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Learning in Stochastic Stackelberg Games

Pranoy Das, Benita Nortmann, Lillian J Ratliff, Vijay Gupta and Thulasi Mylvaganam

Abstract— We present a learning algorithm for players to
converge to their stationary policies in a general sum stochastic
sequential Stackelberg game. The algorithm is a two time
scale implicit policy gradient algorithm that provably converges
to stationary points of the optimization problems of the two
players. Our analysis allows us to move beyond the assumptions
of zero-sum or static Stackelberg games made in the existing
literature for learning algorithms to converge.

I. INTRODUCTION

Various notions of equilibrium solutions exist in game
theory. Both due to the fact that such equilibrium strategies
are usually difficult to compute, and as a justification for
agents to arrive at strategies that constitute a given equi-
librium solution, learning algorithms by which the agents
can update their strategies based on past experience and
(hopefully) converge to such equilibria have a long history in
game theory [7], [15], [25]. In this paper, we are interested
in general-sum stochastic games that have a sequential struc-
ture. In a one-shot version, these games are studied under the
rubric of static Stackelberg games, considering the so-called
Stackelberg equilibrium solution concept [14].

While such games arise naturally in many settings, learn-
ing algorithms that converge to Stackelberg equilibrium even
in (repeated) one-shot games are less studied than the more
common Nash equilbrium in (repeated) simultaneous move
games. In the context of Generative Adversarial Networks
(GANS) [18], where the optimization problem can be writ-
ten as a zero sum game between the generator and the
discriminator, [23] presented a simultaneous gradient based
algorithm. In this class of algorithms, the leader and follower
learn at the same rate which has been known to lead to
cyclic behaviour in general [22], [26]. In the context of
actor-critic algorithms in reinforcement learning, [27], [33]
presented a Stackelberg game formulation and presented a
policy gradient algorithm that provably locally converges to
an equilibrium. Another relevant recent work is [13], which
presented a two-timescale stochastic gradient algorithm and
proved local convergence to differential Stackelberg equilib-
ria in repeated static games.

As opposed to these works, we are interested in stochastic
games [28]. Roughly speaking, stochastic games have a
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notion of state that evolves over time as a result of the actions
by the agents. We consider two agents with the interaction
between them occurring in a leader-follower manner. The
leader agent commits to a policy. The policy becomes known
to the follower who, in turn, plays the best response to
the leader policy. The state evolves stochastically given the
current state and the joint actions of the agents. The cycle
repeats at the next time step. A more precise formulation is
given later.

An example where stochastic Stackelberg games would
be natural to consider is in security games. Security games
are games between a defender who wishes to protect some
targets through deployment of limited resources and attack-
ers who wish to strategically attack the targets to benefit
themselves. The hierarchical order of play arises naturally
since the defender typically acts first and deploys a strat-
egy. Attackers observe the strategy of the defender before
attacking. Security games are widely modelled as stochastic
games [19], [29]. While some formulations have considered
zero-sum security games, particular classes of security games
such as adversarial patrolling games have also been modeled
as general-sum stochastic games [3]-[6]. Another example
where the framework of stochastic Stackelberg games fits
naturally is in testing during epidemics, where the leader
(the government) sets testing policies and the follower (the
citizens) decide at every time step whether to get tested. The
government wishes to minimize the number of infected peo-
ple in the population while the follower wishes to minimize
the cost of getting sick and testing. Once again this setting
leads to a general-sum game.

Learning algorithms for stochastic Stackelberg games have
been considered only for some special cases in the literature.
For instance, [17] provides a value iteration-based algorithm
to converge to the Stackelberg equilibrium in zero-sum
stochastic games. Similarly, [30] presents a mixed integer
program for computing the Stackelberg equilibrium strategy
when the follower plays their deterministic best response
stationary policy. In [31], policy gradient algorithms for
stochastic Stackelberg games are introduced and studied
numerically, albeit without a convergence analysis.

In this paper, we consider the Stackelberg policy gradi-
ent algorithms introduced in [31] and analyse conditions
guaranteeing convergence to a Stackelberg equilibrium. In
stochastic games, it is common to consider Markov stationary
policies for both the players [11], [20], [30] and we make this
assumption as well. While this restriction may be limiting
(e.g., [30] showed that the Stackelberg equilibrium strategy
for the leader need not be a Markov stationary policy even
if the follower policy is a Markov stationary policy), this
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assumption considerably simplifies our convergence analysis.
Our convergence analysis provides theoretical guarantees on
the convergence of the proposed two time-scale Stackelberg
policy gradient algorithms, and thus, verifies the numerical
demonstration in [31]. Specifically, our analysis builds on
formulating a smooth version of general-sum stochastic
games where the value function of the follower is entropy
regularized. We show that if we keep the leader policy
fixed, the follower iterates obtained through gradient ascent
converge to the unique optimal policy. For the leader, we
prove that its policy iterates given that the follower is playing
the best response converges to a stationary point. We then
use the above two results to prove the convergence of the
Stackelberg policy gradient algorithm when both the leader
and the follower update their policies simultaneously. Since
the Stackelberg policy gradient is a first order method,
convergence to only a stationary point of the optimization
problem for the leader is the best we can hope for without
further assumptions on the cost function.

The paper is organized as follows. Section II formulates
the game and the equilibrium notion considered. We present
the proposed learning algorithm in Section III. Section IV
presents the properties of the best response and value
function that aid in the convergence analysis. Finally, the
convergence result for the overall algorithm is presented in
Section V. The appendix provides some technical details on
the computation of the gradients in the algorithm.

II. PROBLEM FORMULATION

a) Game definition: In this paper, we are interested in a
two-player stochastic game with a hierarchical order of play.
In these games, called stochastic Stackelberg games, two
players—a leader and a follower—share a Markov decision
process (MDP). The leader announces (i.e., commits to)
their policy before the game begins. At every time step,
both the players play actions corresponding to the state of
the MDP in order to maximize their own infinite horizon
discounted reward. However, there is a hierarchy between
the two players in the sense that the follower responds to
the policy that the leader has committed to.

Formally, a stochastic Stackelberg game is defined as a
tuple G = (S,N, (A1,A42),P, (R1,Ry),7,p), where

o S is a finite set of states given by S = {s1,s2,...
the underlying MDP;

o N ={1,2} is the set of players. Without loss of gen-
erality, we will assume that player 1 is the leader and
player 2 is the follower;

e A; and A, are finite sets of actions of the leader and
follower respectively;

o P is the probability transition function of the underlying
MDP with P(s'|s,a;,as) specifying the probability of
the state at the next time step being s’ given that the
current state and joint actions are given by (s,a;,az);

e Ri:SxA; xAy — [0,1], i € {1,2} are the reward
functions of the leader and the follower;

¢ 7Y is a discount factor;

Sk} of

o p €A(S) is the distribution of the state at time ¢t = 0,
also termed as the initial state s°, with the probability
of state s € S given by p(s).

At each stage (or time) T and corresponding state s®, the
leader and the follower take joint actions (af,a}). They
then receive the rewards R;(s%,af,aj) (i = 1,2). The state
transitions to s ~ P(s'|s%,al,a}). The stage T+ 1 then
begins.

b) Policies and Value Functions: Given a stochastic
Stackelberg game, the set of strategies for the leader and
the follower that we concentrate on in this paper are Markov
stationary policies. Specifically, we define the policies for the
two players as functions 7; : S X A; — Aa,,i € {1,2} where Ay,
is a probability simplex in |A;| dimensions. We also denote
the actions a} selected according to policy 7; by af ~ ;.

The value functions V;(7;,m)(s) for the two players can
now be defined. For the leader, the value function for a given
initial state s” at time T = 0 and given that the players play
policies 7y, m, is given by

Ez| Y YRi(s%af,a3)ls =s| (1)

Vl (7171, 77:2)(s) =

where E »[.] denotes that the expectation is over all the tra-
jectories .7 = {s%,af,a}}:>o with the actions af ~ m;,aj ~
M. Similarly, the value function for the follower can be
defined as the expected discounted reward for player 2 as
given by

Va(m,m)(s) :=Ez | Y ¥y Ra(s",af,af)|s" =5|.  (2)
As explained further in Section IV, for technical reasons, we
consider an entropy regularized version of this value function
as given by

Vi (71, m) (s) := Va(m1, 72) (5) + AHg, (71, 5) (3)

with Hp, (71,s) defined as the discounted entropy of the
follower policy m, when the leader policy is fixed to 7w,
as given by

Es|Y —ylogm(allss)[s* =s,m|. 4
7=0

Hn'z(n'l ,S) =

We will also use the value functions with respect to an initial
state distribution p rather than a given initial state. Thus, we
define

Vi(my,m)( ZP Wi, m) (s) = Egymep Vi (01, m2) ()]
seS
&)
Vi (m,m)(p) = Y. p(s)V4 (m1, ) (s)
ses (6)

= EsNP [VZ}L (ﬂl ) 71,'2)(5‘)].

c) Stackelberg Equilibrium: To define the Stackelberg
equilibrium, we first need to define the best response or
the rational reaction set of the follower. Suppose the leader
commits to a policy 7m;. Then, the best response of the
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follower is the set of policies given by

B(m) := argmax V2 (71, 72)(p).
™
The problem of computing a Stackelberg equilibrium is
a bi-level optimization problem [2], [12]. Specifically, the
policy for the leader can be obtained through the upper level
problem given by

7y € argmax V| (71, B(m))(p),
bl
while the follower’s policy can be obtained through the lower
level optimization problem given by

™€ argn}rang(nl,nz)(p).
2

The problem we consider in this paper is to provide a
learning algorithm for the leader and the follower to update
their policies and analyze conditions under which such an
algorithm converges to the Stackelberg equilibrium.

III. PROPOSED ALGORITHM

In this paper, we consider a two time-scale gradient ascent
algorithm for the leader and the follower to converge to the
stationary policies that achieve the Stackelberg equilibrium.
We begin by presenting the parametrization of the policies
that we consider.

a) Parameterization of the policies: We will utilize the
player policies given in terms of the commonly used soft max
policy parameterization [1], [8], [21]. Specifically, the policy
of each player i is determined using a parameter 6; € RISHAL,
Denoting the element of 6; corresponding to the state s € S
and j™* action of player i a;, j € Aj be 6(s,a; ), the policy
is given by specifying the probabilities of taking the action
a; ; given the state s as
ebils.aif)
milails) = Yo, en, €¥0aii) @
Since the parameters 6; will evolve with time in the learning
algorithm, we denote the value of the parameter at time ¢ by
o!.

l As is well known [1], any stochastic policy can be
represented using the soft max parameterization. To avoid
notational clutter, we use 6; and 7y, interchangeably to
denote the policies of player i. Similarly, we use V;(6;,6,)
(resp. VZ’I(Gl ,62)) and V/ (g, , mg,) (resp. Vzl(nrgl , g, )) inter-
changeably to represent the value functions as a function of
01,06,.

b) The gradient ascent algorithm: We consider the
Stackelberg policy gradient algorithm from [31], which is a
gradient ascent algorithm for both the leader and the follower.
The algorithm is given through the following iterations of the
policy parameters:

61! =61 + o VVi(6],65) () ®)

03" =65+ BV, V7 (6], 65) (1), ©
where o, and B, are the step sizes and Vgl.ViA(., J(u)
represents the gradient of the value function of player i with

respect to its policy, for a given policy of the other player
w.r.t to some initial distribution p such that p(s) > 0,Vs € S.
VV1(6;,65)(u) is defined in Proposition 3. We will make the
following assumption on the stepsizes:

Assumption 1: The stepsizes satisfy

Zm=2ﬂ=% (10)
t=0
Zatz—ZBt < oo (1D
t=0 t=0

fim 5t =0 2

This assumption implies that there is a time-scale separation
between the learning dynamics of the leader and the follower
captured by (12). Specifically, the condition (12) implies that
the follower is learning at a faster rate compared to the leader
and is a commonly made assumption in learning algorithms
for Stackelberg games even in a static setting [13], [14]. In
the rest of the paper, we show that this algorithm converges
to a stationary point of the objective function of the leader.
The time step or stages in the game during an iteration of
the learning algorithm is given by 7 and the iteration of the
learning algorithm is given by ¢ or n.

IV. PROPERTIES OF BEST RESPONSE AND VALUE
FuNcCTION

We now proceed to analyze the best response of the
follower given a specific policy followed by the leader and
the value function of the leader when the follower plays the
best response to the policy of the leader.

Recall that the policy at the follower evolves according
to (9). With a given leader policy parameter 6; and hence the
leader policy 7g,, we can convert the two player stochastic
game into a MDP from the point of the view of the follower.
To this end, define the averaged rewards and probability
transition functions as

T
R291 (s,a0) := Z 7o, (a1|s)Ra(s,a1,a2) (13)
aj €A
P (s'|s,az) Z T, (a1|s)P(s|s,a1,az). (14)
a1 €Ay

In other words, we average the rewards and the proba-
bility transition function for the original game with re-
spect to the policy of the leader. The MDP defined as
<S,R§0‘ ,A2,P™1 'y p) is then called an Averaged MDP for
the follower [32].

The advantage of defining this averaged MDP is that
we can compute Vg,V5'(8!,65) in (9) at each time ¢ by
considering the follower as the only decision maker in this
averaged MDP. This is simply because once we fix the leader
policy, the gradient computation for the follower is identical
in both these cases. We will use this fact to show that for
any fixed policy followed by the leader, there exists a unique
best response policy for the follower.

To this end, consider the averaged MDP
<S,R§9‘ , Ay, P™1 vy p)  with the follower seeking to
optimize an entropy regularized version of its value function
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over the choice of its policy 75, through a gradient ascent
algorithm of the form

03" = 6} + V5, V5 (6].65), (15)
where \721(61’7%) is the entropy regularized value function
for this averaged MDP as defined by

77561,7592)( ‘72(”9]7ﬁ§2)(p)+a’g(n91>ﬁ§2ap)a

Vi
H(”epnezap) =

B p iy Clse)se 1™ (Jse.a)

Y. 7" log g, (allse) |

=0
The following result follows from those in the existing
literature [16], [21] and aids in the study of the properties
such as uniqueness and continuity of the best response of
the follower.

Proposition 1: Consider the averaged MDP defined above

with the follower utilizing a gradient ascent algorithm of the
form (15) for a given 7y, . The following statements are true:

1) There is a unique optimal policy 73 for the follower
[16, Proposition 1].

2) The gradient ascent algorithm asymptotically con-
verges to 3. In particular, let u(s) > 0,Vs € S and

ﬁl‘ ngog‘A)vt then 3 C > 0 such that V ¢ > 1

[21, Theorem 6],

Vz’l(ﬂepﬁér)(i))
<l (16)

Remark 1: Since the follower policy converges to a
unique optimal policy for the averaged MDP, this implies
that in the Stackelberg game defined in Section II, for a
fixed policy of the leader, the follower has a unique optimal
response. In other words, the best response map in the game
is a function.

Remark 2: While the optimal policy 7; is unique as
shown in Proposition 1, there might be multiple parameters
{6,(s,az, j)}SES,aQVjEAQ that yield the same optimal policy.
The uniqueness of {6 (s,a, j)}xgsﬂzr.jg,qz can be ensured by
following the procedure of [8, Example 5]. We assume that
this procedure is followed and hence the parameter is also
unique.

We now make the following assumption for further develop-
ment.

Assumption 2: There exists a value 0 < A < oo such that
VéVZA(Gl,B(Gl))’I exists VO, € RIS,

Under assumption 2, the next result proves the continuity
and differentiability of the best response.

Proposition 2: The best response function B(6;) is con-
tinuous and differentiable in 0;.

Proof The unique optimal policy of the follower
(say 92) for fixed leader policy 6; is a stationary point
Vo, V3 (61, 6,) = 0. Under Assumption 2, the implicit func-
tion theorem [24] implies that the best response function
B: X c RSl — RISII2] s continuous and differentiable in
0. | ]

V2 (mo, g, ) () —

C(z—l).

Remark 3: The implicit function theorem also provides an
explicit formula to compute the derivative VB(6;). Specifi-
cally, applying the implicit function theorem to the implicit
function Vg, V4 (61,6,) = 0, the derivative of the best re-
sponse function with respect to the parameter of the leader
is given by

-1
VB(61) = Vo,V (01.8(00) | VA VE (615(61) |

17
We also consider the following regularity assumption on( thg
derivative of the best response function.
Assumption 3: There exists 0 < A < o and 0 < K < o
such that

1Vo,.6,V5" (61,62) V5, V5" (61,62) " 2 < K,¥(61,62).

We can now state the following result.

Lemma 1: Under Assumption 3, B(6;) is Lipschitz.
Proof: The proof follows from the mean value theorem
for vector valued functions and the fact that |VB(6,)]|, is
bounded by Assumption 3. [ ]
The leader is optimizing its policy for the objective function
Vi(61,B(0;1)). We next present properties of the function
V1(61,B(6;)) that will aid in our convergence analysis.

Proposition 3: The function V;(6;,B(6;)) is a continuous
function and differentiable in 0;. Further, its derivative is
given by

\% (91 ,B(@] )) = V@l Vi (91 ,3(91 )) — V92V1 (91 ,B(Ol))

-1
Vo 0,V5 (61,B(61))|Vg,Vi (61,B(61))| . (18)

Proof: From Proposition 2, the map g(6;) = (6;,B(6)))
is a continuous and differentiable function in 6;. The value
function V;(0;,6,) is continuous [1] and differentiable in
(61,0,). Thus, taking the composition of two differentiable
functions, we obtain that V;(g(6;)) = Vi(61,B(6;)) is a
continuous and differentiable function in 6. |
At the n'" iteration of the two-timescale algorithm, (say
(67,65)), as the follower has not converged to their best
response B(6]'), the leader updates its policy according to
(8) where the gradient is given by (19)

VVi(67,65) = Ve, Vi(6],05) — Vg, V1(6],65)

-
Veo,0,Y5 (91’92)|: , V3 (91,92)] :

We will use the ODE method as presented in [9], [10]
to prove convergence of Stackelberg policy gradient. To this
extend, we will make two additional assumptions (similar to
[14]) before presenting our main result.

Assumption 4: The iterates of the Stackelberg policy gra-
dient are bounded i.e. sup,(||0!| +|63]|) < .

19)

Assumption 5: The only internally chain transitive
invariant sets of the differential equation 0,(t) =
VV,(6:(t),B(0;(z))) are isolated equilibrium points.

V. CONVERGENCE OF ALGORITHM

In this section, we introduce the main result of this paper
that provides the conditions guaranteeing the convergence of
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the proposed two-timescale policy gradient algorithm given
by the parameter iterations (8) and (9) to a stationary point of
the objective function of the leader. The convergence result
is now stated.

Theorem 1: Consider the problem formulated in Section
II. Under Assumptions 1-5, the Stackelberg policy gradient
algorithm (8,9) converges to policies (6;,6;) where 65 =
B(6]) and 6] is a stationary point of V;(01,B(6)).

Proof: The Stackelberg policy gradient algorithm can
be re-written as

9%*') (9i> ( a VVi(61,63) (1) >
= + (20)
(GHrl 6] ﬁthszl(GL 65) (1)
t+1 OCr AVAV 9’, o!
() () e (BT
o Ve, V3 (6], 65) (1)

The condition lim;_,. % =0 induces a time-scale separa-
tion between the dynamics of the leader and follower. Under
Assumption 4, [9, Corollary 2.1] the iterates of the algorithm
(61,05) — H={(61,B(61)): 6; € RSN} ag ¢ — oo Under
Assumption 4, [10, Chapter 6, Theorem 2] the iterates 91’

of the leader track the solutions of the differential equation
given by

61(1) B(6:(1)))-

Furthermore, under Assumption 5, [10, Chapter 2, Corollary
4] the iterates O] converges to a sample path dependent
equilibrium point of the differential equation (22) Thus,
the iterates (60],05) converge to policies (6;,685) where
05 = B(6]) and 6 is a stationary point of V;(6;,B(6;))
ie.VVi(6;,B(6/)) =0. ]

Remark 4: The condition lim;_,. % = 0 induces a time-
scale separation. Asymptotically, from the view of the leader,
the iterates of the leader appear static and from the view of
the leader, the iterates of the follower have converged to their
best response given the leader policy.

= Vi (6:(2), (22)

Remark 5: We have shown convergence of the Stack-
elberg policy gradient converge on the set {sup,(]|6]|| +
|63]]) < eo}. In other words, the algorithm will converge
when all the stationary points of V;(6;,B(60;)) are stochastic
policies.

APPENDIX I
SMOOTHNESS OF THE VALUE FUNCTIONS

The gradient Vg, V1(91, 0,) is Lipschitz continuous in 6;
and the gradient Vg, Vy (91 ,0) is Lipschitz continuous in 6,
[1], [21]. We will prove the smoothness of V|(6;,6,) in 6.
Fix 0;. Let 7y := 7y, o, and

Z Tp, (als)0

acA

779, 771'(1

Via)= ( 0,a).

We proceed as follows:

dIP’O‘(s/|s a Z P |S ana (a1| -
do areh do
dP%(s'|s,a) ‘ drg(ayls)
———lo| < Y a0
‘ do ared do
Scl = 27

where the last equality follows from [1]. Similarly, observe
that

d*P*(s'|s,a) d d*ma(ails)
3 P(s']s,a1,a =0
(do)? aIZe:A (da)?
d’P%(s'|s,a) d’ 7y (ayls)
— 5 |a=0| < — 5 =0
(da)? L ar
<c = 67
where again the last equality follows from [1]. Let
5 dP
P(“)(s,a)—)(s;,a’) = nel(a'|s')]P’a(s'|s,a) and d(aa)‘a:O =
T, (d'|s/ )W(x:o. For any arbitrary vector x, we con-
clude that
dP(a dP%(s'|s,a
| = T e o 1)
(s',a)
. {dﬁ(a) }
=0X
=il dae [T,
dP%(s'|s,a) "o
= —_— = 1 o TC
AT da Tl
s,a)
FCD] < eyl @3)
Similarly, we have that
d*P(a) }
—ox| | < ca|x]co- (24)
flull2=1 |: (dOC)z - s,a H
Let M(a) = (I-yP(a))"' =Y, ¥'P(a)". The above equa-

tion is obtained from the power series expansion where
P(a)" is a stochastic matrix for each n so that M(a)l =
ﬁl. Hence, we deduce that

o <
ax [M (o < =

[*]leo- (25)

[|u Hz—
Moreover, we have R(0)s;.q,
implies that

dR(a) d’R(x)
o < d oo
dalle<es and TR <
Let Q%(s,a) be the Q-function of player one when they

follow policy mg, and player two follows policy 7y. Then,
we write the Q%(so,a0) as

= ZaEAz T (Cl() |S>R(S07 aop, a)

Cs5.

0%(s0.a0) =€y, o) (I~ YP(0)"'R(t)
T

:e(S07a0)M(a)R(a)
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using the Bellman equation. This implies that [12]
d2 o S0,40 dP(a d2f> o
@O s0.a0) _pppet  m(a) D paay Y (e 13
(do) 0:40 do (do)
d*P(a)
T
+ e M(ot)——M(0)R(0
1l M(@) o M(@)R(c0) "
dP(a) dR(at)
T
+ M(o M(o +
YelsoaM(®) =55~ M@ =50 [15]
d’R(x)
T
—_— 16
e(SO,ao)M(Ot) (da)z . (26) [16]
Since the infinity norm of each of the matrices are [y
200 (¢ .
bounded, max”u2lTwao is bounded.
The value function for the player 1 is given by [18]
7 o
V(ia) = Z 7o, (a|s)Q%(s0,a)
acA
d2V(O£) B Z - (a|s) sza(So,a) [19]
T do? 61 T da
da =y da
2 2
eV d-0%(s0,a) [20]
CR) o < |A] max |ZE 0]
=1 de =1 dex
[21]
: d?Q%(s0,a0) :
Since MaX| =1~ (ge)2 @0 is bounded,

2 . .
max”u”zzl‘d%“za)‘a:o is also bounded. This completes [22]
the proof.

[23]
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