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Abstract—Abductive reasoning is ubiquitous in artificial intel-
ligence and everyday thinking. However, formal theories that
provide probabilistic guarantees for abductive inference are
lacking. We present a quantitative formalization of abductive
logic that combines Bayesian probability with the interpretation
of abduction as a search process within the Algorithmic Search
Framework (ASF). By incorporating uncertainty in background
knowledge, we establish two novel sets of probabilistic bounds on
the success of abduction when (1) selecting the single most likely
cause while assuming noiseless observations, and (2) selecting any
cause above some probability threshold while accounting for noisy
observations. To our knowledge, no existing abductive or general
inference bounds account for noisy observations. Furthermore,
while most existing abductive frameworks assume exact underlying
prior and likelihood distributions, we assume only percentile-based
confidence intervals for such values. These milder assumptions
result in greater flexibility and applicability of our framework.
We also explore additional information-theoretic results from
the ASF and provide mathematical justifications for everyday
abductive intuitions.

Index Terms—Abductive Reasoning, Probabilistic Inference,
Bayesian Decision Theory, Algorithmic Search Framework

I. INTRODUCTION

Imagine a patient visits a doctor because of a persistent
cough, fever, and shortness of breath. As the doctor considers
these symptoms and the prevalence of certain illnesses in the
area, the doctor may hypothesize that the patient has pneumonia.
This is an example of abductive reasoning, or abduction.

Abduction is the process of finding the best causal explana-
tion given some observed effects. Abductive reasoning can be
categorized into strategies that can generate new hypotheses,
known as creative abduction, and those that select the best
candidate given a set of possible explanations, known as
selective abduction [1]. We focus on selective abduction, which
can be formalized with Bayesian Decision Theory [2]. Given
observation(s) O, we select a hypothesis Ci from a finite set of
hypotheses C. Per Bayesian probability, we denote Pr(Ci|O)
as the posterior, where the most probable cause is that with
the highest posterior. By Bayes’ theorem,

Pr(Ci|O) =
Pr(O|Ci) Pr(Ci)

Pr(O)
.
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However, during the hypothesis selection process, the relevant
observations Pr(O) remain constant. Thus, the relevant form
of Bayes’ theorem becomes

Pr(Ci|O) ∝ Pr(O|Ci) Pr(Ci).

To perform selective abduction, one simply chooses the
hypothesis whose likelihood and prior have the greatest product.

Abduction accompanies induction and deduction as one
of three forms of logical reasoning [3], [4]. In supervised
machine learning, inductive and abductive processes serve as
the underlying logic behind model training and application (see
Figure 1) [5]. While both inductive and abductive reasoning
are applied ubiquitously in the field, inductive reasoning is
currently the more well-understood process; we have already
gained a theoretical understanding of inductive accuracy [6]–
[8]. However, to our knowledge, there currently exist no formal
frameworks with accuracy bounds for abductive reasoning.

In a broader context, artificial intelligence researchers such
as Erik Larson argue that obtaining a theory of abduction
is a necessary step towards bridging machine and human
intelligence. Abduction, more specifically creative abduction,
encapsulates human intuition or “guessing” capability lacking
in current models. Larson describes machine understanding
of abductive reasoning as the central “blind spot” of artificial
intelligence:

“Abductive inference is required for general in-
telligence, purely inductively inspired techniques
like machine learning remain inadequate...The field
requires a fundamental theory of abduction.” [9]

Our work primarily aims to (1) provide currently lacking
accuracy bounds for abductive reasoning and (2) serve as a
preliminary version of this “fundamental theory of abduction”
needed for abductive machine understanding. We propose a
general probabilistic framework for selective abduction built
from Bayesian Decision Theory [10] (detailed in Section
III), serving as a jumping off point for future work on
creative abduction. Through this Bayesian framework, we
first derive upper and lower probabilistic bounds of abductive
accuracy when assuming underlying q-percentile uncertainty
bounds of prior and likelihood probabilities for each cause
(Section IV). This first set of accuracy bounds treats successful
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Fig. 1: Three methods of inference. The dotted lines show
which part of each process is being inferred.

abduction as choosing the single true hypothesis assuming
the selection of the single highest posterior. We then extend
this by reframing abduction as a search process within the
Algorithmic Search Framework (ASF) [11], which lets us
describe and bound the probability of selecting any hypothesis
with a posterior probability above a certain threshold while
accounting for noisy observations (Section V-A). Lastly, in
addition to deriving bounds on abductive accuracy, we apply
the framework to quantitatively justify common-sense heuristic
abduction (Section V-B, V-C).

II. RELATED WORK

We review applications of abductive logic in machine
learning and artificial intelligence, and survey existing abductive
frameworks and current literature on Bayesian inference.

A. Logic in Machine Learning
Peirce introduced abduction alongside induction and deduc-

tion as the three pillars of logical inference [12]. Induction,
inferring causal relationships from data, is central to machine
learning [5]. Inductive logic is core to the training process,
where labeled examples are used to develop generalized
relationships within a model. Deductive and abductive logic
are employed within machine learning’s underlying inductive
framework by applying the relationships derived through
inductive training [13]. Deduction facilitates data generation by
selecting a class (cause) to produce feature data (observations).
Conversely, abduction involves assigning class labels (causes)
to unlabeled data (observations) using a trained model that
embeds established causal relationships (see Figure 1) [13].

Induction corresponds to the training phase, where input-
output relationships are learned, while abduction relates to
classification, using known relationships to infer likely causes.
Table I outlines the connections between logical inference [13]
and machine learning.

From this perspective, machine learning applies abductive
logic in model inference. For example, machine learning
emulates the abductive reasoning used in spam detection and
medical diagnosis by applying trained algorithms to unlabeled
data (i.e., text from emails or radiology scans). However, model
inference is just one of many applications of abduction in
machine learning. Our work addresses the theoretical limits of
the success of abductive reasoning generalizable to applications
such as these.

TABLE I: Schematic outline of the processes of inference in
supervised machine learning [13].

Logical Inference Machine Learning

Induction:
P (a)
∴ ∀wP (w)

Training:
(x1, y1), ..., (xn, yn)
∴ f : X → Y

Abduction:
Q(a)
P (w) → Q(w)
∴ P (a)

Classification:
xm

ym = f(xm)
∴ ym

B. Applying Abduction in Machine Learning

In addition to its synonymy with the higher-level logic
of model inference, abduction is central to several common
machine-learning processes. Abduction is the underlying logic
of Bayesian networks, which are used for tasks such as
clustering, supervised classification, anomaly detection, and
temporal modeling [14]. Additionally, maximum a posteriori
(MAP) applies abductive reasoning through Bayes’ theorem
to optimize model parameters. In relational learning, where
data is represented through relationships with other data,
abduction guides search and generates missing input data
[13]. In computer vision, integrating abductive reasoning
with convolutional neural networks (CNNs) enhances spatial-
temporal reasoning and image segmentation tasks [15].

C. Formalizations of Abduction

Various formalizations of abduction have been explored in
symbolic AI literature [16]. Set-cover-based approaches involve
selecting a subset of hypotheses from a larger set, requiring
complete causal relationships [17]. Knowledge-level approaches
propose explanations based on beliefs [18]. Abductive Logic
Programming (ALP) represents inferences as entailments from
a prior knowledge base to the veracity of specific causes [19].

Probabilistic Horn Abduction extends Prolog by combining
exact probabilities of hypotheses with Bayes’ theorem to
generate posterior probabilities built from multiple observations
[20], [21]. Unlike our proposed framework, it assumes exact
prior and likelihood probabilities and does not incorporate
confidence ranges for these distributions [20]. Developments
in probabilistic abductive logic programming [22], [23] depart
from our work in similar ways, as exact probabilities are
assumed and general bounds for abductive success are not
provided.

A recently developed framework applying stochastic math-
ematical systems (SMSs) models abduction by representing
reasoning as stochastic systems, with the human reasoner SMS
generating hypotheses and an oracle SMS evaluating their
validity based on explanatory power and evidence [24]. Like
Probabilistic Horn Abduction, it also does not account for the
uncertainties in underlying distributions.

These methods lack probabilistic guarantees for the correct-
ness of the abductive inferences and do not quantify associated
uncertainties. Our approach addresses this gap by integrating
formal machine learning frameworks, which allows for more



precise quantification of the uncertainties involved in abductive
inferences.

D. Bayesian Inference

Bayesian inference forms the basis of our framework, deriv-
ing accuracy bounds using qp and ql confidence intervals for
prior and likelihood distributions, respectively. These intervals
represent confidence in causal relationships (ql) and general
world knowledge (qp), providing flexibility in representation.

Bayesian inference estimations and bounds are well-explored
in the literature, with numerous known methods of deriving
accuracy bounds for inference of specific algorithms or tasks
[25]–[27] However, general methods for deriving bounds using
techniques like multi-valued mapping [28] or prior measure
intervals [29] are less common. To our knowledge, no existing
method derives Bayesian inference bounds based on specific
prior and likelihood confidence intervals with probabilities ql,
as our framework does.

Our work is the first to leverage the ASF [11] to construct a
formalization of abduction or abduction by Bayesian inference.
Unlike other established frameworks [20], [21], [30], the ASF
accounts for noisy observations – observations that may not
fully reflect “true” events. The framework makes very few
assumptions of given information resources, F , which (in
the case of abduction) embeds observation data. Such data
is abstracted as binary strings, with no conditions placed
on what form the binary strings take, only that we have
functions available to extract feedback from the strings for
individual search queries. Thus, with no restrictions placed
on the information resources, the ASF accommodates both
noisy and noiseless observations. To our knowledge, there are
no abductive or general inference bounds with this specific
property. Existing work has only analyzed the correlation of
real dataset noise with the accuracy of Bayesian inference for
specific algorithms, assuming specific data qualities [31].

III. PRELIMINARIES

We formalize the fundamental building blocks of abduction,
causes and observations, as vectors, and use this basis to
establish the likelihood and posterior uncertainty intervals on
which the abductive search process relies.

A. Vectorizing Observations

We formalize observations as binary vectors, where each
scalar component corresponds to the existence of a specific
observation feature or certain observed outcome. For example,
suppose you swallow an unknown pill and then your headache
disappears. A representative observation vector might be ⟨1, 1⟩
with each feature representing (1) “Did you swallow a pill?”
and (2) “Did the headache go away?” (respectively).

Definition III.1. (O) Let O denote the vector space of discrete
topology containing all binary-featured observation vectors.

Since any outcome must strictly occur or not occur, the set
of possibilities within O is mutually exclusive and collectively
exhaustive. In the case where an observation is a continuous

TABLE II: Example likelihood distribution for cause aspirin.

Pill taken? Headache relieved? x Pr(x|do(aspirin = True))
no no ⟨0, 0⟩ 0.05
no yes ⟨0, 1⟩ 0.10
yes no ⟨1, 0⟩ 0.15
yes yes ⟨1, 1⟩ 0.70

variable, such as temperature, we would convert the variable
by adding additional features representing levels of the value,
such as [“cold”, “lukewarm”,“hot”].1

B. Vectorizing Causes and Likelihood Probability Mass Func-
tions

A cause Ci has some probability of instigating any possible
observation vector x ∈ O, inducing a conditional probability
mass distribution (i.e., likelihood function) Pr(x|Ci) over all
observations x ∈ O. Note that every observation x ∈ O is
disjoint, and we assume exactly one observation vector is
produced and observed.

Following the earlier example, the likelihood distribution
over the observation space for the cause “aspirin” expresses the
probability that, assuming aspirin was taken, phenomena x ∈ O
would follow. Knowing that aspirin typically relieves headaches
and is ingested in pill form, the likelihood distribution over
O with dimensions {“Pill taken?”, “Headache relieved?”} may
be similar to Table 2. Such a likelihood distribution depends
only on the cause Ci, and will act over O.

Assuming that exactly one of the observation vectors must
occur, we know that the probabilities for each collectively must
sum to one. Considering all the possible ways there are to
assign probabilities to a collectively exhaustive and mutually
exclusive set of options forms a mathematical simplex, S.
For k observation features (where dim (O) = k), simplex S
forms a continuous 2k − 1 dimensional hyperplane containing
all possible “cause vectors”, each corresponding with some
likelihood probability mass function over the 2k observation
vectors in O. Each scalar component of a 2k dimensional
“cause” vector c ∈ S denotes how much probability mass is
placed on a corresponding observation vector in O. Since we
define a “cause” as the event representation of a likelihood
distribution over O, a single cause vector in O can actually
represent multiple concurrent events or causes.

Ensuring that every cause c ∈ S corresponds to a valid
probability mass function on O requires the following two
properties: (1) the simplex is bounded within [0, 1] on every
dimension such that no c ∈ S holds a component that indicates
an invalid probability, and (2) the sum of all components of a
cause vector equals 1.

C. Defining Posterior Confidence Bounds

During the decision-making process, we compare different
posterior probabilities for the same observation x. Since
the evidence, Pr(x), is constant, we will only compare the

1Note that any probability mass function over O would, by default, place
zero mass on contradictory observation vectors, such as one that is both “hot”
and “cold”.



product of the likelihood and prior across causes, namely,
Pr(x|c) Pr(c), which we denote as the “posterior”.

In applications, we often lack these exact likelihood and
prior distributions. Instead, we may estimate such probabilities
through numerical techniques, including asymptotic estimations,
Monte Carlo methods, numerical integration, and various sam-
pling methods [32]–[34]. Other distribution estimation methods
include smoothing and reduction methods, and Markov chain
algorithms can be further used to combine estimation methods
[32]. To account for uncertainty, we estimate likelihood, prior,
and posterior probabilities through confidence intervals.

We define two functions denoting the upper bound likelihood
probability, lU (c, x), and lower bound likelihood, lL(c, x),
of the ql-percentile likelihood uncertainty interval, where
lU (c, x) ≥ lL(c, x). The prior qr-percentile uncertainty interval
is similarly represented through an upper and lower bound
rU (c) and rL(c) (respectively). The upper and lower confidence
bounds of the posterior, pU (c, x) and pL(c, x), can then be
found by simply multiplying the upper or lower bounds of the
likelihood and prior probabilities together:

pU (c, x) = lU (c, x)rU (c),

pL(c, x) = lL(c, x)rL(c).

This bound assumes there is a ql probability that the likeli-
hood lies in its ql-percentile interval [lL(c, x), lU (c, x)] and,
likewise, that there is a qr probability that the prior lies in
its qr-percentile interval [rL(c, x), rU (c, x)]. Thus, the interval
[pU (c, x), pL(c, x)] defines the q-percentile confidence interval
for posterior Pr(c|x) where q = qlqr.

D. Narrowing the Space of Possible Causes

We have established S as the infinite space containing all
possible likelihood distributions over O and, thus, the space
of all possible causes. However, this space includes likelihood
distributions generated by causes that are implausible. In the
real world, we often choose the most likely cause from a
smaller set of plausible causes; for example, one would not
consider an atomic bomb to be a plausible cause for your
headache disappearing. Rather than considering the entirety of
S as the pool of possible causes, we assume that some finite
subset C ⊂ S with cardinality k = |C| has been pre-selected as
the finite set of plausible causes assumed to contain the true
cause. We further assume C includes a “cause” Cother, whose
posterior encapsulates the (likely low) combined probability
of all other causes in S occurring. With this, we assume that
all causes in C are disjoint and that C contains the one true
explanation for observation x (namely, what actually caused
it).

Definition III.2. (C) Let C ⊂ S denote the relevant finite
subset of possible cause vectors in S.

For notational simplicity, we additionally denote each cause
as Ci ∈ C and its corresponding “true” posterior probability as
Mi in posterior set M. We likewise simplify the notation of
the upper and lower bounds of q-percentile uncertainty interval

posterior Mi as follows: from pU (c, x) and pL(c, x) to ui and
li, respectively. For future reference, we define the following:

Definition III.3. (Mi) Let Mi ∈ M denote the “true” posterior
probability of cause Ci ∈ C, where Mi = Pr(Ci|x) Pr(Ci).
Then Mi falls into the following uncertainty interval with
probability q:

Mi ∈ [li, ui].

Since we assume each Ci ∈ C is disjoint, and that C surely
contains the true explanation for observation x, each posterior
probability Pr(Ci|x) sums to 1. Thus,∑

Mi∈M
Mi = Pr(x).

Definition III.4. (U) Let U denote the set containing the q-
percentile uncertainty interval bounds [li, ui] for each posterior
Mi ∈ M.

IV. ABDUCTION BY BAYESIAN INFERENCE

A. Cause Selection with Uncertainty Intervals

Given the set of q-percentile confidence posterior probability
uncertainty bounds [li, ui] ∈ U for each cause Ci ∈ C, one
selects the cause whose point estimate posterior probability is
highest. Since the true posterior probabilities of each cause are
unknown, this process may incorrectly select a cause whose
posterior is not the true maximum. We quantify this rate of
incorrect selection in the case where every posterior Mi ∈
M is contained in respective confidence bound [li, ui]. Let
predicate IsMax(Mi) denote whether posterior Mi is truly the
highest posterior. We first define the probability range where
the maximum posterior must lie, [l, u].

Definition IV.1. Let each posterior Mi ∈ M occur within
q-percentile confidence interval [li, ui] ∈ U . Then, we set

l = max({li|i ∈ Z+, i ≤ |M |}),

u = max({ui|i ∈ Z+, i ≤ |M |}).

Proposition IV.1. Assuming that every Mi ∈ M lies in
respective q-percentile confidence interval [li, ui] ∈ U , the
max posterior is bounded by u and l.

Thus, in the case that every confidence bound fully contains
its respective posterior almost surely (instead of just with
probability q), any posterior Mi whose uncertainty bounds
[li, ui] overlap with [l, u] is potentially the maximum posterior
with some probability Pr(IsMax(Mi)).

Theorem IV.2. Let M′ ⊆ M denote the set of posteriors
whose confidence intervals intersect with [l, u]. Let pMi

(x) be
the probability density function of the position of Mi. The
probability that Mi ∈ M′ is the maximum posterior is as
follows:
Pr(IsMax(Mi)) =∫ u

l

Pr

 |M|⋂
j=1,j ̸=i

(Mj < x)
∣∣∣Mi = x

pMi
(x)dx



This accounts for any estimated posterior probability distri-
bution within [li, ui], but assumes Mi is contained by [li, ui]
with probability 1.

B. Bayes Error Rate

However, even assuming the cause with the true highest
posterior is successfully identified, there is the unavoidable
error from non-zero posteriors of the “losing” categories. The
true cause of a feature may simply not have the highest posterior.
This minimum achievable error is expressed by Bayes Error
Rate (BER):

Definition IV.3. (ϵ, [35]) Let ϵ denote Bayes multiclass error
rate (BER) for every Ci ∈ C. For |C| = k possible causes:

ϵ = 1−
∫

Pr(x)max
i

Pr(Ci|x)dx.

However, the formula above is often impractical to compute
for k > 2 causes. Instead, one can derive bounds for the multi-
cause BER with techniques such as the Bhattacharyya bound,
estimations using Friedman-Rafsky test statistics, and non-
parametric bounds using Henze-Penrose divergence [36]. We
adopt a recent method2 of upper bounding BER through global
minimal spanning trees [35] and adopt a pairwise computational
lower bounding method for BER [37].

Definition IV.4. (ϵupper, [35]) Let ϵupper denote the upper bound
of BER such that ϵ ≤ ϵupper. Then, for |C| = k,

ϵupper = 2

k−1∑
i=1

k∑
j=i+1

δij

where δij :=
∫ Pr(Ci) Pr(Cj) Pr(x|Ci) Pr(x|Cj)

Pr(Ci) Pr(x|Ci)+Pr(Cj) Pr(x|Cj)
dx.

Definition IV.5. (ϵlower, [38], [37]) Let ϵlower denote the lower
bound of BER such that ϵ ≥ ϵlower. BER may be lower bounded
by applying pairwise computations of Bayes error ϵij for i
and j between every unique cause pair (Ci, Cj) where Ci ∈
C, Ci ∈ C, i ̸= j:

ϵlower =
2

k

k−1∑
i=1

k∑
j=i+1

(Pr(Ci) + Pr(Cj))ϵij .

C. Abductive Error Guarantees

Assume an algorithm selects from the set of possible causes
C the cause with the highest estimated posterior. The preceding
subsections detail the two possible sources of error:

1) Incomplete or imprecise background information (e.g.,
not knowing all the potential causes and causal rela-
tionships). This uncertainty is represented through q-
percentile posterior confidence intervals in U .

2) The true cause is not the cause with the highest true
posterior. If the exact likelihood and prior is given, this
minimum achievable error is simply expressed through
the Bayes Error Rate (Definition IV.3).

2This method provides a tighter bound than aforementioned techniques [35].

We derive bounds of the error rate by combining these two
possible sources of error. Let W denote the event of incorrect
abduction (not selecting the true cause). Then, the probability
of correctly selecting the maximum posterior Mi and incorrect
abduction is

Pr(W, IsMax(Mi)) = Pr(W|IsMax(Mi)) Pr(IsMax(Mi))

= ϵPr(IsMax(Mi)).

The probability of both incorrectly selecting the maximum
posterior and incorrect abduction is

Pr(W,¬IsMax(Mi)) = Pr(W|¬IsMax(Mi)) Pr(¬IsMax(Mi))

= (1− Pr(Mi|x))(1− Pr(IsMax(Mi))).

Such definitions let us derive upper and lower bounds for
the error rate assuming that all posteriors Mi ∈ M lie in
q-percentile confidence intervals [li, ui] ∈ U with probability
1. Let γi denote the error rate given this assumption.

Theorem IV.6. Let γi denote the error rate of selected cause
Ci when assuming posterior Mi lies in confidence interval
[li, ui] almost surely. Then, γi is bounded above by

γi ≤ ϵupper Pr(IsMax(Mi)) + (1− li)(1− Pr(IsMax(Mi)))

where ϵupper may be derived by Definition IV.4

Theorem IV.7. Let γi denote the error rate of selected cause
Ci when assuming posterior Mi lies in confidence interval
[li, ui] almost surely. Then, γi is bounded below by

γi ≥ ϵlower Pr(IsMax(Mi)) + (1− ui)(1− Pr(IsMax(Mi)))

where ϵlower may be derived by Definition IV.5

We extend this result to the general case where all posteriors
Mi ∈ M are assumed to each lie in their respective confidence
intervals [li, ui] ∈ U with probability q.

Theorem IV.8. Let qk be the probability that all Mi ∈ M lie
in their respective confidence bounds [li, ui] ∈ U . Let γi, upper

be the upper bound of γi defined in Theorem IV.6. Then, the
upper bound of the general error rate is given by

Pr(W ) ≤ 1− qk(1− γi, upper).

Theorem IV.9. Let qk be the probability that all Mi ∈ M lie
in their respective confidence bounds [li, ui] ∈ U . Let γi, lower

be the lower bound of γi defined in Theorem IV.7. Then, the
lower bound of the general error rate is given by

Pr(W ) ≥ γi, lowerq
k.

We should note that the bounds presented in this section
assume noiseless observations. That is, we assume observation
x is a wholly accurate description of the “true” outcomes of
a cause. A noisy observation vector may have entries that
deviate from the “true” outcome of a cause, akin to the
possibility of a faulty observer or inaccurate data pipeline
with which observations is processed (i.e., faulty equipment,
random errors in sampling, etc.). The next section explores a



different set of bounds describing the selection of any cause
whose probability is above some threshold. With this broader
definition of “success,” we can account for noisy observations
through applying the Algorithmic Search Framework [11].

V. SEARCH AND HEURISTIC APPLICATIONS

The Algorithmic Search Framework (ASF) characterizes
learning problems as search, allowing one to equate the chance
of success of any learning algorithm to that of a search process
described by the three-tuple (Ω, T, F ) – the search space,
target set, and external information resource, respectively
[11]. This framework formalizes the seminal work of Mitchell
[39] and extends results beyond binary classification problems
[40]. The ASF provides formal bounds accounting for noise,
and formalizes insights into the frequency of favorable search
strategies and problems [40].

We have previously discussed abductive success in terms
of finding the one “true” cause for some observation vector
(which may or may not have the highest posterior) assuming
the selection of the single highest posterior. Furthermore, we
assumed noiseless observations. By reframing the ASF for
abduction, we describe an algorithm’s ability to identify the
cause(s) with posteriors above some threshold in terms of
information-theoretic properties within (Ω, T, F ) and general-
ize to noisy observation vectors.

A. ASF: Success of Abduction through Search

We define each term of (Ω, T, F ) as follows.
Search Space (Ω) constitutes the finite set of pre-selected,

plausible causes for the given observation vector x; it is
synonymous with C defined in III.2. Pi over search space
Ω denotes the probability distribution over the space at step i,
and Pi(T ) is the probability of success – namely, the amount
of probability mass placed on the target set T at time i [11].
In our adaptation, Pi denotes the posterior distribution of
Pr(Ci|x) over all possible causes Ci in Ω. Pi may be derived
from aforementioned bounds [li, ui] ∈ U of posterior-adjacent
value Pr(Ci|x) Pr(x) (Definition IV.1) with two modifications:
(1) Pi denotes the point estimate probability of the posterior
within these confidence bounds, and (2) this point estimate of
Pr(Ci|x) Pr(x) is inversely scaled by Pr(x) such that Pi is a
valid probability mass function that sums to one.

Target Set (T ), a subset of the search space Ω, contains the
set of the “more plausible” causes with posterior probability Pi

above or at minimum performance value in (0, 1]. Search aims
to identify causes in Ω that lie in T , a task whose difficulty
increases as the threshold for T rises.

External Information Resource (F ) is a finite-length binary
string drawn from a distribution with an “API”-like interface,
meaning one can extract information from F [11]. In our
case, it embeds (1) the observation vector x whose cause
we determine, and (2) the upper and lower bounds of the
q-confidence intervals for likelihood and prior probabilities
across Ω for every cause Ci ∈ Ω. More specifically, F
contains the likelihood bounds lU (c, x) and lL(c, x) and prior
bounds rU (c, x) and rL(c, x), which inform the construction

of posterior probability distribution Pi over Ω for the search
process as defined previously. Since F is a function of random
data, it is itself a random variable.

Framing abduction through the ASF, we apply established
derivations of the maximal probability of success defined in
terms of information-theoretic properties of (Ω, T, F ) and the
complexity of the search problem [11]. And as explained in
Section IV, the ASF places few restrictions on information
resources F , and thus allows for both noisy or noiseless
observations.

Theorem V.1. [11] The probability of a successful abduction,
q, is bounded above by

q ≤ I(T ;F ) +D(PT ||UT ) + 1

IΩ
,

where IΩ = − log |T |
|Ω| , D(PT ||UT ) is the Kullback-Leibler

divergence between the marginal distribution on target sets and
the uniform distribution on possible target sets, and I(T ;F )
is the mutual information between the target and observation.

We interpret I(T ;F ) as the dependence between the target
set and the observation, D(PT ||UT ) as the non-uniformness
of the target, and IΩ as the sparseness of the targets inside the
search space. When the true cause is highly correlated with
the observations (i.e., less random), the achievable success rate
is high. When the search space consists of a large number of
causes, the achievable success rate is lower. This gives us an
additional information-theoretic upper bound on the probability
of successful abduction.

B. ASF: High-Likelihood Causes are Rare

Any high-posterior cause must also confer high-likelihood to
observed effects, due to the multiplicative nature of posterior
computation. Yet a cause can only make an observation vector
more probable at the cost of making others less probable. Such
high-likelihood causes must necessarily be rare to the degree
they confer high joint-probability on the observations, as shown
by the following theorem [11].

Theorem V.2. (Famine of Favorable Strategies Theorem, [11])
For any fixed search problem (Ω, T, F ), set of probability mass
functions P = {P : P ∈ [0, 1]|Ω|,

∑
j Pj = 1}, and a fixed

threshold qmin ∈ [0, 1],

µ(Gt,qmin
)

µ(GP)
≤ p

qmin
,

where p = |T |
|Ω| ,Gt,qmin

= {P : P ∈ P, t⊤P ≥ qmin}, and µ is
Lebesgue measure.

In contrast to Section V-A, we consider a different search
problem in applying Theorem V.2. The search space Ω no
longer consists of posteriors, but is now the space of all possible
observation vectors, some of which are “close enough” to the
true vector to comprise a noisy target set, T . Causes sample
observation vectors by producing effects: a blind, weighted
search. F becomes irrelevant. Theorem V.2 then tells us that
the proportion of causes which confer at least qmin probability



to the observation set is necessarily small whenever qmin is
high, if we are only willing to tolerate so much noise in our
observations (leading to small |T |).

One might argue that although not many causes can confer
high joint likelihood to the observations, several independent
causes might together constitute an abductive explanation for
the observed phenomena, if each sufficiently raises the likeli-
hood of a single observed feature. Simple arithmetic renders
this possibility unpersuasive. Assuming independent causes
for each observed feature, the probability of jointly occurring
outcomes in an observation vector x scales exponentially with
|x| or the number of features. For instance, if two features have
a 50/50 chance of occurring coincidentally, then the chance
of them occurring together is 1/2 · 1/2 = 1/4. For four such
features, the probability drops to 6.25%. Thus, the coincidental
co-occurrence of independent causes that together explain an
observation vector is unlikely as the number of observations
increases.

C. ASF: Non-coincidental Causes

When we perform abduction, we often must reason about
whether a potential cause is simply coincidental. When one
defines only high probability causes as “plausible” (i.e.,
threshold qmin is closer to 1), then intuitively, it seems we
are less likely to select unrelated coincidental causes. Theorem
V.2 formally confirms this intuition: if we desire a strong
probability of success, fewer causes will satisfy the threshold
qmin. In this case, the target set becomes more sparse, and it
will be difficult for an algorithm to successfully find targets
from the search space. Therefore, favorable causes are rare,
and are thus more likely to be causal than coincidental.

D. Increasing Certainty in Abductive Inference

Inductive inference error guarantees derive their strength
from data abundance: increasing the number of observed
examples typically increases the tightness of such bounds. In
contrast, abductive inference proceeds from a single observation.
How do we increase confidence in our abductive judgment? In
the real world, our confidence in abductive reasoning typically
depends on the amount of evidence supporting or contradicting
a potential hypothesis. Though consisting of a single example,
there are often many features of that observation, which may
or may not be well-explained by a proposed cause. This
suggests a “horizontal” mode of confirmation built on many
conditionally independent features, rather than the “vertical”
mode of confirmation based on many observed examples typical
of inductive inference. We note the importance of conditional
independence among features, since features that necessarily
imply each other even given the cause do not give us additional
confidence in our abductive judgment.

Recall that observation vector x ∈ O consists of binary fea-
tures representing the existence or non-existence of some con-
ditionally independent observed outcome. Letting x1, . . . , xn

represent each feature of x ∈ O where |x| = dim(O) = n, we
quantitatively demonstrate this phenomenon with the following.

Theorem V.3. For each conditionally independent feature
x1, . . . , xn, define βi > 0 such that for all i = 1...n,

Pr(xi|C) = βi Pr(xi|C).

Let β = n
√∏n

i βi, the geometric mean of {βi}. If β > 1, then

lim
n→∞

Pr(x1, . . . , xn|C)

Pr(x1, . . . , xn|C)
= lim

n→∞
βn = ∞.

Each conditionally independent observation feature can either
support (βi > 1) or contradict (βi < 1) the proposed cause. If
features support the current cause C on average (i.e., β > 1),
then the confidence of abduction (ratio between likelihood
under C over C) approaches infinity as the number of (on
average) supporting features increases.

VI. DISCUSSION

Formalizing abduction as the selection high posterior cause(s)
from a finite pool of causes, we establish two novel sets of
probabilistic bounds on the success of abduction when (1)
selecting the single most likely cause while assuming noiseless
observations (Theorems IV.8 and IV.9), and (2) selecting any
cause above some probability threshold while accounting for
noisy observations (Theorem V.1).

Regarding the practicality of our results, it has been shown
that bounds on the Bayes Error Rate can be empirically
estimated by learning from training data instead of density
estimation [35]. Unlike traditional methods for estimating BER,
such as those based on pairwise HP divergence or generalized
Jensen-Shannon (JS) divergence, which becomes computation-
ally infeasible as the number of classes or dimensions increases.
The GHP-based method is shown to be computationally more
efficient, making it more suitable for large-scale applications
like neural networks [35]. Then, in practice, it is possible to
model a selective abduction problem using a Bayesian Neural
Network and obtain approximate posterior distributions [41],
[42], which can be directly used in our bounds for abductive
inference.

The presented formalization and bounds are also tools to
understand the limits of human-like reasoning abilities, and
with it, the limits of decision-making in artificial intelligence.
Theorem V.2 demonstrates how high-likelihood causes are
rare, and more supporting observations increase confidence
in a causal relationship rather than coincidence. V.3 captures
the degree of certainty of our everyday abductive inferences.
For example, suppose we must decide whether to convict a
suspect of a crime. If pieces of evidence collectively support
that the suspect is guilty, our confidence to convict grows as
the amount of such evidence grows. Conversely, we would
be less confident if pieces of evidence were contradictory or
refuted a suspect’s involvement.

VII. CONCLUSION

Abductive reasoning is a key component of critical thinking
and discovery. State-of-the-art artificial intelligence is currently
incapable of performing abductive reasoning at a human level.



To achieve true human-like reasoning, it is important to consider
the process of abduction and its innate limitations.

Our work formalizes selective abduction, deriving formal
error guarantees for abductive reasoning within a finite space
of causes. Future work might explore creative abduction using
our framework as a starting point. Creative abduction can
be represented through a search space that is potentially
infinite. Rather than filtering S to a finite pool C, we represent
hypothesis generation as optimization within a countably
infinite subset of S . Statistical bounds within such a framework
would hold implications for general scientific reasoning and
human creativity.
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