is due to (10) and switching two indices
in the Riemann tensor coefficient. Finally note that the restriction on the range of indices in the last sum is now
i < ... <1,y since i._; corresponds to j,_;, and we set r — 1 = k during the reindexing above. So B yields the
second term in the second integral in (1), after multiplication by (—1)"~! and (—1)*"1, as was the case for A, which
ensures the desired sign +1. This concludes the proof of Theorem 1.1.
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