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Abstract— Manipulation of deformable Linear objects
(DLOs), including iron wire, rubber, silk, and nylon rope, is
ubiquitous in daily life. These objects exhibit diverse physical
properties, such as Young’s modulus and bending stiffness.
Such diversity poses challenges for developing generalized
manipulation policies. However, previous research limited their
scope to single-material DLOs and engaged in time-consuming
data collection for the state estimation. In this paper, we propose
a two-stage manipulation approach consisting of a material
property (e.g., flexibility) estimation and policy learning for
DLO insertion with reinforcement learning. Firstly, we design
a flexibility estimation scheme that characterizes the properties
of different types of DLOs. The ground truth flexibility data
is collected in simulation to train our flexibility estimation
module. During the manipulation, the robot interacts with
the DLOs to estimate flexibility by analyzing their visual
configurations. Secondly, we train a policy conditioned on
the estimated flexibility to perform challenging DLO insertion
tasks. Our pipeline trained with diverse insertion scenarios
achieves an 85.6% success rate in simulation and 66.67%
in real robot experiments. Please refer to our project page:
https://lmeee.github.io/DLOInsert/

I. INTRODUCTION

Interacting with highly deformable objects is challeng-
ing due to the infinite number of degrees of freedom.
Moreover, their physical properties vary significantly among
different kinds of ropes. Among manipulation tasks with
deformable linear objects (DLOs), DLO insertion into a hole
has extensive applications in healthcare, manufacturing, and
households. Imagine suturing a surgical incision with a de-
formable thread, routing cables inside an automobile frame,
or inserting cables into a desk grommet. These tasks involve
DLOs with vastly different physical properties, requiring
different insertion strategies. For instance, the grasping point
of a stiff iron wire differs significantly from that of a flexible
nylon rope, where the latter requires a closer grip near the
rope head for successful insertion (Fig. 1). For successful
insertion regardless of the DLO types, we have to address
the following questions: (1) How to estimate the material
properties (e.g., flexibility) from visual observations?, (2)
How to select the pick position for DLOs with different
flexibility?, and (3) How should the agent generate a feasible
manipulation trajectory to insert the DLO to a target? Previ-
ous research [1, 2] often fails to account for the diversity
of DLO types. Lv et al.[1] rely on simplified rigid-body
models that may yield inaccurate properties like elasticity
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Fig. 1: Flexibility-aware DLO insertion. The real DLO insertion
demonstration (lower) and corresponding simulation motion (upper)
with estimated flexibility of the real DLOs.

and compliance. Additionally, these studies do not consider
the various target hole configurations, such as different
orientations and radii of holes, commonly encountered in
real-world insertion tasks commonly encountered in real-
world insertion tasks. Moreover, a heuristic design that the
agent always grasps the tail-end, restricts the system from
finding an optimal solution. To address these limitations,
we propose a two-stage manipulation approach: the material
property estimation of DLOs and an insertion policy learning
conditioned on the estimated material property. In the initial
phase, we collect ground truth data regarding the DLO’s state
and flexibility via a single robotic interaction in a simulation
and leverage a Graph Neural Network (GNN) to capture the
underlying physics properties. We leverage SoftGym [3] as a
simulator platform that uses position-based dynamics (PBD)
as the backbone and offers fast and accurate modeling of
dynamics of DLO and motion. Our flexibility estimation
model is trained with ground truth data in the simulation.
The estimated flexibility serves as a vital observation for
reinforcement learning. We employ a motion primitive for
grasping the object and inserting it into a target, and the
parameters of the motion primitive are optimized through a
RL. In real-world experiments, a robotic system initiates by
grasping a DLO and takes a single interaction step (grasping)
to estimate its flexibility. It then executes the insertion task
guided by the learned policy as shown in Fig. 1.

The primary contributions of this paper are as follows:

• We introduce a one-step flexibility estimation model for
DLOs.

• We propose a reinforcement learning framework for
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DLO grasping and insertion with the estimated flexi-
bility.

• Our pipeline demonstrates its effectiveness in handling
diverse DLOs, including iron wire, rubber, and nylon
ropes in the real world without any further training for
the RL policy.

II. RELATED WORK

A. DLO Manipulation

DLO manipulation has been extensively studied with ap-
plications in robot-assisted surgery [4, 5], knot tying [6, 7],
and cable handling [8]–[10]. Some works employ supervised
learning for state estimation using visual observation to
address challenges like occlusion [11], or dynamic DLO
manipulation [12]. Several works employ goal-conditioned
techniques for rope configuration [13, 14], or knot-tying [6].
[15] utilizes a generative model to generate a sequence of
transient images from goal observation. However, relying
on predefined goals can restrict the system’s adaptability
and hinder its performance in dynamic scenarios. Another
approach [16] is to employ demonstration-based techniques
to address DLO manipulation challenges, but this approach
requires time-consuming data collection and struggles to gen-
eralize to diverse DLOs. Unlike prior works, our approach
does not rely on demonstration data or prior knowledge of
DLO properties, making it adaptable to a wide range of
DLOs.

The DLO-in-Hole task has been studied for both needle
threading [1, 17, 18] and assembly task [19]. [4] leverages
tactile information for thread-tail finding and eyelet insertion.
While these works rely on a limited range of material
properties and typically assume tail-end grasping, our work
can effectively estimate flexibility for various DLOs and
approach optimal insertion.

B. Reinforcement Learning for Deformable Manipulation

Reinforcement learning (RL) is frequently used in robotic
manipulation for its adaptability and performance improve-
ment in uncertain environments. As deformable simulators
become more accessible [3, 20, 21], researchers have in-
troduced specialized frameworks for RL, such as AMBF-
RL[22], SurRoL[23], dVRL[24], and SoftGym[3]. Several
studies have employed model-based RL to perform de-
formable manipulation tasks, including needle-threading [1],
goal-conditioned deformable manipulation with video pre-
diction [25], and 3D shape control of DLOs [26]. Lin et
al. [27] acquire DLO manipulation skills from RGB images
using goal-reaching RL. Singh et al. [28] employ hierarchical
RL for DLO manipulation through attainable sub-goals. Yu et
al. [29] use offline learning for the initial estimation of the
DLO trajectory, followed by online updates to compensate
for errors. While these approaches obtain favorable results in
deformable object manipulation, their generalization across
diverse objects and scenarios requires further study. Our
methods can directly transfer to real experiments with diverse
environmental settings and a wide range of DLO types
without further training or fine-tuning.

III. METHOD

A. Problem Formulation

In our task setup, the robot needs to insert a DLO into
a target ring. We randomize ring properties (e.g. radius,
position, and orientation) to improve the generalization of
our model. In addition, we employ a deep ring hole, prompt-
ing the robot agent to consider a proper grasping point
before insertion. To account for DLO variation, we introduce
flexibility f , a material property closely associated with
DLO manipulation. Flexibility is used to characterize a wide
range of daily-life DLOs, as discussed in Section III-B.
Furthermore, we elaborate on the flexibility estimation in
Section III-C.

We formulate the DLO insertion task problem as a Markov
Decision Process (MDP) (S,A, r, γ). Other than properties
of target rings, the state S consists of positions p1:n of a
DLO modeled with n particles. As for action space A, we
use a gripper with 3D translation motion and 1D rotation
around one axis. We leverage a motion primitive for our
grasp point selection and insertion, which generates long-
horizon trajectories for the gripper as discussed in Section
III-D.

B. Defining Flexibility

To characterize various types of DLOs, we seek a property
that encapsulates task-related information. Such a property
should satisfy the following requirements: 1) The property
should be directly relevant to the insertion task, helping
agents acquire valuable knowledge to improve training per-
formance. 2) It can be obtained or represented by visual
observation.

Before making contact with the ring, we noticed that the
DLO could be treated as quasi-static under the influence
of gravity. This pre-insertion phase is crucial as insertion
success depends on the relationship between the orientation
of the target ring and the DLO’s state pip:n where ip is the
index of the picked particle. This insight led to developing a
property linked to the DLO’s state under gravity, potentially
enhancing policy training during insertion.

To simplify the property estimation, we assume the DLO
always lies in the same plane perpendicular to the ground due
to gravity. This plane has a normal vector n̂ = [xn, yn, 0]

T ,
while the z-axis of the gripper coordinate system is ẑ =
[0, 0,−1]T . We use Eq. (1) to convert DLO particles pi from
world coordinates to the gripper coordinate system within the
plane:

(
xproj
i

yproji

)
=

(
1 0 0
0 0 1

) (n̂× ẑ)T

n̂T

ẑT

pi. (1)

Building on these considerations and the concept of curvature
[30], we define flexibility f as shown below:

f =−
∆y

∆x
(ip + 3, ip + 1)− ∆y

∆x
(ip + 1, ip)

(xproj
ip+1 − xproj

ip
)(1 +

∆y

∆x
(ip + 1, ip)2)1.5

(2)
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Fig. 2: Pipeline for flexibility-aware DLO insertion in real experiment. We start by asking the robot to grasp the testing DLO using
a predefined pose and sample particles on the DLO with image prepossessing techniques. The DLO states are input to the GNN-based
estimation module to predict flexibility. Taking flexibility, DLO states and ring configuration as input, the policy can output a predicted
grasping point and a control trajectory for insertion.

Fig. 3: Predefined grasping poses for DLO flexibility estimation
in simulation (left) and real experiment (middle). The right image
shows the DLOs used for the real experiment.

where ∆y

∆x
(a, b) =

yproj
a −yproj

b

xproj
a −xproj

b

. Unlike curvature, flexibility
can take negative values, indicating a highly stiff DLO.

As shown in Fig. 3, we have observed that, when con-
sistently applying the same grasping pose to the DLO,
it consistently and uniformly maintains a static bending
configuration. This phenomenon remains consistent whether
the DLO is rigid or exceedingly flexible and deformable.
To capture such subtle deformations at specific points along
the DLO, we employ the concept of curvature. Although
curvature represents sharpness at a singular focal point, it
proves adequate in our ability to devise a consistent manipu-
lation approach for characterizing the bending configuration
of the entire length of the DLO. The discrete version of the
curvature calculation is shown in Eq. (2).

C. GNN-based Flexibility Estimation

After defining flexibility, we use a Graph Neural Network
(GNN)[31] to estimate the DLO flexibility. A graph G =
(V,E) is constructed naturally by using sampled particles as
vertices V and directly connecting adjacent particles as edges
E, forming a representation for DLO. Specifically, each
particle becomes a vertex: vi = [pi], and adjacent vertices are
connected with undirected edges: E = {(vi, vj)| |i−j| = 1}.
We employ a four-layer message-passing network and a
linear layer to predict flexibility values. We augment the
collected simulation flexibility data to enhance data diversity
and improve performance in noisy real-world scenarios. This
involves introducing a scaling factor λ ∈ [0.85, 1.0] and

adding translational Gaussian noise n1:n ∼ N (0, 0.003)
to p1:n, resulting in modified positions p′

1:n = λ(p1:n +
n1:n)[32].

D. Reinforcement Learning with Motion Primitive

Fig. 4: Distance reward visualization. dfloor contributes nega-
tively to reward when the DLO is not inserted. After insertion,
a positive distance reward is given when the DLO is halfway or
completely through.

This subsection describes details of the motion primitive
and an RL method for insertion conditioned on the previously
acquired flexibility estimation. Task Definition: Insertion
involves the robot inserting different types of DLO through
a ring until the DLO tip emerges on the other side, as de-
picted in Fig. 4. Observation Space: The observation space
contains the position of DLO particles, p1:n, ring’s position
pr, angle qr, and radius rr. The ground truth flexibility
value of the DLO f is optionally provided depending on the
baseline setting. Motion Primitives and Action Space: In
the SoftGym environment, we use a gripper with position
pt
p and orientation qt

p to enable the interaction with the
DLO. To perform long-horizon planning, we leverage a
motion primitive that takes grasped particle index ip, starting
pose (p0

p,q
0
p) and ending pose (pT

p ,q
T
p ) as input in Fig. 5.

The output trajectory includes DLO grasping and insertion
motion. A customized PD controller is utilized to generate
the control trajectory τ 1:T for the insertion. The insertion
is conducted in a planar plane formed by the DLO and the
target ring. The agent observes the environment only at the
beginning of the episode, and the insertion is executed in
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an open-loop manner. Policy Training: We use Soft Actor-
Critic (SAC) [33] for training with MLP for both actor and
critic networks. We train with three random seeds using
the default parameters from in stable-baselines3. Reward
Function: As shown in Fig. 4, we define the reward function
for three distinct stages: the initial stage (left), the halfway
point (middle), and the successful passage (right) of the
DLO through the ring. These stages are delineated by binary
values of the rope_in and the rope_out variables. Eq. (3)
incorporates both a stage-based reward component and a
penalty term rpen to account for abnormal stretching of the
elastic DLOs during simulation:

r = 0.5(rope_in + rope_out) + rpen + rdist

rdist =


−10 · dfloor if not rope_in
5 · dceil if rope_in and not rope_out
10 · dfloor if rope_out

(3)

If the DLO segments are stretched to 120% of the original
length during simulation, it is considered abnormal and the
penalty rpen = −2 is applied.

IV. EXPERIMENT AND RESULT

In this section, we detail an experiment about flexibility
estimation and how flexibility can affect RL policy training
and insertion task competence.

A. Experiment Detail

1) Flexibility Estimation: In this part, we illustrate our
flexibility estimation functions and baselines.
Data Collection: To simulate DLOs with extreme flexibility
value, we adopt the DLO configuration in SoftGym [3]
built upon the PyFleX [34]. Specifically, we modify DLO
stiffness by adding extra springs, reducing the constraint
solver iterations, and decreasing bending stiffness. To obtain
ground truth flexibility data, we grasped the middle of DLOs
(particle number n = 20) and recorded their stationary state
positions using Eq. (2). We collected a consistent dataset
with linearly sampled DLO flexibilities.
Data Augmentation: With our labeled flexibility DLO data,
we aim to capture more realistic DLO interactions to estimate
flexibility. To address variations in DLO length, we introduce
an unbalanced state by using a longer DLO (n = 40) and
biasing the grasping point to ip = 10, as depicted in Fig.
3 (left). We generate a dataset for training the flexibility
estimation module by augmenting part of the state p21:40

with noise and pairing it with flexibility values.
Evaluation: To evaluate flexibility estimation with actual
DLOs, we replicate the same DLO interaction demonstrated
in Fig. 3 (middle). We create a DLO mask using SAM [35],
unproject the center-line onto a predefined gripper coordinate
plane to sample DLO particles p̂21:40. We sample particles
with a distance of 1.2cm, corresponding to the rest length
of the DLO segment in SoftGym. Our evaluation dataset
comprises 31 frames from 7 different DLOs. The simulated
DLO with the closest estimated flexibility p21:40 is used

0.2m

0.3m

Fig. 5: Action space visualization. The upper right square shows
the range of p0

p and the lower left square shows the range of pT
p .

The rotation axis n̂ is pointing outward.

for evaluation. Performance is assessed using the point-point
distance described below:

dpp =
1

20

40∑
i=21

|pi − p̂i|. (4)

Baselines: We evaluate flexibility estimation using various
baselines:

• Analytic: The analytical method computes the theoreti-
cal flexibility using Eq. (2) and the state extracted from
real images.

• Multi-Layer Perceptron (MLP): MLP has two linear
layers with a hidden dimension of 8.

• GNN without data augmentation: Since GNN yields the
best performance among all baselines, we test GNN
without data augmentation to demonstrate its effective-
ness of it.

2) Simulation Setup: In both simulation and real exper-
iments, we assume insertion takes place within the two-
dimensional plane, resulting in a 7-dimensional action space
(ip, p0

p,p
T
p ∈ R2, q0

p, qT
p ) as shown in Fig. 5. In practice, we

implement q0
p, qT

p as rotation with respect to axis n̂. Since
the agent knows the ring’s position and orientation, the action
space is defined as a rectangle relative to the ring’s local
coordinates to ensure fast and informed exploration during
RL.
Randomization: We randomize the position of the ring
within a 10cm square and the initial DLO position within
10cm inside the plane. We also vary the ring radii from
challenging small (1cm) to easier large (2.5cm) sizes, and
the ring angle θ within the range of [0, 3

4π] rad, covering
positions from facing upward to a 45 deg downward angle.
Baselines: We conduct various baseline experiments for our
simulation:

• Fixed angle (fix θ) and ring angle variation (rand θ):
Fixed angle variation provides the RL policy with one
fixed challenging angle environment (θ = π/2 rad),
while ring angle variation (θ) provide the target ring
angle change within a limit (θ ∈ [0, 3π/4] rad).

• Flexibility observation (Ours w/wo f ): Whether provid-
ing estimated flexibility as an observation or not.
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Method Evaluation Ours w/ f Ours w/o f VB w/ f VB w/o f Random f

rand θ
Success Rate (%) ↑ 78± 2 56± 1 40 32 21± 4

Avg. dis. (cm) ↑ 3.92± 0.51 0.00± 0.16 −0.98 −0.12 −5.35± 0.48

fix θ
Success Rate (%) ↑ 71± 1 39± 5 31 38 10± 3.0

Avg. dis. (cm) ↑ 2.00± 0.46 −2.72± 0.79 −1.56 −1.42 −7.00± 0.44

TABLE I: Evaluation of all baselines in simulation. For baselines trained with ring angle variation, random angle values are assigned
for environments with different flexibility to perform evaluation. The ring angle is always π/2 rad for the fixed θ. The ring radius used
for evaluation is 1cm.

• Random flexibility (Random f ): Training the agent with
flexibility but introducing a random flexibility value
during evaluation.

• Visual baseline without flexibility (VB w/o f ): A heuris-
tic method where the DLO is grasped at point ip = 5
and held horizontally. We calculate the angle formed by
the ring, gripping point, and DLO tip and subsequently
perform a rotation using this angle, assuming that it will
align the DLO in parallel with the ring hole.

• Visual baseline with flexibility (VB w/ f): Similar to
the previous baseline, but introducing flexibility to grasp
particle ip using a square root function.

Fig. 6: The training curves (left) and the average distance
(right). Average distance (avg. dis.) is the average signed endpoint
distance. Similar to the reward definition, it equals to dfloor when
rope_out and −dfloor otherwise.

Training Details: We have 4 sets of training settings (fix
or random θ, Ours w/wo f ). We train each of them with
3 random seeds, totaling 40,000 episodes. We only have a
40k state-action pair for dynamics primitive and the policy
training is converged (Fig. 6). In our evaluation, successful
insertion is defined as the DLO penetrating the ring’s floor
(Fig. 4). We evaluate the performance by calculating the
endpoint distance based on dfloor . Prior to success, the
distance is assigned as negative (−dfloor ), while a high
endpoint distance indicates strong insertion performance.

B. Simulation Result Analysis

In this part, we discuss how our flexibility estimation and
motion primitive affects training performance.
Accuracy of Flexibility Estimation: The baselines’ evalua-
tion results are summarized in Table II. Directly calculating
flexibility in Eq. (2) with local DLO state only is not accurate
due to noise in real experiments. Also, it fails to consider
the complete DLO states which offer more informative
insight into flexibility. Table II highlights GNN’s superior

model dpp (mm)

Analytic 11.80± 13.52
MLP 9.69± 12.01

GNN w/o aug 9.76± 12.7
GNN (Ours) 9.16± 11.6

TABLE II: Evaluation result for using different backbone or
the analytical method for flexibility estimation model. GNN
achieves the smallest point-point distance and the smallest standard
deviation.

Fig. 7: Visualization of real DLO flexibility estimation. We esti-
mate flexibility for the real DLOs and compare with the simulated
DLOs which have the closest flexibility.

performance with the smallest average distance and standard
deviation, showing the strength of the graph-based neural
network. In Fig. 7, we compare the shapes of the estimated
and real DLOs in the gripper’s plane.
Necessity of Flexibility Estimation: To explore the necessity
of flexibility estimation, we compared RL training with and
without flexibility in Table I. Compared with training without
flexibility, Our w/ f obtained a 22% and 32% higher success
rate on average for fix θ and rand θ, respectively. The
substantial gap underscores that the policy without flexibility
is underperforming to the diverse DLOs in our environment.
Furthermore, our approach achieves a significantly larger
average distance, suggesting that it is closer to obtaining
the optimal solution compared to cases without flexibility.
Random f shows the worst performance among all the meth-
ods because of significant divergence in optimal grasping
points and insertion motion primitives for DLOs with various
flexibility. These divergences prevent the achievement of
uniformly superior outcomes in various flexibility situations.
Consequently, without proper consideration of flexibility,
achieving the optimal insertion actions for different DLO
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Methods Ring angle (deg) ≈66 ≈90 ≈110

Success (%)↑ Avg. Dis. (cm)↑ Success (%)↑ Avg. Dis. (cm)↑ Success (%)↑ Avg. Dis. (cm)↑

VB w/ f rand θ 29 8.10 29 3.60 0 0.00

Ours w/ f fix θ – – 57 2.98 – –
rand θ 86 2.21 86 2.04 29 1.71

TABLE III: Real experiment results for insertion. The ring angle above is an approximated value from image perception. Perception
noise and potential robot collision may cause ring angle deviation during the experiment.

types is unachievable.
Comparing Against the Visual Baselines: As shown in
Table I, our method with flexibility (Ours w/ f ) outperforms
the visual baselines (VB w/ f ) with a large margin. This is
because our mapping between flexibility and grasp point se-
lection is not as trivial as a simple function, but may involve
higher-order terms. Moreover, the conventional approach
of parallel insertion is sub-optimal due to the deformable
nature of the objects and fails once DLOs collide with
the ring wall. DLOs, unlike rigid objects with well-defined
transformations, tend to deform during motion, contradicting
the initial assumption of parallel alignment. Additionally,
parallel insertion often leads to head-on collisions with the
thick ring wall, rendering contact-based insertion impossible.
In contrast, our method tilts the DLO slightly, as illustrated
in Fig. 8, increasing the likelihood of a successful insertion.

Fig. 8: Inserting by sliding in simulation (upper) and real
experiment (lower). The DLO tip first contacts with the upper
ring wall and slides into the ring.

Comparing Performance Under Different Target Ring
Angles We evaluate how the target ring angle influences the
insertion task using a different ring angle range as shown
in Fig 9, the task success rate drops as the ring angle
increases, indicating that the task difficulty is dependent on
the ring angle. Nevertheless, our method achieves the highest
level of success among all tested scenarios, demonstrating its
proficiency in addressing the manipulation challenges posed
by varying ring angles.

C. Real Robot Evaluation

We also conducted real experiments to verify the capability
of our model in the real world.
Experiment Setup: We employed an Intel Real Sense cam-
era to capture RGB images of the DLO and determined the
orientation and position of the ring using Aruco markers[36].
Our manipulation was carried out using a Franka Emika
robot with custom fingertips for DLO handling. For DLOs
with limited depth information due to noise in the depth
channel, we conducted flexibility estimation interactions at
the plane positioned at x = 0.35m and unprojected this data

Fig. 9: Evaluation of baselines with different ranges of target
ring angles in simulation. Low-angle θ ∈ [0, π/4] rad, mid-angle
θ ∈ [π/4, π/2] rad, high-angle θ ∈ [π/2, 3π/4] rad.

using the camera transformation matrix. The insertion motion
occurred at the plane corresponding to the ring’s position.
We examined our method with 7 different testing DLOs in
real experiment evaluation, including wire rope, rubber rope,
thick nylon, median nylon, thin nylon, soaked thin nylon,
and silk rope. We conducted 14 experiments for fix θ and
21 experiments for rand θ. The target ring had the same
configuration as the one in the simulation, having an inner
radius of 1cm, ring depth of 4cm, and outer radius of 4. We
tested with three different ring angles.
Result Analysis: Table III summarizes the real experiment
performance, and visualization of real DLO insertion is
shown in Fig. 1. We observe a sharp success rate drop as
the target ring angle increases from 90 deg to 110 deg,
which is consistent with our findings in the simulation.
Our model trained with random θ achieves the best result
and outperforms that trained with fix θ where the ring
angle is 90 deg. While our method trained in a ring angle-
variant environment adapts to different angles (66 and 110
deg), our method trained with fix θ overfits to a single
ring environment and hence is more sensitive to ring angle
deviation. The VB has the worst success rate, characterized
by frequent head-on collisions. The success heavily depends
on the rigid characteristics of the object. The wire rope plays
a pivotal role for VB and consistently achieves the longest
average distance compared to other methods. Furthermore,
VB is also significantly influenced by ring angle detection.

V. CONCLUSION

We presented a general robotic insertion task encompass-
ing diverse DLOs and ring configurations. To accomplish
this, we defined flexibility as a property that can be visually
assessed and that guides the insertion task. We found that our
flexibility-aware policy outperforms those without flexibility
and could find a reliable trajectories than the considered
baselines. Additionally, our policy exhibited good sim2real
performance for various real DLO types.
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