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1 Introduction

In recent years there has been a surge of activity in trying to understand black hole microstates
using gravitational path integrals [1–8], especially in AdS/CFT [9, 10]. The main interest
lies in computing the thermal partition function Z = Tr

(
e−βH

)
and the density of states,

but these are not the only probes of statistics that one can employ. The most famous
alternative is the Witten index Tr

(
e−βH(−1)F

)
[11], along with its generalizations (see for

example [12]). The index counts the difference between the number of bosonic and fermionic
states in the theory by tracing over fermions with the opposite sign. An even more general
quantity was considered in [13], where the twisted partition function Tr

(
e−βH+αJ

)
was studied

in 2d conformal field theories (CFTs), with special attention given to the case α ∈ 2πiQ.
Observables of this form, which we will call spin-refined partition functions, have the potential
to give more fine-grained insight into the microstate structure of gravitational theories. For
similar results in the presence of global and finite-group symmetries, see [14, 15].

To be more concrete, our starting point is thermal partition function in D spacetime
dimensions, with a discrete rotation inserted: we consider

Zα⃗(β) = Tr
(
e−βH+α⃗·J⃗

)
, (1.1)

where J⃗ = (J1, . . . , Jn) is the angular momentum, taking values in the Cartan subalgebra of
the rotation algebra so(D − 2), and α⃗ is a set of fixed numbers. Most often we will assume
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that all of them are rational multiples of 2πi. To get a better feeling for the quantities we
will be studying, let us start by providing a microscopic interpretation of

ZR(β) = Tr
(
e−βH+πiJ

)
(1.2)

in 2d CFTs. If the theory living on the boundary has reflection symmetry, then for every
eigenvector |E, j⟩ of the Hamiltonian H and angular momentum J , there exists also an
eigenvector |E,−j⟩. If j ∈ 1

2 + Z, the contributions from j and −j differ by a phase that
cancels them out exactly. Thus, ZR is a purely bosonic quantity.1 For bosons with even j,
eπiJ is positive, and for bosons with odd j it is negative. Thus we may rewrite ZR as

ZR(β) =
(
Trj even − Trj odd

)
e−βH . (1.3)

Notice that on S1, the antipodal map is the same as the rotation ϕ 7→ ϕ + π. More
generally, it is a property of odd-dimensional spheres that the antipodal map is just a rotation
by π. Thus, in this case we have ZR(β) = Tr

(
e−βHR

)
, where R is the reflection operator.2 We

will in fact take this as the definition of ZR in any dimension. We may still interpret it as (1.3),
where now the labels “even” and “odd” refer to the properties of states under R. If the
boundary theory has R as a symmetry, then ZR will be a bosonic quantity in any dimension.

It was recently argued that the gravitational path integral should include Lorentzian
geometries that are not time-orientable [16]. This is a logical consequence of the lack of global
symmetries in quantum gravity. It is a well-known theorem that CRT must be a symmetry of
any relativistic quantum field theory3 [17]. Nevertheless, in any consistent theory of quantum
gravity we must either gauge it or break it: [16] chose the former alternative. As advertised,
this leads to the natural possibility that the gravitational path integral could receive important
contributions from non-time-orientable spacetimes. It was further argued in [16] that from a
holographic point of view, such saddles should give the dominant contribution to (1.2) in
3d gravity. We will study this question also in higher dimensions.

Let us pause to emphasize that in our usage, the operator R changes the signs of all
the coordinates. This may be confusing, because in Euclidean signature the parity operator
flips the signs of all spatial coordinates, while the reflection operator flips only one of them.
But parity and reflection are actually the same in odd bulk spacetime dimensions, up to a
rotation. (For example, in AdS3/CFT2 they are identical.) Our focus in this work will be on
examples in odd spacetime dimensions, so we will not be very careful with the distinction.4
In practice, we take the definition of R to be such that it implements (1.3).

1Note that this does not mean that the presence of fermions in the theory or lack thereof is meaningless.
Rather, only bosonic states contribute, but these states may still be built out of fermions.

2We use R to denote an insertion that reflects of all of the coordinates. Thus R = RT , where R and T are
the discrete symmetries corresponding to spatial reflection and (Euclidean) time reversal.

3CRT stands for Charge conjugation, spatial Reflection, and T ime reversal. It is most naturally defined in
the Euclidean signature as a rotation by π. In the older literature, this operation is often called CP T .

4The reflection of only one spatial coordinate has determinant −1 in any dimension, so Euclidean saddles
for that insertion can be non-orientable. Such objects have been studied in AdS3/CFT2 [18, 19], but these are
not the saddles we are looking for. We thank Zixia Wei for clarifying comments on this point.
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1.1 Review of the CRT -twisted black hole

The authors of [16] provided an example of a universal saddle contributing to ZR that we
will now review. Let us start with the non-rotating BTZ black hole with inverse temperature
β. In Kruskal-Szekeres coordinates (X±, ϕ), the metric reads

ds2 = − 4dX+dX−

(1 +X+X−)2 +
(

2π
β

1 −X+X−

1 +X+X−

)2

dϕ2. (1.4)

The Euclidean action of this solution is

IBTZ(β) = −π
2c

3β , (1.5)

where c is the central charge of the dual CFT. Let us divide this saddle by the following Z2:

(X+, X−, ϕ) 7→ (−X+,−X−, ϕ+ π). (1.6)

This Z2 action has no fixed points and thus the resulting manifold, called the CRT -twisted
black hole, is smooth. As a quotient of BTZ, it still satisfies the Einstein equations. Its
Euclidean action is simply half of (1.5),

ICRT (β) = −π
2c

6β . (1.7)

Having established that the CRT -twisted black hole is a saddle for the gravitational path
integral, we should also establish what boundary conditions it satisfies. The time circle gets
cut in half, so its inverse temperature is β

2 . Moreover, the identification introduces a twist in
a spatial circle. It was argued in [16] that this saddle contributes to Tr

(
e−

β
2 H+πiJ

)
.5 Notice

that this corresponds to the modular parameter τ = 1
2 + i β

4π . The partition function at this
value of the modular parameter can be rewritten using modular invariance as

Z(τ) = Z

( −τ
2τ − 1

)
= Z

(
−1

2 + i
π

β

)
. (1.8)

Thus the high-temperature regime can be mapped to the low-temperature regime, where
the partition function is dominated by the thermal AdS3. One can easily see that ICRT
reproduces that result quantitatively at small β. As was pointed in [20], that saddle is in
fact a well-known solution, namely one of SL(2,Z) black holes.

We may generalize CRT -twisted black hole to any dimension. Indeed, let us start with
the Schwarzschild AdS (SAdS) black hole and quotient it by

(X+, X−, ya) 7→ (−X+,−X−,−ya), (1.9)

where (X+, X−, ya) are Kruskal-Szekeres coordinates and −ya represents the antipodal map
on a sphere. Since the action of this Z2 is free, the resulting manifold is always smooth. It
is easy to calculate the Euclidean action of the quotient:

ICRT

(
β

2

)
= 1

2ISAdS(β). (1.10)

5It may be worth emphasizing that this is not an index, since (−1)F = e2πiJ .
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Since at large temperatures in D dimensions we have ISAdS(β) ∼ β2−D, it follows that

ICRT (β) = 1
2D−1 ISAdS(β) +O

(
β3−D

)
. (1.11)

Thus, the CRT saddle exactly reproduces high-temperature behavior of the free energy of
even-spin minus odd-spin operators that was obtained in the thermal effective theory of [21].

A few observations regarding that problem are in place. One may be worried that a
large split between even and odd j could lead to problems with the semiclassical limit of
the bulk theory. After all, we do not expect that the scattering process of a photon on
the Kerr background should depend significantly on whether the spin of the black hole is j
or j + ℏ. However, while ZR(β) may be large, the relative change in the density of states
ZR(β)/Z(β) remains exponentially small as GN → 0. Thus, the semiclassical physics should
be agnostic to the even-odd split.

Another natural question is what this split really looks like in the density of states. Are
there systematically more even than odd spin states?6 Or maybe the difference oscillates
rapidly and only after averaging over a sufficiently wide energy window, we obtain a definite
split? We will answer these questions in the rest of this paper.

It was already pointed out in [20] that the three-dimensional CRT -twisted black hole is
simply one of many SL(2,Z) black holes present in AdS3. One may be worried that the lack
of time-orientability in the Lorentzian signature may translate to a lack of orientability in
the Euclidean one. Interestingly, since all of the time-orientability issues are hidden behind
the horizon, a Euclidean path integral would not be able to detect any causality-related
problems with that saddle.

The rest of this paper is organised as follows. In section 2, we discuss spin-refined
partition functions in AdS3/CFT2. We start with a general review of the thermodynamics of
systems with angular momenta, valid in arbitrary dimension, and then work out in detail
the example of SL(2,Z) black holes. From there, we will construct a few phase diagrams for
spin-refined partition functions. In section 3, we perform similar analysis for AdS5/CFT4.
We finish with future directions and some additional observations in section 4.

When this work was nearing completion, we learned of the work [21], which starts
with (1.1) and evaluates it at small β using a thermal effective field theory. Our work, though
closely related, is more gravitational in nature and takes a complementary approach.

2 Rotating black holes in 3d gravity

2.1 Thermodynamics of rotating systems

One traditionally starts discussions of thermodynamics with the entropy S as a function of
extensive parameters7 — in our case, the energy E and the angular momentum J .8 The

6To be more precise, so far we have only established that there is only a large difference between even
and odd spin states. The sign of that difference would be fixed by one-loop determinants and thus may be
matter-content dependent. A priori, the phase could be also temperature-dependent, but this is rather unlikely.

7Although these parameters are not necessarily extensive in black hole thermodynamics, the same ideas apply.
8In general spacetime dimension D, angular momentum takes values in the Cartan subalgebra of the

rotation algebra so(D − 2), and black hole thermodynamics is modified accordingly.
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first law of black hole thermodynamics then reads

dS = β dE − βΩ dJ, (2.1)

where β is the inverse temperature and Ω is the angular velocity. Usually one then goes
to define the free energy as

F = E − β−1S, (2.2)

written as a function of β and J . This is not what we want to do. We want to fix both
β and Ω, and to this end we define

Frot = E − β−1S − ΩJ. (2.3)

It is easy to check that

dFrot = −S dT − J dΩ. (2.4)

Moreover, Frot can be defined statistically, i.e. in terms of the microstates, as

e−βFrot := Tr
(
e−βH+βΩJ

)
. (2.5)

We will derive all of the identities we need in terms of real Ω, and then analytically continue
it to the imaginary axis. This can be implemented in a path integral by imposing following
boundary conditions on the geometry at infinity:

(tE , ϕ) ∼ (tE + β, ϕ+ iβΩ) ∼ (tE , ϕ+ 2π), (2.6)

where tE is the Euclidean time and J generates the rotation along the ϕ direction.
We are also interested at the microcanonical formalism, where one defines Srot by

eSrot := TrE

(
eβΩJ

)
. (2.7)

The trace is taken over states with fixed energy E, such that for each state βΩ is fixed to
a prescribed value.9 We have, then,

Srot = S + βΩJ, (2.8)

and one can easily check that

dSrot = β dE + J d (βΩ) . (2.9)

Therefore Srot is in a natural way a function of E and βΩ =: α, which is consistent with
the fact that in the trace expression we keep that combination fixed.

9The notation TrE means that we trace over states in a small window of energies (E, E + δE). This
typically gives microcanonical quantities which agree with Legendre transforms of appropriate canonical
quantities. However, oscillatory quantities like eπiJ are not positive-definite, so changing the window slightly
can alter the results. However, with a sufficiently wide window, there is a natural sense in which such
quantities oscillate around a central value. This is the perspective taken in [20], which also tried to quantify the
window-dependence of oscillatory quantities by studying wormhole contributions to their connected correlator.
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Let us finish this introduction by applying the formalism to the CRT black hole. Us-
ing (1.10) and standard thermodynamical relations, we get

SCRT (β) = 1
2SSAdS(2β). (2.10)

Since the CRT black hole is a quotient of a static black hole, it does not rotate. Thus, it
follows that SCRT = SCRT ,rot and also

ECRT (β) = ESAdS(2β). (2.11)

By inverting the relationship between E and β, we finally arrive at the conclusion

SCRT (E) = 1
2SSAdS(E). (2.12)

It follows in particular that in any dimension, the CRT black hole contribution to TrER

is equal to
√

TrE1. However, as we will see below, this is far from being the dominant
contribution, at least at large energies.

2.2 An example: BTZ black holes

In the ensemble of fixed temperature and angular velocity, which we will call the canonical
ensemble from now on, the free energy of the rotating BTZ black hole reads

Frot = π2c

3β2(Ω2 − 1) . (2.13)

From this we may easily calculate the entropy10

S = −
(
∂Frot
∂T

)
Ω

= 2π2c

3β(1 − Ω2) , (2.14)

the angular momentum

J = −
(
∂Frot
∂Ω

)
β

= 2π2Ωc
3β2(1 − Ω2)2 , (2.15)

and the energy

E = F + TS + ΩJ = π2(α2 + β2)c
3(α2 − β2)2 , (2.16)

where we have substituted α := Ωβ. This equation can be solved for β(E,α) (there are in
fact four solutions that we may denote by β±±) and then plugged into

Srot = S + αJ (2.17)
10One may wonder why we bother deriving (for example) the entropy, since this is proportional to the

horizon’s area and thus easily obtained from the geometry. The reason is that we treat it as a warm-up before
the case of a general SL(2,Z) black hole, where these expressions may be less familiar.
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treated as a function of E and α. The analytical result is not very illuminating. What
actually matters to us is the behavior of Srot as E → ∞. We find that for α2E ≫ c, we have

Srot,±±(E,α) = ±αE ± 1√
2
S0(E) +O(1), (2.18)

where S0(E) = Srot,++(E, 0) = 2π
√

c
3
(
E − c

12
)

is the entropy without any rotation [22].
Let α = iα̃, so that α̃ ∈ R. The quantity we are actually interested in is TrE

(
eiα̃J

)
, and

this is determined by eSrot for the branch of (2.18) with the largest real part. The first term
in Srot,±± is purely imaginary and describes oscillations in the density of states, while the
second term is the leading real part. The solutions Srot,±,+ are dominant, while Srot,±− are
exponentially suppressed. Thus, at large energies we may write

TrE

(
eiα̃J

)
= 2 cos(α̃E) exp

( 1√
2
S0(E)

)
. (2.19)

This is not yet the full answer, since we need to consider all of the SL(2,Z) black holes.
First, however, note that α̃ is defined only mod 2π.11 It follows (for example, from

modular invariance) that we should include all possible discrete values of α̃. If α̃ happens
to be 0 (meaning the angular velocity is zero), then saddles with α̃ + 2πn (n ̸= 0) will be
subleading. However, if α̃ /∈ 2πZ, then all possible values of α̃ contribute at the same order:
the difference between them is O

(
1√
E

)
.

2.3 The SL(2,Z) black holes

We are now ready to discuss the thermodynamics properties of the SL(2,Z) black holes.
For a classic reference (which includes also the one-loop determinants for these saddles),
see [23]. The SL(2,Z) black holes MC,D are parametrized by the C and D parameters of
the modular transformation12

τ 7→ Aτ +B

Cτ +D
, (2.20)

where A,B,C,D ∈ Z and AD − BC = 1. Since the modular group is SL(2,Z)/Z2, we can
restrict to C ≥ 0. For example, the BTZ black hole corresponds to M1,0, while thermal AdS
is M0,1. The semiclassical contribution to the partition function associated to the MC,D black
hole with modular parameter τ = α̃

2π + iβ
2π is given by

ZC,D(τ) = ZAdS

(
Aτ +B

Cτ +D

)
= exp

(
πc

6 ℑ
(
Aτ +B

Cτ +D

))
= exp

(
π2c

3
β

(α̃C + 2πD)2 + C2β2

)
.

(2.21)

It follows that the free energy reads

Frot = −π
2c

3
1

(α̃C + 2πD)2 + C2β2 . (2.22)

11Or 4π, if the theory includes fermions. We will discuss the inclusion of fermions below.
12We use capital letters here to avoid confusion with the central charge c.
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Notice that when α̃ ∈ πQ, there is a special modular transformation such that α̃C+ 2πD = 0.
We will come back to this shortly. To keep the ‘real’ notation from the previous section, write
iα̃ = α = βΩ. We may use standard thermodynamical relations to get

J = −
(
∂Frot
∂Ω

)
β

= π2c

3
2iβC(2πD − iCβΩ)(

β2C2 + (2πD − iCβΩ)2)2 , (2.23a)

S = −
(
∂Frot
∂T

)
Ω

= −π
2c

3
2β2C

(
βC

(
Ω2 − 1

)
+ 2πiDΩ

)
(β2C2 (Ω2 − 1) + 4πiβCDΩ − 4π2D2)2 , (2.23b)

and

E = Frot + TS + ΩJ = π2c

3
C2 (α2 + β2)+ 4πiαCD − 4π2D2

(C2 (β2 − α2) − 4πiαCD + 4π2D2)2 . (2.23c)

As before, the last equation (where we have put α = βΩ) can be solved for β(E,α) (there
are again four solutions β±±) and then plugged into Srot = S + αJ , treated as a function
of E and α. The behavior of Srot as E → ∞, for generic values of α, C, D is

Srot,±±(E,α) = ±i
(2Dπ − iCα

C

)
E ± 1√

2C
S0(E) +O(1). (2.24)

Setting α = iα̃, we see that once again the first term above is purely imaginary and
describes oscillations. The second term is the leading real part, and as before Srot,±+ is
dominant while Srot,±− is suppressed. Notice, however, that for C > 1, Srot,±±(E,α) is
always subleading with respect to C = 1 (which corresponds to the BTZ black hole). Thus,
at large energies the microcanonical ensemble is always dominated by the BTZ black hole.

Let us now consider the fine-tuned case α̃ = −π 2D
C . From (2.24), we obtain

Srot(E) = 2π
√
cE√

3C
= S0
C

+O(1). (2.25)

Even this expression is subleading with respect to the BTZ black hole. However, is has one
important feature: it is purely real. Thus, its contribution to the density of states does not
oscillate. It follows that if we consider the microcanonical ensemble with sufficiently wide
energy windows, this is the contribution that will survive while all others may cancel out.
We will see that this is exactly what happens in the thermal partition function. We are thus
ready to answer the question posed in the Introduction: are there systematically more even
than odd spin states? Looking at eq. (2.19), we see that this is not the case at leading order:
indeed, TrE

(
eπiJ

)
is a highly oscillatory function. However, the important point is that there

is also a subleading contribution, given by (2.25), which does not oscillate. This is the reason
why there is a split between odd and even spins in the canonical ensemble.

2.4 Phase diagrams

We are now in a position to construct the phase diagram for Tr
(
e−βH+iα̃J

)
. The number and

nature of the phases depend quite prominently on α. We will consider only a few particular
physically motivated values of that parameter. The phase diagram for arbitrary α̃ ∈ Q can be
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IAdS = I(M0,1)IBTZ = I(M1,0)

BTZ

Thermal AdS

5 10 15 20
β

-0.5

-0.4

-0.3

-0.2

-0.1

3 I (β)

π2 c

Figure 1. The phase diagram for Tr
(
e−βH

)
in AdS3 is shown. The competing saddles are thermal

AdS (blue) and BTZ (black). The action I(β) for both is plotted, with the dominant phase shown in
bold. BTZ dominates at high temperatures, while thermal AdS dominates at low temperatures, with
a Hawking-Page transition between them at βHP = 2π.

constructed using the phase diagrams discussed in [23, 24] and setting the modular parameter
τ = α̃. In this sense, the results presented here are not new; we are rather reinterpreting
them in light of the more recent work of [16, 21].

Let us start with the well-known case α̃ = 0, i.e. a non-rotating system. We have two
phases: the low-temperature behavior is governed by thermal AdS3 (M0,1), while at high
temperatures the static BTZ black hole (M1,0) dominates. The Hawking-Page transition
between them occurs at β = 2π. This should not be a surprise, because these two saddles are
connected by the S-transformation and the modular parameter τ = α̃

2π + i β
2π = i is invariant

under the S transformations. This diagram is depicted in figure 1.
Now consider the case α̃ = 2π. By modular invariance, we should get the same phase

diagram as for α = 0. (However, this time the static BTZ black hole will correspond to the
solution M1,−1.) This is only true if the boundary CFT is purely bosonic. If it contains
fermions, the modular group is smaller. In particular, for the Neveu-Schwarz (NS) sector,
the only admissible saddles MC,D have C +D is odd. This excludes M1,−1, and can easily
check that in this case M0,1 (thermal AdS) dominates for all values of β.

The value we are most interested in is α̃ = π. In this case, we will have three phases:
thermal AdS3, rotating BTZ (M1,0 and M1,−1) and the CRT -twisted black hole M2,−1. If
there are NS fermions, the phase diagram is the same, except that M1,−1 will drop out. The
Hawking-Page transition now occurs at β =

√
3π, and the CRT saddle starts dominating at

β = π√
3 . These two temperatures are connected by the modular transformation

τ 7→ τ − 1
2τ − 1 . (2.26)
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ICRT = I(M2,-1)

IBTZ = I(M1,0)

IAdS = I(M0,1)
BTZ black hole

Thermal AdS

CRT black hole

2 4 6 8 10
β

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

3 I (β)

π2 c

Figure 2. The phase diagram for Tr
(
e−βH+πiJ

)
in AdS3 is shown. The competing saddles are

thermal AdS (blue), rotating BTZ (black), and the CRT -twisted black hole (green). The action I(β)
for all three is plotted, with the dominant phase shown in bold. The CRT solution dominates at high
temperatures, BTZ at intermediate temperatures, and thermal AdS at low temperatures.

Under that modular transformation, the low- and high-temperature regimes are exchanged
via β 7→ π2

β . At high temperatures, we have

Tr
(
e−βH+πiJ

)
= exp

(
cπ2

12β2

)
, (2.27)

which is very large in the semiclassical (c→ ∞) limit. See figure 2 for the phase diagram.
As a last example, let us consider α̃ = ±2π

3 . We have three phases: thermal AdS3 (M0,1),
rotating BTZ (M1,0), and the non-trivial SL(2,Z) solution M3,−1 (or M3,1 for α̃ = −2π

3 ). The
phase diagram for this case is shown in figure 3. At large temperatures, we find

Tr
(
e−βH+i 2π

3 J
)

= exp
(
cπ2

27β2

)
, (2.28)

which again goes to infinity as β → 0. The two values of the parameters α̃ = 2π
3 and α̃ = −2π

3
are mapped into each other by the modular transformation

τ 7→ −τ
3τ − 1 , (2.29)

which also takes β 7→ 4π2

9β . However, this modular transformation is not allowed in the
presence of NS fermions, and neither is M3,−1. In this case, at large temperatures the BTZ
black hole still dominates. In particular, partition function remains bounded as β → 0.

Let us now consider the case of generic α̃ ∈ 2πQ. We will not describe the full phase
diagram, only its large temperature behavior. Let us write α̃ = 2πn/m with m, n coprime
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3
= I(M3,-1)

IBTZ = I(M1,0)
IAdS = I(M0,1)

BTZ black hole

Thermal AdS

New black hole
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β
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-0.2

-0.1

3 I (β)

π2 c

Figure 3. The phase diagram for Tr
(
e−βH+2πiJ/3) in AdS3 is shown. The competing saddles are

thermal AdS (blue), rotating BTZ (black), and the SL(2,Z) black hole M3,−1 (green). The action
I(β) for all three is plotted, with the dominant phase shown in bold. The SL(2,Z) solution dominates
at high temperatures, BTZ at intermediate temperatures, and thermal AdS at low temperatures.

and m > 0. To determine the phase structure, we want to minimize the function

Frot = −π
2c

3
m2

4π2(nC +mD)2 +m2C2β2 (2.30)

at small β over integers C, D. This can clearly be achieved if we choose (C,D) = (m,−n).
Then, we get

Frot = −π
2c

3
1

m2β2 . (2.31)

This assumes arbitrarily negative values as β → 0. There is, however, a catch if we include
fermions. Then, the saddle Mm,−n does not satisfy the boundary conditions if m− n is even.
(Since they are coprime, it follows that both must be odd.) In this case, Frot must remain
bounded as we go to β → 0. In particular, in the limit it reads

Frot = −π
2c

3
m2

4π2(nC +mD)2 . (2.32)

Since m, n are coprime, there exist by Euclid’s algorithm integers C, D such that nC +
mD = ±1. Moreover, at least one of them is even. Thus, at high temperatures we have

Frot = −π
2c

3
m2

4π2 +m2C2β2 . (2.33)

The pair (C,D) is unique up to (C,D) 7→ (C +m,D − n). We choose such (C,D) that C2

is as small as possible and that choice gives us the dominating saddle.
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Let us finish by discussing the case α /∈ 2πQ. For simplicity, we will restrict ourselves to
the bosonic case. In this case the high-temperature limit of Frot (associated to MC,D) is

Frot(β → 0) = −π
2c

3
1

(α̃C + 2πD)2 , (2.34)

and we cannot kill the denominator. However, since the irrational numbers can be approx-
imated arbitrarily well by rational ones, we can make the denominator as close to zero as
we want by an appropriate choice of (C,D). Thus, there will be no single dominant saddle
at high temperatures. Instead, we will probe infinitely many different phases as we change
the temperature. Using Hurwitz’s theorem, one can show that in fact

Frot(β) ∼ − c

β
. (2.35)

Indeed, Hurwitz’s theorem states that we may approximate any irrational number ξ by a
rational one, written in lowest terms as m

n , in such a way that∣∣∣∣ξ − m

n

∣∣∣∣ < 1√
5n2 . (2.36)

Now the free energy associated to a sadle MC,D is given by

Frot(α̃, β) = − π2c

3C2 × 1

β̃2 +
(
ξ + D

C

)2 , (2.37)

where β̃ = β
2π and ξ = α̃

2π is any irrational number. By Hurwitz’s theorem, we may choose
C, D so that (

ξ + D

C

)2
<

1
5C4 . (2.38)

It follows that for this choice of C, D we have

Frot(α̃, β) < − π2c

3C2 × 1
β̃2 + 1

5C4
. (2.39)

As long as we take C ∼ β̃−1/2, this quantity is of order − c
β .

This implies that the partition function with this insertion scales like e#c at high
temperatures. For a similar discussion using continued fractions, see [21].

2.5 Introducing fermions

So far, we have restricted ourselves to bosonic theories. Let us now briefly discuss the inclusion
of fermions. In their presence, we must specify also the choice of the spin structure on the
boundary. Then, in the gravitational path integral we sum over only those geometries that
admit spin structures compatible with what was prescribed on the boundary.

In AdS3, the boundary is simply a torus S1 × S1. The choice of the spin structure is
equivalent to the choice of either periodic or antiperiodic boundary conditions on each circle.
Thus, we have four different spin structures. In the bulk, we must identify which cycles are
contractible and demand that fermions are antiperiodic over them. We have four possibilities:
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• Fermions are antiperiodic over both cycles. This corresponds to the usual thermal
partition function in the Neveu-Schwarz (NS) sector. The contributing saddles MC,D

must have C +D odd.

• Fermions are periodic on the time circle and antiperodic on the spatial one.
In this case, we are calculating the index in the NS sector. The contributing saddles
MC,D must have D odd.

• Fermions are antiperiodic over the time circle and perodic over the spatial
one. In this case, we are calculating the thermal partition function in the Ramond (R)
sector. The saddles contributing MC,D saddles have C even.

• Fermions are periodic over both cycles. In this case, we are calculating the index
in the R sector. There is no smooth saddle compatible with these conditions: at least
one circle always shrinks to zero.

Note that the CRT -twisted black hole is M2,−1, and as such contributes to the first three
partition functions. One may also check that the first three partition functions are all
connected by simple SL(2,Z) transformations. Indeed, we have

TrNS
(
e−βH+iα̃J(−1)F

)
= TrNS

(
e−βH+i(α̃+2π)J

)
(2.40)

and
TrR

(
e−βH+iα̃J

)
= TrNS

(
e

2π
α̃2+β2 (−βH−iα̃J)(−1)F

)
. (2.41)

The latter equation states that these two quantities are connected by an S-transformation.

3 Rotating black holes in AdS5

3.1 Which saddles could contribute?

In this section, we study spin-refined partition functions in holographic 4d CFTs dual
to AdS5 gravity by Euclidean path integral methods. We will begin by identifying the
saddles that contribute to Tr

(
e−βH+βΩ1J1+βΩ2J2

)
for fixed βΩ1 and βΩ2. Eventually, we will

restrict ourselves to a few concrete values of these parameters. Then we will compute the
Euclidean action and entropy of each saddle, examine their dominance in the canonical and
microcanonical ensembles, respectively, and use the results to describe the phase diagrams.
The relevant saddles we consider fall into three classes: (1) thermal AdS, (2) rotating black
holes with complex angular momentum, and (3) quotients of Schwarzschild-AdS black holes,
including CRT -twisted black holes.

Thermal AdS. Thermal AdS is the most obvious saddle, and always contributes to any
spin-refined partition function. We choose conventions where its free energy is set to zero:
this is equivalent to shifting all energies by the constant Casimir term 3π2ℓ2/32, where ℓ is
the AdS radius. In the microcanonical ensemble, the entropy of thermal AdS vanishes at
leading order in 1/GN. (A more careful treatment of the entropy of the thermal gas would
give a nonzero result due to one-loop effects.)
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Rotating black holes. The Myers-Perry black holes in AdS5 are characterized by their
mass m and two spin parameters a, b that govern their rotation about two axes [25]. The
metric is given in Boyer-Lindquist coordinates (t, r, θ, ϕ, ψ) by13

ds2 = −
∆θ

(
1 + r2

ℓ2

)
ΞaΞb

dt2 + 2m
ρ2

(∆θ dt
ΞaΞb

− a

Ξa
sin2 θ dϕ− b

Ξb
cos2 θ dψ

)2

+ ρ2
(

dr2

∆r
+ dθ2

∆θ

)
+
(
r2 + a2

Ξa

)
sin2 θ dϕ2 +

(
r2 + b2

Ξb

)
cos2 θ dψ2,

(3.1)

where we have defined ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, Ξa = 1 − a2

ℓ2 , Ξb = 1 − b2

ℓ2 , and

∆r = 1
r2

(
r2 + a2

) (
r2 + b2

)(
1 + r2

ℓ2

)
− 2m, ∆θ = 1 − a2

ℓ2
cos2 θ − b2

ℓ2
sin2 θ. (3.2)

The horizon radius r+ is defined as the largest root of ∆r. This allows us to write the mass
as m = 1

2r+

(
r2

+ + a2) (r2
+ + b2) (1 + r2

+
ℓ2

)
. Thus we can label distinct solutions by (a, b, r+).

The energy and the angular momenta generating rotations in the ϕ and ψ directions are

E = πm (2Ξa + 2Ξb − ΞaΞb)
4Ξ2

aΞ2
b

, J1 = πam

2Ξ2
aΞb

, J2 = πbm

2ΞaΞ2
b

. (3.3)

Finally, the inverse temperature and angular velocities conjugate to J1 and J2, obtained by
demanding that the Euclidean solution is smooth at the horizon, are given by

β = 2πr+
(
r2

+ + a2) (r2
+ + b2)

r4
+

(
1 + 1

ℓ2
(
2r2

+ + a2 + b2)) , Ω1 =
a

(
1 + r2

+
ℓ2

)
r2

+ + a2 , Ω2 =
b

(
1 + r2

+
ℓ2

)
r2

+ + b2 . (3.4)

These black holes contribute to a gravitational path integral for Tr
(
e−βH+βΩ1J1+βΩ2J2

)
.

By holding the potentials βΩ1 and βΩ2 fixed and purely imaginary, we can identify saddles
that contribute to certain spin-refined densities of states. For each saddle, we will express the
parameters (a, b, r+) as functions of β or E, depending on the ensemble, and then use (3.3)
and (3.4) to compute their on-shell action and entropy:

IBH = βE − A

4 − βΩ1J1 − βΩ2J2, SBH = A

4 , A = 2π2 (r2
+ + a2) (r2

+ + b2)
r+ΞaΞb

.

(3.5)

Quotients of Schwarzschild. As discussed in the Introduction, one may construct a CRT -
twisted black hole in any dimension via a smooth Z2 quotient of the Schwarzschild AdS black
hole. This solution always contributes to ZR = Tr

(
e−βHR

)
, with Euclidean action (1.10) and

entropy (2.12). As we will see, this saddle is dominant for ZR at high temperatures.
For generic rational angular potentials α = 2πip/q, a family of Zq quotients of Kerr AdS

was recently constructed in [21]. It was argued there that these quotients should dominate
the corresponding spin-refined partition functions at high temperatures, at least provided
that they are smooth. The CRT -twisted black hole will be sufficient for our purposes, and
we will not consider more general saddles here.

13We follow the conventions of [20]. The careful reader may notice a small typo therein, where the horizon’s
area was given as the entropy.
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3.2 Which saddles don’t contribute?

It is a longstanding open problem to systematically determine whether a given saddle will
contribute to a gravitational path integral. The issue is especially complicated when the
solution contains complex parameters. We defer to future work a more detailed investigation
of contour prescriptions for such path integrals — see [26] for a proposal in this direction.
In the meantime we will restrict ourselves to certain rules of thumb for the choices to be
made. The best known is, of course, the Kontsevich-Segal-Witten criterion [27, 28]. However,
it is rather complicated to check in practice. Below, we discuss two simpler alternatives
that will help us exclude certain complex saddles.

Thermal dominance criterion. Suppose that at a given temperature β, the spin-refined
partition function Tr

(
e−βH+iα̃J

)
(where α̃ = −iα ∈ R) is dominated by a single saddle with

Euclidean action Iα(β), while the ordinary thermal partition function Tr
(
e−βH

)
has dominant

saddle-point contribution I0(β). Then we have∣∣∣Tr
(
e−βH+iα̃J

)∣∣∣ ≤ Tr
(∣∣∣e−βH+iα̃J

∣∣∣) = Tr
(
e−βH

)
. (3.6)

In the saddle-point approximation, the right-hand side is given by e−I0(β), whereas the left-
hand side is given by

∣∣e−Iα(β)∣∣.14 It follows that ℜ (Iα(β)) ≥ I0(β), meaning that any putative
saddle of the spin-refined partition function must have larger real part of the action than
the corresponding saddle of the thermal partition function. For example, since thermal AdS
dominates the canonical ensemble below the Hawking-Page temperature in the non-rotating
case, we get a bound on rotating saddles in this regime: no solution that contributes to a
spin-refined partition function may dominate over thermal AdS below the Hawking-Page
temperature. In simple cases, (3.6) is the statement that differences between certain numbers
of states cannot exceed the total number of states. More generally, replacing differences
with phases cannot increase the density of states either.

Horizon criterion. There is a small subtlety that needs to be taken into account while
discussing rotating black holes. We will soon solve certain algebraic equations to obtain r+,
for example as a function of the inverse temperature β. It will follow automatically from those
equations that r+ is a root of ∆r, as it should be. However, for real geometries r+ must be
the largest root, and the equations we will solve make no such guarantee. We will encounter
below an example where indeed certain real saddles can be excluded by that argument. Of
course, it makes sense to talk about the ordering of roots only for real geometries. For more
general complex saddles, it is natural to require that r+ should be the root of ∆r with the
largest real part. We leave it to future work to determine whether this can be derived from
a more principled formulation of the gravitational path integral.15

14If there are multiple contributing saddles with the same real part, we should add their contributions. This
changes the answer by an O(1) factor, subleading in the 1/GN expansion, so we will ignore this issue.

15By applying a complex diffeomorphism to the solution, one could potentially change the locations of the
horizons in the complex plane. But this cannot be done arbitrarily, since otherwise one could switch the inner
and outer horizons of a real geometry, which would change the solution.
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3.3 The non-rotating case

As a warm-up, and to showcase how we decide which solutions contribute, we review the
computation of the thermal partition function Z = Tr(e−βH). The relevant saddles are
thermal AdS and the Schwarzschild AdS5 black hole, which is obtained from (3.1) by fixing
βΩ1 = βΩ2 = 0. This sets a = b = 0, so that black hole solutions are characterized by r+.

In the canonical ensemble, by solving for r+ in (3.4), one finds two solutions:

β = 2πℓ2r+
2r2

+ + ℓ2
=⇒ r+(β) = πℓ2

2β

1 ±

√
1 − 2β2

π2ℓ2

 . (3.7)

Both solutions define real geometries above a minimum temperature given by βmin = πℓ/
√

2,
and it can be checked explicitly that both solutions satisfy the horizon criterion for all β.
Their on-shell actions can be computed by plugging (3.7) into (3.5): one finds

I
(±)
SAdS(β) = − πℓ2

64β

(
πℓ±

√
π2ℓ2 − 2β2

)2 (
πℓ

(
πℓ±

√
π2ℓ2 − 2β2

)
− 3β2

)
. (3.8)

This leads to the well-known phase diagram shown in figure 4. The big black hole is the
dominant saddle at high temperatures, where it has radius r(+)

+ (β) ∼ πℓ2/β and action
I

(+)
SAdS(β) ∼ −π5ℓ6/(8β3). It remains dominant down to the Hawking-Page temperature
βHP = 2πℓ/3; below this temperature, thermal AdS dominates. The small black hole is
subdominant for all temperatures where it exists.16

In the microcanonical ensemble, there are four solutions r+(E). From (3.3), we find

E = 3π
8 r2

+

(
1 + r2

+
ℓ2

)
=⇒ r

(±,±)
+ = ±

√
−ℓ2

√
3π ± ℓ

√
3πℓ2 + 32E

2
√

3π
. (3.9)

Two solutions are purely imaginary, and two are real. One of the latter has r+ < 0, so it fails
the horizon criterion and is excluded. Since from (3.5) we have S = π2r3

+/2, the imaginary
solutions have no real part of the entropy. This leaves only the real and positive solution:
it exists for all energies, satisfies the horizon criterion, and dominates over thermal AdS at
all energies. Its entropy grows at high energies like

SSAdS(E) = π5/4

12
√

6

(
ℓ
√

9πℓ2 + 96E − 3ℓ2
√
π
)3/2

∼ (2π)5/4ℓ3/2

33/4 E3/4 +O(E1/4). (3.10)

3.4 Bosons minus fermions

Let us consider the partition function with a (−1)F insertion, which computes the difference
between the number of bosonic and fermionic states in the CFT. This insertion was studied
also in [20], and here we make only a few comments on their results. Due to the spin-statistic
theorem, (−1)F = e2πiJ , where J is the angular momentum along any axis. Thus, the saddles
we need to consider include thermal AdS and rotating black holes; for the latter, the (−1)F

insertion can be implemented either by e2πiJ1 or e2πiJ2 , both of which count bosons and
16Actually, at one-loop order one discovers that the small black hole has a negative mode [29, 30]. This

means that it cannot contribute to the gravitational path integral in the saddle point approximation.
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1

Re[I(β)]

Figure 4. The phase diagram for Tr
(
e−βH

)
in AdS5 is shown. The relevant saddles are thermal AdS

(blue) and two black hole solutions (gray and black). The action ℜ(I(β)) for all three is plotted, with
the dominant phase shown in bold. The big black hole dominates at high temperatures, while thermal
AdS dominates at low temperatures, with a Hawking-Page transition between them at βHP = 2πℓ/3.
For this and all subsequent figures, we work in units where ℓ = 1.

fermions with opposite signs. The answer does not depend on the choice, of course. For
concreteness, we set βΩ1 = 2πi and βΩ2 = 0, the latter of which fixes b = 0. Black hole
solutions will therefore be parametrized by pairs (a, r+).

The procedure for obtaining such solutions is straightforward. Using (3.4), the condition
βΩ1 = 2πi can be used to solve for a in terms of r+. One then substitutes this into the
expressions (3.3)–(3.4) for the inverse temperature or the energy, depending on the ensemble,
and inverts to find r+(β) or r+(E) (and therefore also a(β) or a(E)), respectively.

This procedure can be carried out analytically in both the canonical and microcanonical
ensembles. In the canonical ensemble, we get three explicit solutions r+(β), one real “big”
black hole and two complex conjugates. At high temperatures, the real solution becomes
large, while the complex solutions have vanishing real parts:

r
(big)
+ (β) ∼ 3πℓ2

β
+O(β), r

(±)
+ (β) ∼ ± iℓ√

3
+ β

36π +O(β2). (3.11)

We evaluate the real part of the on-shell action (3.5) explicitly for each of these solutions. The
results are shown in figure 5, which naïvely indicates that these black holes could dominate,
in disagreement with the conclusions of [20]. At high temperatures, we have

I(big)(β) ∼ 27π3

32β +O(β), I(±)(β) ∼ ± iβ2

12
√

3
− 7β3

288π +O(β4). (3.12)

However, none of these saddles can contribute to the gravitational path integral for two
independent reasons. First, all three solutions fail the horizon criterion. Indeed, from (3.2)
the roots of ∆r are ±r+ and ±

(
−a2 − ℓ2 − r2

+
)1/2 =: ±r−, and by plugging in the solutions
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Figure 5. The phase diagram for Tr
(
e−βH(−1)F

)
in AdS5 is shown. The relevant saddles are

thermal AdS (blue) and three rotating black holes (gray, black). The action ℜ(I(β)) for all four is
plotted, with the dominant phase in bold. We have superimposed the phase diagram of the thermal
partition function (dashed red), and by the dominance criterion (3.6) any saddle that contributes to a
spin-refined partition function cannot occupy the “thermal exclusion zone” (shaded). The inset shows
the high-temperature behavior of a pair of complex saddles, which naïvely appear to dominate at small
β. However, we expect them not to contribute, so the ensemble is always dominated by thermal AdS.

(a(β), r+(β)) one can show that for all three solutions, ℜ(r−) > ℜ(r+) at all temperatures. In
fact, for the big black hole, the metric and the roots of ∆r are all real (after Wick rotation to
Euclidean signature), so “r+” is a genuine inner horizon. Second, as illustrated in figure 5, the
thermal dominance criterion requires legitimate saddles to lie outside of the shaded “thermal
exclusion zone.” This prevents the big black hole from contributing at temperatures where it
would dominate over thermal AdS, and the same criterion excludes the complex saddles at
low temperatures. At high temperatures, these saddles cannot be excluded by this argument
and appear to dominate the ensemble: see the inset in figure 5. However, based on the
horizon criterion and another argument that we give below, we conclude that they should
not contribute to the gravitational path integral. It follows that thermal AdS gives the only
allowed contribution to Tr

(
e−βH+2πiJ

)
, and therefore dominates at all temperatures.

In the microcanonical ensemble, we get four solutions (a(E), r+(E)). It can be shown that
all four solutions have purely imaginary r+, and therefore the entropy computed from (3.5)
is also purely imaginary. To see this, note that βΩ1 = 2πi has solution a = −i

(
ℓ2

r+
+ 2r+

)
,

and substituting this into the condition E = E(a, r+) implies that r+ must be a root of

8E
π

(
ℓ2 + 4r2

+

)2
+ (ℓ2 + 3r2

+)
(
ℓ4 + 7ℓ2r2

+ + 4r4
+

)
. (3.13)

Let us substitute r2
+ = −x. The resulting cubic polynomial has three positive roots for

E > 0, as can be seen by checking its sign at x = 0, x = ℓ2

4 , x = ℓ2

3 , and at infinity. From
a = −i

(
ℓ2

r+
+ 2r+

)
it follows that a is purely real, so from (3.5) the entropy has no real
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Figure 6. At fixed temperature, there are 10 distinct rotating black holes in AdS5 that satisfy
βΩ1 = βΩ2 = πi. For each solution, we plot ℜ(r+(β)) and examine whether it is largest among the
other roots of ∆r. Solutions are either excluded by this criterion (gray) or admissible (black).

part. The same conclusion was reached in [20] numerically. Thus thermal AdS dominates the
microcanonical ensemble, and we see that the spin-refined density of states is not exponentially
large in 1/GN at any energy. From this analysis, it is also clear that no black hole saddle
can dominate in the canonical ensemble, as this would define a regime of energies where
the spin-refined density of states is exponentially large.

3.5 Even minus odd spin

The final example we consider is the partition function with an insertion of the reflection
operator, ZR = Tr

(
e−βHR

)
. As described above, the relevant saddles are thermal AdS,

rotating black holes, and now also the CRT -twisted black hole. For the rotating solutions,
the reflection operator is implemented by the rotation eπiJ1+πiJ2 , so bulk solutions with
βΩ1 = βΩ2 = πi will contribute to ZR. It follows that a = b, so the black hole solutions are
again parametrized by (a, r+). The equations that determine them as functions of β or E
define high-order polynomials, so we will have to proceed numerically.

Let us begin with the canonical ensemble. We found numerically that the system
{β(a, r+)Ω1(a, r+) = πi, β = β(a, r+)} has 10 distinct solutions (a(β), r+(β)). All of them
come in complex conjugate pairs, except for one pair that bifurcates at high temperatures
into two solutions with purely real r+. The horizon criterion is only satisfied by two pairs of
solutions, and even only above a minimal temperature for each one: see figure 6.

We numerically computed the Euclidean action of each of these solutions, which compete
for dominance with thermal AdS and the CRT -twisted black hole. The action of the latter is
ICRT (β) = 1

2I
(+)
SAdS(2β), with I(+)

SAdS(β) given by (3.8). The results are shown in figure 7, which
also indicates the saddles that satisfy the horizon criterion and overlays the thermal exclusion
zone below which no solution can contribute. Because thermal AdS always contributes, it
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Figure 7. The phase diagram for Tr
(
e−βHR

)
in AdS5 is shown. The relevant saddles are thermal

AdS (blue), 10 rotating black holes (gray or black, depending on the horizon criterion), and the CRT
black hole (green). The action ℜ(I(β)) for all of them is plotted, with the dominant phase in bold.
Thermal AdS dominates at low temperatures, and the CRT -twisted black hole dominates at high
temperatures. The status of intermediate β is complicated by the presence of a pair of complex saddles
which are not immediately ruled out by our criteria. We nevertheless expect them not to contribute.

must be the dominant phase above the Hawking-Page temperature βHP = 2πℓ/3 by the
thermal dominance criterion. At high temperatures, the CRT -twisted black hole dominates
and has ICRT (β) ∼ −π5ℓ6/(128β3) in this regime. It becomes subdominant to thermal AdS
at 1

2βHP = πℓ/3, and if no other saddles contribute at intermediate temperatures, then this
new CRT -twisted Hawking-Page transition fully characterizes the phase diagram of ZR.

There is, in fact, one conjugate pair of black holes that dominate over both thermal AdS
and the CRT -twisted black hole and are not excluded from contributing by any of our criteria
at intermediate temperatures.17 So it may be possible for this regime to be dominated by a
black hole. We should nevertheless exclude it, since (assuming we have not missed any other
saddles) this would lead to a discontinuous spin-refined density of states.

A similar analysis can be repeated for the microcanonical ensemble. We found 30 distinct
solutions (a(E), r+(E)), all of which exist at all energies, and numerically computed the
entropy S(E) for each one. The results are shown in figure 8, alongside the entropy of
thermal AdS and the CRT -twisted black hole. The latter is just SCRT (E) = 1

2SSAdS(E),
where SSAdS(E) is given by (3.10). Of those black hole solutions not excluded by the horizon
criterion, one pair of complex saddles dominates the ensemble at all energies. We determined
numerically that at high energies, their entropy grows like ℜ(S(E)) ∼ 2.19E3/4. Just as in the
3d case, these dominating saddles also have a nonzero imaginary part of the entropy, leading
to a highly oscillatory microcanonical answer for the entropy. Meanwhile, the contribution
of CRT black holes, while subdominant, is purely real.

17Notice that both of our criteria begin to exclude this saddle at approximately the same temperature. We
take this as evidence that our horizon criterion is correct, at least in the present setting.
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Figure 8. The real part of the entropy counting the difference between even- and odd-spin states
is shown as a function of the energy. Between thermal AdS (blue), the CRT -twisted black hole
(green), and a number of complex rotating black holes (black), one conjugate pair of black holes (bold)
dominates at all energies. The exclusion zone (red) is also overlaid: valid contributions to ZR must
have less entropy than the Schwarzschild black hole that dominates in the non-rotating case. We have
checked that at larger energies the plot looks qualitatively the same.

4 Discussion and further directions

We have investigated the rôle of CRT -twisted black holes in the gravitational path integral
and its microstate interpretations. In agreement with [21], we find that they give the leading
contribution to the spin-refined partition function Tr

(
e−βHR

)
, where R is a reflection, at

large temperatures. Using gravitational techniques, we are able to probe this quantity even
at finite temperature. We are also able look more directly into the density of states by
working in the microcanonical ensemble. We will review our main results below and point
out some of the questions they raise.

4.1 The microcanonical ensemble

We have seen that the microcanonical ensemble is not equivalent to the canonical ensemble.18

At large energies, the former is dominated by complex, rotating black holes, whereas at high
temperatures the latter is dominated by the CRT -twisted black hole. The reason for the
non-equivalence of the ensembles is the rapid oscillations in the difference of densities of states
for even and odd spins. These oscillations average out to give subdominant contributions
to the thermal partition function.

We have checked that this is the case for AdS3 and AdS5. However, it is most likely not
true in even-dimensional spacetimes. The reason behind this is just that antipodal map on

18We have, however, used standard thermodynamic relations — which rely on ensemble equivalence — to
compute the entropy and action of each saddle if it dominated. This reproduces the correct answers for
CRT -twisted and complex rotating black holes, even when they are not dominant. So ensemble equivalence is
assumed to hold saddle by saddle, but which saddle dominates depends on the ensemble.
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SD−2 is a rotation only for odd D. Thus, for even D rotating black holes would not contribute
to TrE

(
e−βHR

)
. If we entertain the possibility that there are no other saddles that we are not

aware of, then the CRT -twisted black hole (which contributes in any dimension) dominates
both the canonical and microcanonical ensembles in even dimension. This is an important
qualitative difference between even and odd dimensions, and it would be interesting to see it
arise directly in the CFT, for example using the thermal EFT approach of [21].

One could be tempted to interpret the fact that ℜ(S(E)) = 0 for the AdS5 black holes
contributing to Tr

(
e−βH(−1)F

)
as a sign of some emergent supersymmetry (perhaps at large

energies) in holographic 4d CFTs. However, it was argued in [20] that most likely there are
additional saddles with defects that have larger entropy. A low-energy example of that type
of construction was presented in [31]. We plan to address the question of whether these types
of geometries could also contribute to the spin-refined geometries in the future.

4.2 Phase diagrams

Using AdS/CFT, it is possible to probe the phase diagrams for spin-refined partition functions
even at finite temperature. This is most clearly achieved in AdS3, where we have a full list of
all contributing saddles and thus we can draw the phase diagram for any rotational insertion,
as was done previously in [23, 24]. Perhaps surprisingly, for such insertions one finds richer
structures than in the case of the thermal partition function. For Tr

(
e−βHR

)
in AdS3 we

have three phases. At high temperatures, the dominating saddle is the CRT -twisted black
hole. At low temperatures this quantity is dominated by thermal AdS. There is, however, an
intermediate regime in which the dominating saddle is a rotating BTZ black hole.

Interestingly, the exchange of the dominance between the latter two occurs at a tem-
perature above the Hawking-Page transition. The points of transition are fixed by modular
invariance,19 and thus we expect this feature to hold universally, not just for holographic
theories. It would be interesting to get more detailed insight into these different phases
intrinsically in the CFT. Of course, it also remains to be seen whether we can learn more
about them on the gravity side. It would be especially interesting to see how the lack of
time-orientability of CRT -twisted black holes manifests itself in the n-point functions on the
boundary. Since these topological issues are present only behind the horizon, this line of
investigation would necessarily lead us outside of the realm of the Euclidean gravity.

We have also found and studied many saddles that potentially contribute to Tr
(
e−βHR

)
in AdS5. The construction of the phase diagram is more complicated here because it is far
from obvious which solutions are legitimate saddles that contribute to the gravitational path
integral. Based on figure 7, we expect that no rotating black hole shall ever dominate.20 On
one hand, this is also what happens in AdS4, where the reflection R cannot be reduced to a
rotation. On the other hand, we cannot exclude the possibility that there are more exotic
saddles that we may have missed. To resolve these ambiguities, it would be beneficial to
probe what happens at modest temperatures in the CFT directly. We also hope to find the
precise contour-prescription for these quantitites to prove that all of the problematic saddles
we have discussed can be rejected from first principles.

19We have presented only the simplest example. For the general construction of the phase diagram, see [24].
20A less desirable alternative would be that the spin-refined density of states is discontinuous in β.
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