

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

1 **Siena C Senatore^{1*}, Kota Z. Takahashi² Philippe Malcolm^{1*}**

2 ¹Biomechanics Research Building, University of Nebraska at Omaha, Omaha, NE, United States

3 ²Department of Health & Kinesiology, University of Utah, Salt Lake City, UT, United States

4 *** Correspondence:**

5 Siena C. Senatore

6 siena.senatore@icloud.com

7 Philippe Malcolm

8 pmalcolm@unomaha.edu

9 **Keywords: optimization, computer algorithm, prosthesis simulator, manual adjustments,**
10 **prosthesis fitting.**

11 Word Count: 5,437, Number of figures: 7

12 **Abstract**

13 Human-in-the-loop optimization algorithms have proven useful in optimizing complex interactive
14 problems, such as the interaction between humans and robotic exoskeletons. Specifically, this
15 methodology has been proven valid for reducing metabolic cost while wearing robotic exoskeletons.
16 However, many prostheses and orthoses still consist of passive elements that require manual
17 adjustments of settings. In the present study, we investigated if human-in-the-loop algorithms could
18 guide faster manual adjustments in a procedure similar to fitting a prosthesis. Eight healthy participants
19 wore a prosthesis simulator and walked on a treadmill at 0.8 ms^{-1} under 16 combinations of shoe heel
20 height and pylon height. A human-in-the-loop optimization algorithm was used to find an optimal
21 combination for reducing the loading rate on the limb contralateral to the prosthesis simulator. To
22 evaluate the performance of the optimization algorithm, we used a convergence criterium. We
23 evaluated the accuracy by comparing it against the optimum from a full sweep of all combinations. In
24 5 out of the 8 participants, the human-in-the-loop optimization reduced the time taken to find an
25 optimal combination; however, in 3 participants, the human-in-the-loop optimization either converged
26 by the last iteration or did not converge. Findings from this study show that the human-in-the-loop
27 methodology could be helpful in tasks that require manually adjusting an assistive device, such as
28 optimizing an unpowered prosthesis. However, further research is needed to achieve robust
29 performance and evaluate applicability in persons with amputation wearing an actual prosthesis.

30 **1 Introduction**

31 Approximately one million adults in the United States live with a lower limb amputation (Ziegler-
32 Graham et al., 2008). Individuals with amputation rely on a prosthesis to regain functionality in their
33 lives. For this reason, significant research has focused on the design of passive (Collins et al., 2015;
34 Etenzi et al., 2020) and active prostheses (Herr & Grabowski, 2012). While remarkable advancements

have been made in prosthesis design, recent investigations suggest that individuals with amputation are more likely to develop osteoarthritis in their contralateral limb, despite being fitted with a state-of-the-art prosthesis (Ding et al., 2021). Individuals with amputation may experience decreased quality of life due to the increased risk of developing joint osteoarthritis in the knee of their contralateral limb (Burke et al., 1978; Lemaire & Fisher, 1994; Norvell et al., 2005; Struyf et al., 2009). During standing, weight-bearing for persons without amputation is presumed to be shared equally between lower limbs. However, it is believed that persons with amputation stand with greater sway and more weight-bearing towards their contralateral limb (Isakov et al., 1992; Rossi et al., 1995; Nadollek et al., 2002). Some studies suggest that increased time spent on the contralateral limb is an attempt to protect the soft tissues of the residual limb, which are not suited for weight-bearing immediately after amputation (Silver-Thorn et al., 1996). Regardless of the cause of gait deviation, the load placed on the contralateral limb is greater than the force that people without amputation exert on their lower limbs during natural locomotion (Suzuki, 1972; Engsberg et al., 1991, 1993). Consequently, this mechanism can put persons with amputation at a higher risk of developing osteoarthritis in their contralateral limb.

Previous studies investigated the effects of prosthetic components on the contralateral limb to explore the reason for gait deviation in persons with amputation. Studies have found that changing pylon flexibility can affect the vertical loading rate on the contralateral limb (Coleman et al., 2001). Additionally, socket fit and alignment are critical for appropriate function and comfort, as these factors are known to influence the contralateral limb loading rate (Zhang et al., 2019). Studies have suggested that the mechanics of prosthetic components may mitigate some compensatory mechanisms during locomotion in persons with amputation (Russell Esposito & Wilken, 2014; Maun et al., 2021). With this, it is evident that a prosthetic device has many parameter settings that can be altered to achieve optimal comfort and fit.

During a fitting session, the settings of a prosthesis are adjusted to improve goals such as overall fit, satisfaction with the device, and characteristics of the walking gait pattern. Approximately 68% to 88% of persons with amputation wear a prosthesis at least seven hours a day to aid in mobility and the performance of everyday activities (Pohjolainen et al., 1990; Walker et al., 1994; Jones et al., 1997). Despite the high rate of prosthesis use, there is a high rate of dissatisfaction with the comfort of prostheses (Dillingham et al., 2001; Pezzin et al., 2004). Several reasons could cause dissatisfaction with the comfort of the prosthesis. There can be errors in clinical measurements of the limb dimensions, partly due to difficulties locating the exact bony landmarks through layers of soft tissues. Additionally, errors can occur due to the prevalence of iliac asymmetries (Ingelmark & Lindstrom, 1963). Asking the individual for their opinion on their prosthetic may result in errors as their opinion is subjective, considering if their previous prosthetic fit was less than optimal (Friberg, 1984; Boone et al., 2012). From this, it is evident that the process of fitting a prosthesis can be improved. In addition, to appropriately fit a prosthesis, the parameter settings of different prosthetic components, like pylon height and stiffness, need to be adjusted. Since different prosthetic components need to be altered and tested, this process can be time-consuming for both the patient and the prosthetist.

Advances in optimization algorithms have proven very useful in selecting optimal settings for exoskeletons (Zhang et al., 2017). Human-in-the-loop optimization algorithms, which optimize parameters while considering multiple interactions, have proven very useful in advancing the optimization of robotic exoskeletons (Malcolm et al., 2017; Zhang et al., 2017). Instead of analyzing measurements after completing a lengthy protocol of multiple parameter settings, these algorithms take measurements from a few parameter settings and converge in real time toward an optimal setting. These human-in-the-loop algorithms have been used to optimize devices in response to the user's physiological changes (i.e., metabolic cost) (Koller et al., 2016). This methodology takes inspiration from humans who naturally optimize their coordination patterns for energy cost and other aspects of

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

82 locomotor performance (Alexander McN., 1989; Selinger et al., 2015). Studies have demonstrated that
83 human-in-the-loop optimization can improve the performance of wearable devices like robotic
84 exoskeletons (Felt et al., 2015; Koller et al., 2016; Zhang et al., 2017; Ding et al., 2018). In addition,
85 it is known that human-in-the-loop optimization algorithms emphasize the importance of customization
86 and individualism in assistive devices (Koller et al., 2016; Zhang et al., 2017). However, human-in-
87 the-loop optimization has yet to be used to guide manual adjustments for optimizing prostheses.

88 The goal of this study was to evaluate the usability of human-in-the-loop optimization in prescribing
89 manual adjustments of shoe heel height and pylon height to reduce the loading rate on the contralateral
90 limb. Our first aim was to evaluate the time required to find the optimal parameter combination using
91 human-in-the-loop optimization. The algorithm was designed to simultaneously optimize shoe heel
92 height on the contralateral limb and pylon height on the prosthesis simulator limb as a means of
93 converging to a parameter combination that minimizes the loading rate on the contralateral limb. We
94 chose to alter shoe heel height on the contralateral side as previous studies have shown that shoe heel
95 height can affect knee joint loading (Shakoor et al., 2010). In addition, we chose pylon height since it
96 was the most feasible component to alter for this preliminary study and is known to affect the fit and
97 alignment of a prosthesis. We hypothesized that the algorithm would reduce the time necessary to reach
98 a minimal loading rate compared to the time required to complete a sweep of all the possible parameter
99 combinations. Our second aim was to analyze the accuracy of the human-in-the-loop optimization
100 algorithm in finding an optimal combination. By comparing the loading rate on the contralateral limb
101 from the sweep and optimization methods, we evaluated the accuracy of the human-in-the-loop
102 optimization algorithm. Since persons with amputation are such a diverse population, implementing
103 this methodology could accommodate more specific customization during fitting processes and allow
104 a prosthesis to achieve its potential.

105 2 Materials and Methods

106 2.1 Subject Recruitment

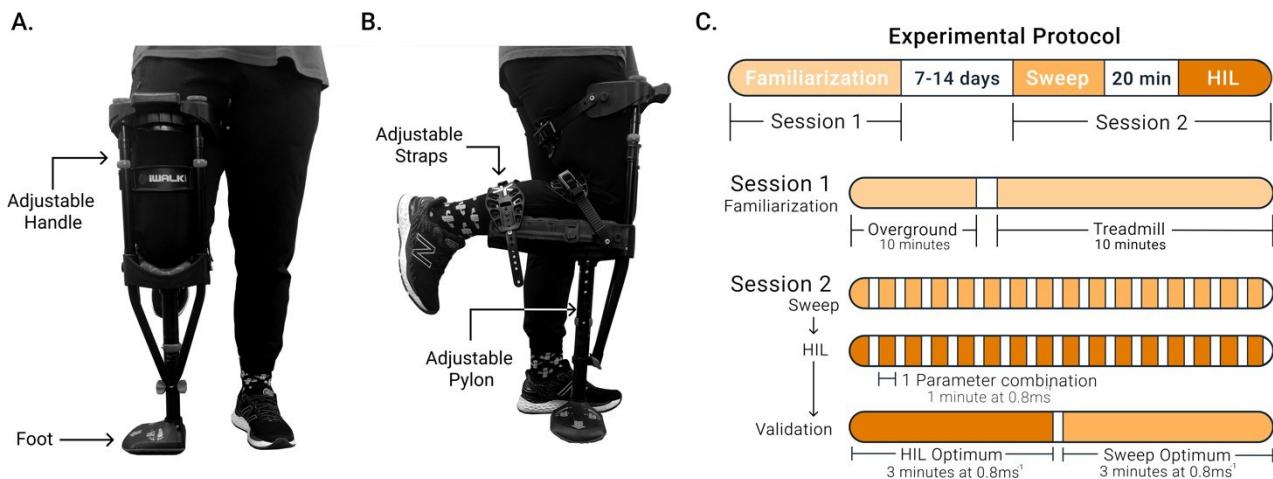
107 As a preliminary step towards testing in persons with an amputation, ten healthy young adults ($n = 10$;
108 mass, 76.4 ± 15.5 kg; height, 1.73 ± 0.08 m; mean \pm SD) were recruited. The goal of this study was
109 not to obtain representative normative data of the average person with an amputation; instead, the goal
110 was to evaluate the efficiency of the optimization. Because of this specific goal, we believed a relatively
111 small sample and a convenience sampling strategy was acceptable (Kim et al., 2020). All participants
112 were recruited within the Biomechanics Research Building at the University of Nebraska at Omaha.
113 All recruited participants were able to provide informed consent. The study was approved by the
114 University of Nebraska Institutional Review Board.

115 A health questionnaire was administered to assess if the participant had any functional limitations that
116 impacted their capacity to complete the protocol. We based the inclusion criteria on the subject's age,
117 height, and leg length. We only included participants between 19 to 45 years old. In addition, we only
118 included participants who could fit the prosthesis simulator using the manufacturer's leg length and
119 height restriction (iWALK 2.0, Long Beach, CA, USA, Figure 1A, B). We only included participants
120 free of conditions limiting walking capability, including joint, musculoskeletal, or neurological issues.
121 Additionally, we only included participants who were free of any cardiovascular pathologies.

122 2.2 Experimental Protocol

123 Participants walked with a device that simulated walking with a prosthesis (Figure 1A, B). This device
124 and similar devices have been used in various studies to simulate walking with a prosthesis (Keeken et
125 al., 2012; Ramakrishnan et al., 2017; Schlafly & Reed, 2020). Anecdotally, we can report that none of

126 the participants had prior experience with the prosthesis simulator or similar devices. Participants
 127 completed two sessions (Figure 1C). The initial session was a familiarization session to mitigate
 128 potential learning effects during the testing session. During this session, participants walked with the
 129 prosthesis simulator on the neutral setting (no shoe heel height and the initial fitted pylon height;
 130 combination 1,3) to represent walking with a device that has not been adjusted. The prosthesis
 131 simulator was used on the participant's dominant limb, which was determined based on which leg they
 132 would use to kick a ball (van Melick et al., 2017). Participants walked overground and then progressed
 133 onto the treadmill for twenty minutes, where the speed increased until 0.8 ms^{-1} was achieved. During
 134 the second session, participants completed three experimental protocols: a parameter setting sweep
 135 protocol where all conditions were tested (sweep), followed by the human-in-the-loop optimization
 136 protocol (HIL optimization), and finally, a validation test of the optimal combinations determined from
 137 the sweep and the optimization protocols. During all experimental protocols, the participants walked
 138 at 0.8 ms^{-1} . Studies using similar simulator devices used a similar, relatively low walking speed
 139 (Schlafly & Reed, 2020; Vanicek et al., 2007). On average, we paused about 2 minutes between
 140 conditions to calculate loading rates, change the settings and let participants rest. Participants were free
 141 to rest longer for up to 5 minutes. Anecdotally, participants did report minor fatigue due to walking
 142 with the prosthesis simulator toward the end of the protocol.



143

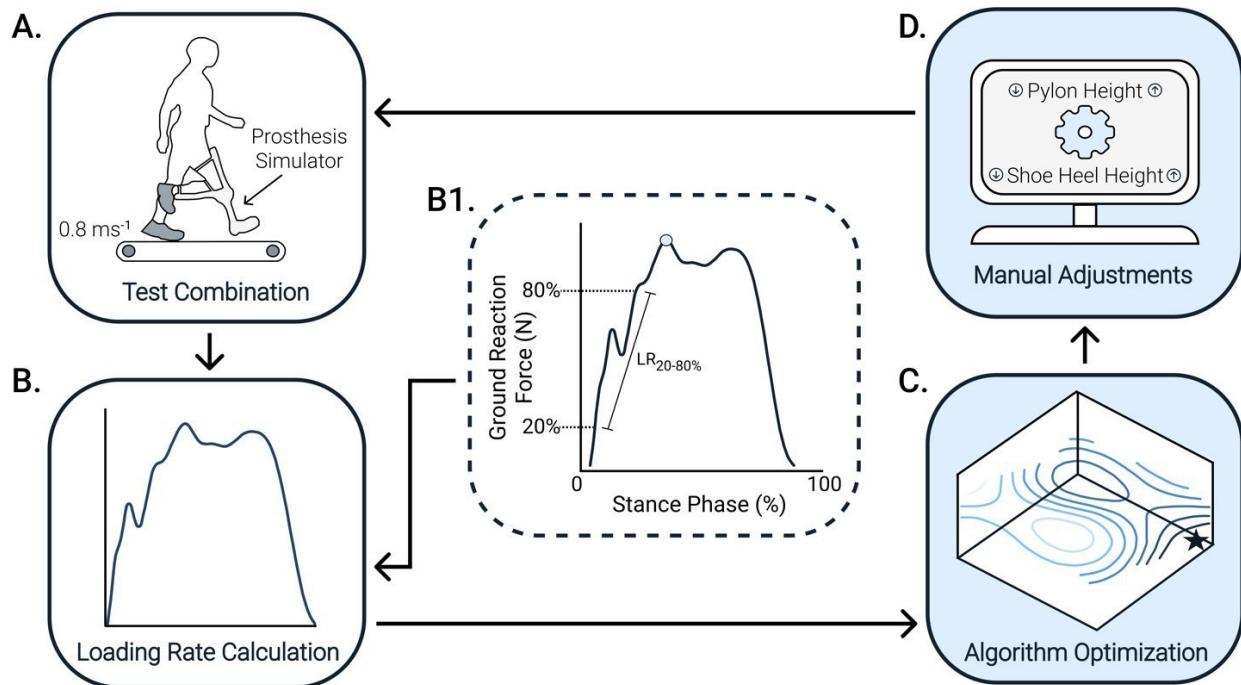
144 **Figure 1: The prosthesis simulator and experimental protocol. (A) Front view.** The foot's
 145 orientation on the device could be switched depending on whether the participant was left or right-
 146 footed. **(B) Side view.** The prosthesis simulator had three straps. The straps secured the lower leg to
 147 the device to prevent the participant from using their lower leg and could be easily tightened or
 148 loosened. The lower portion of the device was raised and lowered to change the pylon height parameter
 149 setting. **(C) Protocol timeline.**

150 2.3 HIL Optimization Protocol

151 Participants walked on the treadmill while wearing the prosthesis simulator for 1 minute for each
 152 parameter combination. After completing each combination, the human-in-the-loop optimization
 153 algorithm prescribed the following combination to be evaluated. We manually changed the parameters
 154 to the combination that the algorithm prescribed. These adjustments were limited by the intervals
 155 between the physically available settings; therefore, the prescribed settings had to be rounded to the
 156 available setting intervals. Combinations were changed until 16 combinations were completed. The
 157 optimal combination determined from this protocol (i.e., the optimal determined by HIL optimization)
 158 was denoted as the HIL optimization optimum.

159 **2.3.1 Human-in-the-loop Optimization**

160 We designed a human-in-the-loop optimization algorithm to minimize the loading rate on the limb
 161 contralateral to the prosthesis simulator (Figure 2; S1). The loading rate was determined by calculating
 162 the vertical instantaneous loading rate from the ground reaction force (GRF) recorded at a frequency
 163 of 2000 Hz using an instrumented split-belt treadmill (Bertec, Columbus, OH, USA). The vertical
 164 instantaneous loading rate is preferable to the vertical average loading rate as it provides a more
 165 consistent evaluation (Ueda et al., 2016). We calculated the loading rate as the maximum of the
 166 instantaneous slope between 20-80% from the first peak (Figure 2B1). This calculation method has
 167 been used in previous studies to calculate the loading rate (Abolins et al., 2019).



168

169 **Figure 2. Human-in-the-loop optimization algorithm flowchart.** (A) Participants walked on a
 170 treadmill at 0.8ms^{-1} with the prosthesis simulator for each combination. (B) The treadmill recorded the
 171 ground reaction force. (B1) The loading rate was calculated from the ground reaction force by
 172 calculating the slope between 20-80% from the first peak (blue circle). (C) We used gradient descent
 173 and successive parabolic optimization to find the optimal combination of shoe heel height and pylon
 174 height. (D) From this, the algorithm prescribes the following combination to test, that is, a specific
 175 shoe heel height and pylon height. This process continued until 16 combinations were completed. From
 176 those 16 combinations, we then determine the minimum amount that would have been required to
 177 converge on the optimum (C, black star) after the experiment. Often the human-in-the-loop algorithm
 178 repeats certain conditions rather than testing each of the 16 possible combinations like the sweep
 179 protocol.

180 The algorithm uses gradient descent to guide the first parameter combinations and then uses successive
 181 parabolic optimization once a sufficient number of parameter combinations have been tested. These
 182 techniques are based on similar techniques adapted from previous studies (Koller et al., 2016; Molderez
 183 et al., 2017), where the goal was to find the local minimum of an objective function, similar to a ball
 184 rolling toward the lowest point of a valley. After testing the first combination of shoe heel height and

185 pylon height, two neighboring combinations within the grid of all possible shoe heel height and pylon
186 height combinations were randomly chosen to test. In order to perform a first estimation of the gradient
187 in the three-dimensional space of shoe heel height and pylon height against loading rate, we needed to
188 complete these three parameter combinations. This gradient was then used to calculate the direction of
189 the estimated new optimal parameter combination. In this estimation, a set of hyper-parameters defined
190 how far the new estimated optimum will be placed in the direction of the gradient.

191 Once four combinations were completed, we started using a successive parabolic optimization to
192 update the algorithm's estimate of the optimal parameter combination. At this point, we fit a paraboloid
193 through all completed combinations. Given the small range over which the two parameters were
194 adjusted, we assumed there should be only one optimal combination. If the parabolic fit was concave
195 and pointed to a single optimum, we used the parabolic fit to define the new estimated optimum. If the
196 paraboloid fit produced a non-concave surface (i.e., a surface that descends in many directions), the
197 optimization process reverted to a gradient descent search instead of parabolic optimization. For the
198 remainder of the combinations, we kept evaluating the parabolic fit and, when needed, the gradient
199 descent search until 16 combinations were completed. Throughout the optimization process, it is
200 possible that some combinations could be repeated.

201 In the initial stages of developing the optimization algorithm, we compared the suitability of three
202 different optimization algorithms (the covariance matrix adaptation evolution strategy (CMA-ES)
203 (Zhang et al., 2017; Ren et al., 2019), gradient descent (Felt et al., 2015), and successive parabolic
204 optimization. We used simulated contralateral limb loading rate data obtained by generating previously
205 measured contralateral limb loading rates with some added random noise from one participant (S2). In
206 this simulation study, we found that successive parabolic optimization was relatively more suitable for
207 this application than the other optimization methods (S3). We are uncertain why the present method
208 performed slightly better. This may be associated with the type of simulated data generated for this
209 comparison. Furthermore, specifics of the problem are relatively uncommon such as the very low
210 resolution of only a 4x4 grid of possible combinations. It is also possible that this affected the outcome.

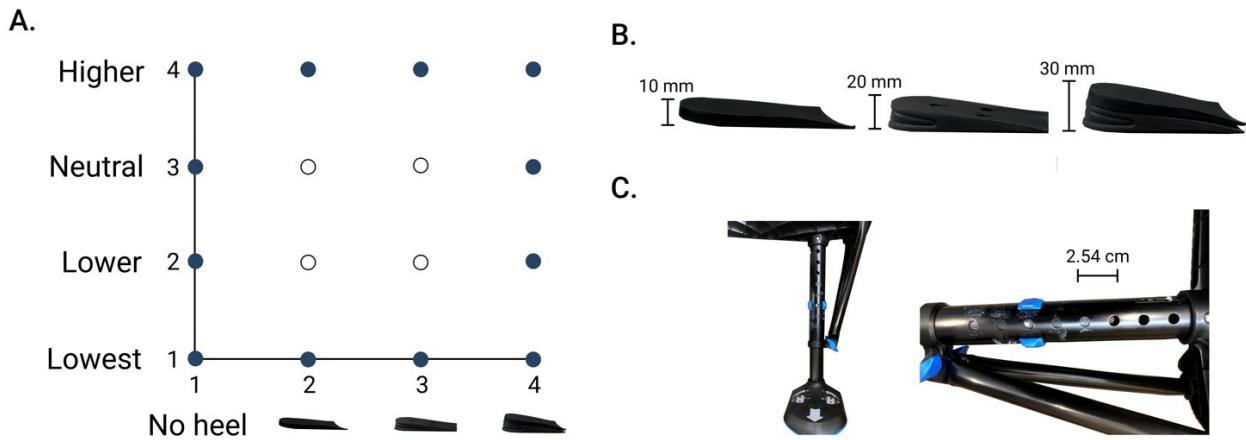
211 The initial combination was randomly chosen for each participant. Similar to previous human-in-the-
212 loop studies (Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018; Ren et al., 2019), we restricted the
213 initial combination to the combinations along the edge of the grid of all possible shoe heel height and
214 pylon height combinations (Figure 3A). Since we assumed that the optimum most likely exists
215 somewhere in the middle of the parameter combination grid, this restriction allows us to see how the
216 algorithm converges to an optimum. Suppose the optimization process was to begin in the middle of
217 the parameter combination grid; in that case, it may not be easy to distinguish whether the algorithm
218 identifies the optimum or is not making any updates.

219 **2.4 Sweep Protocol**

220 Participants walked on the treadmill while wearing the prosthesis simulator for 1 minute for each shoe
221 heel height and pylon height combination. Shoe heel heights were inserted in the shoe on the
222 contralateral side and included 0, 10, 20, and 30 mm heights (Figure 3B), where 0 indicated no
223 additional heel was inserted in the shoe. Pylon height was changed on the prosthesis simulator and
224 ranged from one higher to two lower than the initial fitted height, where each setting differed by 2.54
225 cm (Figure 3C). We used a number code to designate each parameter setting: shoe heel heights of 0,
226 10, 20, and 30 mm were labeled as heel heights #1, 2, 3, and 4, respectively; pylon heights two lower
227 and one higher than the initial fitted height were labeled as pylon heights #1, 2, 3, and 4, respectively
228 where #3 was the initial fitted height. All 16 possible parameter combinations were completed in

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

229 random order for each participant. Participants were allocated up to 5 minutes of rest between testing
230 parameter combinations. The optimal combination determined from this protocol (i.e., the optimal
231 from a 2D surface fitted through all 16 combinations) was denoted as the sweep optimum.



232
233 **Figure 3. The parameter settings.** Shoe heel height and pylon height were the two-parameter settings
234 adjusted throughout the protocol. **(A) Randomized initial combinations.** The possible combination
235 choices for the initial combination (dark circles) used in the human-in-the-loop optimization. These
236 were randomized for each participant. **(B) Shoe heel heights.** Shoe heel heights were added to the shoe
237 of the contralateral limb and included 10, 20, and 30 mm heights (left to right). The no-heel parameter
238 setting indicated that no heel was added to the shoe. **(C) Pylon heights.** Pylon heights were adjusted
239 on the prosthesis simulator and varied from two lower and one higher than the initial fitted height.
240 Pylon height options differed by 2.54 cm.

241 2.5 Validation Tests

242 In addition, after completing the sweep and the optimization protocols, participants walked on the
243 treadmill under the optimized parameter combination from the HIL protocol, followed by the optimal
244 combination of the sweep protocol for 3 minutes each. Conducting this validation test allowed us to
245 compare the contralateral limb loading rate between both optimized combinations. We used the neutral
246 combination from the sweep protocol to compare the results to a device that is not individually adjusted
247 at all. We repeated the optimum from both protocols because the optimal combination determined by
248 the HIL optimization and sweep protocol might have had a low loading rate due to chance.

249 2.6 Statistical Analysis

250 To find the optimal parameter combination from the sweep protocol, we fit a second-order polynomial
251 that was a function of shoe heel height and pylon height against the loading rate. The minimum loading
252 rate of this fitted surface determined the individual optimal combination. We reported the optimal
253 parameter combination on a group level using the mean \pm standard deviation.

254 We used a convergence criterium to evaluate the algorithm's performance and determine when an
255 optimal combination had been achieved in the HIL optimization protocol. Previous studies have used
256 a similar convergence criterium as a performance metric for human-in-the-loop optimization
257 algorithms (Felt et al., 2015; Zhang et al., 2017; Ding et al., 2018). An optimal combination was said
258 to be achieved when prescribed combinations remained between the parameter setting one above and
259 one below the estimated optimal parameter setting (S4). The number of combinations it takes before

260 staying within this band was defined as ‘combinations-to-convergence.’ We reported the average
 261 number of combinations until convergence occurred based on the mean \pm standard deviation. To
 262 evaluate if the number of combinations when convergence occurs was significantly smaller than the
 263 maximum number of combinations (i.e., 16), we used a one-sample t-test.

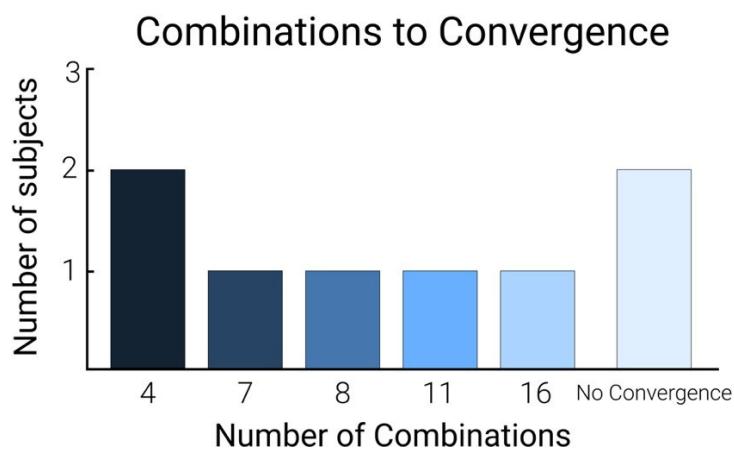
264 We also evaluated if there was a significant difference in parameter settings between the HIL
 265 optimization optimum and the sweep optimum using a paired t-test. To compare the average loading
 266 rate across participants for both optimal parameter combinations, we used a paired t-test with a Holm-
 267 Šidák correction. Additionally, we used a paired t-test to compare the optimal parameter combinations
 268 to the neutral combination to see if there were any significant changes in the loading rate on the
 269 contralateral limb compared to wearing a device that is not individually adjusted at all.

270 3 Results

271 Data analysis included eight of the ten recruited participants ($n = 8$). Data from two participants were
 272 excluded due to a problem with the zeroing of the force treadmill and an error in the sequence of
 273 conditions in the protocol.

274 3.1 Combinations-to-convergence

275 The combinations-to-convergence was highly variable among participants (Figure 4; S5.1). Half of the
 276 participants achieved the optimal in eight or fewer combinations. Two participants achieved the
 277 optimal in more than eight combinations, and two did not achieve an optimal combination (i.e., the
 278 prescribed optimum never stayed within the defined convergence band). The average combinations-
 279 to-convergence among the participants who did converge was 8.3 ± 4.6 combinations (mean \pm standard
 280 deviation, $n = 6$). The two individuals who did not converge were excluded from this mean and standard
 281 deviation as they did not have a defined convergence. On average, the time taken for the human-in-
 282 the-loop optimization algorithm to achieve the optimum was significantly lower than completing the
 283 total number of combinations ($P < 0.05$, $n = 6$).



285 **Figure 4. Combinations-to-convergence bar graph.** The calculated combinations-to-convergence
 286 using the number of conditions tested to achieve the optimal combination. The no convergence bar
 287 represents the participants whose optimization protocol did not converge to an optimal combination.

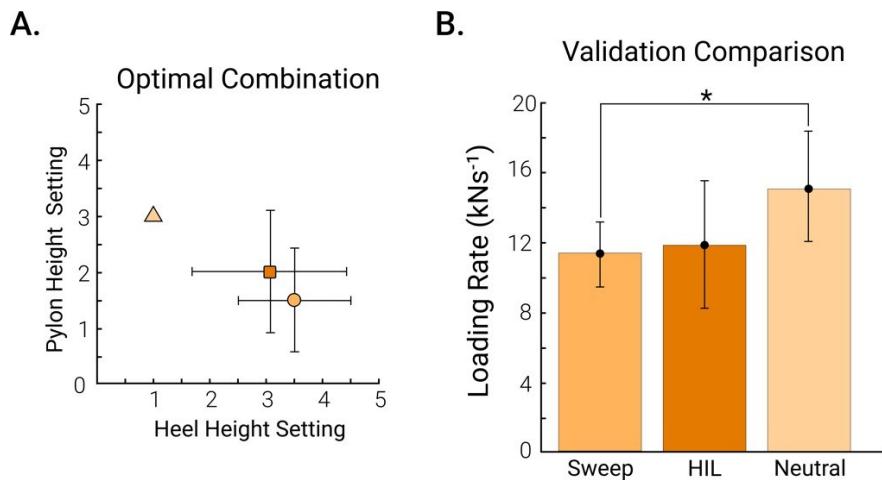
288 3.2 Validation of optimal combinations

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

289 The average optimal combination determined by the *sweep* was parameter setting 3.5 ± 1.0 and 1.5 ± 0.9
 290 for shoe heel height and pylon height, respectively (mean \pm standard deviation, $n = 8$). The average
 291 of the optimal combination determined by the *HIL optimization* was parameter setting 3.1 ± 1.4 and
 292 2.0 ± 1.1 for shoe heel height and pylon height, respectively. There was no significant difference in the
 293 parameter settings between the *sweep* and *HIL optimization* optimum ($P = 0.785$ for shoe heel height,
 294 $P = 0.275$ for pylon height; Figure 5A; S5.2). In the validation tests, we used rounded approximations
 295 of the optimal parameter combination from each protocol since we could only test available settings.
 296 The average from the tested combinations during the validation tests for the optimum of the *sweep* was
 297 3.4 ± 1.0 and 1.5 ± 0.8 for shoe heel height and pylon height, respectively. The average optimal
 298 parameter combination for the validation of the *HIL optimization* was 3.1 ± 1.6 and 2.0 ± 1.0 for shoe
 299 heel height and pylon height, respectively.

300 The average loading rate from the *sweep* optimum was $11.5 \pm 1.7 \text{ kN s}^{-1}$. The average loading rate
 301 from the *HIL optimization* optimum was $11.9 \pm 3.6 \text{ kN s}^{-1}$. The loading rate in the neutral combination
 302 setting (combination 1,3) was $15.1 \pm 3.3 \text{ kN s}^{-1}$. There was no significant difference in the loading rate
 303 between the two optimal combinations ($P = 0.730$; Figure 5B). The *sweep* optimum and the *HIL*
 304 *optimization* optimum reduced the loading rate by 23.3% and 20.7%, respectively, compared to the
 305 neutral combination. The *sweep* optimum had a significantly lower loading rate than the neutral
 306 combination ($P < 0.05$). However, there was no significant difference in loading rate between the *HIL*
 307 *optimization* optimum and the neutral combination ($P = 0.169$).

308 Since the *HIL* protocol did not show convergence in all participants, we conducted a follow-up test.
 309 We used a paired t-test to compare the average loading rate across participants who converged to an
 310 optimal combination ($n = 6$). When considering only the participants who did converge, both optimums
 311 from the *sweep* and *HIL optimization* had significantly lower loading rates than the neutral combination
 312 ($P < 0.05$, S5.3).



313

314 **Figure 5. Optimal combination validation.** The comparison between the optimal determined by the
 315 *sweep* (orange) and the optimal achieved by *HIL optimization* (dark orange) (A) The average of the
 316 optimal combination across participants from the *sweep* (orange circle) compared to the optimal
 317 combination across participants for the *HIL optimization* (dark orange square). The neutral
 318 combination is denoted as the light orange triangle for reference. The error bars represent the standard
 319 deviation across participants ($n = 8$). (B) The average loading rate across participants from the optimal
 320 combination from the *sweep*, the optimal combination from the *HIL optimization* (HIL), and the neutral

321 combination (combination 1,3). The error bars represent the standard deviation across participants (n
 322 = 8).

323 **4 Discussion**

324 This study investigated if a human-in-the-loop optimization algorithm can guide manual adjustments
 325 to optimize a prosthesis simulator. We hypothesized that the human-in-the-loop optimization algorithm
 326 would reduce the time taken to find an optimal parameter setting. The findings show that the human-
 327 in-the-loop optimization algorithm reduced the time taken to find an optimal combination in 5 out of 8
 328 participants, partially accepting our hypothesis.

329 The human-in-the-loop optimization algorithm determined an optimal combination similar to the
 330 optimum determined by the sweep of all 16 combinations. However, a statistical power analysis shows
 331 that we have yet to determine whether this means that there is genuinely no difference or if this was
 332 due to the sample size, given that the statistical power was 0.375 and 0.289 for shoe heel height and
 333 pylon height, respectively. The loading rate for both optimal combinations was similar, further
 334 validating that the human-in-the-loop optimization could reduce the loading rate similar to the sweep
 335 protocol. However, the fact that the algorithm did not converge in one-fourth of the participants raises
 336 concerns about the robustness of the optimization algorithm. While this seems to question the
 337 robustness of the optimization algorithm, previous studies show that this is not an uncommon result
 338 (Zhang et al., 2017; Welker et al., 2021). A particular study stated that none of their optimization
 339 algorithms could reduce metabolic cost significantly (Welker et al., 2021). Additionally, a different
 340 study mentioned instances where researchers had to reset the algorithm and add additional walking
 341 time (Zhang et al., 2017). On the contrary, supplementary analysis of the variability between repetitions
 342 of the same condition may suggest that the chosen optimization problem was simply very challenging
 343 (S6). We also investigated whether any of the features of the algorithm, such as the frequency of
 344 switching between parabolic optimization and gradient descent, was related to the time-to-convergence
 345 performance. Still, we did not find any clear relationship there.

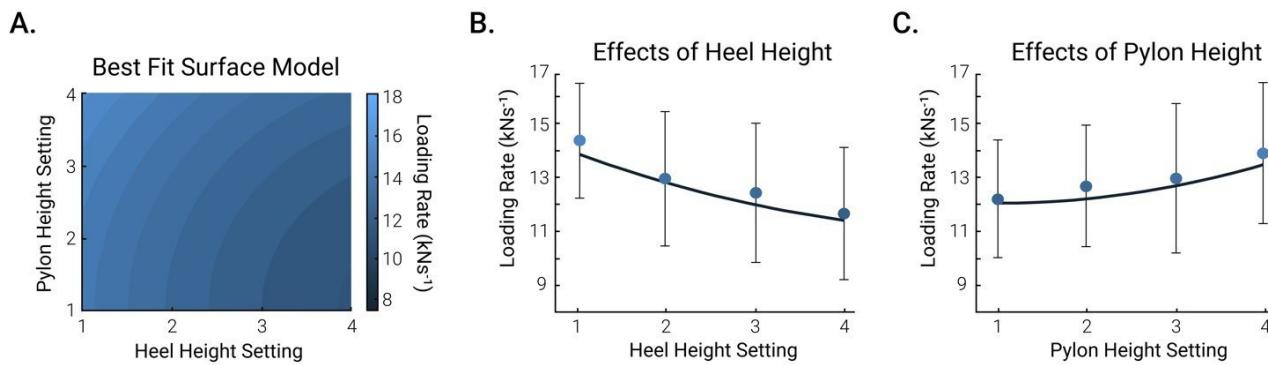
346 Although using the human-in-the-loop optimization algorithm reduced the time to find an optimal
 347 combination for over half of the participants, one participant required all 16 combinations to find an
 348 optimal combination. Additionally, the algorithm never converged to an optimal combination for two
 349 of the participants. This finding raised the question of whether this variability in the effectiveness was
 350 due to the algorithm or rather the effects of the prescribed parameter combination being small or
 351 inconsistent. To investigate this question, we performed a supplementary analysis of the statistical
 352 significance of the effects of shoe heel height and pylon height on loading rate based on the data from
 353 the sweep protocol. We used the following linear mixed-effect model (1) to study the effects of shoe
 354 heel height and pylon height on the loading rate on the contralateral limb:

355
$$z_{Fit} = c_1x^2 + c_2x + c_3y^2 + c_4y + c_5 \quad (1)$$

356 where x, y, and z are shoe heel height, pylon height, and loading rate, respectively, terms c_1 to c_5 are
 357 the coefficients for each independent parameter setting, and c_+ is the constant intercept term. We found
 358 no statistical significance for each of the terms (P-values were 0.629, 0.775, 0.243, and 0.383 for shoe
 359 heel height, the square of shoe heel height, pylon height, and the square of pylon height, respectively;
 360 Figure 6). On the one hand, this means that the effects of each parameter setting were inconsistent
 361 across all participants. This suggests that the effects of the parameters were relatively small and not
 362 highly repeatable. Anecdotally, we can comment that the ranges in shoe heel height and pylon height
 363 were sufficiently large to make walking difficult at the extreme ends of the parameter settings (e.g.,

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

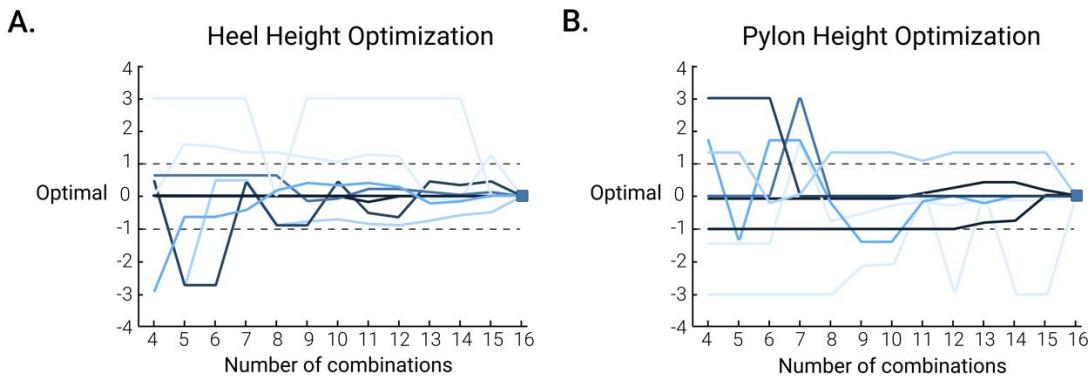
walking with the greatest shoe heel height or pylon height). Because of this, it is unlikely that the lack of statistically consistent effects is likely not due to having chosen too small of a range. This lack of statistically significant consistency in the effects of the independent parameters could explain why the optimization protocol did not converge for all participants. On the one hand, this may emphasize that the effect of the parameter settings was variable across participants, highlighting the need for a unique optimization method like human-in-the-loop optimization to find each individual's optimum. On the other hand, this may also suggest that the selected parameter settings may not have been the most relevant settings to optimize. Other studies sometimes also acknowledge that other parameter settings that may be more sensitive to the cost function could have been selected (Peng et al., 2022). Future investigations should optimize different parameter settings that have been shown to affect the contralateral limb, like pylon flexibility (Coleman et al., 2001) and stiffness (Maun et al., 2021).



375

Figure 6. Linear mixed-effect model. We used a 2nd order polynomial as the best-fit model to analyze the effect of shoe heel height and pylon height on the contralateral limb loading rate. **(A) The surface plot of the linear best-fit model.** The pylon height setting is on the vertical axis, and the shoe heel height setting is on the horizontal. The color bar represents the loading rate, where light blue is the highest and dark blue is the lowest. **(B, C) 2-Dimensional plot.** The effect of shoe heel height (B) and pylon height (C) on the contralateral limb loading rate. This 2-dimensional plot was taken from the middle point of pylon height and shoe heel height from (A), the mean of conditions 2 and 3. The circles and error bars in (B) represent the mean \pm standard deviation of all pylon heights at each shoe heel height setting. The circles and error bars in (C) represent the mean \pm standard deviation of all shoe heel heights at each pylon height setting ($n = 8$).

386 While previous studies have proven the effectiveness of human-in-the-loop optimization in tuning one
387 or multiple parameters, the application of this methodology for optimizing manual adjustments of
388 assistive devices is novel. Upon further analysis, it appears that the algorithm could optimize both
389 parameter settings in some participants, while in others, it only optimized one or neither. Figure 7 is a
390 visual representation showing the variability of the optimization patterns for both parameter settings.
391 This emphasizes that while the parameter settings together did not affect the loading rate on the
392 contralateral limb, there is potential for this methodology to guide manual adjustments. Specifically, it
393 illustrates that the optimal shoe heel height (Figure 7A) was achieved more efficiently and consistently
394 across participants than the pylon height (Figure 7B). Footwear parameters on the contralateral limb
395 are not typically modified in persons with amputation. However, this finding suggests that further
396 analyses into the importance of footwear parameters on the loading rate on the contralateral limb in
397 persons with amputation may be beneficial. Additionally, further investigations should be done to
398 validate the use of improved human-in-the-loop optimization algorithms for simultaneously optimizing
399 two manually adjusted parameters.



400

401 **Figure 7: Human-in-the-loop optimization histories of participants:** The pattern of shoe heel height
 402 (A) and pylon height (B) optimization during the *HIL optimization* for each participant. The colors of
 403 the lines relate to the convergence metric where the dark blue lines represent participants who
 404 converged in 4 combinations, and the light blue lines represent participants who did not converge to
 405 an optimal combination. The optimization history pattern is plotted relative to the final optimal
 406 parameter setting determined by the *HIL optimization* to visually see the convergence. As such, each
 407 line ends at 0 on the vertical axis. The dashed lines represent the band that was used to determine
 408 whether the algorithm achieved convergence or not. More specifically, we considered the algorithm to
 409 have converged if the prescribed parameter combination stayed within a band of ± 1 ($n = 8$).

410 There are some limitations to this study. Participants were recruited for this experiment through
 411 convenience sampling on a college campus. Although the recruitment age ranges from 19 to 45, the
 412 sample may only represent part of the population. Concerning the protocol, not all parts of the
 413 experiment were randomized. It is possible that some of the differences between the sweep and HIL
 414 optimum could be due to adaptation or fatigue. However, we think the habituation was sufficient since
 415 the purpose of the study was to compare the efficiency of the optimization algorithm. While similar
 416 prosthesis simulators have been used to simulate walking with a prosthesis, the findings from this study
 417 likely do not reflect persons with amputation. To validate the results of this study, the protocol could
 418 be implemented as a case study on a person with an amputation. With this, it could be possible that the
 419 optimization algorithm could improve as persons with an amputation who have experience walking
 420 with a prosthesis could have a more consistent gait pattern. It is known that persons with amputation
 421 have and need much more time to be able to get used to walking with a prosthesis (Barr et al., 2012;
 422 Ray et al., 2018), increasing the chance for a more consistent gait pattern. This higher consistency has
 423 the potential to make the optimization process more straightforward.

424 Persons with amputation lack both sensing and direct control of the mechanics of their prosthetic foot
 425 and ankle (Welker et al., 2021). With this, the sensory feedback must come from the interactions at the
 426 socket and whole-body proprioception (Welker et al., 2021). The importance of sensory feedback
 427 reiterates why human-in-the-loop optimization is successful with exoskeletons and might be harder to
 428 replicate in devices such as prostheses. It may be hard to implement human-in-the-loop optimization
 429 in persons with amputation as the contributions to differences in gait go deeper than just the effects of
 430 component mechanics (Welker et al., 2021). Investigations to validate the implementation of human-
 431 in-the-loop optimization in persons with amputation should consider different cost functions other than
 432 metabolic cost to optimize the prosthesis. Since previous studies have reported that prosthetic
 433 components affect peak ground reaction force (Grabowski & D'Andrea, 2013; Morgenroth et al., 2011)
 434 and knee external adduction moment (Grabowski & D'Andrea, 2013; Morgenroth et al., 2011), future
 435 research could investigate optimizing these variables using human-in-the-loop optimization. Regarding

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

436 the parameter settings selected to adjust, there are some limitations in clinical applicability in persons
437 with amputation, as prosthetists traditionally do not alter the contralateral limb. The results from the
438 linear mixed effect model further reiterate the limitations in the effectiveness of altering the selected
439 parameter settings. In addition, the shoe heel height stiffness was not considered, although it is evident
440 that stiffness influences limb loading (Hong et al., 2013; Kulmala et al., 2018). Future investigations
441 could analyze the implementation of human-in-the-loop optimization in optimizing applicable clinical
442 parameters like pylon height and heel height stiffness on the prosthesis side.

443 Another limitation is that the algorithm was used to optimize parameters that only have 4 settings. On
444 the one hand, it is possible that the actual optimum in certain participants would have existed outside
445 of the range of the tested combinations. On the other hand, the small number of settings may have
446 favored the sweep protocol considering all possible combinations were tested. It is possible that
447 optimizations with a greater resolution of options may have resulted in a more favorable result;
448 however, there is no evidence that this would have been better. Further investigations are needed to
449 evaluate the effect of a greater parameter setting resolution in human-in-the-loop optimization of
450 manually adjusted devices. To minimize the chances of the initial combination being optimal, we
451 restricted the initial combination to the combinations along the border of the available choices.
452 However, in some instances, the initial combination that was tested turned out to be close to the final
453 optimum. It is possible that those participants would have produced a different result that showed
454 convergence if their protocol started out from a combination that was further from the optimum.
455 Finally, we only considered one possible algorithm that included gradient descent and successive
456 parabolic optimization techniques. Further investigations could investigate methods like Bayesian
457 optimization (Brochu et al., 2010; Kim et al., 2017, 2019) or covariance matrix adaption evolution
458 strategy CMA-ES (Zhang et al., 2017; Ren et al., 2019).

459 5 Conclusion

460 The study implemented a human-in-the-loop optimization algorithm to guide manual adjustments to
461 optimize a prosthetic simulator. The findings from this study show that even though there is potential
462 for this methodology to be implemented in the patient population of persons with amputation, many
463 factors need to be considered. Since prosthetic components are known to affect contralateral limb
464 loading, optimizing parameters on the prosthesis itself is a more clinically applicable approach to
465 implementing this methodology in persons with amputation. Since persons with amputation rely on
466 sensory feedback from the prosthesis, optimizing a cost function that is not related to physiological
467 changes may be more beneficial in persons with amputation. Considering prosthetists typically look at
468 both limbs when fitting and adjusting a prosthesis, future investigations could include a multi-objective
469 optimization to examine the effects of changing multiple parameter settings on both limbs.

470 6 Ethics Statement

471 This study was carried out under the recommendations of the University of Nebraska Institutional
472 Review Board with written informed consent from all participants. All subjects gave written informed
473 consent. The protocol was approved by the University of Nebraska Institutional Review Board.

474 7 Author Contributions

475 SS and PM conceived the experiment. SS, KZT, and PM discussed and designed the experimental
476 protocol. PM and SS wrote and pilot-tested optimization algorithms. SS recruited participants,
477 collected, and analyzed data, wrote custom code, and analyzed statistical results. SS wrote the initial

478 draft. SS, KZT, and PM reviewed the manuscript. All authors contributed to approving the final
479 manuscript.

480 **8 Conflict of Interest**

481 The authors declare that the research was conducted in the absence of any commercial or financial
482 relationships that could be construed as a potential conflict of interest.

483 **9 Funding**

484 The work was supported by the Graduate Research and Creative Activity, the Center for Research in
Human Movement Variability of the University of Nebraska at Omaha, and the National Institute of
Health (P20GM109090). PM also received partial support from the National Science Foundation (#
2203143). Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Institutes of Health or the
National Science Foundation.

485 **10 Acknowledgments**

486 The authors would like to thank Alex Dziewaltowski and Kayla Kowalczyk for their support
487 throughout this research project and Dr. Mahadevan Subramaniam and Dr. Nikolaos Papachatzis for
488 their guidance throughout this research project. The first author would like to thank her family for
489 their ongoing support and Andrew Ryan for his patience and willingness throughout her academic
490 journey.

491 **11 Figure Captions**

492 **Figure 1: The prosthesis simulator and experimental protocol.** **(A) Front view.** The foot's
493 orientation on the device could be switched depending on whether the participant was left or right-
494 footed. **(B) Side view.** The prosthesis simulator had three straps. The straps secured the lower leg to
495 the device to prevent the participant from using their lower leg and could be easily tightened or
496 loosened. The lower portion of the device was raised and lowered to change the pylon height parameter
497 setting. **(C) Protocol timeline.**

498 **Figure 2. Human-in-the-loop optimization algorithm flowchart.** **(A)** Participants walked on a
499 treadmill at 0.8ms^{-1} with the prosthesis simulator for each combination. **(B)** The treadmill recorded the
500 ground reaction force. **(B1)** The loading rate was calculated from the ground reaction force by
501 calculating the slope between 20-80% from the first peak (blue circle). **(C)** We used gradient descent
502 and successive parabolic optimization to find the optimal combination of shoe heel height and pylon
503 height. **(D)** From this, the algorithm prescribes the following combination to test, that is, a specific
504 shoe heel height and pylon height. This process continued until 16 combinations were completed. From
505 those 16 combinations, we then determine the minimum amount that would have been required to
506 converge on the optimum (C, black star) after the experiment. Often the human-in-the-loop algorithm
507 repeats certain conditions rather than testing each of the 16 possible combinations like the sweep
508 protocol.

509 **Figure 3. The parameter settings.** Shoe heel height and pylon height were the two-parameter settings
510 adjusted throughout the protocol. **(A) Randomized initial combinations.** The possible combination
511 choices for the initial combination (dark circles) used in the human-in-the-loop optimization. These
512 were randomized for each participant. **(B) Shoe heel heights.** Shoe heel heights were added to the shoe
513 of the contralateral limb and included 10, 20, and 30 mm heights (left to right). The no-heel parameter

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

514 setting indicated that no heel was added to the shoe. **(C) Pylon heights.** Pylon heights were adjusted
515 on the prosthesis simulator and varied from two lower and one higher than the initial fitted height.
Pylon height options differed by 2.54 cm.

516 **Figure 4. Combinations-to-convergence bar graph.** The calculated combinations-to-convergence
517 using the number of conditions tested to achieve the optimal combination. The no convergence bar
518 represents the participants whose optimization protocol did not converge to an optimal combination.

519 **Figure 5. Optimal combination validation.** The comparison between the optimal determined by the
520 *sweep* (orange) and the optimal achieved by *HIL optimization* (dark orange) **(A)** The average of the
521 optimal combination across participants from the *sweep* (orange circle) compared to the optimal
522 combination across participants for the *HIL optimization* (dark orange square). The neutral
523 combination is denoted as the light orange triangle for reference. The error bars represent the standard
524 deviation across participants ($n = 8$). **(B)** The average loading rate across participants from the optimal
525 combination from the *sweep*, the optimal combination from the *HIL optimization* (HIL), and the neutral
526 combination (combination 1,3). The error bars represent the standard deviation across participants (n
530 = 8).

531 **Figure 6. Linear mixed-effect model.** We used a 2nd order polynomial as the best-fit model to analyze
532 the effect of shoe heel height and pylon height on the contralateral limb loading rate. **(A) The surface**
533 **plot of the linear best-fit model.** The pylon height setting is on the vertical axis, and the shoe heel
534 height setting is on the horizontal. The color bar represents the loading rate, where light blue is the
535 highest and dark blue is the lowest. **(B, C) 2-Dimensional plot.** The effect of shoe heel height (B) and
536 pylon height (C) on the contralateral limb loading rate. This 2-dimensional plot was taken from the
537 middle point of pylon height and shoe heel height from (A), the mean of conditions 2 and 3. The circles
538 and error bars in (B) represent the mean \pm standard deviation of all pylon heights at each shoe heel
539 height setting. The circles and error bars in (C) represent the mean \pm standard deviation of all shoe heel
540 heights at each pylon height setting.

541 **Figure 7: Human-in-the-loop optimization histories of participants:** The pattern of shoe heel height
542 (A) and pylon height (B) optimization during the *HIL optimization* for each participant. The colors of
543 the lines relate to the convergence metric where the dark blue lines represent participants who
544 converged in 4 combinations, and the light blue lines represent participants who did not converge to
545 an optimal combination. The optimization history pattern is plotted relative to the final optimal
546 parameter setting determined by the *HIL optimization* to visually see the convergence. As such, each
547 line ends at 0 on the vertical axis. The dashed lines represent the band that was used to determine
548 whether the algorithm achieved convergence or not. More specifically, we considered the algorithm to
549 have converged if the prescribed parameter combination stayed within a band of ± 1 .

550 References

551 Abolins, V., Nesenbergs, K., and Bernans, E. (2019). Reliability of Loading Rate in Gait Analysis.
552 *IOP Conf Ser Mater Sci Eng* 575. doi: 10.1088/1757-899X/575/1/012002.

553 Alexander McN., R. (1989). Optimization and gaits in the locomotion of vertebrates. *Physiol Rev* 69,
554 1199–1227. doi: 10.1152/physrev.1989.69.4.1199.

555 Barr, J. B., Wutzke, C. J., and Threlkeld, A. J. (2012). Longitudinal gait analysis of a person with a
556 transfemoral amputation using three different prosthetic knee/foot pairs. *Physiother Theory Pract*
557 28, 407–411. doi: 10.3109/09593985.2011.631695.

558 Boone, D. A., Kobayashi, T., Chou, T. G., Arabian, A. K., Coleman, K. L., Orendurff, M. S., et al.
559 (2012). Perception of socket alignment perturbations in amputees with transtibial prostheses. *J*
560 *Rehabil Res Dev* 49, 843–854. doi: 10.1682/JRRD.2011.08.0143.

561 Brochu, E., Cora, V. M., and de Freitas, N. (2010). A Tutorial on Bayesian Optimization of
562 Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
563 Reinforcement Learning. Available at: <http://arxiv.org/abs/1012.2599> [Accessed October 20,
564 2021].

565 Burke, M. J., Roman, V., and Wright, V. (1978). Bone and joint changes in lower limb amputees.
566 *Ann Rheum Dis* 37, 252–254. doi: 10.1136/ard.37.3.252.

567 Coleman, K. L., Boone, D. A., Smith, D. G., and Czerniecki, J. M. (2001). Effect of trans-tibial
568 prosthesis pylon flexibility on ground reaction forces during gait. *Prosthet Orthot Int* 25, 195–
569 201. doi: 10.1080/03093640108726602.

570 Collins, S. H., Wiggin, M. B., and Sawicki, G. S. (2015). Reducing the energy cost of human
571 walking using an unpowered exoskeleton. *Nature* 2015 522:7555 522, 212–215. doi:
572 10.1038/nature14288.

573 Dillingham, T. R., Pezzin, L. E., MacKenzie, E. J., and Burgess, A. R. (2001). Use and satisfaction
574 with prosthetic devices among persons with trauma-related amputations: A long-term outcome
575 study. *Am J Phys Med Rehabil* 80, 563–571. doi: 10.1097/00002060-200108000-00003.

576 Ding, Y., Kim, M., Kuindersma, S., and Walsh, C. J. (2018). Human-in-the-loop optimization of hip
577 assistance with a soft exosuit during walking. *Sci Robot* 3. doi: 10.1126/scirobotics.aar5438.

578 Ding, Z., Jarvis, H. L., Bennett, A. N., Baker, R., and Bull, A. M. J. (2021). Higher knee contact
579 forces might underlie increased osteoarthritis rates in high functioning amputees: A pilot study.
580 *Journal of Orthopaedic Research®* 39, 850–860. doi: 10.1002/JOR.24751.

581 Engsberg, J. R., Lee, A. G., Patterson, J. L., and Harder, J. A. (1991). External loading comparisons
582 between able-bodied and below-knee-amputee children during walking. *Arch Phys Med Rehabil*
583 3072, 657–61. doi: 10.5604/20831862.1059297.

584 Engsberg, J. R., Lee, A. G., Tedford, K. G., and Harder, J. A. (1993). Normative ground reaction
585 force data for able-bodied and below-knee-amputee children during walking. *Journal of*
586 *Pediatric Orthopaedics* 13, 169–173.

587 Etenzi, E., Borzuola, R., and Grabowski, A. M. (2020). Passive-elastic knee-ankle exoskeleton
588 reduces the metabolic cost of walking. *J Neuroeng Rehabil* 17, 104. doi: 10.1186/s12984-020-
589 00719-w.

590 Felt, W., Selinger, J. C., Donelan, J. M., and Remy, C. D. (2015). “Body-in-the-loop”: Optimizing
591 device parameters using measures of instantaneous energetic cost. *PLoS One* 10, e0135342.

592 Friberg, O. (1984). Biomechanical significance of the correct length of lower limb prostheses: A
593 clinical and radiological study. *Prosthet Orthot Int* 8, 124–129. doi:
594 10.3109/03093648409146072.

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

595 Grabowski, A. M., and D'Andrea, S. (2013). Effects of a powered ankle-foot prosthesis on kinetic
596 loading of the unaffected leg during level-ground walking. *J Neuroeng Rehabil* 10, 49. doi:
597 10.1186/1743-0003-10-49.

598 Herr, H. M., and Grabowski, A. M. (2012). Bionic ankle-foot prosthesis normalizes walking gait for
599 persons with leg amputation. *Proc Biol Sci* 279, 457–64. Available at:
600 <http://www.ncbi.nlm.nih.gov/pubmed/21752817> [Accessed July 13, 2021].

601 Hong, W. H., Lee, Y. H., Lin, Y. H., Tang, S. F. T., and Chen, H. C. (2013). Effect of shoe heel
602 height and total-contact insert on muscle loading and foot stability while walking. *Foot Ankle
603 Int* 34, 273–281. doi: 10.1177/1071100712465817.

604 Ingelmark, B. E., and Lindstrom, J. (1963). Asymmetries of the lower extremities and pelvis and
605 their relations to lumbar scoliosis. A radiographic study. *Acta Morphol Neerl Scand* 5, 221–234.

606 Isakov, E., Mizrahi, J., Ring, H., Susak, Z., and Hakim, N. (1992). Standing sway and weight-bearing
607 distribution in people with below-knee amputations. *Arch Phys Med Rehabil* 73, 174–178. doi:
608 10.5555/uri:pii:000399939290097G.

609 Jones, M. E., Steel, J. R., Bashford, G. M., and Davidson, I. R. (1997). Static versus dynamic
610 prosthetic weight bearing in elderly trans-tibial amputees. *Prosthet Orthot Int* 21, 100–106. doi:
611 10.3109/03093649709164537.

612 Keeken, H. G. van, Vrieling, A. H., Hof, A. L., Postema, K., and Otten, B. (2012). Stabilizing
613 moments of force on a prosthetic knee during stance in the first steps after gait initiation. *Med.
614 Eng. Phys.* 34, 733–739.

615 Kim, M., Ding, Y., Malcolm, P., Speeckaert, J., Siviy, C. J., Walsh, C. J., et al. (2017). Human-in-
616 the-loop Bayesian optimization of wearable device parameters. *PLoS One* 12. doi:
617 10.1371/JOURNAL.PONE.0184054.

618 Kim, M., Liu, C., Kim, J., Lee, S., Meguid, A., Walsh, C. J., et al. (2019). Bayesian optimization of
619 soft exosuits using a metabolic estimator stopping process. *Proc IEEE Int Conf Robot Autom
620 2019-May*, 9173–9179. doi: 10.1109/ICRA.2019.8793817.

621 Kim, M., Lyness, H., Chen, T., and Collins, S. H. (2020). The Effects of Prosthesis
622 Inversion/Eversion Stiffness on Balance-Related Variability during Level Walking: A Pilot
623 Study. *J Biomech Eng* 142. doi: 10.1115/1.4046881.

624 Koller, J. R., Gates, D. H., Ferris, D. P., and Remy, C. D. (2016). “Body-in-the-loop” optimization of
625 assistive robotic devices: A validation study. *Robotics: Science and Systems* 12. doi:
626 10.15607/RSS.2016.XII.007.

627 Kulmala, J. P., Kosonen, J., Nurminen, J., and Avela, J. (2018). Running in highly cushioned shoes
628 increases leg stiffness and amplifies impact loading. *Scientific Reports* 8:1 8, 1–7. doi:
629 10.1038/s41598-018-35980-6.

630 Lemaire, E. D., and Fisher, R. (1994). Osteoarthritis and elderly amputee gait. *Arch Phys Med
631 Rehabil* 75, 1094–1099.

632 Malcolm, P., Galle, S., and de Clercq, D. (2017). Fast exoskeleton optimization. *Science (1979)* 356,
633 1230–1231. doi: 10.1126/SCIENCE.AAN5367.

634 Maun, J. A., Gard, S. A., Major, M. J., and Takahashi, K. Z. (2021). Reducing stiffness of shock-
635 absorbing pylon amplifies prosthesis energy loss and redistributes joint mechanical work during
636 walking. *J Neuroeng Rehabil* 18, 1–15. doi: 10.1186/s12984-021-00939-8.

637 Molderez, T. R., de Wit, B., Rabaey, K., and Verhelst, M. (2017). Successive parabolic interpolation
638 as extremum seeking control for microbial fuel & electrolysis cells. in *Proceedings IECON
639 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society* (Institute of
640 Electrical and Electronics Engineers Inc.), 3128–3133. doi: 10.1109/IECON.2017.8216528.

641 Morgenroth, D. C., Segal, A. D., Zelik, K. E., Czerniecki, J. M., Klute, G. K., Adamczyk, P. G., et al.
642 (2011). The effect of prosthetic foot push-off on mechanical loading associated with knee
643 osteoarthritis in lower extremity amputees. *Gait Posture* 34, 502–507. doi:
644 10.1016/J.GAITPOST.2011.07.001.

645 Nadollek, H., Brauer, S., and Isles, R. (2002). Outcomes after trans-tibial amputation: the relationship
646 between quiet stance ability, strength of hip abductor muscles and gait. *Physiotherapy Research
647 International* 7, 203–214. doi: 10.1002/PRI.260.

648 Norvell, D. C., Czerniecki, J. M., Reiber, G. E., Maynard, C., Pecoraro, J. A., and Weiss, N. S.
649 (2005). The prevalence of knee pain and symptomatic knee osteoarthritis among veteran
650 traumatic amputees and nonamputees. *Arch Phys Med Rehabil* 86, 487–493. doi:
651 10.1016/j.apmr.2004.04.034.

652 Peng, X., Acosta-Sojo, Y., Wu, M. I., and Stirling, L. (2022). Actuation Timing Perception of a
653 Powered Ankle Exoskeleton and Its Associated Ankle Angle Changes During Walking. *IEEE
654 Trans Neural Syst Rehabil Eng* 30, 869–877. doi: 10.1109/TNSRE.2022.3162213.

655 Pezzin, L. E., Dillingham, T. R., MacKenzie, E. J., Ephraim, P., and Rossbach, P. (2004). Use and
656 satisfaction with prosthetic limb devices and related services. *Arch Phys Med Rehabil* 85, 723–
657 729. doi: 10.1016/j.apmr.2003.06.002.

658 Pohjolainen, T., Alaranta, H., and Kärkäinen, M. (1990). Prosthetic use and functional and social
659 outcome following major lower limb amputation. *Prosthet Orthot Int* 14, 75–79. doi:
660 10.3109/03093649009080326.

661 Ramakrishnan, T., Schlafly, M., and Reed, K. B. (2017). Effect of Asymmetric Knee Height on Gait
662 Asymmetry for Unilateral Transfemoral Amputees. *Mechanical Engineering Faculty
663 Publications* 133. doi: 10.24327/ijcar.2017.6903.1037.

664 Ray, S. F., Wurdeman, S. R., and Takahashi, K. Z. (2018). Prosthetic energy return during walking
665 increases after 3 weeks of adaptation to a new device. *J Neuroeng Rehabil* 15, 1–8. doi:
666 10.1186/S12984-018-0347-1/FIGURES/4.

667 Ren, P., Wang, W., Jing, Z., Chen, J., and Zhang, J. (2019). Improving the time efficiency of sEMG-
668 based human-in-the-loop optimization. *Chinese Control Conference, CCC 2019-July*, 4626–
669 4631. doi: 10.23919/CHICC.2019.8866157.

Using human-in-the-loop optimization for guiding manual prosthesis adjustments: a proof-of-concept study

670 Rossi, S. A., Doyle, W., and Skinner, H. B. (1995). Gait initiation of persons with below-knee
671 amputation: The characterization and comparison of force profiles. *J Rehabil Res Dev* 32, 120–
672 127.

673 Schlaflay, M., and Reed, K. B. (2020a). Novel passive ankle-foot prosthesis mimics able-bodied ankle
674 angles and ground reaction forces. *Clinical Biomechanics* 72, 202–210. doi:
675 10.1016/J.CLINBIOMECH.2019.12.016.

676 Schlaflay, M., and Reed, K. B. (2020b). Novel passive ankle-foot prosthesis mimics able-bodied ankle
677 angles and ground reaction forces. *Clinical Biomechanics* 72, 202–210. doi:
678 10.1016/j.clinbiomech.2019.12.016.

679 Selinger, J. C., O'Connor, S. M., Wong, J. D., and Donelan, J. M. (2015). Humans Can Continuously
680 Optimize Energetic Cost during Walking. *Current Biology* 25, 2452–2456. doi:
681 10.1016/j.cub.2015.08.016.

682 Shakoor, N., Sengupta, M., Foucher, K. C., Wimmer, M. A., Fogg, L. F., and Block, J. A. (2010).
683 The Effects of Common Footwear on Joint Loading in Osteoarthritis of the Knee. *Arthritis Care
684 Res (Hoboken)* 62, 917. doi: 10.1002/ACR.20165.

685 Silver-Thorn, B., Steege, J. W., and Childress, D. S. (1996). A Review of Prosthetic Interface Stress
686 Investigations. *J Rehabil Res Dev* 33, 253–266.

687 Struyf, P. A., van Heugten, C. M., Hitters, M. W., and Smeets, R. J. (2009). The Prevalence of
688 Osteoarthritis of the Intact Hip and Knee Among Traumatic Leg Amputees. *Arch Phys Med
689 Rehabil* 90, 440–446. doi: 10.1016/j.apmr.2008.08.220.

690 Suzuki, K. (1972). Force plate study on the artificial limb gait.

691 Ueda, T., Hobara, H., Kobayashi, Y., Heldoorn, T. A., Mochimaru, M., and Mizoguchi, H. (2016).
692 Comparison of 3 Methods for Computing Loading Rate during Running. *Int J Sports Med* 37,
693 1087–1090. doi: 10.1055/s-0042-107248.

694 van Melick, N., Meddeler, B. M., Hoogeboom, T. J., Nijhuis-Van Der Sanden, M. W. G., and van
695 Cingel, R. E. H. (2017). How to determine leg dominance: The agreement between self-reported
696 and observed performance in healthy adults. doi: 10.1371/journal.pone.0189876.

697 Vanicek, N., Sanderson, D. J., Chua, R., Kenyon, D., and Inglis, J. T. (2007). Kinematic adaptations
698 to a novel walking task with a prosthetic simulator. *Journal of Prosthetics and Orthotics* 19, 29–
699 35. doi: 10.1097/JPO.0b013e31802d4668.

700 Walker, C. R. C., Ingram, R. R., Hullin, M. G., and McCreath, S. W. (1994). Lower limb amputation
701 following injury: a survey of long-term functional outcome. *Injury* 25, 387–392. doi:
702 10.1016/0020-1383(94)90132-5.

703 Welker, C. G., Voloshina, A. S., Chiu, V. L., and Collins, S. H. (2021). Shortcomings of human-in-
704 the-loop optimization of an ankle-foot prosthesis emulator: A case series. *R Soc Open Sci* 8. doi:
705 10.1098/rsos.202020.

706 Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C. G., et al. (2017).
707 Human-in-the-loop optimization of exoskeleton assistance during walking. *Science* (1979) 356,
708 1280–1284. doi: 10.1126/SCIENCE.AAL5054.

709 Zhang, T., Bai, X., Liu, F., and Fan, Y. (2019). Effect of prosthetic alignment on gait and
710 biomechanical loading in individuals with transfemoral amputation: A preliminary study. *Gait*
711 *Posture* 71, 219–226. doi: 10.1016/J.GAITPOST.2019.04.026.

712 Ziegler-Graham, K., MacKenzie, E. J., Ephraim, P. L., Travison, T. G., and Brookmeyer, R. (2008).
713 Estimating the Prevalence of Limb Loss in the United States: 2005 to 2050. *Arch Phys Med*
714 *Rehabil* 89, 422–429. doi: 10.1016/j.apmr.2007.11.005.

715

Figure 1.JPEG

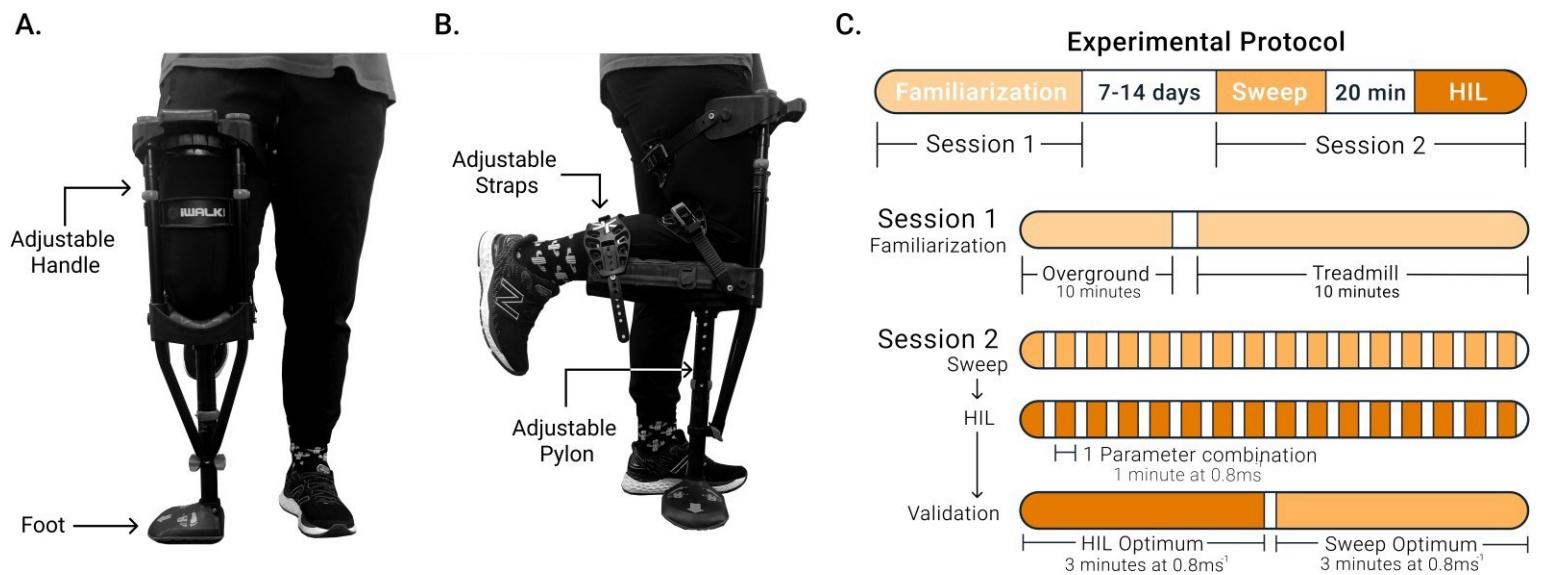


Figure 2.JPG

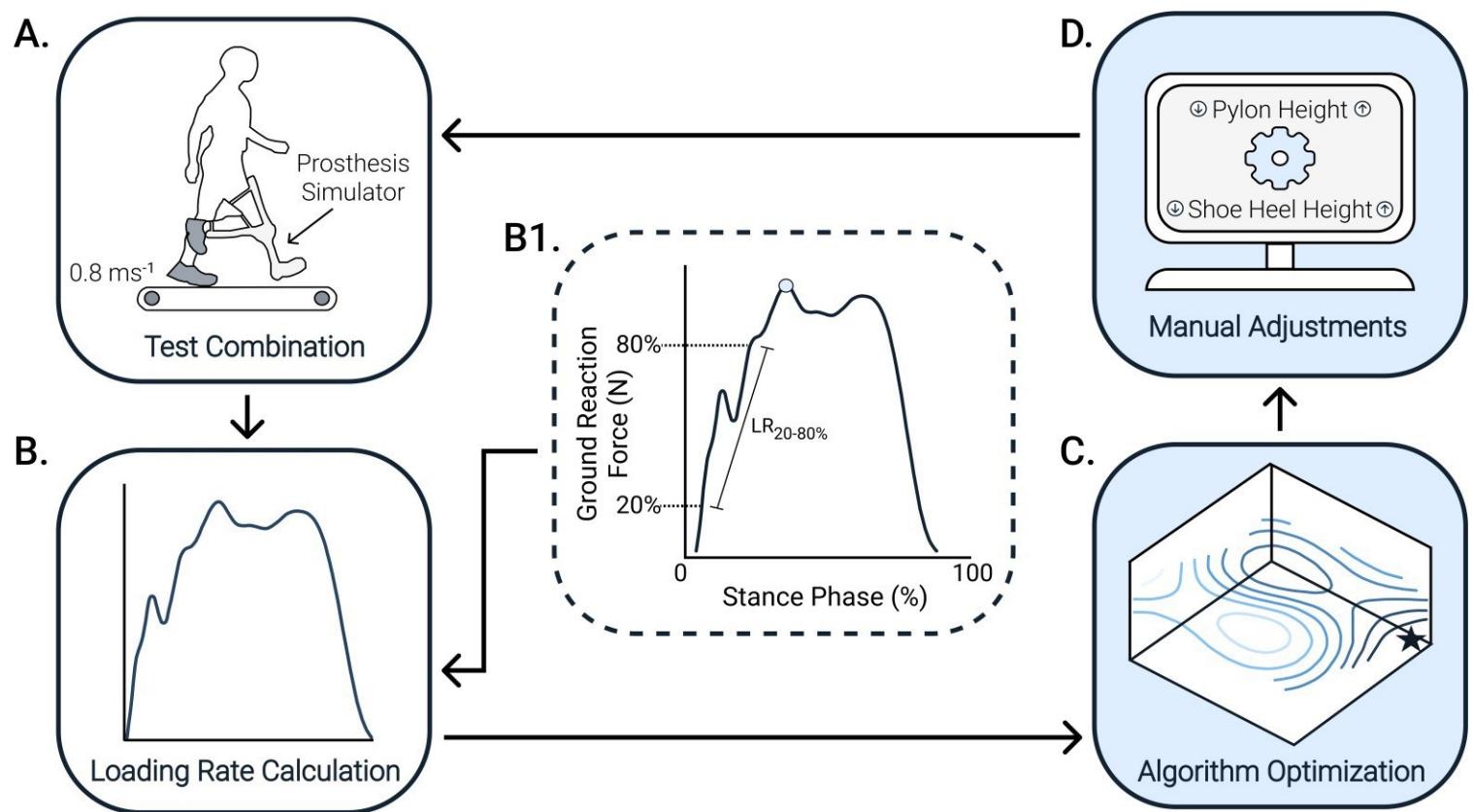


Figure 3.JPEG

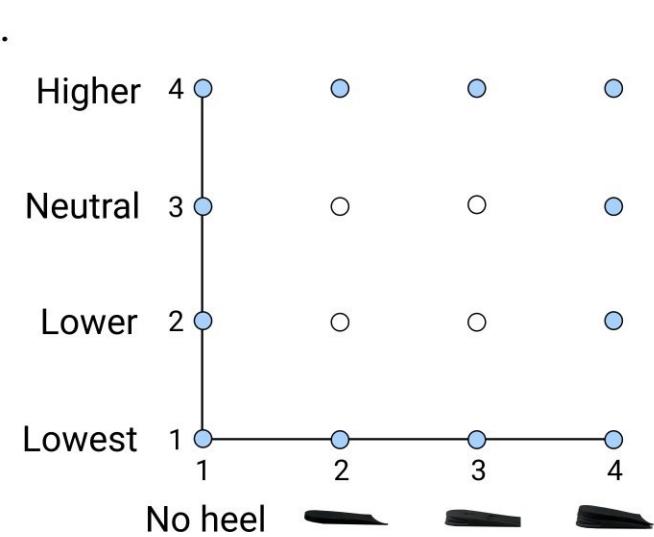


Figure 4.JPG

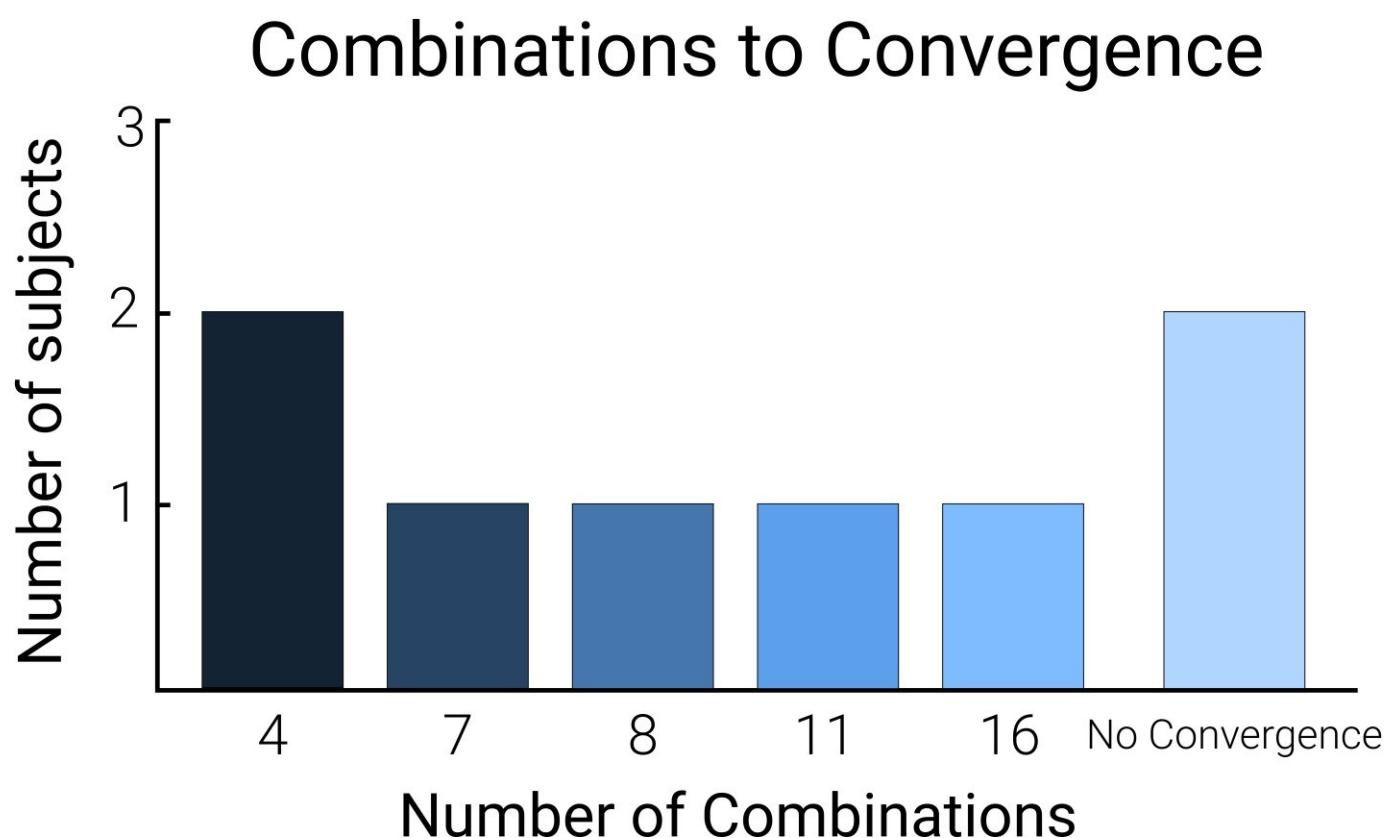


Figure 5.JPEG

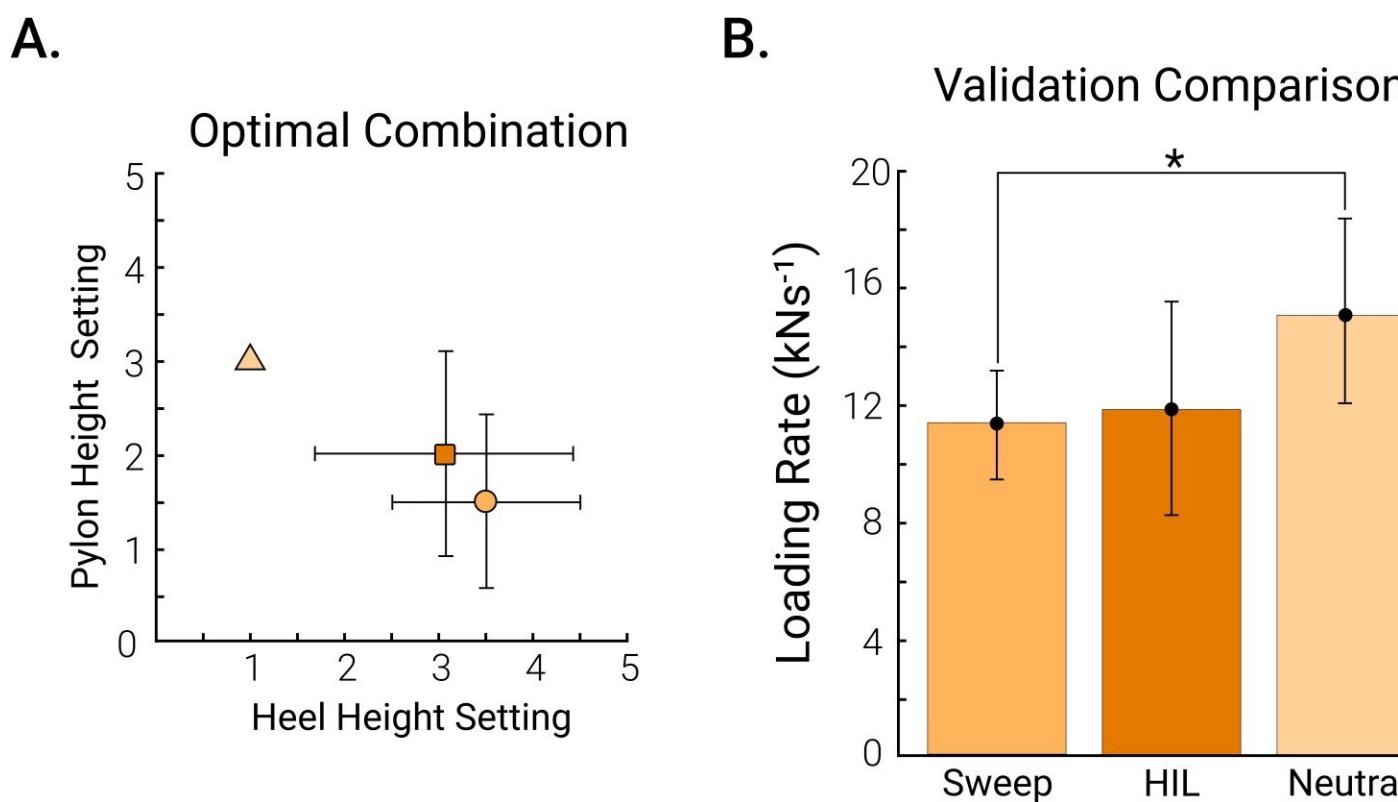


Figure 6.JPEG

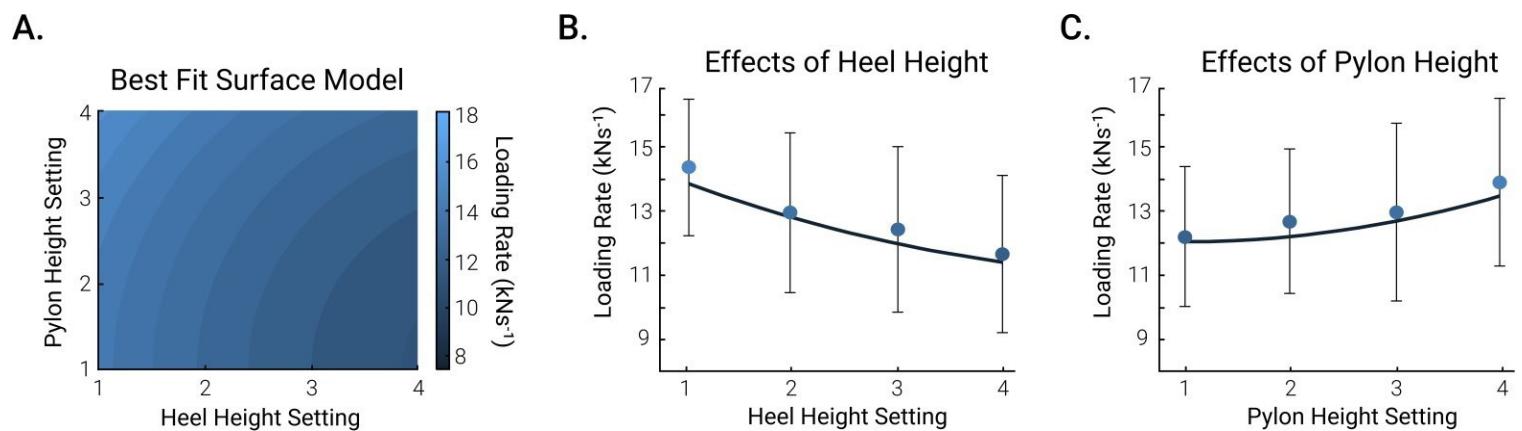
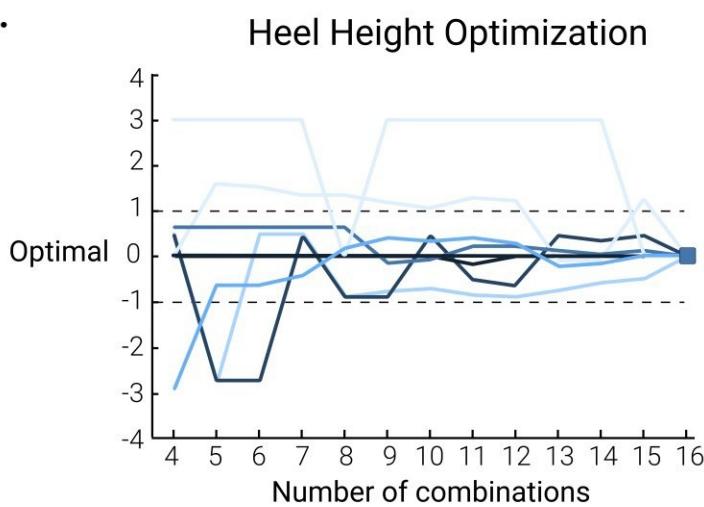


Figure 7.JPEG

A.



B.

