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ABSTRACT: Synthesis of interior-functionalized dendritic macromolecules is generally tedious and labor-intensive, which has been
a key factor hampering their practical applications. Here, we have revisited this long-standing challenge and devised a modular and
convergent platform to synthesize multifunctional dendrons with all-carbon backbones up to four generations via an in situ
functionalization strategy. Enabled by the palladium/norbornene cooperative catalysis, different functional groups can be introduced
to each generation of dendrons during the dendron growth, making it convenient for systematic comparison of their properties. The
utility of this versatile platform is further showcased in the internal-functionalization-dependent properties of dendrons as organogels
and aggregation-induced emission materials.

Materials with a demanding synthetic process are often
avoided for practicality reasons, despite exhibiting

promising properties. In general, it is until the synthetic
burden is alleviated by a more efficient and user-friendly
method that the value of these materials can be better
recognized. One such example is multifunctionalized dendron-
ized macromolecules (e.g., dendrimers, dendronized poly-
mers).1 Building on the unique properties of the bulky
monodisperse dendronized three-dimensional architecture, the
addition of multiple functional groups (FGs) to each layer can
synergistically influence their solubility,2a,b viscosity,2c chain
conformation,2d core−shell compartmentation,2e and other
properties.2 Thus, they offer an excellent platform for enabling
high-end applications in drug delivery, sensing, and nano-
technology.3 Unfortunately, this promise is hampered by
lengthy synthetic routes to access these materials and
inefficiency of introducing FGs.1,2

While it is straightforward to introduce FGs to the core of
dendrimers or the periphery of dendrons,4 incorporating
different FGs into interior layers (i.e., generations) of
dendrons, which can maximize versatility offered by the
layered architecture, has been challenging. To date, two
strategies are known for internal functionalization of dendrons.
The first one, namely, the prefunctionalization strategy,
employs tetrafunctionalized monomers prepared in advance
(Figure 1A).4a,5 The accessibility of such highly functionalized
branched monomers could be a concern. In addition, the
functionalization reaction needs to be chemically orthogonal to
the dendron growth reaction, which is another strict
requirement.4a The alternative postfunctionalization strategy,
FGs are coupled at dendrons’ reactive sites after the
macromolecule synthesis, was less time-consuming, yet
unlikely suitable for generation-specific modification, and
prone to defects (Figure 1B).4a,6 Hence, a more straightfor-
ward paradigm, in which the internal FGs are modularly
installed onto a simple difunctionalized monomer during the
dendron growth (Figure 1C), would serve as an almost ideal
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Figure 1. Synthetic strategies for the interior-layer functionalization of
dendrons.
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approach to prepare interior-functionalized dendritic macro-
molecules. Herein, we describe the first and preliminary
development of a modular in situ functionalization strategy for
convergent synthesis of dendritic macromolecules containing
generation-specific FGs and all-carbon backbones.
Palladium/norbornene (Pd/NBE)-catalyzed functionaliza-

tion of para-substituted aryl halides provides a unique and
efficient method to install three adjacent FGs to the aromatic
core (Scheme 1A).7 Through an aryl-norbornyl palladacycle
(ANP) intermediate, various electrophiles and various
nucleophiles (including alkenes) can be coupled at the ortho
and ipso positions, respectively.8 The branching selective
coupling mode renders the Pd/NBE catalysis well suited for
the development of modular in situ functionalization synthesis
of interior-functionalized dendritic macromolecules.
At this initial stage of exploration, the Pd/NBE-catalyzed

double ortho-C−H alkylation using benzyl bromides was
employed as the dendron growth reaction to access branching
networks (Scheme 1B). 4-Iodobenzoate serves as an excellent
center module because it can be easily converted to a benzyl
bromide moiety after a sequence of reduction and bromination
in high efficiency, which can participate in the Pd/NBE
reaction again as the branching module for the growth of the
next-generation dendron. In each dendron generation syn-
thesis, different FGs can be introduced to the ipso position
using different nucleophiles. This approach should provide
dendrons with all-carbon backbones, which, to the best of our

knowledge, have not been accessed previously with the traditional
dendron synthesis methods. The benzyl-linked framework is also
structurally complementary and chemically adaptable to the
benzyl ether-based dendrons pioneered by Hawker and
Frećhet, which also utilizes benzyl-type electrophiles.9 Addi-
tionally, the robust all-carbon dendritic scaffold offers the

Scheme 1. Pd/NBE-Catalyzed Generation Growth of
Interior-Functionalized Dendrons

Table 1. Reaction Scope of Various Electrophiles and
Nucleophilesa

aReaction conditions: methyl 4-iodobenzoate (0.15 mmol), electro-
phile (0.315 mmol), nucleophile (0.18 mmol), Pd(OAc)2 (0.0075
mmol), P(2-furyl)3 (0.0188 mmol), norbornene (0.15 mmol),
Cs2CO3 (0.60 mmol), toluene/THF (4:1, 1.5 mL), 90 °C, 24 h.
bK4Fe(CN)6.3H2O (0.30 mmol), Pd(OAc)2 (0.015 mmol), P(2-
furyl)3 (0.033 mmol), norbornene (0.90 mmol), K2CO3 (0.45 mmol),
1,2-dimethoxyethane (1.5 mL), 90 °C, 48 h. c1,4-Dioxane was used as
the solvent.
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Scheme 2. Synthetic Pathways to Access Three Prototypes of Multifunctional Dendrons
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opportunity for postmodifications under harsher conditions
that benzyl ethers may not survive (see Figure S2).10

To make the Pd/NBE catalysis more suitable for dendron
synthesis, our initial effort was to optimize the ortho-C−H
benzylation of 4-iodobenzoate with 3,5-dimethylbenzyl bro-
mide as the electrophile to achieve higher efficiency (see the
Supporting Information). Palladium acetate and tri(2-furyl)-
phosphine were found to be a better combination of catalyst
and ligand. Only 2.1 equiv of the benzyl bromide electrophile
were needed. A survey of the solvent effect revealed that 20%
THF in toluene was optimal. To understand the scope of FGs
that can be introduced to the peripheral and interior positions,
different nucleophiles and alkyl electrophiles as functionality
and branching modules, respectively, were explored (Table 1).
First, alkenyl (G1Me1 and 1a), alkynyl (G1Me2), hydrogen
(G1Me3), aryl (G1Me4), and cyano (1b) groups can all be

smoothly installed at the ipso position. Next, a range of benzyl
bromides with various substituents at the meta positions such
as hydrogen (1c), methyl (G1Me1), tert-butyl (1d), methoxy
(1e), and long alkoxy chain (1f), proved to be feasible
coupling partners. In addition, electron-withdrawing groups at
the para position, including trifluoromethyl (1g), nitro (1h),
cyano (1i), and bromide (1j), can be tolerated. Gratifyingly,
extended π systems such as naphthalene (1k), phenyl
carbazole (1l), and tetraphenyl ethylene (1m) were also
compatible to the Pd/NBE catalysis. Besides benzylation,
ortho-C−H alkylation with n-butyl iodide was successfully
achieved (1n), using 1,4-dioxane as solvent.
To demonstrate the feasibility of this in situ functionalization

platform for dendritic molecule synthesis, three prototypes of
higher-generation multifunctional dendrons containing differ-
ent FGs at the periphery/interior/core were prepared (Scheme
2). For the peripheral functionalization, we employed benzyl
bromides bearing −OMe, −Me, or −CF3 FGs as branching
modules, and three different masked alkynes as functionality
modules. To our delight, the first-generation synthesis
proceeded smoothly to afford G1OMe1, G1CF31, and
G1Me2 on a multigram scale, and all the products can be
purified by recrystallization without chromatography.11 The
following ester reduction and Appel reactions afforded all three
G1Br compounds in high yields (73 to 98% over two steps).
Afterward, these G1Br compounds were subjected to the next
generation synthesis of G2 dendrons, in which hydrogen is
introduced to the ipso position using isopropanol as the
hydride source. The same reduction and bromination sequence
was applied to prepare G2Br compounds. Similarly, the third-
generation dendrons (G3) were synthesized by the same
iteration, except using the ipso-Suzuki quench in the Pd/NBE
catalysis to introduce an aryl FG. Lastly, 1-bromo-4-
iodobenzene was used as a center module to connect two
G3 dendrons, generating the fourth-generation dendritic
macromolecule (G4PhBrOMe). Notably, the ipso-position was
still functionalized even in this more sterically hindered
environment after adjusting the cosolvent ratio (toluene:THF)
from 1:4 to 4:1. The remaining aryl bromide moiety in
G4PhBrOMe can potentially be used for further functionaliza-
tion. The structure of G4PhBrOMe was characterized and
supported by NMR spectroscopy, MALDI-MS, and size
exclusion chromatography (SEC).
Owing to the high versatility of the Pd/NBE catalysis, this in

situ functionalization platform allows convenient exploration of
structure−property relationships in some applications, which is
difficult to achieve otherwise. For example, considering that
benzyl ether-based dendrons are known to form organogels as
light harvesting or stimuli-responsive materials,12 seven
different interior-functionalized second-generation dendritic
“gelators” were prepared using this method (see the
Supporting Information for details). The driving forces for
gelation (π−π and C−H/π interactions)13 were reported to be
affected by structural variations, such as dendron generations,
peripheral FGs, or substitution patterns,14,15 and yet the effect
of interior-functionalization on gelation efficiency remains
unexplored. Interestingly, the dendrons with ipso-functionaliza-
tion at the first generation exhibited superior gelation ability
compared to the corresponding nonfunctionalized one. In
contrast, the ipso-functionalization at the second generation
had a negative impact on gelation efficiency, and this negative
impact was even higher when the ipso-position was function-
alized with more electron-deficient groups (Table S2).

Figure 2. Structure−property relationship study of the AIE effect of
second-generation dendrons: (A) Rapid synthesis of the dendritic AIE
compounds. (B) The chemical structures of three dendrons along
with their respective fluorescence quantum yields. Fluorescence
intensity of (C) AIE-1 (excitation: 327 nm, emission = 475 nm), (D)
AIE-2 (excitation: 300 nm, emission = 470 nm), and (E) AIE-3
(excitation: 300 nm, emission = 473 nm) with varying fw. Inset:
fluorescence images of THF-H2O mixtures (from left to right, fw = 0
to 95 vol %) taken under 365 nm UV illumination. (F) Relative
increase in fluorescence intensity compared to that of the material in
pure THF solution (I0).
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Figure 2 illustrates another example of using the interior
functionalization to enhance the aggregation-induced-emission
(AIE) effect by introducing more steric bulk around the
rotatable benzyl or phenyl groups (Figure 2).16 The aryl iodide
attached to a well-investigated AIE moiety (Figure 2A, TPE-
Ph-I), tetraphenylethylene,17 successfully provided three
dendron variants: a nonfunctionalized dendron (AIE-1), a
dendron with ipso-functionalization at the first generation
(AIE-2), and a dendron ipso-functionalized in both generations
(AIE-3) (Figure 2B). The AIE behavior of each dendron was
examined by measuring the fluorescence in THF/H2O mixed
solvents upon varying the volume fraction of water ( fw)
(Figure 2C−F). The formation of aggregates upon increasing
fw was confirmed using UV−vis absorption spectroscopy
(Figure S1). For AIE-1, upon increasing fw to 95%, emission
intensity was approximately 56-fold higher than that of the
emission in pure THF. Gratifyingly, interior-functionalized
dendrons AIE-2 and AIE-3 exhibited a greater enhancement in
emission intensity at fw = 95%, approximately 93- and 113-fold,
respectively. The absolute quantum yields (ϕf) exhibited a
similar pattern, giving 2.8%, 13.6%, and 29.7% for AIE-1, AIE-
2, and AIE-3, respectively. These two examples clearly showed
that changes of the ipso-functionalization in such benzyl-type
dendrons could make a significant difference in their
properties. This highlights the importance of interior
functionalization for dendritic material development, as well
as the convenience of this new synthetic platform for studying
structure−property relationship.
In summary, we have described the first use of the Pd/NBE

catalysis for synthesis of dendritic macromolecules, enabling
generation-specific multilayered interior functionalization in a
streamlined and scalable manner. This unique platform
simplifies the access to a series of dendrons with similar
structures but having different internal and peripheral FGs
precisely installed, showing potential to build dendron libraries
for systematic structure−property relationship studies. It is our
hope that, by mitigating the synthetic burdens, this convenient
platform could catalyze a renaissance in the field of advanced
multifunctional dendritic macromolecules.
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