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12 Abstract 

13 Human-in-the-loop optimization algorithms have proven useful in optimizing complex interactive 

14 problems, such as the interaction between humans and robotic exoskeletons. Specifically, this 

15 methodology has been proven valid for reducing metabolic cost while wearing robotic exoskeletons. 

16 However, many prostheses and orthoses still consist of passive elements that require manual 

17 adjustments of settings. In the present study, we investigated if human-in-the-loop algorithms could 

18 guide faster manual adjustments in a procedure similar to fitting a prosthesis. Eight healthy participants 

19 wore a prosthesis simulator and walked on a treadmill at 0.8 ms-1 under 16 combinations of shoe heel 

20 height and pylon height. A human-in-the-loop optimization algorithm was used to find an optimal 

21 combination for reducing the loading rate on the limb contralateral to the prosthesis simulator. To 

22 evaluate the performance of the optimization algorithm, we used a convergence criterium. We 

23 evaluated the accuracy by comparing it against the optimum from a full sweep of all combinations. In 

24 5 out of the 8 participants, the human-in-the-loop optimization reduced the time taken to find an 

25 optimal combination; however, in 3 participants, the human-in-the-loop optimization either converged 

26 by the last iteration or did not converge. Findings from this study show that the human-in-the-loop 

27 methodology could be helpful in tasks that require manually adjusting an assistive device, such as 

28 optimizing an unpowered prosthesis. However, further research is needed to achieve robust 

29 performance and evaluate applicability in persons with amputation wearing an actual prosthesis. 

30 1 Introduction 

31 Approximately one million adults in the United States live with a lower limb amputation (Ziegler- 

32 Graham et al., 2008). Individuals with amputation rely on a prosthesis to regain functionality in their 

33 lives. For this reason, significant research has focused on the design of passive (Collins et al., 2015; 

34 Etenzi et al., 2020) and active prostheses (Herr & Grabowski, 2012). While remarkable advancements 
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35 have been made in prosthesis design, recent investigations suggest that individuals with amputation 

36 are more likely to develop osteoarthritis in their contralateral limb, despite being fitted with a state-of- 

37 the-art prosthesis (Ding et al., 2021). Individuals with amputation may experience decreased quality of 

38 life due to the increased risk of developing joint osteoarthritis in the knee of their contralateral limb 

39 (Burke et al., 1978; Lemaire & Fisher, 1994; Norvell et al., 2005; Struyf et al., 2009). During standing, 

40 weight-bearing for persons without amputation is presumed to be shared equally between lower limbs. 

41 However, it is believed that persons with amputation stand with greater sway and more weight-bearing 

42 towards their contralateral limb (Isakov et al., 1992; Rossi et al., 1995; Nadollek et al., 2002). Some 

43 studies suggest that increased time spent on the contralateral limb is an attempt to protect the soft 

44 tissues of the residual limb, which are not suited for weight-bearing immediately after amputation 

45 (Silver-Thorn et al., 1996). Regardless of the cause of gait deviation, the load placed on the 

46 contralateral limb is greater than the force that people without amputation exert on their lower limbs 

47 during natural locomotion (Suzuki, 1972; Engsberg et al., 1991, 1993). Consequently, this mechanism 

48 can put persons with amputation at a higher risk of developing osteoarthritis in their contralateral limb. 

49 Previous studies investigated the effects of prosthetic components on the contralateral limb to explore 

50 the reason for gait deviation in persons with amputation. Studies have found that changing pylon 

51 flexibility can affect the vertical loading rate on the contralateral limb (Coleman et al., 2001). 

52 Additionally, socket fit and alignment are critical for appropriate function and comfort, as these factors 

53 are known to influence the contralateral limb loading rate (Zhang et al., 2019). Studies have suggested 

54 that the mechanics of prosthetic components may mitigate some compensatory mechanisms during 

55 locomotion in persons with amputation (Russell Esposito & Wilken, 2014; Maun et al., 2021). With 

56 this, it is evident that a prosthetic device has many parameter settings that can be altered to achieve 

57 optimal comfort and fit. 

58 During a fitting session, the settings of a prosthesis are adjusted to improve goals such as overall fit, 

59 satisfaction with the device, and characteristics of the walking gait pattern. Approximately 68% to 88% 

60 of persons with amputation wear a prosthesis at least seven hours a day to aid in mobility and the 

61 performance of everyday activities (Pohjolainen et al., 1990; Walker et al., 1994; Jones et al., 1997). 

62 Despite the high rate of prosthesis use, there is a high rate of dissatisfaction with the comfort of 

63 prostheses (Dillingham et al., 2001; Pezzin et al., 2004). Several reasons could cause dissatisfaction 

64 with the comfort of the prosthesis. There can be errors in clinical measurements of the limb dimensions, 

65 partly due to difficulties locating the exact bony landmarks through layers of soft tissues. Additionally, 
66 errors can occur due to the prevalence of iliac asymmetries (Ingelmark & Lindstrom, 1963). Asking 

67 the individual for their opinion on their prosthetic may result in errors as their opinion is subjective, 

68 considering if their previous prosthetic fit was less than optimal (Friberg, 1984; Boone et al., 2012). 

69 From this, it is evident that the process of fitting a prosthesis can be improved. In addition, to 
70 appropriately fit a prosthesis, the parameter settings of different prosthetic components, like pylon 

71 height and stiffness, need to be adjusted. Since different prosthetic components need to be altered and 

72 tested, this process can be time-consuming for both the patient and the prosthetist. 

73 Advances in optimization algorithms have proven very useful in selecting optimal settings for 

74 exoskeletons (Zhang et al., 2017). Human-in-the-loop optimization algorithms, which optimize 

75 parameters while considering multiple interactions, have proven very useful in advancing the 

76 optimization of robotic exoskeletons (Malcolm et al., 2017; Zhang et al., 2017). Instead of analyzing 

77 measurements after completing a lengthy protocol of multiple parameter settings, these algorithms take 

78 measurements from a few parameter settings and converge in real time toward an optimal setting. These 

79 human-in-the-loop algorithms have been used to optimize devices in response to the user's 
80 physiological changes (i.e., metabolic cost) (Koller et al., 2016). This methodology takes inspiration 

81 from humans who naturally optimize their coordination patterns for energy cost and other aspects of 
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82 locomotor performance (Alexander McN., 1989; Selinger et al., 2015). Studies have demonstrated that 

83 human-in-the-loop optimization can improve the performance of wearable devices like robotic 

84 exoskeletons (Felt et al., 2015; Koller et al., 2016; Zhang et al., 2017; Ding et al., 2018). In addition, 

85 it is known that human-in-the-loop optimization algorithms emphasize the importance of customization 

86 and individualism in assistive devices (Koller et al., 2016; Zhang et al., 2017). However, human-in- 

87 the-loop optimization has yet to be used to guide manual adjustments for optimizing prostheses. 

88 The goal of this study was to evaluate the usability of human-in-the-loop optimization in prescribing 

89 manual adjustments of shoe heel height and pylon height to reduce the loading rate on the contralateral 

90 limb. Our first aim was to evaluate the time required to find the optimal parameter combination using 

91 human-in-the-loop optimization. The algorithm was designed to simultaneously optimize shoe heel 

92 height on the contralateral limb and pylon height on the prosthesis simulator limb as a means of 

93 converging to a parameter combination that minimizes the loading rate on the contralateral limb. We 

94 chose to alter shoe heel height on the contralateral side as previous studies have shown that shoe heel 

95 height can affect knee joint loading (Shakoor et al., 2010). In addition, we chose pylon height since it 

96 was the most feasible component to alter for this preliminary study and is known to affect the fit and 

97 alignment of a prosthesis. We hypothesized that the algorithm would reduce the time necessary to reach 

98 a minimal loading rate compared to the time required to complete a sweep of all the possible parameter 

99 combinations. Our second aim was to analyze the accuracy of the human-in-the-loop optimization 

100 algorithm in finding an optimal combination. By comparing the loading rate on the contralateral limb 

101 from the sweep and optimization methods, we evaluated the accuracy of the human-in-the-loop 

102 optimization algorithm. Since persons with amputation are such a diverse population, implementing 

103 this methodology could accommodate more specific customization during fitting processes and allow 

104 a prosthesis to achieve its potential. 
 

105 2 Materials and Methods 

106 2.1 Subject Recruitment 

107 As a preliminary step towards testing in persons with an amputation, ten healthy young adults (n = 10; 
108 mass, 76.4 ± 15.5 kg; height, 1.73 ± 0.08 m; mean ± SD) were recruited. The goal of this study was 

109 not to obtain representative normative data of the average person with an amputation; instead, the goal 

110 was to evaluate the efficiency of the optimization. Because of this specific goal, we believed a relatively 

111 small sample and a convenience sampling strategy was acceptable (Kim et al., 2020). All participants 

112 were recruited within the Biomechanics Research Building at the University of Nebraska at Omaha. 

113 All recruited participants were able to provide informed consent. The study was approved by the 

114 University of Nebraska Institutional Review Board. 

115 A health questionnaire was administered to assess if the participant had any functional limitations that 

116 impacted their capacity to complete the protocol. We based the inclusion criteria on the subject's age, 

117 height, and leg length. We only included participants between 19 to 45 years old. In addition, we only 

118 included participants who could fit the prosthesis simulator using the manufacturer’s leg length and 

119 height restriction (iWALK 2.0, Long Beach, CA, USA, Figure 1A, B). We only included participants 

120 free of conditions limiting walking capability, including joint, musculoskeletal, or neurological issues. 

121 Additionally, we only included participants who were free of any cardiovascular pathologies. 

122 2.2 Experimental Protocol 

123 Participants walked with a device that simulated walking with a prosthesis (Figure 1A, B). This device 

124 and similar devices have been used in various studies to simulate walking with a prosthesis (Keeken et 

125 al., 2012; Ramakrishnan et al., 2017; Schlafly & Reed, 2020). Anecdotally, we can report that none of 
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126 the participants had prior experience with the prosthesis simulator or similar devices. Participants 

127 completed two sessions (Figure 1C). The initial session was a familiarization session to mitigate 

128 potential learning effects during the testing session. During this session, participants walked with the 

129 prosthesis simulator on the neutral setting (no shoe heel height and the initial fitted pylon height; 

130 combination 1,3) to represent walking with a device that has not been adjusted. The prosthesis 

131 simulator was used on the participant's dominant limb, which was determined based on which leg they 

132 would use to kick a ball (van Melick et al., 2017). Participants walked overground and then progressed 

133 onto the treadmill for twenty minutes, where the speed increased until 0.8 ms-1 was achieved. During 

134 the second session, participants completed three experimental protocols: a parameter setting sweep 

135 protocol where all conditions were tested (sweep), followed by the human-in-the-loop optimization 

136 protocol (HIL optimization), and finally, a validation test of the optimal combinations determined from 

137 the sweep and the optimization protocols. During all experimental protocols, the participants walked 

138 at 0.8 ms-1. Studies using similar simulator devices used a similar, relatively low walking speed 

139 (Schlafly & Reed, 2020; Vanicek et al., 2007). On average, we paused about 2 minutes between 

140 conditions to calculate loading rates, change the settings and let participants rest. Participants were free 

141 to rest longer for up to 5 minutes. Anecdotally, participants did report minor fatigue due to walking 

142 with the prosthesis simulator toward the end of the protocol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

143 

144 Figure 1: The prosthesis simulator and experimental protocol. (A) Front view. The foot's 

145 orientation on the device could be switched depending on whether the participant was left or right- 
146 footed. (B) Side view. The prosthesis simulator had three straps. The straps secured the lower leg to 

147 the device to prevent the participant from using their lower leg and could be easily tightened or 

148 loosened. The lower portion of the device was raised and lowered to change the pylon height parameter 

149 setting. (C) Protocol timeline. 

150 2.3 HIL Optimization Protocol 

151 Participants walked on the treadmill while wearing the prosthesis simulator for 1 minute for each 

152 parameter combination. After completing each combination, the human-in-the-loop optimization 

153 algorithm prescribed the following combination to be evaluated. We manually changed the parameters 

154 to the combination that the algorithm prescribed. These adjustments were limited by the intervals 

155 between the physically available settings; therefore, the prescribed settings had to be rounded to the 

156 available setting intervals. Combinations were changed until 16 combinations were completed. The 

157 optimal combination determined from this protocol (i.e., the optimal determined by HIL optimization) 

158 was denoted as the HIL optimization optimum. 
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159 2.3.1 Human-in-the-loop Optimization 

160 We designed a human-in-the-loop optimization algorithm to minimize the loading rate on the limb 

161 contralateral to the prosthesis simulator (Figure 2; S1). The loading rate was determined by calculating 

162 the vertical instantaneous loading rate from the ground reaction force (GRF) recorded at a frequency 

163 of 2000 Hz using an instrumented split-belt treadmill (Bertec, Columbus, OH, USA). The vertical 

164 instantaneous loading rate is preferable to the vertical average loading rate as it provides a more 

165 consistent evaluation (Ueda et al., 2016). We calculated the loading rate as the maximum of the 

166 instantaneous slope between 20-80% from the first peak (Figure 2B1). This calculation method has 

167 been used in previous studies to calculate the loading rate (Abolins et al., 2019). 

 

168 

169 Figure 2. Human-in-the-loop optimization algorithm flowchart. (A) Participants walked on a 

170 treadmill at 0.8ms-1 with the prosthesis simulator for each combination. (B) The treadmill recorded the 

171 ground reaction force. (B1) The loading rate was calculated from the ground reaction force by 

172 calculating the slope between 20-80% from the first peak (blue circle). (C) We used gradient descent 

173 and successive parabolic optimization to find the optimal combination of shoe heel height and pylon 

174 height. (D) From this, the algorithm prescribes the following combination to test, that is, a specific 

175 shoe heel height and pylon height. This process continued until 16 combinations were completed. From 

176 those 16 combinations, we then determine the minimum amount that would have been required to 

177 converge on the optimum (C, black star) after the experiment. Often the human-in-the-loop algorithm 

178 repeats certain conditions rather than testing each of the 16 possible combinations like the sweep 

179 protocol. 

180 The algorithm uses gradient descent to guide the first parameter combinations and then uses successive 

181 parabolic optimization once a sufficient number of parameter combinations have been tested. These 

182 techniques are based on similar techniques adapted from previous studies (Koller et al., 2016; Molderez 

183 et al., 2017), where the goal was to find the local minimum of an objective function, similar to a ball 

184 rolling toward the lowest point of a valley. After testing the first combination of shoe heel height and 
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185 pylon height, two neighboring combinations within the grid of all possible shoe heel height and pylon 
186 height combinations were randomly chosen to test. In order to perform a first estimation of the gradient 
187 in the three-dimensional space of shoe heel height and pylon height against loading rate, we needed to 

188 complete these three parameter combinations. This gradient was then used to calculate the direction of 

189 the estimated new optimal parameter combination. In this estimation, a set of hyper-parameters defined 

190 how far the new estimated optimum will be placed in the direction of the gradient. 

191 Once four combinations were completed, we started using a successive parabolic optimization to 

192 update the algorithm’s estimate of the optimal parameter combination. At this point, we fit a paraboloid 

193 through all completed combinations. Given the small range over which the two parameters were 

194 adjusted, we assumed there should be only one optimal combination. If the parabolic fit was concave 

195 and pointed to a single optimum, we used the parabolic fit to define the new estimated optimum. If the 

196 paraboloid fit produced a non-concave surface (i.e., a surface that descends in many directions), the 

197 optimization process reverted to a gradient descent search instead of parabolic optimization. For the 

198 remainder of the combinations, we kept evaluating the parabolic fit and, when needed, the gradient 

199 descent search until 16 combinations were completed. Throughout the optimization process, it is 

200 possible that some combinations could be repeated. 

201 In the initial stages of developing the optimization algorithm, we compared the suitability of three 

202 different optimization algorithms (the covariance matrix adaptation evolution strategy (CMA-ES) 

203 (Zhang et al., 2017; Ren et al., 2019), gradient descent (Felt et al., 2015), and successive parabolic 

204 optimization. We used simulated contralateral limb loading rate data obtained by generating previously 

205 measured contralateral limb loading rates with some added random noise from one participant (S2). In 

206 this simulation study, we found that successive parabolic optimization was relatively more suitable for 

207 this application than the other optimization methods (S3). We are uncertain why the present method 

208 performed slightly better. This may be associated with the type of simulated data generated for this 

209 comparison. Furthermore, specifics of the problem are relatively uncommon such as the very low 

210 resolution of only a 4x4 grid of possible combinations. It is also possible that this affected the outcome. 

211 The initial combination was randomly chosen for each participant. Similar to previous human-in-the- 

212 loop studies (Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018; Ren et al., 2019), we restricted the 

213 initial combination to the combinations along the edge of the grid of all possible shoe heel height and 

214 pylon height combinations (Figure 3A). Since we assumed that the optimum most likely exists 

215 somewhere in the middle of the parameter combination grid, this restriction allows us to see how the 

216 algorithm converges to an optimum. Suppose the optimization process was to begin in the middle of 

217 the parameter combination grid; in that case, it may not be easy to distinguish whether the algorithm 

218 identifies the optimum or is not making any updates. 

219 2.4 Sweep Protocol 

220 Participants walked on the treadmill while wearing the prosthesis simulator for 1 minute for each shoe 

221 heel height and pylon height combination. Shoe heel heights were inserted in the shoe on the 

222 contralateral side and included 0, 10, 20, and 30 mm heights (Figure 3B), where 0 indicated no 

223 additional heel was inserted in the shoe. Pylon height was changed on the prosthesis simulator and 

224 ranged from one higher to two lower than the initial fitted height, where each setting differed by 2.54 

225 cm (Figure 3C). We used a number code to designate each parameter setting: shoe heel heights of 0, 

226 10, 20, and 30 mm were labeled as heel heights #1, 2, 3, and 4, respectively; pylon heights two lower 

227 and one higher than the initial fitted height were labeled as pylon heights #1, 2, 3, and 4, respectively 

228 where #3 was the initial fitted height. All 16 possible parameter combinations were completed in 
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229 random order for each participant. Participants were allocated up to 5 minutes of rest between testing 

230 parameter combinations. The optimal combination determined from this protocol (i.e., the optimal 

231 from a 2D surface fitted through all 16 combinations) was denoted as the sweep optimum. 

 

232 
233 Figure 3. The parameter settings. Shoe heel height and pylon height were the two-parameter settings 
234 adjusted throughout the protocol. (A) Randomized initial combinations. The possible combination 

235 choices for the initial combination (dark circles) used in the human-in-the-loop optimization. These 

236 were randomized for each participant. (B) Shoe heel heights. Shoe heel heights were added to the shoe 

237 of the contralateral limb and included 10, 20, and 30 mm heights (left to right). The no-heel parameter 

238 setting indicated that no heel was added to the shoe. (C) Pylon heights. Pylon heights were adjusted 

239 on the prosthesis simulator and varied from two lower and one higher than the initial fitted height. 

240 Pylon height options differed by 2.54 cm. 

241 2.5 Validation Tests 

242 In addition, after completing the sweep and the optimization protocols, participants walked on the 

243 treadmill under the optimized parameter combination from the HIL protocol, followed by the optimal 

244 combination of the sweep protocol for 3 minutes each. Conducting this validation test allowed us to 

245 compare the contralateral limb loading rate between both optimized combinations. We used the neutral 

246 combination from the sweep protocol to compare the results to a device that is not individually adjusted 

247 at all. We repeated the optimum from both protocols because the optimal combination determined by 

248 the HIL optimization and sweep protocol might have had a low loading rate due to chance. 

249 2.6 Statistical Analysis 

250 To find the optimal parameter combination from the sweep protocol, we fit a second-order polynomial 

251 that was a function of shoe heel height and pylon height against the loading rate. The minimum loading 

252 rate of this fitted surface determined the individual optimal combination. We reported the optimal 

253 parameter combination on a group level using the mean ± standard deviation. 

254 We used a convergence criterium to evaluate the algorithm's performance and determine when an 

255 optimal combination had been achieved in the HIL optimization protocol. Previous studies have used 

256 a similar convergence criterium as a performance metric for human-in-the-loop optimization 

257 algorithms (Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018). An optimal combination was said 

258 to be achieved when prescribed combinations remained between the parameter setting one above and 

259 one below the estimated optimal parameter setting (S4). The number of combinations it takes before 
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260 staying within this band was defined as ‘combinations-to-convergence.’ We reported the average 
261 number of combinations until convergence occurred based on the mean ± standard deviation. To 

262 evaluate if the number of combinations when convergence occurs was significantly smaller than the 

263 maximum number of combinations (i.e., 16), we used a one-sample t-test. 

264 We also evaluated if there was a significant difference in parameter settings between the HIL 
265 optimization optimum and the sweep optimum using a paired t-test. To compare the average loading 
266 rate across participants for both optimal parameter combinations, we used a paired t-test with a Holm- 

267 Šidák correction. Additionally, we used a paired t-test to compare the optimal parameter combinations 

268 to the neutral combination to see if there were any significant changes in the loading rate on the 

269 contralateral limb compared to wearing a device that is not individually adjusted at all. 

270 3 Results 

271 Data analysis included eight of the ten recruited participants (n = 8). Data from two participants were 
272 excluded due to a problem with the zeroing of the force treadmill and an error in the sequence of 

273 conditions in the protocol. 

274 3.1 Combinations-to-convergence 

275 The combinations-to-convergence was highly variable among participants (Figure 4; S5.1). Half of the 

276 participants achieved the optimal in eight or fewer combinations. Two participants achieved the 

277 optimal in more than eight combinations, and two did not achieve an optimal combination (i.e., the 

278 prescribed optimum never stayed within the defined convergence band). The average combinations- 

279 to-convergence among the participants who did converge was 8.3 ± 4.6 combinations (mean ± standard 

280 deviation, n = 6). The two individuals who did not converge were excluded from this mean and standard 

281 deviation as they did not have a defined convergence. On average, the time taken for the human-in- 

282 the-loop optimization algorithm to achieve the optimum was significantly lower than completing the 

283 total number of combinations (P < 0.05, n = 6). 
 

 

284 

285 Figure 4. Combinations-to-convergence bar graph. The calculated combinations-to-convergence 

286 using the number of conditions tested to achieve the optimal combination. The no convergence bar 

287 represents the participants whose optimization protocol did not converge to an optimal combination. 

288 3.2 Validation of optimal combinations 
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289 The average optimal combination determined by the sweep was parameter setting 3.5 ± 1.0 and 1.5 ± 
290 0.9 for shoe heel height and pylon height, respectively (mean ± standard deviation, n = 8). The average 
291 of the optimal combination determined by the HIL optimization was parameter setting 3.1 ± 1.4 and 

292 2.0 ± 1.1 for shoe heel height and pylon height, respectively. There was no significant difference in the 

293 parameter settings between the sweep and HIL optimization optimum (P = 0.785 for shoe heel height, 

294 P = 0.275 for pylon height; Figure 5A; S5.2). In the validation tests, we used rounded approximations 

295 of the optimal parameter combination from each protocol since we could only test available settings. 

296 The average from the tested combinations during the validation tests for the optimum of the sweep was 

297 3.4 ± 1.0 and 1.5 ± 0.8 for shoe heel height and pylon height, respectively. The average optimal 

298 parameter combination for the validation of the HIL optimization was 3.1 ± 1.6 and 2.0 ± 1.0 for shoe 

299 heel height and pylon height, respectively. 

300 The average loading rate from the sweep optimum was 11.5 ± 1.7 kN s-1. The average loading rate 

301 from the HIL optimization optimum was 11.9 ± 3.6 kN s-1. The loading rate in the neutral combination 

302 setting (combination 1,3) was 15.1 ± 3.3 kN s-1. There was no significant difference in the loading rate 

303 between the two optimal combinations (P = 0.730; Figure 5B). The sweep optimum and the HIL 

304 optimization optimum reduced the loading rate by 23.3% and 20.7%, respectively, compared to the 

305 neutral combination. The sweep optimum had a significantly lower loading rate than the neutral 

306 combination (P < 0.05). However, there was no significant difference in loading rate between the HIL 

307 optimization optimum and the neutral combination (P = 0.169). 

308 Since the HIL protocol did not show convergence in all participants, we conducted a follow-up test. 

309 We used a paired t-test to compare the average loading rate across participants who converged to an 

310 optimal combination (n = 6). When considering only the participants who did converge, both optimums 

311 from the sweep and HIL optimization had significantly lower loading rates than the neutral combination 

312 (P < 0.05, S5.3). 

 

313 

314 Figure 5. Optimal combination validation. The comparison between the optimal determined by the 

315 sweep (orange) and the optimal achieved by HIL optimization (dark orange) (A) The average of the 

316 optimal combination across participants from the sweep (orange circle) compared to the optimal 

317 combination across participants for the HIL optimization (dark orange square). The neutral 

318 combination is denoted as the light orange triangle for reference. The error bars represent the standard 

319 deviation across participants (n = 8). (B) The average loading rate across participants from the optimal 

320 combination from the sweep, the optimal combination from the HIL optimization (HIL), and the neutral 
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321 combination (combination 1,3). The error bars represent the standard deviation across participants (n 

322 = 8). 

323 4 Discussion 

324 This study investigated if a human-in-the-loop optimization algorithm can guide manual adjustments 

325 to optimize a prosthesis simulator. We hypothesized that the human-in-the-loop optimization algorithm 

326 would reduce the time taken to find an optimal parameter setting. The findings show that the human- 
327 in-the-loop optimization algorithm reduced the time taken to find an optimal combination in 5 out of 8 

328 participants, partially accepting our hypothesis. 

329 The human-in-the-loop optimization algorithm determined an optimal combination similar to the 

330 optimum determined by the sweep of all 16 combinations. However, a statistical power analysis shows 

331 that we have yet to determine whether this means that there is genuinely no difference or if this was 

332 due to the sample size, given that the statistical power was 0.375 and 0.289 for shoe heel height and 

333 pylon height, respectively. The loading rate for both optimal combinations was similar, further 

334 validating that the human-in-the-loop optimization could reduce the loading rate similar to the sweep 

335 protocol. However, the fact that the algorithm did not converge in one-fourth of the participants raises 

336 concerns about the robustness of the optimization algorithm. While this seems to question the 

337 robustness of the optimization algorithm, previous studies show that this is not an uncommon result 

338 (Zhang et al., 2017; Welker et al., 2021). A particular study stated that none of their optimization 

339 algorithms could reduce metabolic cost significantly (Welker et al., 2021). Additionally, a different 

340 study mentioned instances where researchers had to reset the algorithm and add additional walking 

341 time (Zhang et al., 2017). On the contrary, supplementary analysis of the variability between repetitions 

342 of the same condition may suggest that the chosen optimization problem was simply very challenging 

343 (S6). We also investigated whether any of the features of the algorithm, such as the frequency of 
344 switching between parabolic optimization and gradient descent, was related to the time-to-convergence 

345 performance. Still, we did not find any clear relationship there. 

346 Although using the human-in-the-loop optimization algorithm reduced the time to find an optimal 

347 combination for over half of the participants, one participant required all 16 combinations to find an 

348 optimal combination. Additionally, the algorithm never converged to an optimal combination for two 

349 of the participants. This finding raised the question of whether this variability in the effectiveness was 

350 due to the algorithm or rather the effects of the prescribed parameter combination being small or 

351 inconsistent. To investigate this question, we performed a supplementary analysis of the statistical 

352 significance of the effects of shoe heel height and pylon height on loading rate based on the data from 

353 the sweep protocol. We used the following linear mixed-effect model (1) to study the effects of shoe 

354 heel height and pylon height on the loading rate on the contralateral limb: 
 

355 𝒛𝑭𝒊𝒕 = 𝐜𝟏𝐱𝟐 + 𝐜𝟐𝐱 + 𝐜𝟑𝐲𝟐 + 𝐜𝟒𝐲 + 𝐜𝟓 (1) 

356 where x, y, and z are shoe heel height, pylon height, and loading rate, respectively, terms c) to c* are 

357 the coefficients for each independent parameter setting, and c+ is the constant intercept term. We found 

358 no statistical significance for each of the terms (P-values were 0.629, 0.775, 0.243, and 0.383 for shoe 
359 heel height, the square of shoe heel height, pylon height, and the square of pylon height, respectively; 

360 Figure 6). On the one hand, this means that the effects of each parameter setting were inconsistent 

361 across all participants. This suggests that the effects of the parameters were relatively small and not 

362 highly repeatable. Anecdotally, we can comment that the ranges in shoe heel height and pylon height 

363 were sufficiently large to make walking difficult at the extreme ends of the parameter settings (e.g., 
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walking with the greatest shoe heel height or pylon height). Because of this, it is unlikely that the lack 

of statistically consistent effects is likely not due to having chosen too small of a range. This lack of 

statistically significant consistency in the effects of the independent parameters could explain why the 

optimization protocol did not converge for all participants. On the one hand, this may emphasize that 

the effect of the parameter settings was variable across participants, highlighting the need for a unique 

optimization method like human-in-the-loop optimization to find each individual’s optimum. On the 

other hand, this may also suggest that the selected parameter settings may not have been the most 

relevant settings to optimize. Other studies sometimes also acknowledge that other parameter settings 

that may be more sensitive to the cost function could have been selected (Peng et al., 2022). Future 

investigations should optimize different parameter settings that have been shown to affect the 

contralateral limb, like pylon flexibility (Coleman et al., 2001) and stiffness (Maun et al., 2021). 

 

Figure 6. Linear mixed-effect model. We used a 2nd order polynomial as the best-fit model to analyze 

the effect of shoe heel height and pylon height on the contralateral limb loading rate. (A) The surface 

plot of the linear best-fit model. The pylon height setting is on the vertical axis, and the shoe heel 

height setting is on the horizontal. The color bar represents the loading rate, where light blue is the 

highest and dark blue is the lowest. (B, C) 2-Dimensional plot. The effect of shoe heel height (B) and 

pylon height (C) on the contralateral limb loading rate. This 2-dimensional plot was taken from the 

middle point of pylon height and shoe heel height from (A), the mean of conditions 2 and 3. The circles 

and error bars in (B) represent the mean  standard deviation of all pylon heights at each shoe heel 

height setting. The circles and error bars in (C) represent the mean  standard deviation of all shoe heel 

heights at each pylon height setting (n = 8). 

While previous studies have proven the effectiveness of human-in-the-loop optimization in tuning one 

or multiple parameters, the application of this methodology for optimizing manual adjustments of 

assistive devices is novel. Upon further analysis, it appears that the algorithm could optimize both 

parameter settings in some participants, while in others, it only optimized one or neither. Figure 7 is a 

visual representation showing the variability of the optimization patterns for both parameter settings. 

This emphasizes that while the parameter settings together did not affect the loading rate on the 

contralateral limb, there is potential for this methodology to guide manual adjustments. Specifically, it 

illustrates that the optimal shoe heel height (Figure 7A) was achieved more efficiently and consistently 

across participants than the pylon height (Figure 7B). Footwear parameters on the contralateral limb 

are not typically modified in persons with amputation. However, this finding suggests that further 

analyses into the importance of footwear parameters on the loading rate on the contralateral limb in 

persons with amputation may be beneficial. Additionally, further investigations should be done to 

validate the use of improved human-in-the-loop optimization algorithms for simultaneously optimizing 

two manually adjusted parameters. 
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400 

401 Figure 7: Human-in-the-loop optimization histories of participants: The pattern of shoe heel height 

402 (A) and pylon height (B) optimization during the HIL optimization for each participant. The colors of 

403 the lines relate to the convergence metric where the dark blue lines represent participants who 

404 converged in 4 combinations, and the light blue lines represent participants who did not converge to 

405 an optimal combination. The optimization history pattern is plotted relative to the final optimal 

406 parameter setting determined by the HIL optimization to visually see the convergence. As such, each 

407 line ends at 0 on the vertical axis. The dashed lines represent the band that was used to determine 

408 whether the algorithm achieved convergence or not. More specifically, we considered the algorithm to 

409 have converged if the prescribed parameter combination stayed within a band of ± 1 (n = 8). 

410 There are some limitations to this study. Participants were recruited for this experiment through 

411 convenience sampling on a college campus. Although the recruitment age ranges from 19 to 45, the 

412 sample may only represent part of the population. Concerning the protocol, not all parts of the 

413 experiment were randomized. It is possible that some of the differences between the sweep and HIL 

414 optimum could be due to adaptation or fatigue. However, we think the habituation was sufficient since 

415 the purpose of the study was to compare the efficiency of the optimization algorithm. While similar 

416 prosthesis simulators have been used to simulate walking with a prosthesis, the findings from this study 

417 likely do not reflect persons with amputation. To validate the results of this study, the protocol could 

418 be implemented as a case study on a person with an amputation. With this, it could be possible that the 

419 optimization algorithm could improve as persons with an amputation who have experience walking 

420 with a prosthesis could have a more consistent gait pattern. It is known that persons with amputation 

421 have and need much more time to be able to get used to walking with a prosthesis (Barr et al., 2012; 

422 Ray et al., 2018), increasing the chance for a more consistent gait pattern. This higher consistency has 

423 the potential to make the optimization process more straightforward. 

424 Persons with amputation lack both sensing and direct control of the mechanics of their prosthetic foot 

425 and ankle (Welker et al., 2021). With this, the sensory feedback must come from the interactions at the 

426 socket and whole-body proprioception (Welker et al., 2021). The importance of sensory feedback 

427 reiterates why human-in-the-loop optimization is successful with exoskeletons and might be harder to 

428 replicate in devices such as prostheses. It may be hard to implement human-in-the-loop optimization 

429 in persons with amputation as the contributions to differences in gait go deeper than just the effects of 

430 component mechanics (Welker et al., 2021). Investigations to validate the implementation of human- 
431 in-the-loop optimization in persons with amputation should consider different cost functions other than 

432 metabolic cost to optimize the prosthesis. Since previous studies have reported that prosthetic 

433 components affect peak ground reaction force (Grabowski & D’Andrea, 2013; Morgenroth et al., 2011) 

434 and knee external adduction moment (Grabowski & D’Andrea, 2013; Morgenroth et al., 2011), future 

435 research could investigate optimizing these variables using human-in-the-loop optimization. Regarding 
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436 the parameter settings selected to adjust, there are some limitations in clinical applicability in persons 

437 with amputation, as prosthetists traditionally do not alter the contralateral limb. The results from the 

438 linear mixed effect model further reiterate the limitations in the effectiveness of altering the selected 

439 parameter settings. In addition, the shoe heel height stiffness was not considered, although it is evident 

440 that stiffness influences limb loading (Hong et al., 2013; Kulmala et al., 2018). Future investigations 

441 could analyze the implementation of human-in-the-loop optimization in optimizing applicable clinical 

442 parameters like pylon height and heel height stiffness on the prosthesis side. 

443 Another limitation is that the algorithm was used to optimize parameters that only have 4 settings. On 

444 the one hand, it is possible that the actual optimum in certain participants would have existed outside 

445 of the range of the tested combinations. On the other hand, the small number of settings may have 

446 favored the sweep protocol considering all possible combinations were tested. It is possible that 

447 optimizations with a greater resolution of options may have resulted in a more favorable result; 

448 however, there is no evidence that this would have been better. Further investigations are needed to 

449 evaluate the effect of a greater parameter setting resolution in human-in-the-loop optimization of 

450 manually adjusted devices. To minimize the chances of the initial combination being optimal, we 

451 restricted the initial combination to the combinations along the border of the available choices. 

452 However, in some instances, the initial combination that was tested turned out to be close to the final 

453 optimum. It is possible that those participants would have produced a different result that showed 

454 convergence if their protocol started out from a combination that was further from the optimum. 

455 Finally, we only considered one possible algorithm that included gradient descent and successive 

456 parabolic optimization techniques. Further investigations could investigate methods like Bayesian 

457 optimization (Brochu et al., 2010; Kim et al., 2017, 2019) or covariance matrix adaption evolution 

458 strategy CMA-ES (Zhang et al., 2017; Ren et al., 2019). 

459 5 Conclusion 

460 The study implemented a human-in-the-loop optimization algorithm to guide manual adjustments to 

461 optimize a prosthetic simulator. The findings from this study show that even though there is potential 

462 for this methodology to be implemented in the patient population of persons with amputation, many 

463 factors need to be considered. Since prosthetic components are known to affect contralateral limb 

464 loading, optimizing parameters on the prosthesis itself is a more clinically applicable approach to 

465 implementing this methodology in persons with amputation. Since persons with amputation rely on 

466 sensory feedback from the prosthesis, optimizing a cost function that is not related to physiological 

467 changes may be more beneficial in persons with amputation. Considering prosthetists typically look at 

468 both limbs when fitting and adjusting a prosthesis, future investigations could include a multi-objective 

469 optimization to examine the effects of changing multiple parameter settings on both limbs. 
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491 11 Figure Captions 

492 Figure 1: The prosthesis simulator and experimental protocol. (A) Front view. The foot's 

493 orientation on the device could be switched depending on whether the participant was left or right- 

494 footed. (B) Side view. The prosthesis simulator had three straps. The straps secured the lower leg to 

495 the device to prevent the participant from using their lower leg and could be easily tightened or 

496 loosened. The lower portion of the device was raised and lowered to change the pylon height parameter 

497 setting. (C) Protocol timeline. 

498 Figure 2. Human-in-the-loop optimization algorithm flowchart. (A) Participants walked on a 

499 treadmill at 0.8ms-1 with the prosthesis simulator for each combination. (B) The treadmill recorded the 

500 ground reaction force. (B1) The loading rate was calculated from the ground reaction force by 

501 calculating the slope between 20-80% from the first peak (blue circle). (C) We used gradient descent 

502 and successive parabolic optimization to find the optimal combination of shoe heel height and pylon 

503 height. (D) From this, the algorithm prescribes the following combination to test, that is, a specific 

504 shoe heel height and pylon height. This process continued until 16 combinations were completed. From 

505 those 16 combinations, we then determine the minimum amount that would have been required to 

506 converge on the optimum (C, black star) after the experiment. Often the human-in-the-loop algorithm 
507 repeats certain conditions rather than testing each of the 16 possible combinations like the sweep 

508 protocol. 

509 Figure 3. The parameter settings. Shoe heel height and pylon height were the two-parameter settings 

510 adjusted throughout the protocol. (A) Randomized initial combinations. The possible combination 

511 choices for the initial combination (dark circles) used in the human-in-the-loop optimization. These 

512 were randomized for each participant. (B) Shoe heel heights. Shoe heel heights were added to the shoe 

513 of the contralateral limb and included 10, 20, and 30 mm heights (left to right). The no-heel parameter 
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514 setting indicated that no heel was added to the shoe. (C) Pylon heights. Pylon heights were adjusted 

on the prosthesis simulator and varied from two lower and one higher than the initial fitted height. 

515 Pylon height options differed by 2.54 cm. 

516 Figure 4. Combinations-to-convergence bar graph. The calculated combinations-to-convergence 

517 using the number of conditions tested to achieve the optimal combination. The no convergence bar 

518 represents the participants whose optimization protocol did not converge to an optimal combination. 

519 Figure 5. Optimal combination validation. The comparison between the optimal determined by the 

520 sweep (orange) and the optimal achieved by HIL optimization (dark orange) (A) The average of the 

521 optimal combination across participants from the sweep (orange circle) compared to the optimal 

522 combination across participants for the HIL optimization (dark orange square). The neutral 

523 combination is denoted as the light orange triangle for reference. The error bars represent the standard 

524 deviation across participants (n = 8). (B) The average loading rate across participants from the optimal 

525 combination from the sweep, the optimal combination from the HIL optimization (HIL), and the neutral 

526 combination (combination 1,3). The error bars represent the standard deviation across participants (n 

530 = 8). 

531 Figure 6. Linear mixed-effect model. We used a 2nd order polynomial as the best-fit model to analyze 

532 the effect of shoe heel height and pylon height on the contralateral limb loading rate. (A) The surface 

533 plot of the linear best-fit model. The pylon height setting is on the vertical axis, and the shoe heel 

534 height setting is on the horizontal. The color bar represents the loading rate, where light blue is the 

535 highest and dark blue is the lowest. (B, C) 2-Dimensional plot. The effect of shoe heel height (B) and 

536 pylon height (C) on the contralateral limb loading rate. This 2-dimensional plot was taken from the 

537 middle point of pylon height and shoe heel height from (A), the mean of conditions 2 and 3. The circles 

538 and error bars in (B) represent the mean  standard deviation of all pylon heights at each shoe heel 

539 height setting. The circles and error bars in (C) represent the mean  standard deviation of all shoe heel 

540 heights at each pylon height setting. 

541 Figure 7: Human-in-the-loop optimization histories of participants: The pattern of shoe heel height 

542 (A) and pylon height (B) optimization during the HIL optimization for each participant. The colors of 

543 the lines relate to the convergence metric where the dark blue lines represent participants who 

544 converged in 4 combinations, and the light blue lines represent participants who did not converge to 

545 an optimal combination. The optimization history pattern is plotted relative to the final optimal 

546 parameter setting determined by the HIL optimization to visually see the convergence. As such, each 

547 line ends at 0 on the vertical axis. The dashed lines represent the band that was used to determine 

548 whether the algorithm achieved convergence or not. More specifically, we considered the algorithm to 

549 have converged if the prescribed parameter combination stayed within a band of ± 1. 
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