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Abstract— We present a learning algorithm for players to
converge to their stationary policies in a general sum stochastic
sequential Stackelberg game. The algorithm is a two time
scale implicit policy gradient algorithm that provably converges
to stationary points of the optimization problems of the two
players. Our analysis allows us to move beyond the assumptions
of zero-sum or static Stackelberg games made in the existing
literature for learning algorithms to converge.

I. INTRODUCTION

Various notions of equilibrium solutions exist in game

theory. Both due to the fact that such equilibrium strategies

are usually difficult to compute, and as a justification for

agents to arrive at strategies that constitute a given equi-

librium solution, learning algorithms by which the agents

can update their strategies based on past experience and

(hopefully) converge to such equilibria have a long history in

game theory [7], [15], [25]. In this paper, we are interested

in general-sum stochastic games that have a sequential struc-

ture. In a one-shot version, these games are studied under the

rubric of static Stackelberg games, considering the so-called

Stackelberg equilibrium solution concept [14].

While such games arise naturally in many settings, learn-

ing algorithms that converge to Stackelberg equilibrium even

in (repeated) one-shot games are less studied than the more

common Nash equilbrium in (repeated) simultaneous move

games. In the context of Generative Adversarial Networks

(GANs) [18], where the optimization problem can be writ-

ten as a zero sum game between the generator and the

discriminator, [23] presented a simultaneous gradient based

algorithm. In this class of algorithms, the leader and follower

learn at the same rate which has been known to lead to

cyclic behaviour in general [22], [26]. In the context of

actor-critic algorithms in reinforcement learning, [27], [33]

presented a Stackelberg game formulation and presented a

policy gradient algorithm that provably locally converges to

an equilibrium. Another relevant recent work is [13], which

presented a two-timescale stochastic gradient algorithm and

proved local convergence to differential Stackelberg equilib-

ria in repeated static games.

As opposed to these works, we are interested in stochastic

games [28]. Roughly speaking, stochastic games have a
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notion of state that evolves over time as a result of the actions

by the agents. We consider two agents with the interaction

between them occurring in a leader-follower manner. The

leader agent commits to a policy. The policy becomes known

to the follower who, in turn, plays the best response to

the leader policy. The state evolves stochastically given the

current state and the joint actions of the agents. The cycle

repeats at the next time step. A more precise formulation is

given later.

An example where stochastic Stackelberg games would

be natural to consider is in security games. Security games

are games between a defender who wishes to protect some

targets through deployment of limited resources and attack-

ers who wish to strategically attack the targets to benefit

themselves. The hierarchical order of play arises naturally

since the defender typically acts first and deploys a strat-

egy. Attackers observe the strategy of the defender before

attacking. Security games are widely modelled as stochastic

games [19], [29]. While some formulations have considered

zero-sum security games, particular classes of security games

such as adversarial patrolling games have also been modeled

as general-sum stochastic games [3]–[6]. Another example

where the framework of stochastic Stackelberg games fits

naturally is in testing during epidemics, where the leader

(the government) sets testing policies and the follower (the

citizens) decide at every time step whether to get tested. The

government wishes to minimize the number of infected peo-

ple in the population while the follower wishes to minimize

the cost of getting sick and testing. Once again this setting

leads to a general-sum game.

Learning algorithms for stochastic Stackelberg games have

been considered only for some special cases in the literature.

For instance, [17] provides a value iteration-based algorithm

to converge to the Stackelberg equilibrium in zero-sum

stochastic games. Similarly, [30] presents a mixed integer

program for computing the Stackelberg equilibrium strategy

when the follower plays their deterministic best response

stationary policy. In [31], policy gradient algorithms for

stochastic Stackelberg games are introduced and studied

numerically, albeit without a convergence analysis.

In this paper, we consider the Stackelberg policy gradi-

ent algorithms introduced in [31] and analyse conditions

guaranteeing convergence to a Stackelberg equilibrium. In

stochastic games, it is common to consider Markov stationary

policies for both the players [11], [20], [30] and we make this

assumption as well. While this restriction may be limiting

(e.g., [30] showed that the Stackelberg equilibrium strategy

for the leader need not be a Markov stationary policy even

if the follower policy is a Markov stationary policy), this
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assumption considerably simplifies our convergence analysis.

Our convergence analysis provides theoretical guarantees on

the convergence of the proposed two time-scale Stackelberg

policy gradient algorithms, and thus, verifies the numerical

demonstration in [31]. Specifically, our analysis builds on

formulating a smooth version of general-sum stochastic

games where the value function of the follower is entropy

regularized. We show that if we keep the leader policy

fixed, the follower iterates obtained through gradient ascent

converge to the unique optimal policy. For the leader, we

prove that its policy iterates given that the follower is playing

the best response converges to a stationary point. We then

use the above two results to prove the convergence of the

Stackelberg policy gradient algorithm when both the leader

and the follower update their policies simultaneously. Since

the Stackelberg policy gradient is a first order method,

convergence to only a stationary point of the optimization

problem for the leader is the best we can hope for without

further assumptions on the cost function.

The paper is organized as follows. Section II formulates

the game and the equilibrium notion considered. We present

the proposed learning algorithm in Section III. Section IV

presents the properties of the best response and value

function that aid in the convergence analysis. Finally, the

convergence result for the overall algorithm is presented in

Section V. The appendix provides some technical details on

the computation of the gradients in the algorithm.

II. PROBLEM FORMULATION

a) Game definition: In this paper, we are interested in a

two-player stochastic game with a hierarchical order of play.

In these games, called stochastic Stackelberg games, two

players—a leader and a follower—share a Markov decision

process (MDP). The leader announces (i.e., commits to)

their policy before the game begins. At every time step,

both the players play actions corresponding to the state of

the MDP in order to maximize their own infinite horizon

discounted reward. However, there is a hierarchy between

the two players in the sense that the follower responds to

the policy that the leader has committed to.

Formally, a stochastic Stackelberg game is defined as a

tuple G= ïS,N,(A1,A2),P,(R1,R2),γ,ρð, where

• S is a finite set of states given by S = {s1,s2, ...sk} of

the underlying MDP;

• N = {1,2} is the set of players. Without loss of gen-

erality, we will assume that player 1 is the leader and

player 2 is the follower;

• A1 and A2 are finite sets of actions of the leader and

follower respectively;

• P is the probability transition function of the underlying

MDP with P(s′|s,a1,a2) specifying the probability of

the state at the next time step being s′ given that the

current state and joint actions are given by (s,a1,a2);
• Ri : S × A1 × A2 → [0,1], i ∈ {1,2} are the reward

functions of the leader and the follower;

• γ is a discount factor;

• ρ ∈ ∆(S) is the distribution of the state at time t = 0,

also termed as the initial state s0, with the probability

of state s ∈ S given by ρ(s).

At each stage (or time) τ and corresponding state sτ , the

leader and the follower take joint actions (aτ
1,a

τ
2). They

then receive the rewards Ri(s
τ ,aτ

1,a
τ
2) (i = 1,2). The state

transitions to sτ+1 ∼ P(s′|sτ ,aτ
1,a

τ
2). The stage τ + 1 then

begins.

b) Policies and Value Functions: Given a stochastic

Stackelberg game, the set of strategies for the leader and

the follower that we concentrate on in this paper are Markov

stationary policies. Specifically, we define the policies for the

two players as functions πi : S×Ai →∆Ai
, i∈{1,2} where ∆Ai

is a probability simplex in |Ai| dimensions. We also denote

the actions aτ
i selected according to policy πi by aτ

i ∼ πi.

The value functions Vi(π1,π2)(s) for the two players can

now be defined. For the leader, the value function for a given

initial state s0 at time τ = 0 and given that the players play

policies π1,π2 is given by

V̄1(π1,π2)(s) := ET

[

∞

∑
τ=0

γτ
R1(s

τ
,aτ

1,a
τ
2)|s

0 = s

]

(1)

where ET [.] denotes that the expectation is over all the tra-

jectories T = {sτ ,aτ
1,a

τ
2}τg0 with the actions aτ

1 ∼ π1,a
τ
2 ∼

π2. Similarly, the value function for the follower can be

defined as the expected discounted reward for player 2 as

given by

V̄2(π1,π2)(s) := ET

[

∞

∑
τ=0

γτ
R2(s

τ
,aτ

1,a
τ
2)|s

0 = s

]

. (2)

As explained further in Section IV, for technical reasons, we

consider an entropy regularized version of this value function

as given by

V̄ λ
2 (π1,π2)(s) := V̄2(π1,π2)(s)+λHπ2

(π1,s) (3)

with Hπ2
(π1,s) defined as the discounted entropy of the

follower policy π2 when the leader policy is fixed to π1,

as given by

Hπ2
(π1,s) := ET

[

∞

∑
τ=0

−γτ logπ2(a
τ
2|sτ)|s

0 = s,π1

]

. (4)

We will also use the value functions with respect to an initial

state distribution ρ rather than a given initial state. Thus, we

define

V1(π1,π2)(ρ) := ∑
s∈S

ρ(s)V̄1(π1,π2)(s) = Es0∼ρ [V̄1(π1,π2)(s)]

(5)

V λ
2 (π1,π2)(ρ) := ∑

s∈S

ρ(s)V̄ λ
2 (π1,π2)(s)

= Es∼ρ [V̄
λ
2 (π1,π2)(s)].

(6)

c) Stackelberg Equilibrium: To define the Stackelberg

equilibrium, we first need to define the best response or

the rational reaction set of the follower. Suppose the leader

commits to a policy π1. Then, the best response of the
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follower is the set of policies given by

B(π1) := argmax
π2

V2(π1,π2)(ρ).

The problem of computing a Stackelberg equilibrium is

a bi-level optimization problem [2], [12]. Specifically, the

policy for the leader can be obtained through the upper level

problem given by

π⋆
1 ∈ argmax

π1

V1(π1,B(π1))(ρ),

while the follower’s policy can be obtained through the lower

level optimization problem given by

π⋆
2 ∈ argmax

π2

V2(π1,π2)(ρ).

The problem we consider in this paper is to provide a

learning algorithm for the leader and the follower to update

their policies and analyze conditions under which such an

algorithm converges to the Stackelberg equilibrium.

III. PROPOSED ALGORITHM

In this paper, we consider a two time-scale gradient ascent

algorithm for the leader and the follower to converge to the

stationary policies that achieve the Stackelberg equilibrium.

We begin by presenting the parametrization of the policies

that we consider.

a) Parameterization of the policies: We will utilize the

player policies given in terms of the commonly used soft max

policy parameterization [1], [8], [21]. Specifically, the policy

of each player i is determined using a parameter θi ∈R
|S||Ai|.

Denoting the element of θi corresponding to the state s ∈ S

and jth action of player i ai, j ∈ Ai be θi(s,ai, j), the policy

is given by specifying the probabilities of taking the action

ai, j given the state s as

πi(ai, j|s) =
eθi(s,ai, j)

∑ai, j∈Ai
eθi(s,ai, j)

. (7)

Since the parameters θi will evolve with time in the learning

algorithm, we denote the value of the parameter at time t by

θ t
i .

As is well known [1], any stochastic policy can be

represented using the soft max parameterization. To avoid

notational clutter, we use θi and πθi
interchangeably to

denote the policies of player i. Similarly, we use V1(θ1,θ2)
(resp. V λ

2 (θ1,θ2)) and V1(πθ1
,πθ2

) (resp. V λ
2 (πθ1

,πθ2
)) inter-

changeably to represent the value functions as a function of

θ1,θ2.

b) The gradient ascent algorithm: We consider the

Stackelberg policy gradient algorithm from [31], which is a

gradient ascent algorithm for both the leader and the follower.

The algorithm is given through the following iterations of the

policy parameters:

θ t+1
1 =θ t

1 +αt∇V1(θ
t
1,θ

t
2)(µ) (8)

θ t+1
2 =θ t

2 +βt∇θ2
V λ

2 (θ t
1,θ

t
2)(µ), (9)

where αt and βt are the step sizes and ∇θi
V λ

i (., .)(µ)
represents the gradient of the value function of player i with

respect to its policy, for a given policy of the other player

w.r.t to some initial distribution µ such that µ(s)> 0,∀s ∈ S.

∇V1(θ
t
1,θ

t
2)(µ) is defined in Proposition 3. We will make the

following assumption on the stepsizes:

Assumption 1: The stepsizes satisfy

∞

∑
t=0

αt =
∞

∑
t=0

βt = ∞, (10)

∞

∑
t=0

α2
t =

∞

∑
t=0

β 2
t < ∞. (11)

lim
t→∞

αt

βt

= 0. (12)

This assumption implies that there is a time-scale separation

between the learning dynamics of the leader and the follower

captured by (12). Specifically, the condition (12) implies that

the follower is learning at a faster rate compared to the leader

and is a commonly made assumption in learning algorithms

for Stackelberg games even in a static setting [13], [14]. In

the rest of the paper, we show that this algorithm converges

to a stationary point of the objective function of the leader.

The time step or stages in the game during an iteration of

the learning algorithm is given by τ and the iteration of the

learning algorithm is given by t or n.

IV. PROPERTIES OF BEST RESPONSE AND VALUE

FUNCTION

We now proceed to analyze the best response of the

follower given a specific policy followed by the leader and

the value function of the leader when the follower plays the

best response to the policy of the leader.

Recall that the policy at the follower evolves according

to (9). With a given leader policy parameter θ1 and hence the

leader policy πθ1
, we can convert the two player stochastic

game into a MDP from the point of the view of the follower.

To this end, define the averaged rewards and probability

transition functions as

R
πθ1
2 (s,a2) := ∑

a1∈A1

πθ1
(a1|s)R2(s,a1,a2) (13)

P
πθ1 (s′|s,a2) := ∑

a1∈A1

πθ1
(a1|s)P(s

′|s,a1,a2). (14)

In other words, we average the rewards and the proba-

bility transition function for the original game with re-

spect to the policy of the leader. The MDP defined as

ïS,R
πθ1
2 ,A2,P

πθ1 ,γ,ρð is then called an Averaged MDP for

the follower [32].

The advantage of defining this averaged MDP is that

we can compute ∇θ2
V λ

2 (θ t
1,θ

t
2) in (9) at each time t by

considering the follower as the only decision maker in this

averaged MDP. This is simply because once we fix the leader

policy, the gradient computation for the follower is identical

in both these cases. We will use this fact to show that for

any fixed policy followed by the leader, there exists a unique

best response policy for the follower.

To this end, consider the averaged MDP

ïS,R
πθ1
2 ,A2,P

πθ1 ,γ,ρð with the follower seeking to

optimize an entropy regularized version of its value function
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over the choice of its policy π̄θ̄2
through a gradient ascent

algorithm of the form

θ̄ t+1
2 = θ̄ t

2 +βt∇θ̄2
V̄ λ

2 (θ t
1, θ̄

t
2), (15)

where V̄ λ
2 (θ t

1, θ̄
t
2) is the entropy regularized value function

for this averaged MDP as defined by

V̄ λ
2 (πθ1

, π̄θ̄2
)(ρ) = V̄2(πθ1

, π̄θ̄2
)(ρ)+λ H̄(πθ1

, π̄θ̄2
,ρ),

H̄(πθ1
, π̄θ̄2

,ρ) = E
s0∼ρ,āt

2∼π̄θ̄2
(.|sτ ),sτ+1∼P

πθ1 (.|sτ ,ā
τ
2)

[

∞

∑
τ=0

−γτ log π̄θ̄2
(aτ

2|sτ)

]

.

The following result follows from those in the existing

literature [16], [21] and aids in the study of the properties

such as uniqueness and continuity of the best response of

the follower.

Proposition 1: Consider the averaged MDP defined above

with the follower utilizing a gradient ascent algorithm of the

form (15) for a given πθ1
. The following statements are true:

1) There is a unique optimal policy π̄⋆
2 for the follower

[16, Proposition 1].

2) The gradient ascent algorithm asymptotically con-

verges to π̄⋆
2 . In particular, let µ(s) > 0,∀s ∈ S and

βt =
(1−γ)3

8+λ (4+8logA)∀t, then ∃ C > 0 such that ∀ t g 1

[21, Theorem 6],

V̄ λ
2 (πθ1

, π̄θ̄⋆
2
)(ρ)−V̄ λ

2 (πθ1
, π̄θ̄ t

2
)(ρ)

f ∥
1

µ
∥∞

1+λ logA

(1− γ)2
e−C(t−1)

. (16)

Remark 1: Since the follower policy converges to a

unique optimal policy for the averaged MDP, this implies

that in the Stackelberg game defined in Section II, for a

fixed policy of the leader, the follower has a unique optimal

response. In other words, the best response map in the game

is a function.

Remark 2: While the optimal policy π̄⋆
2 is unique as

shown in Proposition 1, there might be multiple parameters

{θ̄2(s,a2, j)}s∈S,a2, j∈A2
that yield the same optimal policy.

The uniqueness of {θ̄2(s,a2, j)}s∈S,a2, j∈A2
can be ensured by

following the procedure of [8, Example 5]. We assume that

this procedure is followed and hence the parameter is also

unique.

We now make the following assumption for further develop-

ment.

Assumption 2: There exists a value 0 < λ < ∞ such that

∇2
θ2

V λ
2 (θ1,B(θ1))

−1 exists ∀θ1 ∈ R
|S||A1|.

Under assumption 2, the next result proves the continuity

and differentiability of the best response.

Proposition 2: The best response function B(θ1) is con-

tinuous and differentiable in θ1.

Proof: The unique optimal policy of the follower

(say θ
′

2) for fixed leader policy θ1 is a stationary point

∇θ2
V λ

2 (θ1,θ
′

2) = 0. Under Assumption 2, the implicit func-

tion theorem [24] implies that the best response function

B : X ¢ R
|S||A1| → R

|S||A2| is continuous and differentiable in

θ1.

Remark 3: The implicit function theorem also provides an

explicit formula to compute the derivative ∇B(θ1). Specifi-

cally, applying the implicit function theorem to the implicit

function ∇θ2
V λ

2 (θ1,θ2) = 0, the derivative of the best re-

sponse function with respect to the parameter of the leader

is given by

∇B(θ1) =−∇θ1,θ2
V λ

2 (θ1,B(θ1))

[

∇2
θ2

V λ
2 (θ1,B(θ1))

]−1

.

(17)
We also consider the following regularity assumption on the

derivative of the best response function.

Assumption 3: There exists 0 < λ < ∞ and 0 < K < ∞

such that

∥∇θ1,θ2
V λ

2 (θ1,θ2)∇
2
θ2

V λ
2 (θ1,θ2)

−1∥2 f K,∀(θ1,θ2).
We can now state the following result.

Lemma 1: Under Assumption 3, B(θ1) is Lipschitz.

Proof: The proof follows from the mean value theorem

for vector valued functions and the fact that ∥∇B(θ1)∥2 is

bounded by Assumption 3.

The leader is optimizing its policy for the objective function

V1(θ1,B(θ1)). We next present properties of the function

V1(θ1,B(θ1)) that will aid in our convergence analysis.

Proposition 3: The function V1(θ1,B(θ1)) is a continuous

function and differentiable in θ1. Further, its derivative is

given by

∇V1(θ1,B(θ1)) = ∇θ1
V1(θ1,B(θ1))−∇θ2

V1(θ1,B(θ1))

∇θ1,θ2
V λ

2 (θ1,B(θ1))

[

∇2
θ2

V λ
2 (θ1,B(θ1))

]−1

. (18)

Proof: From Proposition 2, the map g(θ1) = (θ1,B(θ1))
is a continuous and differentiable function in θ1. The value

function V1(θ1,θ2) is continuous [1] and differentiable in

(θ1,θ2). Thus, taking the composition of two differentiable

functions, we obtain that V1(g(θ1)) = V1(θ1,B(θ1)) is a

continuous and differentiable function in θ1.

At the nth iteration of the two-timescale algorithm, (say

(θ n
1 ,θ

n
2 )), as the follower has not converged to their best

response B(θ n
1 ), the leader updates its policy according to

(8) where the gradient is given by (19)

∇V1(θ
n
1 ,θ

n
2 ) = ∇θ1

V1(θ
n
1 ,θ

n
2 )−∇θ2

V1(θ
n
1 ,θ

n
2 )

∇θ1,θ2
V λ

2 (θ n
1 ,θ

n
2 )

[

∇2
θ2

V λ
2 (θ n

1 ,θ
n
2 )

]−1

.
(19)

We will use the ODE method as presented in [9], [10]

to prove convergence of Stackelberg policy gradient. To this

extend, we will make two additional assumptions (similar to

[14]) before presenting our main result.

Assumption 4: The iterates of the Stackelberg policy gra-

dient are bounded i.e. supt(∥θ t
1∥+∥θ t

2∥)< ∞.

Assumption 5: The only internally chain transitive

invariant sets of the differential equation θ̇1(t) =
∇V1(θ1(t),B(θ1(t))) are isolated equilibrium points.

V. CONVERGENCE OF ALGORITHM

In this section, we introduce the main result of this paper

that provides the conditions guaranteeing the convergence of
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the proposed two-timescale policy gradient algorithm given

by the parameter iterations (8) and (9) to a stationary point of

the objective function of the leader. The convergence result

is now stated.

Theorem 1: Consider the problem formulated in Section

II. Under Assumptions 1-5, the Stackelberg policy gradient

algorithm (8,9) converges to policies (θ ∗
1 ,θ

∗
2 ) where θ ∗

2 =
B(θ ∗

1 ) and θ ∗
1 is a stationary point of V1(θ1,B(θ1)).

Proof: The Stackelberg policy gradient algorithm can

be re-written as
(

θ t+1
1

θ t+1
2

)

=

(

θ t
1

θ t
2

)

+

(

αt∇V1(θ
t
1,θ

t
2)(µ)

βt∇θ2
V λ

2 (θ t
1,θ

t
2)(µ)

)

(20)

=⇒

(

θ t+1
1

θ t+1
2

)

=

(

θ t
1

θ t
2

)

+βt

( αt

βt
∇V1(θ

t
1,θ

t
2)(µ)

∇θ2
V λ

2 (θ t
1,θ

t
2)(µ)

)

. (21)

The condition limt→∞
αt

βt
= 0 induces a time-scale separa-

tion between the dynamics of the leader and follower. Under

Assumption 4, [9, Corollary 2.1] the iterates of the algorithm

(θ t
1,θ

t
2)→ H = {(θ1,B(θ1)) : θ1 ∈R

|S||A1|)} as t → ∞. Under

Assumption 4, [10, Chapter 6, Theorem 2] the iterates θ t
1

of the leader track the solutions of the differential equation

given by

θ̇1(t) = ∇V1(θ1(t),B(θ1(t))). (22)

Furthermore, under Assumption 5, [10, Chapter 2, Corollary

4] the iterates θ t
1 converges to a sample path dependent

equilibrium point of the differential equation (22) Thus,

the iterates (θ t
1,θ

t
2) converge to policies (θ ∗

1 ,θ
∗
2 ) where

θ ∗
2 = B(θ ∗

1 ) and θ ∗
1 is a stationary point of V1(θ1,B(θ1))

i.e.∇V1(θ
∗
1 ,B(θ

∗
1 )) = 0.

Remark 4: The condition limt→∞
αt

βt
= 0 induces a time-

scale separation. Asymptotically, from the view of the leader,

the iterates of the leader appear static and from the view of

the leader, the iterates of the follower have converged to their

best response given the leader policy.

Remark 5: We have shown convergence of the Stack-

elberg policy gradient converge on the set {supt(∥θ t
1∥+

∥θ t
2∥) < ∞}. In other words, the algorithm will converge

when all the stationary points of V1(θ1,B(θ1)) are stochastic

policies.

APPENDIX I

SMOOTHNESS OF THE VALUE FUNCTIONS

The gradient ∇θ1
V1(θ1,θ2) is Lipschitz continuous in θ1

and the gradient ∇θ2
V λ

2 (θ1,θ2) is Lipschitz continuous in θ2

[1], [21]. We will prove the smoothness of V1(θ1,θ2) in θ2.

Fix θ1. Let πα := πθ2+αu and

Ṽ (α) =V
πθ1

,πα

1 (s0) = ∑
a∈A

πθ1
(a|s)Q

πθ1
,πα

1 (s0,a).

We proceed as follows:

dPα(s′|s,a)

dα
α=0 = ∑

a1∈A

P(s′|s,a1,a)
dπα(a1|s)

dα
α=0

=⇒
dPα(s′|s,a)

dα
α=0 f ∑

a1∈A

dπα(a1|s)

dα
α=0

fc1 = 2,

where the last equality follows from [1]. Similarly, observe

that

d2
P

α(s′|s,a)

(dα)2 α=0 = ∑
a1∈A

P(s′|s,a1,a)
d2πα(a1|s)

(dα)2 α=0

=⇒
d2
P

α(s′|s,a)

(dα)2 α=0 f ∑
a1∈A

d2πα(a1|s)

(dα)2 α=0

fc2 = 6,

where again the last equality follows from [1]. Let

P̃(α)(s,a)→(s′,a′) = πθ1
(a′|s′)Pα(s′|s,a) and

dP̃(α)
dα α=0 =

πθ1
(a′|s′) dPα (s′|s,a)

dα α=0. For any arbitrary vector x, we con-

clude that
[

dP̃(α)

dα
α=0x

]

= ∑
(s′,a′)

dPα(s′|s,a)

dα
α=0xa′,s′πθ1

(a′|s′)

=⇒ max
∥u∥2=1

[

dP̃(α)

dα
α=0x

]

s,a

= max
∥u∥2=1

∑
(s′,a′)

dPα(s′|s,a)

dα
α=0xa′,s′πθ1

(a′|s′)

f ∥x∥∞ ∑
s′

dPα(s′|s,a)

dα
α=0 f c3∥x∥∞. (23)

Similarly, we have that

max
∥u∥2=1

[

d2P̃(α)

(dα)2 α=0x

]

s,a

f c4∥x∥∞. (24)

Let M(α)= (I−γP̃(α))−1 =∑
∞
n=1 γnP̃(α)n. The above equa-

tion is obtained from the power series expansion where

P̃(α)n is a stochastic matrix for each n so that M(α)1 =
1

1−γ 1. Hence, we deduce that

max
∥u∥2=1

∥M(α)x∥∞ f
1

1− γ
∥x∥∞. (25)

Moreover, we have R(α)s0,a0
= ∑a∈A2

πα(a0|s)R(s0,a0,a)
implies that

∥
dR(α)

dα
∥∞ fc4 and ∥

d2R(α)

(dα)2
∥∞ f c5.

Let Qα(s,a) be the Q-function of player one when they

follow policy πθ1
and player two follows policy πα . Then,

we write the Qα(s0,a0) as

Qα(s0,a0) =eT
(s0,a0)

(I − γP̃(α))−1R(α)

=eT
(s0,a0)

M(α)R(α)
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using the Bellman equation. This implies that

d2Qα(s0,a0)

(dα)2
= 2γ2eT

(s0,a0)
M(α)

dP̃(α)

dα
M(α)

d2P̃(α)

(dα)2
M(α)R(α)

+ γeT
(s0,a0)

M(α)
d2P̃(α)

(dα)2
M(α)R(α)

+ γeT
(s0,a0)

M(α)
d ˜P(α)

dα
M(α)

dR(α)

dα
+

eT
(s0,a0)

M(α)
d2R(α)

(dα)2
. (26)

Since the infinity norm of each of the matrices are

bounded, max∥u∥2=1
d2Qα (s0,a0)

(dα)2 α=0 is bounded.

The value function for the player 1 is given by

Ṽ (α) = ∑
a∈A

πθ1
(a|s)Qα(s0,a)

=⇒
d2V (α)

dα2
= ∑

a∈A

πθ1
(a|s)

d2Qα(s0,a)

dα

=⇒ max
∥u∥2=1

d2V (α)

dα2 α=0 f |A| max
∥u∥2=1

d2Qα(s0,a)

dα
α=0

Since max∥u∥2=1
d2Qα (s0,a0)

(dα)2 α=0 is bounded,

max∥u∥2=1
d2V (α)

dα2 α=0 is also bounded. This completes

the proof.
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