

pubs.acs.org/JACS Communication

Modular Synthetic Platform for Interior-Functionalized Dendritic Macromolecules Enabled by the Palladium/Norbornene Catalysis

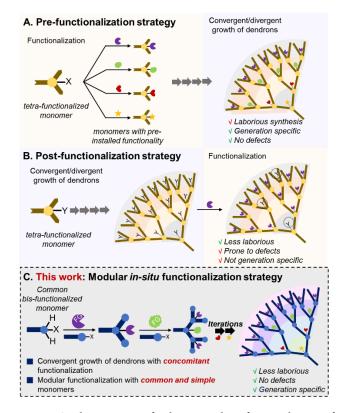
Shinyoung Choi, Ki-Young Yoon,* and Guangbin Dong*

Cite This: J. Am. Chem. Soc. 2024, 146, 18855–18860

Read Online

ACCESS I

III Metrics & More


Article Recommendations

Supporting Information

ABSTRACT: Synthesis of interior-functionalized dendritic macromolecules is generally tedious and labor-intensive, which has been a key factor hampering their practical applications. Here, we have revisited this long-standing challenge and devised a modular and convergent platform to synthesize multifunctional dendrons with all-carbon backbones up to four generations via an *in situ* functionalization strategy. Enabled by the palladium/norbornene cooperative catalysis, different functional groups can be introduced to each generation of dendrons during the dendron growth, making it convenient for systematic comparison of their properties. The utility of this versatile platform is further showcased in the internal-functionalization-dependent properties of dendrons as organogels and aggregation-induced emission materials.

aterials with a demanding synthetic process are often avoided for practicality reasons, despite exhibiting promising properties. In general, it is until the synthetic burden is alleviated by a more efficient and user-friendly method that the value of these materials can be better recognized. One such example is multifunctionalized dendronized macromolecules (e.g., dendrimers, dendronized polymers). Building on the unique properties of the bulky monodisperse dendronized three-dimensional architecture, the addition of multiple functional groups (FGs) to each layer can synergistically influence their solubility, 2a,b viscosity, 2c chain conformation, 2d core-shell compartmentation, 2e and other properties. Thus, they offer an excellent platform for enabling high-end applications in drug delivery, sensing, and nanotechnology.³ Unfortunately, this promise is hampered by lengthy synthetic routes to access these materials and inefficiency of introducing FGs. 1,2

While it is straightforward to introduce FGs to the core of dendrimers or the periphery of dendrons,4 incorporating different FGs into interior layers (i.e., generations) of dendrons, which can maximize versatility offered by the layered architecture, has been challenging. To date, two strategies are known for internal functionalization of dendrons. The first one, namely, the prefunctionalization strategy, employs tetrafunctionalized monomers prepared in advance (Figure 1A). 4a,5 The accessibility of such highly functionalized branched monomers could be a concern. In addition, the functionalization reaction needs to be chemically orthogonal to the dendron growth reaction, which is another strict requirement.4a The alternative postfunctionalization strategy, FGs are coupled at dendrons' reactive sites after the macromolecule synthesis, was less time-consuming, yet unlikely suitable for generation-specific modification, and prone to defects (Figure 1B). 4a,6 Hence, a more straightforward paradigm, in which the internal FGs are modularly installed onto a simple difunctionalized monomer during the dendron growth (Figure 1C), would serve as an almost ideal

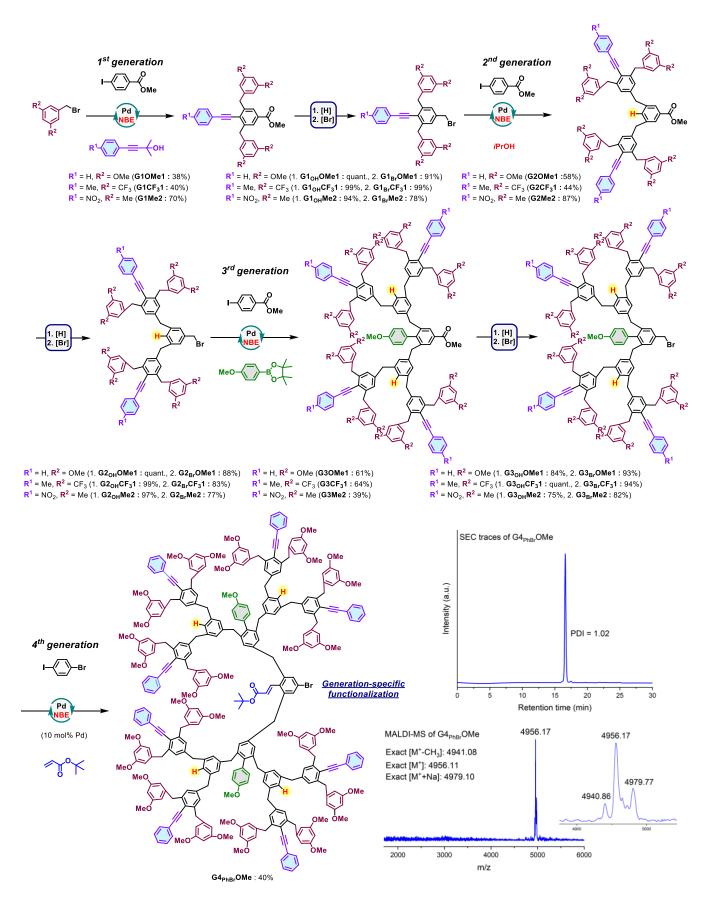
Figure 1. Synthetic strategies for the interior-layer functionalization of dendrons.

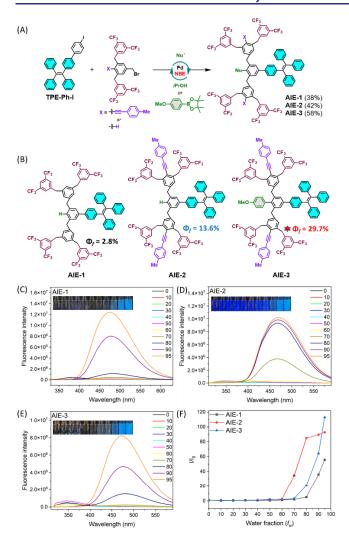
Received: May 3, 2024 Revised: June 26, 2024 Accepted: June 27, 2024 Published: July 1, 2024

Scheme 1. Pd/NBE-Catalyzed Generation Growth of Interior-Functionalized Dendrons

approach to prepare interior-functionalized dendritic macromolecules. Herein, we describe the first and preliminary development of a modular in situ functionalization strategy for convergent synthesis of dendritic macromolecules containing generation-specific FGs and all-carbon backbones.

Palladium/norbornene (Pd/NBE)-catalyzed functionalization of para-substituted aryl halides provides a unique and efficient method to install three adjacent FGs to the aromatic core (Scheme 1A).7 Through an aryl-norbornyl palladacycle (ANP) intermediate, various electrophiles and various nucleophiles (including alkenes) can be coupled at the ortho and ipso positions, respectively.8 The branching selective coupling mode renders the Pd/NBE catalysis well suited for the development of modular in situ functionalization synthesis of interior-functionalized dendritic macromolecules.


At this initial stage of exploration, the Pd/NBE-catalyzed double ortho-C-H alkylation using benzyl bromides was employed as the dendron growth reaction to access branching networks (Scheme 1B). 4-Iodobenzoate serves as an excellent center module because it can be easily converted to a benzyl bromide moiety after a sequence of reduction and bromination in high efficiency, which can participate in the Pd/NBE reaction again as the branching module for the growth of the next-generation dendron. In each dendron generation synthesis, different FGs can be introduced to the ipso position using different nucleophiles. This approach should provide dendrons with all-carbon backbones, which, to the best of our


Table 1. Reaction Scope of Various Electrophiles and Nucleophiles^a

^aReaction conditions: methyl 4-iodobenzoate (0.15 mmol), electrophile (0.315 mmol), nucleophile (0.18 mmol), Pd(OAc)₂ (0.0075 mmol), P(2-furyl)₃ (0.0188 mmol), norbornene (0.15 mmol), Cs₂CO₃ (0.60 mmol), toluene/THF (4:1, 1.5 mL), 90 °C, 24 h. ^bK₄Fe(CN)₆.3H₂O (0.30 mmol), Pd(OAc)₂ (0.015 mmol), P(2furyl)₃ (0.033 mmol), norbornene (0.90 mmol), K₂CO₃ (0.45 mmol), 1,2-dimethoxyethane (1.5 mL), 90 °C, 48 h. c1,4-Dioxane was used as the solvent.

knowledge, have not been accessed previously with the traditional dendron synthesis methods. The benzyl-linked framework is also structurally complementary and chemically adaptable to the benzyl ether-based dendrons pioneered by Hawker and Fréchet, which also utilizes benzyl-type electrophiles. Additionally, the robust all-carbon dendritic scaffold offers the

Scheme 2. Synthetic Pathways to Access Three Prototypes of Multifunctional Dendrons

Figure 2. Structure—property relationship study of the AIE effect of second-generation dendrons: (A) Rapid synthesis of the dendritic AIE compounds. (B) The chemical structures of three dendrons along with their respective fluorescence quantum yields. Fluorescence intensity of (C) **AIE-1** (excitation: 327 nm, emission = 475 nm), (D) **AIE-2** (excitation: 300 nm, emission = 470 nm), and (E) **AIE-3** (excitation: 300 nm, emission = 473 nm) with varying $f_{\rm w}$. Inset: fluorescence images of THF-H₂O mixtures (from left to right, $f_{\rm w}=0$ to 95 vol %) taken under 365 nm UV illumination. (F) Relative increase in fluorescence intensity compared to that of the material in pure THF solution (I_0) .

opportunity for postmodifications under harsher conditions that benzyl ethers may not survive (see Figure S2).¹⁰

To make the Pd/NBE catalysis more suitable for dendron synthesis, our initial effort was to optimize the *ortho*-C-H benzylation of 4-iodobenzoate with 3,5-dimethylbenzyl bromide as the electrophile to achieve higher efficiency (see the Supporting Information). Palladium acetate and tri(2-furyl)-phosphine were found to be a better combination of catalyst and ligand. Only 2.1 equiv of the benzyl bromide electrophile were needed. A survey of the solvent effect revealed that 20% THF in toluene was optimal. To understand the scope of FGs that can be introduced to the peripheral and interior positions, different nucleophiles and alkyl electrophiles as functionality and branching modules, respectively, were explored (Table 1). First, alkenyl (G1Me1 and 1a), alkynyl (G1Me2), hydrogen (G1Me3), aryl (G1Me4), and cyano (1b) groups can all be

smoothly installed at the *ipso* position. Next, a range of benzyl bromides with various substituents at the *meta* positions such as hydrogen (1c), methyl (G1Me1), *tert*-butyl (1d), methoxy (1e), and long alkoxy chain (1f), proved to be feasible coupling partners. In addition, electron-withdrawing groups at the *para* position, including trifluoromethyl (1g), nitro (1h), cyano (1i), and bromide (1j), can be tolerated. Gratifyingly, extended π systems such as naphthalene (1k), phenyl carbazole (1l), and tetraphenyl ethylene (1m) were also compatible to the Pd/NBE catalysis. Besides benzylation, *ortho*-C-H alkylation with *n*-butyl iodide was successfully achieved (1n), using 1,4-dioxane as solvent.

To demonstrate the feasibility of this *in situ* functionalization platform for dendritic molecule synthesis, three prototypes of higher-generation multifunctional dendrons containing different FGs at the periphery/interior/core were prepared (Scheme 2). For the peripheral functionalization, we employed benzyl bromides bearing -OMe, -Me, or -CF₃ FGs as branching modules, and three different masked alkynes as functionality modules. To our delight, the first-generation synthesis proceeded smoothly to afford G1OMe1, G1CF₃1, and G1Me2 on a multigram scale, and all the products can be purified by recrystallization without chromatography. 11 The following ester reduction and Appel reactions afforded all three G1_{Br} compounds in high yields (73 to 98% over two steps). Afterward, these G1_{Br} compounds were subjected to the next generation synthesis of G2 dendrons, in which hydrogen is introduced to the ipso position using isopropanol as the hydride source. The same reduction and bromination sequence was applied to prepare G2_{Br} compounds. Similarly, the thirdgeneration dendrons (G3) were synthesized by the same iteration, except using the ipso-Suzuki quench in the Pd/NBE catalysis to introduce an aryl FG. Lastly, 1-bromo-4iodobenzene was used as a center module to connect two G3 dendrons, generating the fourth-generation dendritic macromolecule (G4_{PhBr}OMe). Notably, the *ipso*-position was still functionalized even in this more sterically hindered environment after adjusting the cosolvent ratio (toluene:THF) from 1:4 to 4:1. The remaining aryl bromide moiety in G4_{PhBr}OMe can potentially be used for further functionalization. The structure of G4_{PhBr}OMe was characterized and supported by NMR spectroscopy, MALDI-MS, and size exclusion chromatography (SEC).

Owing to the high versatility of the Pd/NBE catalysis, this in situ functionalization platform allows convenient exploration of structure-property relationships in some applications, which is difficult to achieve otherwise. For example, considering that benzyl ether-based dendrons are known to form organogels as light harvesting or stimuli-responsive materials, 12 seven different interior-functionalized second-generation dendritic "gelators" were prepared using this method (see the Supporting Information for details). The driving forces for gelation $(\pi - \pi \text{ and } C - H/\pi \text{ interactions})^{13}$ were reported to be affected by structural variations, such as dendron generations, peripheral FGs, or substitution patterns, 14,15 and yet the effect of interior-functionalization on gelation efficiency remains unexplored. Interestingly, the dendrons with ipso-functionalization at the first generation exhibited superior gelation ability compared to the corresponding nonfunctionalized one. In contrast, the ipso-functionalization at the second generation had a negative impact on gelation efficiency, and this negative impact was even higher when the ipso-position was functionalized with more electron-deficient groups (Table S2).

Figure 2 illustrates another example of using the interior functionalization to enhance the aggregation-induced-emission (AIE) effect by introducing more steric bulk around the rotatable benzyl or phenyl groups (Figure 2).16 The aryl iodide attached to a well-investigated AIE moiety (Figure 2A, TPE-Ph-I), tetraphenylethylene, 17 successfully provided three dendron variants: a nonfunctionalized dendron (AIE-1), a dendron with ipso-functionalization at the first generation (AIE-2), and a dendron ipso-functionalized in both generations (AIE-3) (Figure 2B). The AIE behavior of each dendron was examined by measuring the fluorescence in THF/H2O mixed solvents upon varying the volume fraction of water (f_w) (Figure 2C-F). The formation of aggregates upon increasing $f_{\rm w}$ was confirmed using UV-vis absorption spectroscopy (Figure S1). For AIE-1, upon increasing f_w to 95%, emission intensity was approximately 56-fold higher than that of the emission in pure THF. Gratifyingly, interior-functionalized dendrons AIE-2 and AIE-3 exhibited a greater enhancement in emission intensity at $f_w = 95\%$, approximately 93- and 113-fold, respectively. The absolute quantum yields (ϕ_f) exhibited a similar pattern, giving 2.8%, 13.6%, and 29.7% for AIE-1, AIE-2, and AIE-3, respectively. These two examples clearly showed that changes of the ipso-functionalization in such benzyl-type dendrons could make a significant difference in their properties. This highlights the importance of interior functionalization for dendritic material development, as well as the convenience of this new synthetic platform for studying structure-property relationship.

In summary, we have described the first use of the Pd/NBE catalysis for synthesis of dendritic macromolecules, enabling generation-specific multilayered interior functionalization in a streamlined and scalable manner. This unique platform simplifies the access to a series of dendrons with similar structures but having different internal and peripheral FGs precisely installed, showing potential to build dendron libraries for systematic structure-property relationship studies. It is our hope that, by mitigating the synthetic burdens, this convenient platform could catalyze a renaissance in the field of advanced multifunctional dendritic macromolecules.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c06090.

> Detailed experimental procedures, characterization data, gelation test of dendrons, UV-vis spectra, fluorescence spectra, stability test of dendrons, NMR spectra of compounds, MALDI-tof spectra of compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors

Guangbin Dong - Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States; orcid.org/0000-0003-1331-6015; Email: gbdong@ uchicago.edu

Ki-Young Yoon – Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States; Present Address: Ashland Specialty Ingredients, Bridgewater, New Jersey, 08807, United States; Email: kyyoonchem@ gmail.com

Author

Shinyoung Choi – Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c06090

Author Contributions

S.C. and K.-Y.Y. contributed equally to this work.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the University of Chicago and National Science Foundation (CHE 2403736) are acknowledged. We thank Dr. David Gosztola (Argonne National Laboratory) for assistance with fluorescence spectroscopy and Dr. Congjun Yu (University of Chicago) for checking the experimental procedure.

REFERENCES

(1) For reviews regarding dendronized macromolecules, see (a) Fréchet, J. M. J. Dendrimers and Supramolecular Chemistry. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4782-4787. (b) Gillies, E. R.; Fréchet, J. M. J. Dendrimers and Dendritic Polymers in Drug Delivery. Drug Discovery Today 2005, 10, 35-43. (c) Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chem. Rev. 2010, 110, 1857-1959. (d) Kolhatkar, R.; Sweet, D.; Ghandehari, H. Functionalized Dendrimers as Nanoscale Drug Carriers. In Multifunctional Pharmaceutical Nanocarriers; Torchilin, V., Ed.; Springer New York: New York, NY, 2008; pp 201-232. (e) Yoon, K.-Y.; Dong, G. Liquid-Phase Bottom-Up Synthesis of Graphene Nanoribbons. Mater. Chem. Front. 2020, 4, 29-45. (f) Fischer, M.; Vögtle, F. Dendrimers: From Design to Application—A Progress Report. Angew. Chem., Int. Ed. 1999, 38, 884-905. (g) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. About Dendrimers: Structure, Physical Properties, and Applications. Chem. Rev. 1999, 99, 1665-1688. (h) Seo, S. E.; Hawker, C. J. The Beauty of Branching in Polymer Science. Macromolecules 2020, 53, 3257-

(2) (a) Xu, F.; Yu, C.; Tries, A.; Zhang, H.; Kläui, M.; Basse, K.; Hansen, M. R.; Bilbao, N.; Bonn, M.; Wang, H. I.; Mai, Y. Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase. J. Am. Chem. Soc. 2019, 141, 10972-10977. (b) Jiang, D.-L.; Choi, C.-K.; Honda, K.; Li, W.-S.; Yuzawa, T.; Aida, T. Photosensitized Hydrogen Evolution from Water Using Conjugated Polymers Wrapped in Dendrimeric Electrolytes. J. Am. Chem. Soc. 2004, 126, 12084-12089. (c) Mansfield, M. L.; Klushin, L. I. Intrinsic Viscosity of Model Starburst Dendrimers. J. Phys. Chem. 1992, 96, 3994-3998. (d) Kim, K. O.; Choi, T.-L. Synthesis of Dendronized Polymers via Macromonomer Approach by Living ROMP and Their Characterization: From Rod-Like Homopolymers to Block and Gradient Copolymers. Macromolecules 2013, 46, 5905-5914. (e) Tomalia, D. A.; Brothers, H. M.; Piehler, L. T.; Durst, H. D.; Swanson, D. R. Partial Shell-Filled Core-Shell Tecto(dendrimers): A Strategy to Surface Differentiated Nano-Clefts and Cusps. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5081.

(3) For reviews on the applications of dendrimers, see (a) Li, L.; Deng, Y.; Zeng, Y.; Yan, B.; Deng, Y.; Zheng, Z.; Li, S.; Yang, Y.; Hao, J.; Xiao, X.; Wang, X. The application advances of dendrimers in biomedical field. View 2023, 4, 20230023. (b) Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 2020, 120, 1397-1437. (c) Mignani, S.; El Kazzouli, S.; Bousmina, M. M.; Majoral, J.-P. Dendrimer space exploration: an assessment of dendrimers/dendritic

- scaffolding as inhibitors of protein-protein interactions, a potential new area of pharmaceutical development. *Chem. Rev.* **2014**, *114*, 1327–1342. (d) Astruc, D.; Boisselier, E.; Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. *Chem. Rev.* **2010**, *110*, 1857–1959.
- (4) For examples of the peripheral/core functionalization, see (a) Hecht, S. Functionalizing the Interior of Dendrimers: Synthetic Challenges and Applications. J. Polym. Sci., Polym. Chem. 2003, 41, 1047-1058. (b) Reek, J. N. H.; de Groot, D.; Oosterom, G. E.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Core and Periphery Functionalized Dendrimers for Transition Metal Catalysis; a Covalent and a Non-Covalent Approach. Rev. Mol. Biotechnol. 2002, 90, 159-181. (c) Hawker, C. J.; Fréchet, J. M. J. Monodispersed Dendritic Polyesters with Removable Chain Ends: A Versatile Approach to Globular Macromolecules with Chemically Reversible Polarities. J. Chem. Soc., Perkin Trans. 1 1992, 19, 2459-2469. (d) Archut, A.; Vögtle, F. Functional Cascade Molecules. Chem. Soc. Rev. 1998, 27, 233-240. (e) Vetter, S.; Koch, S.; Schlüter, A. D. Synthesis and Polymerization of Functionalized Dendritic MacroMonomers. J. Polym. Sci., Polym. Chem. 2001, 39, 1940-1954. (f) Yang, S. K.; Zimmerman, S. C. Water-Soluble Polyglycerol Dendrimers with Two Orthogonally Reactive Core Functional Groups for One-Pot Functionalization. Macromolecules 2015, 48, 2504-2508.
- (5) For examples of the prefunctionalization strategy, see (a) Piotti, M. E.; Rivera, F., Jr.; Bond, R.; Hawker, C. J.; Fréchet, J. M. J. Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with "Internal" Functional Groups. *J. Am. Chem. Soc.* 1999, 121, 9471–9472. (b) Bo, Z.; Schäfer, A.; Franke, P.; Schlüter, A. D. A Facile Synthetic Route to a Third-Generation Dendrimer with Generation-Specific Functional Aryl Bromides. *Org. Lett.* 2000, 2, 1645–1648.
- (6) For examples of the postfunctionalization strategy, see (a) Roeven, E.; Scheres, L.; Smulders, M. M. J.; Zuilhof, H. Design, Synthesis, and Characterization of Fully Zwitterionic, Functionalized Dendrimers. ACS Omega 2019, 4, 3000–3011. (b) Lochmann, L.; Wooley, K. L.; Ivanova, P. T.; Fréchet, J. M. J. Multisite Functionalized Dendritic Macromolecules Prepared via Metalation by Superbases and Reaction with Electrophiles. J. Am. Chem. Soc. 1993, 115, 7043–7044. (c) Bernhardt, S.; Baumgarten, M.; Wagner, M.; Müllen, K. Multiple Functionalization of Benzophenones Inside Polyphenylene Dendrimers Toward Entrapped Ions and Radicals. J. Am. Chem. Soc. 2005, 127, 12392–12399.
- (7) For selected reviews on Pd/norbornene chemistry, see (a) Catellani, M. Catalytic Multistep Reactions via Palladacycles. Synlett 2003, 3, 298-313. (b) Martins, A.; Mariampillai, B.; Lautens, M. Synthesis in the Key of Catellani: Norbornene-Mediated ortho C-H Functionalization. Top. Curr. Chem. 2009, 292, 1-33. (c) Ye, J.; Lautens, M. Palladium-Catalysed Norbornene-Mediated C-H Functionalization of Arenes. Nat. Chem. 2015, 7, 863-870. (d) Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation. Acc. Chem. Res. 2016, 49, 1389-1400. (e) Liu, Z.-S.; Gao, Q.; Cheng, H.-G.; Zhou, Q. Alkylating Reagents Employed in Catellani-Type Reactions. Chem. -Eur. J. 2018, 24, 15461-15476. (f) Zhao, K.; Ding, L.; Gu, Z. Development of New Electrophiles in Palladium/Norbornene-Catalyzed ortho-Functionalization of Aryl Halides. Synlett 2019, 30, 129-140. (g) Wang, J.; Dong, G. Palladium/Norbornene Cooperative Catalysis. Chem. Rev. 2019, 119, 7478-7528. (h) Li, R.; Dong, G. Structurally Modified Norbornenes: A Key Factor to Modulate Reaction Selectivity in the Palladium/Norbornene Cooperative Catalysis. J. Am. Chem. Soc. 2020, 142, 17859-17875. (i) Chen, Z.; Zhang, F. Recent progress on Catellani reaction. Tetrahedron 2023, 134, 133307.
- (8) The value of this Pd/NBE catalysis has been recently recognized in the rapid and modular synthesis of functionalized conjugated polymers by us; see (a) Yoon, K.-Y.; Dong, G. Modular *in situ* Functionalization Strategy: Multicomponent Polymerization by

- Palladium/Norbornene Cooperative Catalysis. *Angew. Chem., Int. Ed.* **2018**, *57*, 8592–8596. (b) Yoon, K.-Y.; Xue, Y.; Dong, G. Three-Step Synthesis of a Less-Aggregated Water-Soluble Poly(*p*-phenylene ethynylene) with Meta Side Chains via Palladium/Norbornene Cooperative Catalysis. *Macromolecules* **2019**, *52*, 1663–1670.
- (9) (a) Hawker, C. J.; Fréchet, J. M. J. Preparation of Polymers with Controlled Molecular Architecture. A New Convergent Approach to Dendritic Macromolecules. *J. Am. Chem. Soc.* **1990**, *112*, 7638–7647. (b) Grayson, S. M.; Fréchet, J. M. J. Convergent Dendrons and Dendrimers: from Synthesis to Applications. *Chem. Rev.* **2001**, *101*, 3819–3868.
- (10) For examples of benzyl deprotection, see (a) Okano, K.; Okuyama, K.; Fukuyama, T.; Tokuyama, H. Mild debenzylation of aryl benzyl ether with BCl₃ in the presence of pentamethylbenzene as a non-Lewis-basic cation scavenger. *Synlett* **2008**, 2008, 1977–1980. (b) Angibeaud, P.; Defaye, J.; Gadelle, A.; Utille, J. Mild deprotection of benzyl ether protective groups with ozone. *Synthesis* **1985**, 1123–1125. (c) Mandal, P. K.; McMurray, J. S. Pd-C-induced catalytic transfer hydrogenation with triethylsilane. *J. Org. Chem.* **2007**, 72, 6599–6601
- (11) For each dendron, different solvent ratios were screened prior to synthesis. The chosen ratio was then maintained throughout the higher generation syntheses.
- (12) Feng, Y.; Liu, Z.-X.; Chen, H.; Fan, Q.-H. Functional supramolecular gels based on poly (benzyl ether) dendrons and dendrimers. *Chem. Commun.* **2022**, *58*, 8736–8753.
- (13) Feng, Y.; Liu, Z.-T.; Liu, J.; He, Y.-M.; Zheng, Q.-Y.; Fan, Q.-H. Peripherally dimethyl isophthalate-functionalized poly (benzyl ether) dendrons: a new kind of unprecedented highly efficient organogelators. *J. Am. Chem. Soc.* **2009**, *131*, 7950–7951.
- (14) Feng, Y.; Liu, Z. X.; Chen, H.; Yan, Z. C.; He, Y. M.; Liu, C. Y.; Fan, Q. H. A Systematic Study of Peripherally Multiple Aromatic Ester-Functionalized Poly (benzyl ether) Dendrons for the Fabrication of Organogels: Structure—Property Relationships and Thixotropic Property. *Chem.—Eur. J.* **2014**, *20*, 7069—7082.
- (15) Feng, Y.; Liu, Z.; Wang, L.; Chen, H.; He, Y.; Fan, Q. Poly (benzyl ether) dendrons without conventional gelation motifs as a new kind of effective organogelators. *Chin. Sci. Bull.* **2012**, *57*, 4289–4295.
- (16) For selected reviews on AIE effect, see (a) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission, Together We Shine, United We Soar! *Chem. Rev.* 2015, 115, 11718–11940. (b) Suman G. R.; Pandey, M.; Chakravarthy, A. S. J. Review on new horizons of aggregation induced emission: from design to development. *Mater. Chem. Front.* 2021, 5, 1541–1584. (c) Zhang, G.; Fu, X.; Zhou, D.; Hu, R.; Qin, A.; Tang, B. Z. Smart aggregation-induced emission polymers: Preparation, properties and bio-applications. *Smart Mol.* 2023, 1, No. e20220008.
- (17) Dong, Y.; Lam, J. W.; Qin, A.; Liu, J.; Li, Z.; Tang, B. Z.; Sun, J.; Kwok, H. S. Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. *Appl. Phys. Lett.* **2007**, *91*, 011111.